WO2013089225A1 - 制動トルク制御装置 - Google Patents

制動トルク制御装置 Download PDF

Info

Publication number
WO2013089225A1
WO2013089225A1 PCT/JP2012/082482 JP2012082482W WO2013089225A1 WO 2013089225 A1 WO2013089225 A1 WO 2013089225A1 JP 2012082482 W JP2012082482 W JP 2012082482W WO 2013089225 A1 WO2013089225 A1 WO 2013089225A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking torque
regenerative braking
final target
hydraulic
target regenerative
Prior art date
Application number
PCT/JP2012/082482
Other languages
English (en)
French (fr)
Inventor
拓也 樋口
圭悟 網代
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013089225A1 publication Critical patent/WO2013089225A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • B60T13/586Combined or convertible systems comprising friction brakes and retarders the retarders being of the electric type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • B60W2710/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/89Repartition of braking force, e.g. friction braking versus regenerative braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a braking torque control device that controls a braking torque between a regenerative braking device and a hydraulic braking device according to a detected total braking torque of a driver detected during braking.
  • a braking torque control device that performs braking by operating a regenerative braking device and a hydraulic braking device according to a detected total braking torque of a driver detected during braking is known.
  • a braking torque control device that prevents the occurrence of insufficient deceleration due to a response delay caused by the hydraulic braking device (see, for example, Patent Document 1).
  • the target hydraulic braking torque is controlled to a magnitude obtained by subtracting the actual regenerative braking torque from the target total braking torque corresponding to the hydraulic pressure of the master cylinder generated by the driver's braking request. The following control is performed in consideration of the phase delay.
  • the command for the regenerative braking torque is reduced by a quadratic function so that the driver requested total braking torque is not changed by the command for the hydraulic braking torque ( That is, it is increased in a quadratic function).
  • the reduction degree of the total braking torque due to the response delay of the hydraulic pressure control device is suppressed.
  • the above-described conventional braking torque control device has the following problems. That is, in response to the response delay timing of the hydraulic braking device, the generation of the regenerative braking torque is delayed, so that the hydraulic braking torque command itself is also delayed, and the response delay of the hydraulic braking device itself with respect to the command overlaps. Due to this phenomenon, there was a risk of insufficient deceleration.
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to provide a braking torque control device capable of improving insufficient deceleration due to delay in generation of actual hydraulic braking torque in the hydraulic braking device. .
  • a braking torque control device includes: The braking torque control unit A basic target regenerative braking torque calculator that calculates a basic target regenerative braking torque according to the driver-requested total braking torque; When increasing the hydraulic braking torque while decreasing the regenerative braking torque, calculate the final target regenerative braking torque with a delay that takes into account the hydraulic response delay in the hydraulic braking device with respect to the basic target regenerative braking torque A final target regenerative braking torque calculator, An execution regenerative braking torque calculating unit that receives the final target regenerative braking torque and calculates an actual regenerative braking torque that is actually regenerated; A basic target hydraulic braking torque calculator that uses a value obtained by subtracting the effective regenerative braking torque from the driver requested total braking torque as a basic target hydraulic braking torque; Final target hydraulic braking torque that calculates a final target hydraulic braking torque by adding a value obtained by subtracting the basic target regenerative braking torque from
  • a final target regenerative braking torque that is a command value of the regenerative braking device is formed.
  • the final target regenerative braking torque calculating unit calculates a final target regenerative braking torque having a delay in consideration of a hydraulic pressure response delay in the hydraulic braking device with respect to the basic target regenerative braking torque.
  • the basic target hydraulic braking torque calculation unit obtains the basic target hydraulic braking torque by subtracting the execution regenerative braking torque from the driver requested total braking torque.
  • the final target hydraulic braking torque calculator calculates the final target hydraulic braking torque by adding the difference obtained by subtracting the basic target regenerative braking torque from the final target regenerative braking torque to the basic target hydraulic braking torque. This is the command value.
  • the command value to the hydraulic braking device is obtained by adding a difference corresponding to the delay of the hydraulic braking device to the basic target hydraulic braking torque obtained by subtracting the effective regenerative braking torque from the driver requested total braking torque.
  • the delay of the hydraulic braking torque caused by delaying the regenerative braking torque does not occur. Therefore, even if the regenerative braking torque has a delay corresponding to the response delay of the hydraulic braking device, the hydraulic braking torque caused by delaying the regenerative braking torque is compared with that in which the difference is not added. There will be no delay, and the deceleration of the vehicle will be improved.
  • FIG. 1 is a system configuration diagram of a braking torque control apparatus according to an embodiment.
  • FIG. 2 is a flowchart showing an overall flow of braking torque control by the braking torque control device of the embodiment.
  • FIG. 3 is a flowchart showing details of the calculation of the basic target regenerative braking torque in the braking torque control device of the embodiment.
  • FIG. 4 is a flowchart showing details of calculation of the final target regenerative braking torque in the braking torque control apparatus of the embodiment.
  • FIG. 5 is a characteristic diagram showing a low vehicle speed range restriction map in the braking torque control apparatus of the embodiment.
  • FIG. 6 is a regenerative minimum vehicle speed limit diagram in the braking torque control apparatus of the embodiment.
  • FIG. 1 is a system configuration diagram of a braking torque control apparatus according to an embodiment.
  • FIG. 2 is a flowchart showing an overall flow of braking torque control by the braking torque control device of the embodiment.
  • FIG. 3 is a flowchart showing details of the calculation
  • FIG. 7 is a time chart showing an operation example during normal braking of the braking torque control device of the embodiment.
  • FIG. 8 is a time chart showing an operation example of a comparative example with the braking torque control device of the embodiment.
  • FIG. 9 is a time chart showing an operation example when the driver-requested total braking torque rapidly decreases in the braking torque control device of the embodiment.
  • FIG. 1 is a system configuration diagram of the braking torque control device.
  • the braking torque control device is applied to an electric vehicle in which the driving wheel 1 is driven by a motor / generator 4 and includes a hydraulic braking device A and a regenerative braking device B.
  • the hydraulic braking device A includes a brake pedal 5 that a driver steps on. Then, a braking fluid pressure corresponding to the depression force applied to the brake pedal 5 is generated in the master cylinder 7, and this braking fluid pressure is supplied to the wheel cylinder 2 provided on the drive wheel 1 via the brake fluid pressure pipe 8 to control the braking fluid pressure. Generate power.
  • the pedaling force of the brake pedal 5, for example, the pedal operation amount is boosted at a boost ratio set in advance by an electric booster 6 as a booster, and in the master cylinder 7, the boosted input is fluid pressure. Is converted into a braking fluid pressure.
  • the brake hydraulic pressure pipe 8 is connected only to the wheel cylinder 2 provided on one drive wheel 1, but the other three wheel cylinders (not shown) are omitted. It is connected.
  • the electric booster 6 and the master cylinder 7 use the brake fluid in the reservoir tank 7a as a working medium.
  • the pedal bracket 5a of the brake pedal 5 is provided with a stroke sensor 101 that detects the operation of the brake pedal 5.
  • the brake fluid pressure pipe 8 is provided with a VDC (abbreviation for Vehicle Dynamics Control) actuator 9 for controlling the brake fluid pressure of the wheel cylinder 2.
  • VDC actuator 9 is a well-known one described in Patent Document 1. That is, the VDC actuator 9 includes a pressure increasing valve and a pressure reducing valve (not shown) inside, and can adjust the wheel cylinder pressure Pwc by increasing or decreasing it. Therefore, when the driver performs braking, so-called ABS control can be performed in which the wheel cylinder pressure Pwc is adjusted so that the wheels including the drive wheels 1 are not locked.
  • the VDC actuator 9 incorporates a pump not shown. Therefore, the VDC actuator 9 can generate hydraulic braking torque on the wheels including the drive wheels 1 by the braking hydraulic pressure formed by the built-in pump in a state where no braking hydraulic pressure is generated in the master cylinder 7. Then, by using this hydraulic braking torque to generate an arbitrary braking force at any of the four wheels, it is possible to execute vehicle motion control (hereinafter referred to as VDC control).
  • VDC control vehicle motion control
  • the driving of the VDC actuator 9 is controlled by the VDC control unit 12.
  • the regenerative braking device B converts wheel rotational energy into electric power by a motor / generator 4 that is drivingly coupled to the drive wheels 1 via a speed reducer and a differential 3. That is, the motor / generator 4 is controlled through AC / DC conversion in the inverter 41 by the three-phase PWM signal from the motor control unit 11.
  • the motor / generator 4 In the EV traveling mode that requires driving of the driving wheels 1, the motor / generator 4 is driven as a motor by the electric power from the high-power battery 42 to rotate the driving wheels 1.
  • regenerative braking torque control is performed to drive the motor / generator 4 as a generator to convert vehicle kinetic energy into electric power and collect it in the high-power battery 42.
  • the VDC control unit 12 and the motor control unit 11 control the hydraulic braking device A and the regenerative braking device B in accordance with commands from the brake control unit 10 while communicating with the brake control unit 10.
  • the motor control unit 11 controls the regenerative braking torque by the motor / generator 4 based on the regenerative braking torque command value from the brake control unit 10. Further, the VDC control unit 12 controls the hydraulic braking torque in the wheel cylinder 2 based on the command value from the brake control unit 10.
  • the sensor group 100 includes a battery temperature sensor 102, a wheel speed sensor 103, a master cylinder hydraulic pressure sensor 104, and a wheel cylinder hydraulic pressure sensor 105 in addition to the stroke sensor 101 described above.
  • the battery temperature sensor 102 detects the temperature of the high-power battery 42.
  • the wheel speed sensor 103 detects each wheel speed Vw including the drive wheel 1.
  • Master cylinder hydraulic pressure sensor 104 detects master cylinder hydraulic pressure Pmc.
  • the wheel cylinder hydraulic pressure sensor 105 detects the wheel cylinder pressure Pwc.
  • the motor control unit 11 calculates the maximum allowable regenerative braking torque of the motor / generator 4 from the battery temperature and the estimated charge capacity of the high-power battery 42 (hereinafter referred to as battery SOC) to calculate the brake control unit 10.
  • the VDC control unit 12 transmits the input wheel speed Vw, master cylinder hydraulic pressure Pmc, and wheel cylinder pressure Pwc to the brake control unit 10.
  • step S1 the driver request total braking torque Treq is calculated, and the process proceeds to the next step S2.
  • step S2 the driver request total braking torque Treq is calculated, and the process proceeds to the next step S2.
  • the hydraulic braking torque that can be generated in the stroke is calculated, and this is set as the driver requested total braking torque Treq.
  • the final high-required driver braking torque Treq may be set to a select high value with the hydraulic braking torque.
  • step S2 the basic target regenerative braking torque Tmot_b is calculated, and the process proceeds to step S3.
  • the details of the calculation of the basic target regenerative braking torque Tmot_b in step S2 will be described with reference to the flowchart of FIG.
  • the driver request total braking torque Treq is input in step S201, and the process proceeds to the next step S202.
  • step S202 after calculating the regeneration maximum value limit value Tlim_m, the process proceeds to step S203.
  • the regenerative maximum value limit value Tlim_m is a parameter that is set based on the maximum output and current value of the motor / generator 4 and the specifications of the hydraulic braking device A that performs regenerative coordination.
  • step S203 after the low vehicle speed limit value Tlim_s is calculated, the process proceeds to step S204.
  • the regeneration maximum value limit value Tlim_m and the low vehicle speed limit value Tlim_s set in step S202 and step S203 are calculated by mapping the limit value at the current vehicle speed V as shown in FIG.
  • the low vehicle speed limit value Tlim_s decreases in proportion to the vehicle speed V by a preset coefficient between the high speed side limited vehicle speed VH and the low speed side limited vehicle speed VL. Below the limit vehicle speed VL, it is set to zero. Further, as shown in the figure, by setting the regeneration maximum value limit value Tlim_m to the low vehicle speed limit value Tlim_s of the high speed side limit vehicle speed VH, the processing in step S202 and the processing in S203 can be performed simultaneously.
  • the limit vehicle speeds VL and VH for limiting the vehicle speed are set based on the low vehicle speed range controllability of the motor / generator 4 to be used, the response of the hydraulic braking device A, and the like.
  • step S204 after the change speed limit value Tlim_g is set to the rising gradient of the basic target regenerative braking torque Tmot_b, the process proceeds to step S205.
  • the basic target regenerative braking torque Tmot_b in the previous process is stored, and the change speed limit value Tlim_g is set based on the change rate from that value.
  • the change speed limit value Tlim_g is set in consideration of the load on the motor / generator 4, the inverter 41, the high-power battery 42, and the like due to a sudden torque rise of the motor / generator 4.
  • step S205 after setting an exercise torque limit value Tlim_v for braking control such as ABS control or VDC control, the process proceeds to step S206.
  • brake fluid pressure control such as VDC control or ABS control is assumed to intervene, it is desirable to switch from regenerative braking to fluid pressure braking, and exercise torque to quickly bring the regeneration closer to 0 while considering the response of the fluid pressure.
  • a limit value Tlim_v is set.
  • step S206 the select values of the limit values Tlim_m, Tlim_s, Tlim_g, and Tlim_v calculated in S202 to S205 are taken, the value with the highest limit request is selected to determine the limit value Tlim, and then the process proceeds to step S207. .
  • step S207 the driver request total braking torque Treq input in step S201 and the select low of the limit value Tlim are calculated, and the regenerative torque is calculated from the driver request total braking torque Treq. Then, the process proceeds to step S208.
  • step S208 the value selected in step S207 is output as the current basic target regenerative braking torque Tmot_b.
  • step S2 The above processing is executed, and the calculation of the basic target regenerative braking torque Tmot_b in step S2 ends.
  • the part which performs the process of step S2 demonstrated above in the brake control unit 10 is equivalent to a basic target regenerative braking torque calculating part.
  • step S3 a final target regenerative braking torque Tmot_f taking into account a delay (for example, a delay due to a dead time and a response delay) in the hydraulic braking device A is calculated with respect to the basic target regenerative braking torque Tmot_b obtained in step S2. Proceed to step S4.
  • the part that performs the process of step S ⁇ b> 3 corresponds to a final target regenerative braking torque calculation unit.
  • step S3 The process of step S3 will be described with reference to the flowchart of FIG.
  • step S301 the basic target regenerative braking torque Tmot_b calculated in step S2 is input, and the process proceeds to the next step S302.
  • step S302 after detecting and inputting the brake hydraulic pressure Pb of the hydraulic braking device A (in this embodiment, the wheel cylinder pressure Pwc is used as the brake hydraulic pressure Pb), the process proceeds to step S303.
  • step S303 after calculating the dead time tdead, the process proceeds to step S304.
  • the dead time tdead is a time required for the hydraulic brake device A to start up the wheel cylinder pressure Pwc as the brake hydraulic pressure Pb after the operation command is issued. This dead time tdead is generated by idle running due to a knockback of a brake pad (not shown), time required from the start of operation in the master cylinder 7 until the reservoir port (not shown) is closed, and the like. As described above, the dead time tdead is a time required for the wheel cylinder pressure Pwc to rise, and therefore it is not necessary to consider when the wheel cylinder pressure Pwc has already risen and is greater than zero.
  • the dead time consideration flag Fdead is set to 1 while the dead time tdead is taken into consideration.
  • the dead time tdead may be zero (0), and therefore, the delayed target regenerative braking torque (hereinafter referred to as waste) considering the dead time tdead.
  • Tmot_t basic target regenerative braking torque Tmot_b.
  • the braking torque Tmot_t is a value obtained by adding a phase delay to the basic target regenerative braking torque Tmot_b.
  • the part that executes the process of step S303 described above is a dead time calculation unit.
  • a delay element equivalent to the response delay Tmot_d of the hydraulic braking device A is set for the dead time delay target regenerative braking torque Tmot_t considering the dead time tdead, and then the process proceeds to step S305.
  • the response delay Tmot_d is set in an n-order delay system corresponding to the boost performance of the electric booster 6.
  • the response delay Tmot_d can be efficiently calculated by discretizing it in accordance with the calculation cycle and storing the previous and previous values of the dead time delay target regenerative braking torque Tmot_t.
  • the part that executes the processing in step S ⁇ b> 304 is a response delay calculation unit.
  • step S305 a regenerative minimum vehicle speed restriction process is performed to prevent the response delay Tmot_d from being output below the regenerative minimum vehicle speed Vlim, and the result output in this step is set as the final target regenerative braking torque Tmot_f, and the process proceeds to S306. .
  • step S305 a decreasing gradient line corresponding to the deceleration is set from the regenerative minimum vehicle speed Vlim as shown in FIG.
  • This decreasing gradient line has a regenerative braking torque gradient regenerative torque limit value Tlim_min that becomes 0 toward the regenerative minimum vehicle speed Vlim, and is set to a gentler gradient as the deceleration increases.
  • the value on the vertical axis corresponding to the current vehicle speed V on the straight line of the regenerative braking torque gradient is defined as the regenerative torque limit value Tlim_min.
  • This final target regenerative braking torque limiting unit sets the final target regenerative braking torque Tmot_f to 0 before the regenerative minimum vehicle speed Vlim when the final target regenerative braking torque Tmot_f is 0 or more even if the vehicle speed V falls below the regenerative minimum vehicle speed.
  • step S306 the basic target regenerative braking torque Tmot_b is compared with the final target regenerative braking torque Tmot_f calculated up to step S305, and the result of selecting high is set as the final target regenerative braking torque Tmot_f.
  • the regenerative braking torque is increasing, it is not necessary to consider the delay factor.
  • step S307 the driver request total braking torque Treq is compared with the final target regenerative braking torque Tmot_f calculated up to S306, and the result of the select low is set as the final target regenerative braking torque Tmot_f.
  • the final target regenerative braking torque Tmot_f may include a delay element with respect to the basic target regenerative braking torque Tmot_b, there is a concern that brake drag may occur when the driver suddenly reduces the braking amount. Accordingly, such dragging can be prevented by setting the final target regenerative braking torque Tmot_f so as not to exceed the driver-requested total braking torque Treq.
  • step S308 the final target regenerative braking torque Tmot_f calculated up to step S307 is determined as the final target regenerative braking torque Tmot_f.
  • the calculation of the final target regenerative braking torque Tmot_f in step S3 is completed.
  • step S4 and step S5 are processes executed by the motor control unit 11 of the regenerative braking device B.
  • step S4 based on the final target regenerative braking torque Tmot_f calculated in step S3, a regenerative braking command value for outputting a command value for actual regeneration in step S5 is formed.
  • an effective regenerative braking torque Tmot_r which is a braking torque that can be actually regenerated based on the regenerative braking command value, is calculated, and the effective regenerative braking torque Tmot_r is output to the brake control unit 10.
  • the part that executes the process of step S4 described above corresponds to an execution regenerative braking torque calculation part.
  • the regenerative braking command value is determined by monitoring the powertrain limit.
  • a limit value corresponding to the state of the power train within the range of the final target regenerative braking torque Tmot_f is obtained in parallel with the final target regenerative braking torque Tmot_f.
  • This limit value is the allowable maximum regenerative braking torque allowed for the motor / generator 4 determined by the state of charge of the high-power battery 42 (for example, battery SOC), the battery temperature, etc., the maximum output limit of the motor / generator 4, the motor / Calculated based on the allowable maximum regenerative braking torque determined from the overheat limit of the generator 4 and the like.
  • the smaller value (select low) between the limit value and the final target regenerative braking torque Tmot_f is set as a regenerative braking command value. Therefore, the regenerative braking command value and the execution regenerative braking torque Tmot_r formed thereby are values equal to or less than the final target regenerative braking torque Tmot_f.
  • a command signal corresponding to the regenerative braking command value calculated in step S4 is output from the motor control unit 11 to the inverter 41 to realize the execution regenerative braking torque Tmot_r.
  • the part that executes the process of step S6 corresponds to a basic target hydraulic braking torque calculation unit.
  • step S7 the difference obtained by subtracting the basic target regenerative braking torque Tmot_b from the final target regenerative braking torque Tmot_f calculated in steps S3 and S2 with respect to the basic target hydraulic braking torque Thyd_b calculated in step S6.
  • the part that executes the process of step S ⁇ b> 7 corresponds to a final target hydraulic braking torque calculator.
  • step S8 a command is output to the VDC control unit 12 to achieve the final target hydraulic braking torque Thyd_f obtained in step S7, and the VDC actuator 9 controls the wheel cylinder pressure.
  • the driver-requested total braking torque Treq calculated based on the depression operation of the brake pedal 5 remains at a substantially constant value until the vehicle stops as shown in FIG.
  • the basic target regenerative braking torque Tmot_b calculated in step S2 decreases from time t10.
  • the final target regenerative braking torque in which the phase is delayed in consideration of the dead time of the hydraulic braking and the response delay in accordance with the decrease in the basic target regenerative braking torque Tmot_b while the driver required total braking torque Treq is constant.
  • Tmot_f is set.
  • the basic target hydraulic braking torque Thyd_b obtained by subtracting the final target regenerative braking torque Tmot_f from the driver requested total braking torque Treq rises.
  • FIG. 8 shows an example of the operation of the comparative example compared with the present embodiment, and this operation will be described.
  • a regenerative braking command by correction in consideration of the phase delay is output as shown in FIG. 8. .
  • the actual regenerative response braking torque is generated as indicated by the dotted line in the figure.
  • a hydraulic braking command corresponding to the regenerative braking command after this correction is launched as shown in the figure.
  • the hydraulic braking device there is a brake pad knockback, a dead time required until the port of the master cylinder 7 is actually closed, a response delay due to friction, and the like. This causes a phase delay in the actual hydraulic response braking torque with respect to the hydraulic braking command. Therefore, the actual hydraulic pressure response braking torque is delayed in phase with respect to the actual regenerative response braking torque as indicated by the dotted line in the figure.
  • the final target regenerative braking torque Tmot_f whose phase is delayed with respect to the basic target regenerative braking torque Tmot_b is obtained in consideration of the delay in the hydraulic braking device A. ing. Then, an effective regenerative braking torque Tmot_r obtained when actual regeneration is performed based on the final target regenerative braking torque Tmot_f is obtained.
  • the basic target hydraulic braking torque Thyd_b is obtained by subtracting the execution regenerative braking torque Tmot_r from the driver requested total braking torque Treq. Further, in the present embodiment, the following correction is performed without outputting the basic target hydraulic braking torque Thyd_b as a hydraulic braking torque command (command for generating a friction braking torque) as it is. That is, a value obtained by adding a difference ⁇ mot obtained by subtracting the basic target regenerative braking torque Tmot_b from the final target regenerative braking torque Tmot_f to the basic target hydraulic braking torque Thyd_b is calculated as the final target hydraulic braking torque Thyd_f.
  • the final target hydraulic braking torque Thyd_f is output as a hydraulic braking torque command (friction braking torque command).
  • the final target regenerative braking torque Tmot_f is delayed in phase from the basic target regenerative braking torque Tmot_b in consideration of the delay in the hydraulic braking device A. . Further, the phase of the actual regenerative braking torque is slightly delayed from the final target regenerative braking torque Tmot_f due to the response delay of the regenerative braking device B.
  • the final target hydraulic braking torque Thyd_f is obtained by adding a difference ⁇ mot to the basic target hydraulic braking torque Thyd_b obtained by subtracting the effective regenerative braking torque Tmot_r from the driver requested total braking torque Treq.
  • the phase is advanced in reverse by the delay.
  • the actual hydraulic pressure response braking torque is advanced in phase even if delayed by the amount of delay of the regenerative braking device B relative to the basic target hydraulic braking torque Thyd_b as in the comparative example. As shown in the figure, it rises at a timing corresponding to a decrease in the effective regenerative braking torque Tmot_r.
  • the actual braking torque obtained by adding the actual hydraulic braking torque and the actual regenerative braking torque due to the delay in the rise of the actual hydraulic pressure response braking torque as in the above comparative example is the driver request.
  • the shortage with respect to the total braking torque Treq can be suppressed. Therefore, it is possible to suppress the driver from feeling uncomfortable such as a sense of missing deceleration due to the lack of braking torque.
  • the dead time tdead is set to 0 when the wheel cylinder pressure Pwc is larger than 0 depending on whether or not the wheel cylinder pressure Pwc is rising. For this reason, after the brake fluid pressure actually rises, the hydraulic brake torque rises in accordance with the actual fluid pressure response without setting the dead time tdead, and the brake torque that does not make the driver feel more uncomfortable. Obtainable.
  • the driver's requested total braking torque Treq may be suddenly reduced by loosening the brake pedal 5 or releasing his / her leg from the brake pedal 5 during the operation.
  • both the regenerative braking torque and the hydraulic braking torque are decreased while the hydraulic braking torque is being increased while the regenerative braking torque is being decreased.
  • FIG. 9 shows an operation example in such a case.
  • the driver-requested total braking torque Treq suddenly decreases at time t22 and becomes 0 at time t24.
  • a value obtained by adding the difference ⁇ mot to the basic target hydraulic braking torque Thyd_b is set as the final target hydraulic braking torque Thyd_f.
  • the driver requested total braking torque Treq and the final target regenerative braking torque Tmot_f are compared in the process of step S307, and the result of the select low is set as the final target regenerative braking torque Tmot_f. Accordingly, the final target regenerative braking torque Tmot_f is set as the driver requested total braking torque Treq at time t23 in the figure.
  • the basic target hydraulic braking torque Thyd_b obtained by subtracting the effective regenerative braking torque Tmot_r based on the final target regenerative braking torque Tmot_f from the driver requested total braking torque Treq in step S6 becomes substantially zero as shown in the figure. Therefore, the final target hydraulic braking torque Thyd_f obtained by Thyd_b + (Tmot_f ⁇ Tmot_b) in step S7 is substantially zero as shown in the figure.
  • the braking torque control device of the embodiment includes: A stroke sensor 101 and a brake control unit 10 for detecting a driver requested total braking torque Treq in the vehicle; A regenerative braking device B for controlling a regenerative braking torque applied to the drive wheels 1 of the vehicle; A hydraulic braking device A for controlling the hydraulic braking torque applied to the wheels including the drive wheels 1; A brake control unit 10 that outputs a command value to the regenerative braking device B and the hydraulic braking device A to control the regenerative braking torque and the hydraulic braking torque when the driver performs a braking operation; With The brake control unit 10 A basic target regenerative braking torque calculation unit (S2) that calculates a basic target regenerative braking torque Tmot_b corresponding to the driver-requested total braking torque Treq; When the hydraulic braking torque is increased while reducing the regenerative braking torque, the final target regenerative braking torque Tmot_f having a delay in consideration of the
  • a basic target hydraulic braking torque calculator (S6) that sets a value obtained by subtracting the effective regenerative braking torque Tmot_r from the driver requested total braking torque Treq as a basic target hydraulic braking torque Thyd_b;
  • a final target hydraulic pressure that is calculated by adding a difference ⁇ mot obtained by subtracting the basic target regenerative braking torque Tmot_b from the final target regenerative braking torque Tmot_f to the basic target hydraulic braking torque Thyd_b as the final target hydraulic braking torque Thyd_f.
  • a hydraulic braking torque command value calculation unit (S8) using the final target hydraulic braking torque Thyd_f as a hydraulic braking torque command value; It is characterized by
  • the basic target regenerative braking torque Tmot_b is subtracted from the final target regenerative braking torque Tmot_f to the basic target hydraulic braking torque Thyd_b obtained by subtracting the execution regenerative braking torque Tmot_r from the driver requested total braking torque Treq.
  • a value obtained by adding the obtained difference ⁇ mot is used as a final target hydraulic braking torque Thyd_f. That is, the final target hydraulic braking torque Thyd_f is delayed in phase with respect to the basic target regenerative braking torque Tmot_b in consideration of the delay in the hydraulic braking device A.
  • the final target hydraulic braking torque Thyd_f is obtained by adding a difference ⁇ mot to the basic target hydraulic braking torque Thyd_b obtained based on the effective regenerative braking torque Tmot_r.
  • the phase of the final target hydraulic braking torque Thyd_f can be advanced with respect to the basic target hydraulic braking torque Thyd_b by the amount by which the regenerative braking torque is delayed according to the hydraulic response. Therefore, as shown in FIG. 7, the actual hydraulic pressure response braking torque rises without being delayed by the timing of the decrease of the effective regenerative braking torque Tmot_r.
  • the hydraulic braking torque is caused to be delayed.
  • the basic target hydraulic braking torque Thyd_b is obtained by subtracting the effective regenerative braking torque Tmot_r from the driver requested total braking torque Treq. For this reason, as shown in FIG. 7, when the effective regenerative braking torque Tmot_r has a delay element with respect to the final target regenerative braking torque Tmot_f, the actual hydraulic pressure response braking torque is set to the basic target hydraulic braking.
  • the braking torque control device of the embodiment includes:
  • the final target regenerative braking torque calculation unit (S3) includes a dead time calculation unit (S303) that calculates a dead time tdead required until the hydraulic pressure is actually generated from the command output in the hydraulic braking device A, and the hydraulic braking device.
  • a response delay calculation unit (S304) for calculating a response delay Tmot_d in A, and the dead time calculation unit (S303) sets the dead time tdead to 0 when the generated hydraulic pressure of the hydraulic braking device A is greater than zero. It is characterized by doing.
  • the braking torque control device includes:
  • the final target regenerative braking torque calculation unit (S3) is characterized in that the smaller of the driver required total braking torque Treq and the final target regenerative braking torque Tmot_f is set as the final target regenerative braking torque Tmot_f (S307).
  • the final target regenerative braking torque Tmot_f is calculated by adding the amount ( ⁇ mot) in consideration of the hydraulic pressure delay of the hydraulic braking device A to the basic target regenerative braking torque Tmot_b. For this reason, when the driver reduces the depression of the brake pedal 5, the driver requested total braking torque Treq may be lower than the final target regenerative braking torque Tmot_f. In this case, a regenerative braking torque larger than the driver requested total braking torque Treq may be generated to give the driver a feeling of dragging the braking force.
  • the driver requested total braking torque Treq when the driver requested total braking torque Treq is rapidly reduced by selecting low the driver requested total braking torque Treq and the final target regenerative braking torque Tmot_f, the driver requested total braking torque Treq is set to the final target The regenerative braking torque is Tmot_f. Therefore, when the driver-requested total braking torque Treq is suddenly reduced, the final target regenerative braking torque Tmot_f is decreased accordingly, and it is possible to prevent the driver from feeling dragging the braking force.
  • the braking torque control apparatus of the embodiment The final target regenerative braking torque Tmot_b is used as the final target regenerative braking torque Tmot_f when the final target regenerative braking torque calculating unit (S3) decreases the hydraulic braking torque while increasing the regenerative braking torque. S306).
  • the hydraulic braking device A when decreasing the hydraulic braking torque while increasing the regenerative braking torque, the hydraulic braking device A has already generated the braking hydraulic pressure and has high responsiveness. Therefore, the basic target regenerative braking without delay is provided. Even when the torque Tmot_b is used, there is no feeling that the deceleration is zero. And it can suppress that a regeneration area
  • the braking torque control device of the embodiment includes: The final target regenerative braking torque calculating unit (S3) compares the basic target regenerative braking torque Tmot_b with the final target regenerative braking torque Tmot_f, and if the final target regenerative braking torque Tmot_f exceeds the basic target regenerative braking torque Tmot_b, If the regenerative braking torque Tmot_f is used as it is and the final target regenerative braking torque Tmot_f is lower than the basic target regenerative braking torque Tmot_b, the basic target regenerative braking torque Tmot_b is used as the final target regenerative braking torque Tmot_f (S306).
  • the final target regenerative braking torque Tmot_f the final target regenerative braking torque Tmot_f having a delay when the hydraulic brake device A is increased is used, and the basic target regenerative braking is performed when the hydraulic brake device A is decreased.
  • Torque Tmot_b can be used.
  • determination processing according to the pressure increase and decrease of the hydraulic braking device A can be performed simply by comparing the final target regenerative braking torque Tmot_f and the basic target regenerative braking torque Tmot_b. It is possible to simplify the configuration for performing determination processing according to such boosting and stepping down.
  • the braking torque control device of the embodiment includes:
  • the hydraulic braking device A includes an electric booster (boost device) 6, and the response delay calculation unit (S 304) is set in an n-order delay system corresponding to the boost performance of the electric booster 6.
  • the response delay Tmot_d of the hydraulic braking device A is generated as a comprehensive result of piping flow path resistance, flow path orifice resistance, motor inertia, inrush current countermeasures, hydraulic servo control, and the like.
  • the servo performance of the electric booster 6 of the hydraulic braking device A is configured to be a second-order lag system, and the response delay calculation is also calculated with the second-order lag, thereby reducing the calculation load.
  • the calculation load can be further reduced by using the second-order lag system as compared with the third-order or more delay system.
  • the braking torque control device In the final target regenerative braking torque calculation unit (S3), the regenerative minimum vehicle speed Vlim is set in advance, and the final target regenerative braking torque Tmot_f having a delay even when the vehicle speed V falls below the regenerative minimum vehicle speed Vlim is 0 or more. Is determined, the vehicle has a final target regenerative braking torque limiting unit (S305) that sets the final target regenerative braking torque Tmot_f to 0 until the vehicle speed V reaches the regenerative minimum vehicle speed Vlim.
  • the final target regenerative braking torque Tmot_f adds a delay to the basic target regenerative braking torque Tmot_b, if the final target regenerative braking torque Tmot_f remains in the extremely low vehicle speed range, vibrations of the motor / generator 4 and the like are generated. There is a risk of inviting.
  • the final target regenerative braking torque Tmot_f is 0 or more even if the vehicle speed V falls below the regenerative minimum vehicle speed Vlim, the final target regenerative braking torque Tmot_f is set to 0 until the regenerative minimum vehicle speed Vlim is reached. By doing so, the malfunction can be prevented.
  • the braking torque control device includes:
  • the final target regenerative braking torque limiting unit (S3) has a regenerative torque limit value Tlim_min of a regenerative braking torque limit gradient that becomes 0 toward the minimum regenerative vehicle speed Vlim according to the current vehicle speed V (S305).
  • Tlim_min a regenerative torque limit value of a regenerative braking torque limit gradient that becomes 0 toward the minimum regenerative vehicle speed Vlim according to the current vehicle speed V (S305).
  • the braking torque control device is characterized in that the regenerative braking torque limiting gradient is set so that the gradient increases as the deceleration increases in accordance with the wheel speed deceleration (see S305 and FIG. 6). To do.
  • the vehicle speed V decreases at a stretch, and when the regeneration is limited at a constant gradient, the final target regenerative braking torque Tmot_f is commanded below the minimum regenerative vehicle speed Vlim, and the motor / generator 4 vibrations as described above, etc. May be incurred.
  • the regenerative braking torque limit gradient is changed gently so that the regenerative braking torque can be reduced to 0 without falling below the minimum regenerative vehicle speed Vlim. The vibration of the generator 4 can be suppressed.
  • the braking torque control device of the present invention has been described based on the embodiment.
  • the specific configuration is not limited to the embodiment, and the gist of the invention according to each claim of the claims. As long as they do not deviate, design changes and additions are permitted.
  • the application target of the present invention is a vehicle including a hydraulic braking device and a regenerative braking device, It is not limited to electric vehicles.
  • a so-called hybrid vehicle equipped with an engine and a motor / generator as a drive source for the drive wheels or a vehicle that can drive the drive wheels only by the driving force of the engine but can perform regenerative braking. Can also be applied.
  • steps S1 to S3 and S6 to S8 shown in FIG. 2 is performed in the brake control unit 10, and steps S4 and S5 are performed in the motor control unit 11.
  • the portion for executing such processing is not limited to that shown in the embodiment, and all these processing may be executed by the same control unit, and further, the hydraulic braking device A and the regenerative braking device.
  • the output to B may be performed from the control unit.
  • the regenerative braking device B is an example of a single vehicle, but is not limited thereto.
  • the present invention can be applied to in-wheel motor vehicles, left and right independent motor vehicles, front and rear independent motor vehicles, and the like.
  • the processing of steps S4 and S5 is executed by the control unit of each system and output to the drive system of each system.
  • the hydraulic braking device A is operated as one system.
  • the rear wheel has high liquid rigidity (in other words, low consumption liquid amount).
  • the pressure may be increased first, and the vehicle may be gradually shifted to four-wheel hydraulic braking so that the total braking force does not change.
  • the response characteristic of the hydraulic braking device A calculated in step S304 can be dealt with by correcting it so as to correspond to each control system. The same applies to the case where the pressure is raised from the regenerative braking wheel and then gradually shifted to four-wheel braking in order to reduce the change in the braking posture of the vehicle.
  • the final target regenerative braking torque calculation unit considers the dead time and the response delay when giving the delay considering the hydraulic pressure response delay in the hydraulic braking device. Only time or response delay may be considered.
  • the final target regenerative braking torque with a delay when the hydraulic brake device is boosted is used as it is, or the basic target regenerative braking torque is used as the final target regenerative braking torque according to the pressure increase and decrease of the hydraulic brake device.
  • the determination as to whether or not to replace the braking torque is performed by selecting high of the final target regenerative braking torque and the basic target regenerative braking torque (for example, step S306 in FIG. 4).
  • the present invention is not limited to this, and the above selection may be made by making a pressure increase / decrease determination based on detection of the pressure of the hydraulic braking device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 液圧制動装置における実液圧制動トルクの発生遅れによる減速度不足を改善することができる制動トルク制御装置を提供すること。 ブレーキコントロールユニット(10)は、ドライバ要求総制動トルクに応じた基本目標回生制動トルクを求める基本目標回生制動トルク演算部(図2のS2)と、液圧制動装置Aにおける遅れを持たせた最終目標回生制動トルクを求める最終目標回生制動トルク演算部(図2のS3)と、最終目標回生制動トルクから実行回生制動トルクを求める実行回生制動トルク演算部(図2のS4)と、ドライバ要求総制動トルクから実行回生制動トルクを減じて基本目標液圧制動トルクを求める基本目標液圧制動トルク演算部(図2のS6)と、基本目標液圧制動トルクに、最終目標回生制動トルクから基本目標回生制動トルクを減じた差分を加算して最終目標液圧制動トルクを求める最終目標液圧制動トルク演算部(図2のS7)とを備えている。

Description

制動トルク制御装置
 本発明は、制動時に、検出されたドライバの要求総制動トルクに応じて回生制動装置と液圧制動装置との制動トルクを制御する制動トルク制御装置に関する。
 従来、制動時に、検出されたドライバの要求総制動トルクに応じて回生制動装置と液圧制動装置とを作動させて制動を行う制動トルク制御装置が知られている。
 このような従来の制動トルク制御装置において、液圧制動装置による応答遅れに起因する減速度不足が発生するのを防止する制動トルク制御装置が知られている(例えば、特許文献1参照)。
 この従来の制動トルク制御装置は、目標液圧制動トルクを、ドライバの制動要求により発生するマスタシリンダの液圧に応じた目標総制動トルクから実回生制動トルクを引いた大きさに制御した場合の位相遅れを考慮して、以下の制御を行っている。
 すなわち、この従来技術では、液圧制動装置による位相遅れを考慮し、回生制動トルクの指令を二次関数的に減少させ、液圧制動トルクの指令もドライバ要求総制動トルクが変わらないように(すなわち二次関数的に)増加させている。これにより、液圧制御装置の応答遅れによる総制動トルクの減少度合いを抑えるようにしている。
特開2004-196064号公報
 しかしながら、上述の従来の制動トルク制御装置にあっては、以下のような課題を残していた。
 すなわち、液圧制動装置の応答遅れのタイミングに応じて、回生制動トルクの発生が遅れることにより、液圧制動トルク指令自体も遅れるのに加え、その指令に対する液圧制動装置自体の応答遅れが重なるという現象により、減速度不足が生じるおそれがあった。
 本発明は、上記問題に着目してなされたもので、液圧制動装置における実液圧制動トルクの発生遅れによる減速度不足を改善することができる制動トルク制御装置を提供することを目的とする。
 上記目的を達成するため、本発明の一実施形態の制動トルク制御装置は、
制動トルク制御部が、
ドライバ要求総制動トルクに応じた基本目標回生制動トルクを演算する基本目標回生制動トルク演算部と、
回生制動トルクを減少させつつ液圧制動トルクを増加させる際に、前記基本目標回生制動トルクに対し、液圧制動装置における液圧応答遅れを考慮した遅れを持たせた最終目標回生制動トルクを演算する最終目標回生制動トルク演算部と、
前記最終目標回生制動トルクを受け、実際に回生している実行回生制動トルクを演算する実行回生制動トルク演算部と、
前記ドライバ要求総制動トルクから前記実行回生制動トルクを減じた値を基本目標液圧制動トルクとする基本目標液圧制動トルク演算部と、
前記基本目標液圧制動トルクに、前記最終目標回生制動トルクから前記基本目標回生制動トルクを減じて得られた差分を加算した値を、最終目標液圧制動トルクとして演算する最終目標液圧制動トルク演算部と、
を備えていることを特徴とする。
 本発明の一実施形態の制動トルク制御装置では、ドライバの制動操作により、回生制動トルクを減少させつつ液圧制動トルクを上昇させる場合、回生制動装置の指令値となる最終目標回生制動トルクを形成する最終目標回生制動トルク演算部は、基本目標回生制動トルクに対し液圧制動装置における液圧応答遅れを考慮した遅れを持たせた最終目標回生制動トルクを演算する。
  一方、液圧制動装置への指令値は、まず、基本目標液圧制動トルク演算部が、ドライバ要求総制動トルクから実行回生制動トルクを減じて基本目標液圧制動トルクを求める。そして、最終目標液圧制動トルク演算部が、基本目標液圧制動トルクに、最終目標回生制動トルクから基本目標回生制動トルクを減じて得られた差分を加算して最終目標液圧制動トルクを演算し、これを指令値とする。
 このように、液圧制動装置への指令値は、ドライバ要求総制動トルクから実行回生制動トルクを減じた基本目標液圧制動トルクに、液圧制動装置の遅れに相当する差分を加算することにより、回生制動トルクを遅らせたことに起因する液圧制動トルクの遅れが生じることがなくなる。
  したがって、回生制動トルクに液圧制動装置の応答遅れ分の遅れを持たせても、上記差分の加算を行なわないものと比較して、回生制動トルクを遅らせたことに起因する液圧制動トルクの遅れが生じることがなくなり、車両の減速度の抜けが改善される。
図1は、実施の形態の制動トルク制御装置のシステム構成図である。 図2は実施の形態の制動トルク制御装置による制動トルク制御の全体の流れを示すフローチャートである。 図3は実施の形態の制動トルク制御装置における基本目標回生制動トルクの演算の詳細を示すフローチャートである。 図4は実施の形態の制動トルク制御装置における最終目標回生制動トルクの演算の詳細を示すフローチャートである。 図5は実施の形態の制動トルク制御装置における低車速域制限マップを示す特性図である。 図6は実施の形態の制動トルク制御装置における回生可能最低車速制限線図である。 図7は実施の形態の制動トルク制御装置の通常制動時の動作例を示すタイムチャートである。 図8は実施の形態の制動トルク制御装置との比較例の動作例を示すタイムチャートである。 図9は実施の形態の制動トルク制御装置のドライバ要求総制動トルク急減時の動作例を示すタイムチャートである。
 以下、本発明の制動トルク制御装置を実現する実施の形態を図面に基づいて説明する。
 (実施の形態)
 まず、実施の形態の制動トルク制御装置の構成を、この制動トルク制御装置のシステム構成図である図1に基づいて説明する。
 実施の形態の制動トルク制御装置は、モータ/ジェネレータ4により駆動輪1を駆動させる電動車両に適用されており、液圧制動装置Aと回生制動装置Bを備えている。
 まず、液圧制動装置Aについて説明する。
 この液圧制動装置Aは、運転者が踏み込むブレーキペダル5を備えている。そして、ブレーキペダル5に対する踏力に応じた制動液圧がマスタシリンダ7で発生し、この制動液圧が、ブレーキ液圧配管8を介して駆動輪1に設けられたホイールシリンダ2へ供給されて制動力を発生する。
 また、ブレーキペダル5の踏力、例えば、ペダル操作量は、倍力装置としての電動ブースタ6によりあらかじめ設定された倍力比で倍力され、マスタシリンダ7では、この倍力された入力が液圧に変換されて制動液圧が形成される。
 なお、ブレーキ液圧配管8は、図1では、1個の駆動輪1に設けたホイールシリンダ2のみに接続しているが、図示を省略した他の3輪のホイールシリンダ(図示省略)にも接続されている。また、電動ブースタ6およびマスタシリンダ7はリザーバタンク7a内のブレーキ液を作動媒体とする。そして、ブレーキペダル5のペダルブラケット5aには、ブレーキペダル5の動作を検出するストロークセンサ101が設けられている。
 ブレーキ液圧配管8には、ホイールシリンダ2の制動液圧を制御するVDC(Vehicle Dynamics Controlの略)アクチュエータ9が設けられている。
 このVDCアクチュエータ9は、特許文献1にも記載された周知のものである。すなわち、VDCアクチュエータ9は、内部に図示を省略した増圧弁および減圧弁を備え、ホイールシリンダ圧Pwcを増減させて調整することができる。したがって、ドライバが制動を行なったときに、駆動輪1を含む車輪がロックしないようにホイールシリンダ圧Pwcを調整する、いわゆるABS制御を実行可能である。
 さらに、VDCアクチュエータ9は、図示を省略したポンプを内蔵している。したがって、VDCアクチュエータ9は、マスタシリンダ7において制動液圧が発生していない状態において、この内蔵ポンプで形成した制動液圧により駆動輪1を含む車輪に液圧制動トルクを生じさせることができる。そして、この液圧制動トルクを、4輪のうちの任意の車輪において任意の制動力を発生させることにより、車両の運動制御(以下、これをVDC制御という)を実行可能である。
 なお、VDCアクチュエータ9の駆動は、VDCコントロールユニット12により制御される。
 次に、回生制動装置Bについて説明する。
 回生制動装置Bは、駆動輪1に減速機及びディファレンシャル3を介して駆動結合されたモータ/ジェネレータ4により車輪回転エネルギを電力に変換する。すなわち、モータ/ジェネレータ4は、モータコントロールユニット11からの3相PWM信号によりインバータ41での交流・直流変換を介して制御される。そして、駆動輪1の駆動が必要なEV走行モードでは、強電バッテリ42からの電力でモータ/ジェネレータ4をモータとして駆動させて駆動輪1を回転させる。一方、制動が必要な制動モードでは、回生制動トルク制御を行なって、モータ/ジェネレータ4をジェネレータとして駆動させて車両運動エネルギを電力に変換して強電バッテリ42に回収する。
 VDCコントロールユニット12およびモータコントロールユニット11は、ブレーキコントロールユニット10との間で通信を行いながら、このブレーキコントロールユニット10からの指令により、液圧制動装置Aおよび回生制動装置Bを制御する。
 これによりモータコントロールユニット11は、ブレーキコントロールユニット10からの回生制動トルク指令値に基づいてモータ/ジェネレータ4による回生制動トルクを制御する。
 また、VDCコントロールユニット12は、ブレーキコントロールユニット10からの指令値に基づいてホイールシリンダ2における液圧制動トルクを制御する。
 なお、センサ群100には、前述したストロークセンサ101の他に、バッテリ温度センサ102、車輪速センサ103、マスタシリンダ液圧センサ104、ホイールシリンダ液圧センサ105が含まれている。
 バッテリ温度センサ102は、強電バッテリ42の温度を検出する。車輪速センサ103は、駆動輪1を含む各車輪速度Vwを検出する。マスタシリンダ液圧センサ104は、マスタシリンダ液圧Pmcを検出する。ホイールシリンダ液圧センサ105は、ホイールシリンダ圧Pwcを検出する。
 また、モータコントロールユニット11は、バッテリ温度や推定される強電バッテリ42の充電容量(以下、これをバッテリSOCと称する)から、モータ/ジェネレータ4の最大許容回生制動トルクを算出してブレーキコントロールユニット10へ送信する。
 また、VDCコントロールユニット12は、入力された車輪速度Vw、マスタシリンダ液圧Pmcおよびホイールシリンダ圧Pwcをブレーキコントロールユニット10へ送信する。
 ブレーキコントロールユニット10は、運転手が制動操作を行った際に、上述の入力情報に基づいて以下に説明する制動トルク制御を実行する。
  この制動トルク制御について図2~図4のフローチャートに基づいて説明する。
 図2は、制動トルク制御の全体の流れを示している。
 ステップS1では、ドライバ要求総制動トルクTreqを演算し、次のステップS2に進む。本実施の形態では、ストロークセンサ101により検出されるドライバのブレーキペダル5の動作に基づいて、そのストロークで発生し得る液圧制動トルクを演算し、これをドライバ要求総制動トルクTreqとしている。また、クルーズコントロールのような自動減速制御手段を有している場合は、上記液圧制動トルクとのセレクトハイ値を最終的なドライバ要求総制動トルクTreqとしてもよい。
 ステップS2では、基本目標回生制動トルクTmot_bを演算し、ステップS3に進む。
 ここで、ステップS2における基本目標回生制動トルクTmot_bの演算の詳細を、図3のフローチャートにより説明する。
 基本目標回生制動トルクTmot_bの演算では、まず、ステップS201においてドライバ要求総制動トルクTreqを入力し、次のステップS202に進む。
 ステップS202では、回生最大値制限値Tlim_mを演算した後、ステップS203に進む。この回生最大値制限値Tlim_mは、モータ/ジェネレータ4の最大出力や電流値、回生協調を行う液圧制動装置Aの仕様などから設定するパラメータである。
 ステップS203では、低車速制限値Tlim_sを演算した後、ステップS204に進む。本実施の形態では、ステップS202及びステップS203において設定する回生最大値制限値Tlim_m及び低車速制限値Tlim_sは、図5に示すように、現在の車速Vにおける制限値をマップ化して演算する。
 このマップに示すように、低車速制限値Tlim_sは、高速側の制限車速VHと低速側の制限車速VLとの間では、あらかじめ設定された係数で車速Vに比例して低下し、低速側の制限車速VL以下では、0に設定されている。
 また、図示のように高速側の制限車速VHの低車速制限値Tlim_sに回生最大値制限値Tlim_mを設定することで、ステップS202の処理とS203の処理とを同時に実施することができる。ここで、車速制限を行う制限車速VL及びVHは、使用するモータ/ジェネレータ4の低車速域制御性、液圧制動装置Aの応答性などに基づいて設定する。
 次のステップS204では、基本目標回生制動トルクTmot_bの上昇勾配に変化速度制限値Tlim_gを設定した後、ステップS205に進む。このステップS204では、前回の処理における基本目標回生制動トルクTmot_bを記憶しておき、その値からの変化率に基づいて変化速度制限値Tlim_gを設定する。この変化速度制限値Tlim_gは、モータ/ジェネレータ4の急激なトルク立上げによるモータ/ジェネレータ4、インバータ41、強電バッテリ42への負荷などを考慮して設定する。
 次のステップS205では、ABS制御やVDC制御などの制動制御のための運動トルク制限値Tlim_vを設定した後、ステップS206に進む。VDC制御やABS制御などのブレーキ液圧制御が介入すると想定される場合は、回生制動から液圧制動に切り換えることが望ましく、液圧の応答性を考慮しつつ素早く回生を0に近づけるよう運動トルク制限値Tlim_vを設定する。
 次のステップS206では、S202~S205で演算した各制限値Tlim_m、Tlim_s、Tlim_g、Tlim_vのセレクトローを取り、最も制限要求の高い値を選択して制限値Tlimを決定した後、ステップS207に進む。
 ステップS207では、ステップS201で入力したドライバ要求総制動トルクTreqと制限値Tlimのセレクトローを演算し、ドライバ要求総制動トルクTreqのうちで回生可能なトルクを算出した後、ステップS208に進む。
 ステップS208では、ステップS207でセレクトローされた値を今回の基本目標回生制動トルクTmot_bとして出力する。
 以上の処理を実行して、ステップS2における基本目標回生制動トルクTmot_bの演算が終了する。なお、ブレーキコントロールユニット10において以上説明したステップS2の処理を行う部分が、基本目標回生制動トルク演算部に相当する。
 次に図2に戻り、ステップS2に続くステップS3の処理を説明する。
 ステップS3では、ステップS2で求められた基本目標回生制動トルクTmot_bに対し、液圧制動装置Aにおける遅れ(例えば、無駄時間による遅れ及び応答遅れ)を考慮した最終目標回生制動トルクTmot_fを演算し、ステップS4に進む。なお、ブレーキコントロールユニット10において、このステップS3の処理を行う部分が、最終目標回生制動トルク演算部に相当する。
 このステップS3の処理を、図4のフローチャートにより説明する。
 ステップS301では、ステップS2で演算された基本目標回生制動トルクTmot_bを入力し、次のステップS302に進む。
 ステップS302では、液圧制動装置Aのブレーキ液圧Pb(本実施の形態では、ブレーキ液圧Pbとしてホイールシリンダ圧Pwcを用いる)を検出して入力した後、ステップS303に進む。
 ステップS303では、無駄時間tdeadを演算した後、ステップS304に進む。無駄時間tdeadは、液圧制動装置Aにおいて、作動指令が出されてから実際にブレーキ液圧Pbとしてのホイールシリンダ圧Pwcが立ち上がるまでに必要な時間である。この無駄時間tdeadは、ブレーキパッド(図示省略)のノックバックなどによる空走や、マスタシリンダ7において作動開始からリザーバポート(図示省略)が閉じるまでに要する時間などにより生じる。このように、無駄時間tdeadは、ホイールシリンダ圧Pwcが立ち上がるまでに要する時間であるため、既にホイールシリンダ圧Pwcが立ち上がって0よりも大きな状態では考慮する必要はない。
 そこで、基本目標回生制動トルクTmot_bが、その前回値よりも下がっている場合、無駄時間tdead・応答遅れTmot_dを考慮する必要が出てくるので、まず、S302にて入力したブレーキ液圧Pbを参照する。なお、この無駄時間tdeadの考慮中は、無駄時間考慮フラグFdeadを1に設定する。
 ここで、この無駄時間考慮フラグFdeadが0及びブレーキ液圧Pbが0より大きい場合は、無駄時間tdeadが無い(0)としてよいため、無駄時間tdeadを考慮した遅れ目標回生制動トルク(以下、無駄時間遅れ目標回生制動トルクという)Tmot_t=基本目標回生制動トルクTmot_bとする。
 一方、既に無駄時間考慮フラグFdead=1であった場合、もしくは無駄時間考慮フラグFdead=0でもブレーキ液圧Pbが0であった場合は、無駄時間考慮フラグFdead=1とし、無駄時間遅れ目標回生制動トルクTmot_tを、基本目標回生制動トルクTmot_bに位相遅れを持たせた値とする。
 ここで、位相遅れを持たせる場合は、あらかじめ液圧制動装置Aの無駄時間を考慮して設定された無駄時間tdeadの間、無駄時間遅れ目標回生制動トルクTmot_t=基本目標回生制動トルクTmot_bとすることで、遅れを持たせる。そして、無駄時間考慮フラグFdead=1となってから無駄時間tdeadが経過した後は、無駄時間tdeadの影響を徐々に取り除きTmot_t=Tmot_bとなるよう、無駄時間遅れ目標回生制動トルクTmot_tを基本目標回生制動トルクTmot_bに近づけていく。具体的には、無駄時間遅れ目標回生制動トルクTmot_tと基本目標回生制動トルクTmot_bの差を、設定時間かけて0にするよう加算量を設定する。そして、Tmot_t=Tmot_bとなった時点で、無駄時間処理が終了したとして、無駄時間考慮の無駄時間考慮フラグFdead=0とする。
 ブレーキコントロールユニット10において以上のステップS303の処理を実行する部分が無駄時間演算部である。
 次のステップS304では、無駄時間tdeadを考慮した無駄時間遅れ目標回生制動トルクTmot_tに対し、液圧制動装置Aの応答遅れTmot_dと同等の遅れ要素を設定した後、ステップS305に進む。この応答遅れTmot_dとして、本実施の形態では、電動ブースタ6の倍力性能に応じたn次遅れ系で設定している。
 例えば、液圧制動装置Aの応答遅れが下記式(1)のような二次応答でほぼ表現できる場合、
H(s)=(2000)/(s2+100s+2000) ・・・(1)
計算周期に合わせ離散化して無駄時間遅れ目標回生制動トルクTmot_tの前々回値、前回値を記憶しておくことにより応答遅れTmot_dを効率的に計算することができる。
 ブレーキコントロールユニット10において、以上のステップS304の処理を実行する部分が応答遅れ演算部である。
 ステップS305では、応答遅れTmot_dが回生可能最低車速Vlimを下回って出力されないようにする回生可能最低車速制限処理を行ない、このステップの処理で出力された結果を最終目標回生制動トルクTmot_fとしてS306に進む。
 すなわち、ステップS305では、図6に示すように回生可能最低車速Vlimから減速度に応じた減少勾配線を設定する。この減少勾配線は、回生可能最低車速Vlimに向かって0となる回生制動トルク勾配の回生トルク制限値Tlim_minを有しており、減速度が大きい程、緩い勾配に設定している。
 この回生制動トルク勾配の直線上で現在の車速Vに対応する縦軸の値を回生トルク制限値Tlim_minとする。そして、この回生トルク制限値Tlim_minと最終目標回生制動トルクTmot_fとを比較し、最終目標回生制動トルクTmot_fが回生トルク制限値Tlim_minを超えている場合はTmot_f=Tlim_minとする。したがって、ブレーキコントロールユニット10において、ステップS305の処理を実行する部分が、最終目標回生制動トルク制限部に相当する。この最終目標回生制動トルク制限部は、車速Vが前記回生可能最低車速を下回っても最終目標回生制動トルクTmot_fが0以上の場合に、回生可能最低車速Vlimまでに最終目標回生制動トルクTmot_fを0とする。
 ステップS306では、基本目標回生制動トルクTmot_bと、ステップS305までに計算された最終目標回生制動トルクTmot_fとを比較し、セレクトハイをした結果を最終目標回生制動トルクTmot_fとする。これにより、回生制動トルクが上昇しているときには遅れ要素を考慮しないですむようになる。
 ステップS307では、ドライバ要求総制動トルクTreqと、S306までで演算された最終目標回生制動トルクTmot_fとを比較し、セレクトローされた結果を最終目標回生制動トルクTmot_fとする。最終目標回生制動トルクTmot_fは、基本目標回生制動トルクTmot_bに対し遅れ要素を含み得ることから、ドライバが急激に制動量を減らした場合、ブレーキの引き摺りが発生する懸念がある。そこで、最終目標回生制動トルクTmot_fがドライバ要求総制動トルクTreqを上回らないように設定することで、このような引き摺りを防止できる。
 次のステップS308では、ステップS307までに演算した最終目標回生制動トルクTmot_fを最終目標回生制動トルクTmot_fとして確定処理をする。
  以上の処理を経てステップS3における最終目標回生制動トルクTmot_fの演算を終了する。
 図2に戻り、ステップS3に続くステップS4以降の処理を説明する。
 ステップS4およびステップS5で実行される処理は、回生制動装置Bのモータコントロールユニット11で実行される処理である。
 ステップS4では、ステップS3で演算された最終目標回生制動トルクTmot_fに基づいて、実際に回生するための指令値をステップS5において出力するための回生制動指令値を形成する。そして、これと同時に、この回生制動指令値により実際に回生を行ってえられる制動トルクである実行回生制動トルクTmot_rを演算し、その実行回生制動トルクTmot_rをブレーキコントロールユニット10に出力する。
 なお、モータコントロールユニット11において、上述のステップS4の処理を実行する部分が、実行回生制動トルク演算部に相当する。
 また、前述の回生制動指令値は、パワートレインの制限を監視して決定する。この制限として、最終目標回生制動トルクTmot_fの範囲内でパワートレインの状態に応じた制限値を、最終目標回生制動トルクTmot_fと並列に求める。
  この制限値は、強電バッテリ42の充電状態(例えば、バッテリSOC)やバッテリ温度やなどで決まるモータ/ジェネレータ4に許容される許容最大回生制動トルクや、モータ/ジェネレータ4の最大出力制限や、モータ/ジェネレータ4の過熱制限などから決定される許容最大回生制動トルクに基づいて求める。そして、この制限値と最終目標回生制動トルクTmot_fとの小さい方の値(セレクトロー)を、回生制動指令値とする。したがって、この回生制動指令値及びこれにより形成される実行回生制動トルクTmot_rは、最終目標回生制動トルクTmot_f以下の値となる。
 続くステップS5では、モータコントロールユニット11からインバータ41へ向けてステップS4にて算出した回生制動指令値に応じた指令信号を出力して、実行回生制動トルクTmot_rを実現する。
 ステップS6では、ドライバ要求総制動トルクTreqおよび実行回生制動トルクTmot_rに基づいて、基本目標液圧制動トルクThyd_bを演算する。具体的には、ドライバ要求総制動トルクTreqからS4で演算された実行回生制動トルクTmot_rを減じたものを基本目標液圧制動トルクThyd_bとしている。
すなわち、Thyd_b=Treq-Tmot_rである。
 なお、ブレーキコントロールユニット10において、このステップS6の処理を実行する部分が、基本目標液圧制動トルク演算部に相当する。
 次のステップS7では、ステップS6で演算された基本目標液圧制動トルクThyd_bに対し、ステップS3およびステップS2にてそれぞれ演算された最終目標回生制動トルクTmot_fから基本目標回生制動トルクTmot_bを引いた差分Δmotを加算した値を、最終目標液圧制動トルクThyd_fとして算出する。
すなわち、Thyd_f=Thyd_b+(Tmot_f-Tmot_b)である。
  なお、ブレーキコントロールユニット10において、このステップS7の処理を実行する部分が、最終目標液圧制動トルク演算部に相当する。
 続くステップS8では、ステップS7で得られた最終目標液圧制動トルクThyd_fを実現すべく、VDCコントロールユニット12に指令を出力し、VDCアクチュエータ9においてホイールシリンダ圧を制御する。
 次に、図7~図9のタイムチャートに基づいて実施の形態の作用を説明する。
  <通常の制動時>
  ドライバが車両停止までブレーキペダル5を踏み込んだままの通常の制動時の作用を図7に基づいて説明する。なお、この作動例として、ドライバ要求総制動トルクTreqが、上記のパワートレインの制限値に満たない場合において、車速が徐々に低下して、回生制動トルクを減少させつつ液圧制動トルクを増加させる制動が実行される場合を説明する。
 この通常時は、ブレーキペダル5の踏込動作に基づいて演算されたドライバ要求総制動トルクTreqは、図7に示すように、車両が停止するまで高いまま略一定値を示す。
 このような場合、車速Vが低下すると、ステップS2において演算される基本目標回生制動トルクTmot_bは、時点t10から低下する。
 このように、ドライバ要求総制動トルクTreqが一定で、基本目標回生制動トルクTmot_bが低下するのに応じ、液圧制動の無駄時間及び応答の遅れを考慮して位相を遅らせた最終目標回生制動トルクTmot_fが設定される。そして、ドライバ要求総制動トルクTreqから最終目標回生制動トルクTmot_fを差し引いた基本目標液圧制動トルクThyd_bが立ち上がる。
 (比較例)
 ここで、本実施の形態と比較する比較例の動作の一例を図8に示し、この動作について説明する。
 従来、図7の場合と同様に、ドライバ要求総制動トルクTreqが一定で基本目標回生制動トルクTmot_bが低下した場合、位相遅れを考慮した補正による回生制動指令が図8に示すように出力される。そして、このとき、実際の回生応答制動トルクが図において点線で示すように生じる。
 また、この補正後の回生制動指令に応じた液圧制動指令が、図示のように立ち上げられる。しかしながら、液圧制動装置の場合、ブレーキパッドのノックバックや、マスタシリンダ7のポートが実際に閉じる迄に要する無駄時間や、摩擦などによる応答遅れなどが存在する。これにより、液圧制動指令に対して、実際の液圧応答制動トルクには位相遅れが生じる。よって、実際の液圧応答制動トルクが、図において点線で示すように、実際の回生応答制動トルクに対しても位相遅れが生じる。
 このため、液圧制動トルク(摩擦制動トルク)と回生制動トルクを足し合わせた実際の制動トルクが、ドライバ要求総制動トルクTreqに対して不足し、ドライバに、減速度の抜け感などの違和感を与えるおそれがあった。
 それに対して、図7に示すように、本実施の形態では、液圧制動装置Aにおける遅れを考慮して、基本目標回生制動トルクTmot_bに対して位相を遅らせた最終目標回生制動トルクTmot_fを求めている。そして、この最終目標回生制動トルクTmot_fに基づいて実際に回生を行った場合に得られる実行回生制動トルクTmot_rを求めている。
 一方、基本目標液圧制動トルクThyd_bは、ドライバ要求総制動トルクTreqから実行回生制動トルクTmot_rを差し引いて求めている。さらに、本実施の形態では、基本目標液圧制動トルクThyd_bをそのまま液圧制動トルク指令(摩擦制動トルクを発生させる指令)として出力せずに、以下の補正を行っている。すなわち、基本目標液圧制動トルクThyd_bに対し、最終目標回生制動トルクTmot_fから基本目標回生制動トルクTmot_bを引いた差分Δmotを加算した値を、最終目標液圧制動トルクThyd_fとして算出している。
そして、この最終目標液圧制動トルクThyd_fを液圧制動トルク指令(摩擦制動トルク指令)として出力している。
 このように回生制動トルクを低下させつつ液圧制動トルクを増加させる場合、最終目標回生制動トルクTmot_fは、液圧制動装置Aにおける遅れを考慮して、基本目標回生制動トルクTmot_bよりも位相が遅れる。さらに、実際の回生制動トルクも、回生制動装置Bの応答遅れにより、最終目標回生制動トルクTmot_fよりも僅かに位相が遅れる。
 一方、最終目標液圧制動トルクThyd_fは、ドライバ要求総制動トルクTreqから、実行回生制動トルクTmot_rを差し引いて求めた基本目標液圧制動トルクThyd_bに、さらに差分Δmotを加算することにより、液圧応答遅れ分だけ逆に位相を進めている。
 この結果、実際の液圧応答制動トルクは、比較例のように基本目標液圧制動トルクThyd_bに対して回生制動装置Bの遅れを持たせた分だけ遅れても、位相を進めているため、図示のように実行回生制動トルクTmot_rの減少に対応したタイミングで立ち上がる。
 したがって、上記比較例のように、実際の液圧応答制動トルクの立ち上がりが遅れることを原因として、実際の液圧制動トルクと実際の回生制動トルクとを足し合わせた実際の制動トルクが、ドライバ要求総制動トルクTreqに対して不足することを抑制できる。よって、この制動トルクの不足に起因して、ドライバに減速度の抜け感のような違和感を与えることを抑制できる。
 さらに、ステップS303の無駄時間演算処理において、ホイールシリンダ圧Pwcが立ち上がっているか否かに応じ、ホイールシリンダ圧Pwcが0よりも大きい場合には、無駄時間tdeadを0とするようにしている。このため、実際に制動液圧が立ち上がった後は、無駄時間tdeadを設定することなく、実際の液圧応答性に即した液圧制動トルクの立ち上がりとなり、いっそうドライバに違和感を与えない制動トルクを得ることができる。
 <ドライバ要求総制動トルク急減時>
 ドライバによる制動操作時に、その操作の途中でブレーキペダル5の踏み込みを緩めたり、ブレーキペダル5から脚を離したりして、ドライバ要求総制動トルクTreqが急減することがある。この場合、図7に示した例のように、回生制動トルクを減少させつつ液圧制動トルクを増加させている途中から、回生制動トルクと液圧制動トルクの両方を減少させる。
 図9はそのような場合の動作例を示しており、ドライバ要求総制動トルクTreqが時点t22で急減し、時点t24で0となっている。
 このような場合、実施の形態では、この時点t22よりも前の時点では、基本目標液圧制動トルクThyd_bに差分Δmotを加算した値を最終目標液圧制動トルクThyd_fとしている。
 このため、この時点t22以降も、基本目標液圧制動トルクThyd_bに差分Δmotを加算すると、逆に、実際に生じる制動トルクがドライバ要求総制動トルクTreqを上回り、ドライバに引き擦り感を与えるおそれがある。
 これに対し、実施の形態では、ステップS307の処理においてドライバ要求総制動トルクTreqと最終目標回生制動トルクTmot_fとを比較し、セレクトローされた結果を最終目標回生制動トルクTmot_fとしている。
 したがって、図において時点t23において最終目標回生制動トルクTmot_fがドライバ要求総制動トルクTreqとして設定される。
 この結果、ステップS6においてドライバ要求総制動トルクTreqから、最終目標回生制動トルクTmot_fに基づく実行回生制動トルクTmot_rを減じて得られる基本目標液圧制動トルクThyd_bは、図示のようにほぼ0となる。
 よって、ステップS7においてThyd_b+(Tmot_f-Tmot_b)で得られる最終目標液圧制動トルクThyd_fも図示のようにほぼ0となる。
 このように、ドライバが要求制動トルクを急減した場合、ステップS307のセレクトロー処理を設定しない場合には、ブレーキの引き摺り感が生じる懸念がある。これに対して、本実施の形態では、ステップS307の処理により最終目標回生制動トルクTmot_fがドライバ要求総制動トルクTreqを上回らないように設定しているため、このような引き摺り感が生じることを防止できる。
 以下に、実施の形態の制動トルク制御装置の効果を説明する。
  (1)実施の形態の制動トルク制御装置は、
車両におけるドライバ要求総制動トルクTreqを検出するストロークセンサ101およびブレーキコントロールユニット10と、
車両の駆動輪1に加えられる回生制動トルクを制御する回生制動装置Bと、
駆動輪1を含む車輪に加えられる液圧制動トルクを制御する液圧制動装置Aと、
ドライバの制動操作時に、回生制動装置Bと液圧制動装置Aとに指令値を出力して回生制動トルクと液圧制動トルクとを制御するブレーキコントロールユニット10と、
を備え、
ブレーキコントロールユニット10は、
ドライバ要求総制動トルクTreqに応じた基本目標回生制動トルクTmot_bを演算する基本目標回生制動トルク演算部(S2)と、
回生制動トルクを減少させつつ液圧制動トルクを増加させる際に、基本目標回生制動トルクTmot_bに対し、液圧制動装置Aにおける液圧応答遅れを考慮した遅れを持たせた最終目標回生制動トルクTmot_fを演算する最終目標回生制動トルク演算部(S3)と、
最終目標回生制動トルクTmot_fを受け、実際に回生している実行回生制動トルクTmot_rを演算する実行回生制動トルク演算部(S4)と、
ドライバ要求総制動トルクTreqから実行回生制動トルクTmot_rを減じた値を基本目標液圧制動トルクThyd_bとする基本目標液圧制動トルク演算部(S6)と、
基本目標液圧制動トルクThyd_bに、最終目標回生制動トルクTmot_fから基本目標回生制動トルクTmot_bを減じて得られた差分Δmotを加算した値を、最終目標液圧制動トルクThyd_fとして演算する最終目標液圧制動トルク演算部(S7)と、
最終目標液圧制動トルクThyd_fを液圧制動トルクの指令値とする液圧制動トルク指令値演算部(S8)と、
を備えていることを特徴とする。
 このように、本実施の形態では、ドライバ要求総制動トルクTreqから実行回生制動トルクTmot_rを減じた基本目標液圧制動トルクThyd_bに、最終目標回生制動トルクTmot_fから基本目標回生制動トルクTmot_bを減じて得られた差分Δmotを上乗せした値を、最終目標液圧制動トルクThyd_fとしている。
 すなわち、最終目標液圧制動トルクThyd_fは、液圧制動装置Aにおける遅れを考慮して、基本目標回生制動トルクTmot_bに対して位相を遅らせている。それに対し、最終目標液圧制動トルクThyd_fは、実行回生制動トルクTmot_rに基づいて得られた基本目標液圧制動トルクThyd_bに差分Δmotを加算している。
  これにより、基本目標液圧制動トルクThyd_bに対し、最終目標液圧制動トルクThyd_fの位相を、液圧応答性に応じて回生制動トルクを遅らせた分だけ、進めることができる。
 よって、図7に示したように、実際の液圧応答制動トルクが、実行回生制動トルクTmot_rの減少のタイミングに遅れることなく立ち上がる。したがって、本実施の形態では、ドライバ要求総制動トルクTreqから最終目標回生制動トルクTmot_fを減じた値を液圧制動トルクの最終指令値とする場合と比較して、液圧制動トルクの発生遅れによる車両の減速度の抜け感が改善される。
  加えて、実施の形態では、ドライバ要求総制動トルクTreqから実行回生制動トルクTmot_rを減じて基本目標液圧制動トルクThyd_bを求めるようにしている。このため、図7に示すように、実行回生制動トルクTmot_rが最終目標回生制動トルクTmot_fに対し遅れ要素を持っている場合、その分だけ、実際の液圧応答制動トルクを、基本目標液圧制動トルクThyd_bから遅らせることができる。これにより、実際の液圧応答制動トルクの立ち上がりを、実行回生制動トルクTmot_rの減少タイミングにより対応させることができ、車両の減速度の抜け感をいっそう改善できる。
 (2)実施の形態の制動トルク制御装置は、
最終目標回生制動トルク演算部(S3)は、液圧制動装置Aにおいて指令出力から実際に液圧が発生するまでに要する無駄時間tdeadを演算する無駄時間演算部(S303)と、液圧制動装置Aにおける応答遅れTmot_dを演算する応答遅れ演算部(S304)とを備え、無駄時間演算部(S303)は、液圧制動装置Aの発生液圧が0よりも大きいときは無駄時間tdeadを0とすることを特徴とする。
 ホイールシリンダ2に液圧が発生していない状態では、液圧指令を出しても、パッドのノックバック、マスタシリンダ7のリザーバポートを閉じるまでの間などの無駄時間tdeadが発生する。よって、この場合は、最終目標回生制動トルクTmot_fに無駄時間tdeadに応じた遅れを設定することにより、上述の減速度の抜け感の発生を抑制できる。
 それに対して、ホイールシリンダ2において既に液圧が発生している状態であれば、この無駄時間tdeadは発生しない。よって、このように液圧制動装置Aの発生液圧が0よりも大きいときは無駄時間tdeadを0とすることにより、実際の応答性に即した制御を行うことが可能になる。
 (3)実施の形態の制動トルク制御装置は、
最終目標回生制動トルク演算部(S3)は、ドライバ要求総制動トルクTreqと最終目標回生制動トルクTmot_fとの小さい方を最終目標回生制動トルクTmot_fとするようにした(S307)ことを特徴とする。
 このように、実施の形態では、基本目標回生制動トルクTmot_bに、液圧制動装置Aの液圧遅れ分を考慮した分(Δmot)を上乗せして最終目標回生制動トルクTmot_fを演算している。
 このため、ドライバがブレーキペダル5の踏み込みを減らした場合、ドライバ要求総制動トルクTreqが最終目標回生制動トルクTmot_fを下回る可能性がある。この場合、ドライバ要求総制動トルクTreqよりも大きい回生制動トルクを発生して、ドライバに制動力の引き摺り感を与えるおそれがある。
 それに対し、本実施の形態では、ドライバ要求総制動トルクTreqと最終目標回生制動トルクTmot_fとをセレクトローすることにより、ドライバ要求総制動トルクTreqが急減した場合、ドライバ要求総制動トルクTreqを最終目標回生制動トルクTmot_fとする。
 したがって、ドライバ要求総制動トルクTreqが急減した場合、これに応じて最終目標回生制動トルクTmot_fを減少させ、ドライバに制動力の引き摺り感を与えることを防止することができる。
 (4)実施の形態の制動トルク制御装置は、
最終目標回生制動トルク演算部(S3)は、回生制動トルクを増加させつつ液圧制動トルクを減少させる際には、最終目標回生制動トルクTmot_fとして、基本目標回生制動トルクTmot_bを用いるようにした(S306)。
 したがって、上記(1)のように、回生制動トルクを減少させつつ液圧制動トルクを増加させる際には、遅れを持たせた最終目標回生制動トルクTmot_fを用いて、上述の減速度の抜け感が生じるのを抑制できる。
  一方、回生制動トルクを増加させつつ液圧制動トルクを減少させる際には、液圧制動装置Aでは既に制動液圧が生じていて応答性が高いため、遅れを持たせていない基本目標回生制動トルクTmot_bを用いても減速度0の抜け感が生じることがない。そして、この遅れを持たせていない基本目標回生制動トルクTmot_bを用いることにより、回生領域が低減されることを抑制できる。
 (5)実施の形態の制動トルク制御装置は、
最終目標回生制動トルク演算部(S3)は、基本目標回生制動トルクTmot_bと最終目標回生制動トルクTmot_fとを比較し、最終目標回生制動トルクTmot_fが基本目標回生制動トルクTmot_bを上回る場合は、最終目標回生制動トルクTmot_fをそのまま使用し、最終目標回生制動トルクTmot_fが基本目標回生制動トルクTmot_bを下回る場合は、基本目標回生制動トルクTmot_bを最終目標回生制動トルクTmot_fとして用いる(S306)。
  したがって、上記のように、最終目標回生制動トルクTmot_fとして、液圧制動装置Aの昇圧時に遅れを持たせた最終目標回生制動トルクTmot_fを用い、液圧制動装置Aの降圧時に、基本目標回生制動トルクTmot_bを用いることができる。
  本実施の形態では、このような液圧制動装置Aの昇圧および降圧に応じた判断処理を、単に、最終目標回生制動トルクTmot_fと基本目標回生制動トルクTmot_bとの比較により行うことができ、このような昇圧、降圧に応じた判断処理を行なう構成の簡略化を図ることができる。
 (6)実施の形態の制動トルク制御装置は、
液圧制動装置Aは、電動ブースタ(倍力装置)6を備え、かつ、応答遅れ演算部(S304)は、電動ブースタ6の倍力性能に応じたn次遅れ系で設定した。
 液圧制動装置Aの応答遅れTmot_dは、配管流路抵抗、流路オリフィス抵抗、モータ慣性、突入電流対策、液圧サーボ制御などの総合的な結果として発生する。しかし、これらを全てモデル化し逆演算モデルを組むのは演算処理負荷が高い。そこで、液圧制動装置Aの電動ブースタ6のサーボ性能を、二次遅れ系となるように構成し、応答遅れ演算も二次遅れで演算することにより、演算負荷を下げることが可能となる。この場合、二次遅れ系とすることにより、三次以上の遅れ系とするよりも、さらに演算負荷を下げることができる。
 (7)実施の形態の制動トルク制御装置は、
最終目標回生制動トルク演算部(S3)は、あらかじめ回生可能最低車速Vlimが設定され、車速Vが回生可能最低車速Vlimを下回っても遅れを持たせた最終目標回生制動トルクTmot_fが0以上であると判断した場合には、車速Vが回生可能最低車速Vlimとなるまでに最終目標回生制動トルクTmot_fを0とする最終目標回生制動トルク制限部(S305)を有していることを特徴とする。
 最終目標回生制動トルクTmot_fは、基本目標回生制動トルクTmot_bに遅れ分を上乗せしているため、極低車速域において、最終目標回生制動トルクTmot_fが残っていた場合、モータ/ジェネレータ4の振動などを招くおそれがある。
  それに対し、本実施の形態では、車速Vが回生可能最低車速Vlimを下回っても最終目標回生制動トルクTmot_fが0以上の場合、回生可能最低車速Vlimとなるまでに最終目標回生制動トルクTmot_fを0とすることで、その不具合を防止できる。
 (8)実施の形態の制動トルク制御装置は、
最終目標回生制動トルク制限部(S3)は、現在の車速Vに応じて、回生可能最低車速Vlimに向かって0になる回生制動トルク制限勾配の回生トルク制限値Tlim_minを有しており(S305)、遅れを持たせた最終目標回生制動トルクTmot_fが回生トルク制限値Tlim_minを上回る場合は、最終目標回生制動トルクTmot_fを回生トルク制限値Tlim_minに設定する(S306)ことを特徴とする。
 このように、回生制動トルクを回生可能最低車速Vlimに向かって線形に0にすることにより、回生制動トルク・液圧制動トルクの不連続な変動を防止することができる。
 (9)実施の形態の制動トルク制御装置は、
最終目標回生制動トルク制限部(S3)は、回生制動トルク制限勾配が、車輪速減速度に応じて、その勾配を前記減速度が大きいほど緩く設定する(S305および図6参照)ことを特徴とする。
 高減速時には、一気に車速Vが下がり、一定の勾配で回生を制限したときに回生可能最低車速Vlimを下回って最終目標回生制動トルクTmot_fが指令されて、上記のようなモータ/ジェネレータ4の振動などを招くおそれがある。
  これに対し、本実施の形態では、高減速時には回生制動トルク制限勾配を緩く変更して回生可能最低車速Vlimを下回らずに回生制動トルクを0にすることが可能となり、上記のようなモータ/ジェネレータ4の振動などを抑制できる。
 以上、本発明の制動トルク制御装置を実施の形態に基づき説明してきたが、具体的な構成については、この実施の形態に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施の形態では、本発明の制動トルク制御装置を、電動車両に適用した例を示したが、本発明の適用対象としては、液圧制動装置と回生制動装置とを備えた車両であれば、電動車両に限定されない。例えば、駆動輪の駆動源として、エンジンとモータ/ジェネレータとを搭載した、いわゆるハイブリッド車両や、駆動輪の駆動はエンジンの駆動力のみにより行うが、回生制動を行うことができるようにした車両にも適用することができる。
 また、実施の形態では、図2に示すステップS1~S3、S6~S8の処理は、ブレーキコントロールユニット10において行い、ステップS4,S5は、モータコントロールユニット11で行う態様を示した。このような処理を実行する部分は、実施の形態で示したものに限定されず、これら全ての処理を同一のコントロールユニットで実行してもよいし、さらに、液圧制動装置A及び回生制動装置Bへの出力を、そのコントロールユニットから行うようにしてもよい。
 また、実施の形態では、回生制動装置Bは1系統の車両を例示しているが、これに限定されない。例えば、インホイールモータ式車両や、左右独立モータ式車両、前後独立モータ式車両などにおいても適用可能である。その場合は、ステップS4、S5の処理は、各系統のコントロールユニットにて実行し、各系統の駆動系への出力を行う。
 また、実施例の形態では、液圧制動装置Aが1系統として演算しているが、さらに液圧の応答性を上げるために、液剛性の高い(言い換えると、消費液量の少ない)後輪から先に昇圧し、総制動力が変わらないよう徐々に4輪液圧制動に移行させてもよい。その場合は、ステップS304において演算する液圧制動装置Aの応答特性を、各制御系統に対応するように修正することで対応可能である。また、車両の制動姿勢変化を小さくするため、まず回生制動輪から昇圧し、徐々に4輪制動に移行させる場合も同様である。
 また、実施の形態では、最終目標回生制動トルク演算部は、液圧制動装置における液圧応答遅れを考慮した遅れを持たせるのにあたり、無駄時間と応答遅れとを考慮するようにしたが、無駄時間のみあるいは応答遅れのみを考慮するようにしてもよい。
 また、実施の形態では、液圧制動装置の昇圧および降圧に応じ、最終目標回生制動トルクとして、液圧制動装置の昇圧時に遅れを持たせた最終目標回生制動トルクをそのまま用いるか、基本目標回生制動トルクに置き換えるかの判断を、最終目標回生制動トルクと基本目標回生制動トルクとのセレクトハイにより実行した(例えば、図4のステップS306)。しかし、これに限定されるものではなく、液圧制動装置の圧力の検出に基づいて昇圧・降圧判断を行なって上記選択を行なうようにしてもよい。
関連出願の相互参照
 本出願は、2011年12月16日に日本国特許庁に出願された特願2011-275178に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。

Claims (9)

  1.  車両におけるドライバ要求総制動トルクを検出する要求総制動力検出装置と、
     前記車両の車輪に加えられる回生制動トルクを制御する回生制動装置と、
     前記車輪に加えられる液圧制動トルクを制御する液圧制動装置と、
     前記ドライバの制動操作時に、前記回生制動装置と前記液圧制動装置とに指令値を出力して前記回生制動トルクと前記液圧制動トルクとを制御する制動トルク制御部と、
    を備えた制動トルク制御装置であって、
     前記制動トルク制御部は、
    前記ドライバ要求総制動トルクに応じた基本目標回生制動トルクを演算する基本目標回生制動トルク演算部と、
    前記回生制動トルクを減少させつつ前記液圧制動トルクを増加させる際に、前記基本目標回生制動トルクに対し、前記液圧制動装置における液圧応答遅れを考慮した遅れを持たせた最終目標回生制動トルクを演算する最終目標回生制動トルク演算部と、
    前記最終目標回生制動トルクを受け、実際に回生している実行回生制動トルクを演算する実行回生制動トルク演算部と、
    前記ドライバ要求総制動トルクから前記実行回生制動トルクを減じた値を基本目標液圧制動トルクとする基本目標液圧制動トルク演算部と、
    前記基本目標液圧制動トルクに、前記最終目標回生制動トルクから前記基本目標回生制動トルクを減じて得られた差分を加算した値を、最終目標液圧制動トルクとして演算する最終目標液圧制動トルク演算部と、
    前記最終目標液圧制動トルクを前記液圧制動トルクの指令値とする液圧制動トルク指令値演算部と、
    を備えていることを特徴とする制動トルク制御装置。
  2.  請求項1に記載された制動トルク制御装置において、
     前記最終目標回生制動トルク演算部は、前記液圧制動装置において指令出力から実際に液圧が発生するまでに要する無駄時間を演算する無駄時間演算部と、前記液圧制御装置における応答遅れを演算する応答遅れ演算部とを備え、前記無駄時間演算部は、前記液圧制動装置の発生液圧が0よりも大きいときは前記無駄時間を0とすることを特徴とする制動トルク制御装置。
  3.  請求項1または請求項2に記載された制動トルク制御装置において、
     前記最終目標回生制動トルク演算部は、前記ドライバ要求総制動トルクと、前記最終目標回生制動トルクとの小さい方を前記最終目標回生制動トルクとすることを特徴とする制動トルク制御装置。
  4.  請求項1~請求項3のいずれか1項に記載の制動トルク制御装置において、
     前記最終目標回生制動トルク演算部は、前記回生制動トルクを増加させつつ前記液圧制動トルクを減少させる際には、前記最終目標回生制動トルクとして、前記基本目標回生制動トルクを用いることを特徴とする制動トルク制御装置。
  5.  請求項4に記載の制動トルク制御装置において、
     前記最終目標回生制動トルク演算部は、前記基本目標回生制動トルクと前記最終目標回生制動トルクとを比較し、前記最終目標回生制動トルクが前記基本目標回生制動トルクを上回る場合は、前記最終目標回生制動トルクをそのまま使用し、前記最終目標回生制動トルクが前記基本目標回生制動トルクを下回る場合は、前記基本目標回生制動トルクを前記最終目標回生制動トルクとして用いることを特徴とする制動トルク制御装置。
  6.  請求項2に記載された制動トルク制御装置において、
     前記液圧制動装置は、倍力装置を備え、
     前記応答遅れ演算部は、前記倍力装置の倍力性能に応じたn次遅れ系で構成されていることを特徴とする制動トルク制御装置。
  7.  請求項1~請求項6のいずれか1項に記載の制動トルク制御装置において、
     前記最終目標回生制動トルク演算部は、あらかじめ回生可能最低車速が設定され、車速が前記回生可能最低車速を下回っても前記最終目標回生制動トルクが0以上であると判断した場合には、前記車速が前記回生可能最低車速となるまでに前記最終目標回生制動トルクを0とする最終目標回生制動トルク制限部を有していることを特徴とする制動トルク制御装置。
  8.  請求項7に記載の制動トルク制御装置において、
     前記最終目標回生制動トルク制限部は、現在の車速に応じて、前記回生可能最低車速に向かって0になる回生制動トルク制限勾配の回生トルク制限値を有しており、前記最終目標回生制動トルクが前記制限値を上回る場合は、前記最終目標回生制動トルクを前記回生トルク制限値に設定することを特徴とすることを特徴とする制動トルク制御装置。
  9.  請求項8に記載の制動トルク制御装置において、
     前記最終目標回生制動トルク制限部は、前記回生制動トルク制限勾配が、車輪速減速度に応じて、その勾配を前記減速度が大きいほど緩く設定することを特徴とする制動トルク制御装置。
PCT/JP2012/082482 2011-12-16 2012-12-14 制動トルク制御装置 WO2013089225A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011275178A JP5982808B2 (ja) 2011-12-16 2011-12-16 制動トルク制御装置及び制動トルク制御方法
JP2011-275178 2011-12-16

Publications (1)

Publication Number Publication Date
WO2013089225A1 true WO2013089225A1 (ja) 2013-06-20

Family

ID=48612664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082482 WO2013089225A1 (ja) 2011-12-16 2012-12-14 制動トルク制御装置

Country Status (2)

Country Link
JP (1) JP5982808B2 (ja)
WO (1) WO2013089225A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111959476A (zh) * 2020-07-24 2020-11-20 东风商用车有限公司 混动商用车制动方式智能管理方法
US20220176826A1 (en) * 2020-12-08 2022-06-09 Hyundai Motor Company Braking control method using predicted friction coefficient of brake pad

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6199085B2 (ja) 2013-06-12 2017-09-20 ラピスセミコンダクタ株式会社 半導体回路、組電池システム、及び診断方法
JP6170357B2 (ja) * 2013-07-01 2017-07-26 株式会社Subaru 車両の走行制御装置
KR101724802B1 (ko) * 2014-11-03 2017-04-07 현대자동차주식회사 친환경자동차의 제동 제어 방법
KR102286732B1 (ko) * 2015-05-18 2021-08-05 현대자동차 주식회사 차량용 제동 시스템 및 차량 제동 방법
JP6595417B2 (ja) * 2016-08-10 2019-10-23 株式会社アドヴィックス 車両用制動装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004196064A (ja) * 2002-12-17 2004-07-15 Nissan Motor Co Ltd 複合ブレーキの協調制御装置
JP2006123657A (ja) * 2004-10-27 2006-05-18 Toyota Motor Corp ブレーキ装置
JP2006187081A (ja) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd 複合ブレーキの協調制御装置
JP2006232117A (ja) * 2005-02-25 2006-09-07 Toyota Motor Corp 制動制御装置
JP2010098821A (ja) * 2008-10-15 2010-04-30 Toshiba Corp 減速度比推定装置を有する列車制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004196064A (ja) * 2002-12-17 2004-07-15 Nissan Motor Co Ltd 複合ブレーキの協調制御装置
JP2006123657A (ja) * 2004-10-27 2006-05-18 Toyota Motor Corp ブレーキ装置
JP2006187081A (ja) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd 複合ブレーキの協調制御装置
JP2006232117A (ja) * 2005-02-25 2006-09-07 Toyota Motor Corp 制動制御装置
JP2010098821A (ja) * 2008-10-15 2010-04-30 Toshiba Corp 減速度比推定装置を有する列車制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111959476A (zh) * 2020-07-24 2020-11-20 东风商用车有限公司 混动商用车制动方式智能管理方法
CN111959476B (zh) * 2020-07-24 2021-08-13 东风商用车有限公司 混动商用车制动方式智能管理方法
US20220176826A1 (en) * 2020-12-08 2022-06-09 Hyundai Motor Company Braking control method using predicted friction coefficient of brake pad
US11827120B2 (en) * 2020-12-08 2023-11-28 Hyundai Motor Company Braking control method using predicted friction coefficient of brake pad

Also Published As

Publication number Publication date
JP5982808B2 (ja) 2016-08-31
JP2013124054A (ja) 2013-06-24

Similar Documents

Publication Publication Date Title
JP5982808B2 (ja) 制動トルク制御装置及び制動トルク制御方法
JP6787410B2 (ja) 電動車両の制御方法、及び、制御装置
JP6618073B2 (ja) 制動制御装置
WO2013085000A1 (ja) 電動車両の制御装置
CN110191818B (zh) 电动车辆的控制方法以及电动车辆的控制装置
JP5367683B2 (ja) 車両用ブレーキ装置
JP5596756B2 (ja) 電動車両
JP6056340B2 (ja) 制動制御装置
JP6760401B2 (ja) 電動車両の制御方法、及び、制御装置
JP6614357B2 (ja) 車両の制御方法および制御装置
JP5233652B2 (ja) ハイブリッド車両の発進制御装置
JP2010143418A (ja) ハイブリッド車両の発進制御装置
JP5686721B2 (ja) 電動車両の制御装置
JP6120010B2 (ja) 車両
JP2019146450A (ja) 電動車両の制御方法および電動車両の制御装置
JP5853682B2 (ja) 車両のブレーキ制御装置
JP5915349B2 (ja) 電動車両の制振制御装置
JP6056339B2 (ja) ブレーキ制御装置
JP2018085900A (ja) 電動車両の制御方法、及び、電動車両の制御装置
JP5683305B2 (ja) ブレーキ制御装置
JP5273031B2 (ja) 車両用左右駆動力調整装置の制御装置
JP5872412B2 (ja) ブレーキ制御装置
JP5445706B2 (ja) 車両用左右駆動力調整装置の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856954

Country of ref document: EP

Kind code of ref document: A1