WO2013088997A1 - 面発光体および前面フィルム - Google Patents

面発光体および前面フィルム Download PDF

Info

Publication number
WO2013088997A1
WO2013088997A1 PCT/JP2012/081451 JP2012081451W WO2013088997A1 WO 2013088997 A1 WO2013088997 A1 WO 2013088997A1 JP 2012081451 W JP2012081451 W JP 2012081451W WO 2013088997 A1 WO2013088997 A1 WO 2013088997A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
light
containing layer
resin
particles
Prior art date
Application number
PCT/JP2012/081451
Other languages
English (en)
French (fr)
Inventor
若原隆一
鈴木基之
河田融司
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201280060860.3A priority Critical patent/CN103975647A/zh
Priority to EP12858082.6A priority patent/EP2793531A4/en
Priority to JP2013513309A priority patent/JP6156143B2/ja
Priority to US14/360,728 priority patent/US9237630B2/en
Publication of WO2013088997A1 publication Critical patent/WO2013088997A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers

Definitions

  • the present invention provides a surface light emitter that has a high light extraction efficiency and a small change in color depending on the viewing angle, and is less likely to scatter fragments when the translucent substrate is cracked, and a front film used therefor About.
  • electroluminescence may be abbreviated as EL
  • An organic EL element can be used as a light source of a lighting device or a backlight of a display device because the light color can be white or a color close thereto.
  • a currently known organic EL element is composed of components such as an organic EL layer, a transparent electrode, and a translucent substrate made of glass or a polymer film, and transmits light generated in the organic EL layer to the outside through the translucent substrate.
  • the loss when extracting light is large, and the efficiency of extracting the generated light to the outside (hereinafter referred to as light extraction efficiency) is only about 20%.
  • a white organic EL element includes a plurality of light emitting elements such as red, green, blue, yellow, and blue, but the behavior of refraction and reflection in each component depends on the wavelength of light. Because of the difference, a change in color depending on the viewing angle (hereinafter referred to as color shift) is a problem to be solved.
  • the translucent substrate used in the current organic EL element is mainly made of glass, and there is a concern that when an impact is applied, it breaks and scatters fragments.
  • Patent Document 1 As a method for improving the light extraction efficiency of the organic EL element, a resin layer containing a scattering material is provided on the surface of the translucent substrate opposite to the light emitter (Patent Document 1), and a light diffusing adhesive layer is provided ( A method such as Patent Document 2) has been proposed. Further, as a method for achieving light extraction efficiency, color misregistration reduction, and prevention of scattering when the translucent substrate is cracked, a resin layer containing particles is provided between the transparent electrode and the translucent substrate, and a lens sheet is provided on the light exit surface. A method of providing (Patent Document 3) has been proposed.
  • Patent Document 1 does not have a function of preventing the scattering of fragments when the transparent substrate is cracked, or the occurrence of color misregistration cannot be sufficiently prevented.
  • Patent Document 3 needs to form a transparent electrode having a thickness of several tens of nanometers on a resin layer having a large surface unevenness due to the influence of light diffusing particles, and lacks feasibility in consideration of actual manufacturing technology. Met.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and in addition to high light extraction efficiency and small color shift, it is scattered when the transparent substrate is cracked. It is an object of the present invention to provide a surface light emitter that is difficult to perform and a front film used therefor.
  • a surface light emitter in which at least a three-layer front film having a resin layer containing particles on both sides of a base film is in contact with a light-emitting element having a light-transmitting substrate on one side.
  • the resin layer (first particle-containing layer) located on the light incident side of the front film contains 1 to 50% by mass of particles
  • the resin layer (second particle-containing layer) located on the light-emitting side of the front film ) Contains 20 to 80% by mass of particles.
  • the surface light emitter according to 1 above, wherein a difference in refractive index between the resin constituting the first particle-containing layer and the particles is 0.05 to 0.5. 3.
  • FIG. 1 is a schematic diagram showing an example of the configuration of the surface light emitter of the present invention.
  • the surface light emitter 1 of the present invention includes a light emitting element 2 and a front film 3, and the light emitting element 2 and the front film 3 are arranged in contact with each other.
  • the light-emitting element 2 includes a light-emitting layer 4 and a light-transmitting substrate 5, and the front film 3 includes a first particle-containing layer 6, a base film 7, and a second film in order from the light-transmitting substrate 5 side of the light-emitting element 2.
  • It is a laminate having a three-layer configuration of the particle-containing layer 8.
  • the surface light emitter 1 of the present invention is not particularly limited as long as it is a planar light emitter.
  • the surface shape is not limited to a flat surface, but includes a curved surface having a certain curvature and a surface curved indefinitely, and includes a surface having partial unevenness.
  • FIG. 2 is a schematic diagram showing an example of the configuration of the light emitting element used in the present invention.
  • the translucent substrate 5 is made of glass or a polymer film substrate. Currently, glass having good gas barrier properties is mainly used.
  • the structure of the light emitting layer 4 shows the example by which the sealing layer 9, the back electrode 10, the light-emitting body 11, and the transparent electrode 12 are arrange
  • the sealing layer 9 is installed in order to prevent the light emitting body 11 from deteriorating due to intrusion of water and oxygen from the back and side surfaces.
  • the back electrode 10 is a reflective electrode, and silver or aluminum is often used. Examples of the light emitter 11 include organic electroluminescent light emitters and inorganic electroluminescent light emitters.
  • the light emitting element using an organic electroluminescent light-emitting body is called an organic electroluminescent light-emitting element
  • the light-emitting element using an inorganic electroluminescent light-emitting body is called an inorganic electroluminescent light-emitting element.
  • an indium-tin oxide film hereinafter referred to as ITO or the like is often used.
  • FIG. 3 is a schematic diagram showing a three-layer front film as an example of the structure of the front film used in the present invention. Since the front film 3 is disposed in contact with the translucent substrate 5 of the light emitting element 2 as described with reference to FIG. 1, the side in contact with the translucent substrate 5 is the light incident side of the base film 7. The side opposite to the substrate film from the side is defined as the light exit side. As shown in FIG. 3, the front film has a resin layer containing particles on both sides thereof, the first particle-containing layer 6 on the light incident side, the second particle-containing layer 8 on the light-emitting side, and the first particles.
  • the resin constituting the content layer 6 is the resin (A) 13
  • the particles contained in the first particle content layer 6 are the particles (A) 14
  • the resin constituting the second particle content layer 8 is the resin (B) 15, and the second
  • the particles contained in the particle-containing layer 8 are defined as particles (B) 16.
  • the base film may be composed of two or more layers.
  • the functional layer may be disposed in the surface region on the first particle-containing layer side and / or the surface region on the second particle-containing layer side. Good.
  • the first particle-containing layer 6 contains 1 to 50 mass% of particles (A) 14.
  • the particles (A) 14 are buried and dispersed in the resin (A) 13, and the light-transmitting substrate 5 and the front film of the light-emitting element 2 are formed.
  • 3 first particle-containing layers 6 can be disposed in contact with each other.
  • being placed in contact means that the translucent substrate 5 and the first particle-containing layer 6 are in close contact. If there is an air layer between the translucent substrate 5 and the first particle-containing layer 6, a loss due to light reflection between the light layer and the air layer increases, so that no light layer is interposed.
  • adhered is taken. That is, by taking such a configuration, it is possible to reduce reflection loss between the translucent substrate 5 and the first particle-containing layer 6. In the present invention, for this reason, the amount of minute air entrapment between the translucent substrate 5 and the first particle-containing layer 6 is also small (the air entrapment in this case is expressed as a void). It is preferable that such minute voids are 1% or less per unit area. Further, in the first particle-containing layer 6, the particles (A) 14 are buried and dispersed in the resin (A) 13, so that the refractive index of the resin (A) 13 and the particles (A) 14 is increased. The transmitted light can be scattered by the difference.
  • the second particle-containing layer 8 contains 20 to 80% by mass of the particles (B) 16 in the resin (B) 15.
  • grain content layer 8 By setting it as the said mass content rate, in the 2nd particle
  • the present invention achieves both reduction in color shift and improvement in light extraction efficiency by providing two particle-containing layers and further controlling the mass content of the particles under the above conditions.
  • a surface light emitter has been found.
  • the base film 7 the surface light emitter 1 that is difficult to be scattered when the translucent substrate is broken can be obtained.
  • the material used as the base film is not particularly limited, but a plastic film is preferably used from the viewpoint of supply properties and handling properties.
  • the plastic film material include polyolefin, polyester, polycarbonate, polyether, polyamide, polyimide, and polyacryl.
  • a polyester film is preferably used from the viewpoint of durability and the like, and polyethylene terephthalate (hereinafter referred to as PET) is particularly preferably used since it is excellent in supplyability.
  • the film used as the base film may be a film produced through a uniaxial or biaxial stretching process in the production process, or may be a film produced without undergoing a stretching process.
  • a film produced through a stretching process is preferable because of its high strength. What is necessary is just to judge comprehensively from the intensity
  • the base film may be transparent, or may be translucent by incorporating various organic and / or inorganic particles and cavities for the purpose of diffusing light, but is colored. Preferably not.
  • the film used as the base film may be a so-called single layer film made of one kind of material, or a composite film in which a plurality of materials are laminated, and a functional layer is arranged on the surface. These may be selected according to the characteristics to be obtained.
  • the thickness of the base film according to the present invention is not particularly limited, but is preferably 10 ⁇ m or more and 500 ⁇ m or less. If it is less than 10 ⁇ m, handling may be difficult, and if it exceeds 500 ⁇ m, light loss may occur in the base film.
  • the thickness of the base film is preferably 30 ⁇ m or more and 300 ⁇ m or less, more preferably 50 ⁇ m or more and 200 ⁇ m or less.
  • the boundary between the base film and the first or second particle-containing layer can be determined by observing a cross section with an electron microscope or measuring a layer thickness with a laser microscope.
  • a 1st particle content layer contains particle
  • resin (A) used for a 1st particle content layer The resin which has an organic component as a main component is preferable, for example, polyester resin, polyurethane resin, acrylic resin, methacrylic resin, polyamide resin, polyethylene resin, polypropylene Examples thereof include resins, polyvinyl chloride resins, polyvinylidene chloride resins, polystyrene resins, polyvinyl acetate resins, fluorine resins, epoxy resins, and silicone resins.
  • the resin containing an organic component as a main component refers to a resin containing 60% by mass or more of an organic component in the resin (A) used for the first particle-containing layer, and a resin containing 80% by mass or more of an organic component.
  • the main component is defined similarly.
  • These resins may be used alone, or two or more copolymers or a mixture thereof may be used.
  • polyester resins, polyurethane resins, acrylic resins, or methacrylic resins are preferably used because of their excellent heat resistance, appearance, and particle dispersibility.
  • the peel strength between the first particle-containing layer and the translucent substrate is preferably 0.5 N / 25 mm or more, because durability is improved, preferably 1 N / 25 mm or more, and more preferably 2 N / 25 mm or more. Is preferred. Moreover, since the peel strength between the first particle-containing layer and the light-transmitting substrate exceeds 50 N / 25 mm, there is almost no contribution to the improvement of the durability, so 50 N / 25 mm or less is practically sufficient. is there. When scratches or the like occur on the front film 3, only the front film can be peeled and replaced, and therefore, it is preferably 40 N / 25 mm or less, and more preferably 30 N / 25 mm or less.
  • the peel strength between the first particle-containing layer and the translucent substrate is measured by the method described in “(6) Peel strength between the first particle-containing layer and the translucent substrate” in Examples described later. Value.
  • the resin used for the first particle-containing layer includes a polyester resin, a polyurethane resin, an acrylic resin, and an epoxy resin. And resins such as silicone resins. These resins may be used alone, or two or more copolymers or a mixture thereof may be used.
  • the acrylic resin is excellent in reliability such as water resistance, heat resistance, and light resistance in addition to setting the peel strength between the first particle-containing layer and the translucent substrate in such a preferable range. It is preferable because of its high transparency.
  • the manufacturing method of the surface emitting body mentioned later it has adhesiveness on the surface applied to the method of (ii) at the time of arrange
  • a material for obtaining a low glass transition temperature for example, 220 to 250 K
  • a low surface energy for obtaining sufficient wetness for example, 220 to 250 K
  • a cohesive force it is preferable to select a material in consideration of conditions such as setting an appropriate molecular weight every time.
  • Materials that satisfy these conditions include acrylic adhesives “SK Dyne” (registered trademark) (manufactured by Soken Chemical Co., Ltd.), acrylic adhesives “Olivein” (registered trademark) (manufactured by Toyo Ink Co., Ltd.), etc. Can be used. Furthermore, it is preferable to adjust the crosslinking density according to the type and amount of a crosslinking agent (isocyanate-based curing agent) for optimizing the balance between flow deformation during wetting and resistance during peeling.
  • SK Dyne registered trademark
  • acrylic adhesives “Olivein” registered trademark
  • Toyo Ink Co., Ltd. Toyo Ink Co., Ltd.
  • the shape of the particles (A) used in the first particle-containing layer is, for example, a flat shape such as a star shape, a leaf shape or a disk shape, a rhombus shape, a rectangular shape, a needle shape, a confetti shape, or an aspheric shape such as an indefinite shape.
  • a spherical shape (not necessarily a true sphere, but a particle whose cross-sectional shape is surrounded by a curved surface such as a circle, an ellipse, a substantially circle, or a substantially ellipse).
  • the particles having these shapes may be porous, non-porous, or hollow, and particles having different particle shapes may be mixed, but a spherical shape in which scattered light is uniformly scattered is preferable.
  • the material of the particles (A) used for the first particle-containing layer may be either an organic compound or an inorganic compound, and is not particularly limited. Further, particles of different materials may be mixed and used.
  • the organic compound used when the organic compound is applied as the material of the particles (A) used in the first particle-containing layer is preferably a resin mainly composed of a high-melting cross-linked polymer component, such as a polyester resin.
  • a resin mainly composed of a high-melting cross-linked polymer component such as a polyester resin.
  • Polyamide resin particles such as benzoguanamine, polyurethane resin, acrylic resin, methacrylic resin, polyamide resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polystyrene resin, polyvinyl acetate resin, fluorine resin, A silicone resin etc. are mentioned. These resins may be used alone, or two or more copolymers or a mixture thereof may be used.
  • Examples of the inorganic compound used when applying the inorganic compound as the material of the particles (A) used in the first particle-containing layer include calcium carbonate, magnesium carbonate, zinc carbonate, titanium oxide, zinc oxide, cerium oxide, and magnesium oxide. , Barium sulfate, zinc sulfide, calcium phosphate, silica, alumina, mica, mica titanium, talc, clay, kaolin, lithium fluoride, calcium fluoride and the like.
  • acrylic resin, methacrylic resin, polyamide resin, epoxy resin, melamine resin, etc. are used as the material of the particles (A) used for the first particle-containing layer because of excellent optical characteristics and solvent resistance. It is preferable.
  • the average particle size of the particles used in the first particle-containing layer is preferably from 0.1 to 30 ⁇ m, more preferably from 0.5 to 20 ⁇ m, still more preferably from 1.0 to 10 ⁇ m.
  • An average particle diameter here is a number average particle diameter, and shall mean the number average value of the particle diameter which describes the measuring method in an Example (the same applies to the particle (B) in the second particle-containing layer). is there).
  • the content ratio of the particles in the first particle-containing layer is 1 to 50% by mass, preferably 1 to 40% by mass, more preferably 1 to 30% by mass, and further preferably 1 to 20% by mass.
  • grain is a ratio of the mass of the particle
  • the difference in refractive index between the resin constituting the first particle-containing layer and the particles is preferably 0.05 to 0.5, more preferably 0.05 to 0.3. If the difference in refractive index is less than 0.05, light diffusibility may not be obtained, and if the difference in refractive index is greater than 0.5, the internal diffusion is too large and the total light transmittance decreases, As a result, the light extraction efficiency may decrease.
  • the first particle-containing layer preferably contains an ultraviolet absorber.
  • an ultraviolet absorber it can select from the group similar to the ultraviolet absorber quoted by the below-mentioned 2nd particle content layer.
  • the thickness of the first particle-containing layer is not particularly limited, but is preferably 0.3 to 70 ⁇ m. When the thickness is smaller than 0.3 ⁇ m, the appearance may be deteriorated, and when it is larger than 70 ⁇ m, the cost required for the raw material may be increased.
  • the thickness of the first particle-containing layer is more preferably 1 to 60 ⁇ m, still more preferably 3 to 50 ⁇ m, and preferably about several times the average particle diameter of the contained particles.
  • a 2nd particle content layer contains resin (B) and particle
  • the resin (B) used for the second particle-containing layer can be selected from the same group as the resin (A) mentioned in the first particle-containing layer, but is not necessarily the same resin as the first particle-containing layer.
  • the shape of the particles (B) used in the second particle-containing layer can be selected from the same group as the particles (A) mentioned in the first particle-containing layer, but is preferably spherical.
  • the angle of the extracted light can be more easily concentrated in the front direction, and a surface light emitter that has a bright front direction can be obtained.
  • the material of the particles (B) used for the second particle-containing layer can be selected from the same group as the particles (A) mentioned in the first particle-containing layer.
  • the average particle size of the particles used in the second particle-containing layer is preferably 0.3 to 30 ⁇ m, more preferably 0.5 to 20 ⁇ m, and still more preferably 1.0 to 10 ⁇ m.
  • the average particle diameter is smaller than 0.3 ⁇ m, the optical behavior due to the unevenness provided on the surface of the second particle-containing layer by the particles changes depending on the wavelength, and thus color misregistration may occur.
  • the average particle diameter of the particles is larger than 30 ⁇ m, the appearance may be deteriorated.
  • the average particle diameter of the particles used in the second particle-containing layer is larger than the average thickness of the second particle-containing layer described in the measurement method in the examples, and the surface of the second particle-containing layer is provided with irregularities due to the particles. It is preferable because it is easy.
  • An average particle diameter here is a number average particle diameter, and shall mean the number average value of the particle diameter which describes a measuring method in an Example.
  • the content of the particles used in the second particle-containing layer is 20 to 80% by mass, preferably 30 to 80% by mass, and more preferably 40 to 80% by mass.
  • grain is a ratio of the mass of a particle
  • the second particle-containing layer can contain additives such as a curing agent, a crosslinking agent, and an ultraviolet absorber.
  • the second particle-containing layer preferably contains an ultraviolet absorber from the viewpoint of preventing deterioration of the base film and the light emitting element due to ultraviolet rays of external light.
  • the second particle-containing layer contains an ultraviolet absorber and a light stabilizer.
  • UV absorbers examples include organic UV absorbers such as benzophenone, benzotriazole, triazine, cyanoacrylate, salicylic acid, benzoate, and oxalic acid anilide, as well as titanium oxide, zinc oxide, cerium oxide, An inorganic ultraviolet absorber such as zirconium oxide can also be used.
  • Salicylic acid compounds pt-butylphenyl salicylate, p-octylphenyl salicylate benzophenone compounds: 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2,2′-4,4′-tetrahydroxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, bis (2-methoxy-4-hydroxy) -5-benzoylphenyl) methanebenzotriazole compounds: 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-5'-t-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di- -Butylphenyl) benzotriazole, 2- (2'-(triazole) methanebenzotriazo
  • ultraviolet absorbers absorb ultraviolet rays, they do not have the property of trapping organic radicals that are generated by exposure to ultraviolet rays, so degradation may occur due to organic radicals that are generated by exposure to ultraviolet rays. . In such a case, in order to capture organic radicals, it is preferable to use a light stabilizer in combination.
  • Hindered amine compounds bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, dimethyl succinate 1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethyl Piperidine polycondensate benzoate series: 2,4-di-t-butylphenyl-3 ′, 5′-di-t-butyl-4′-hydroxybenzoate, 2,4-di-t-butylphenyl-3 ′, 5'-di-t-butyl-4'-hydroxybenzoate hindered phenol compounds: octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylenebis (3,5-di-t-butyl-4-hydroxynnamamide) Among these, hindered amine compounds are preferably used because of their high radical scavenging ability and little coloration.
  • the above compounds can be used alone or in combination of two or more.
  • the second particle-containing layer contains an ultraviolet absorber
  • a) an aspect in which the coating material for the second particle-containing layer contains an ultraviolet absorber, and b) a skeleton of the resin (B) constituting the second particle-containing layer An embodiment using a resin containing an ultraviolet absorber therein, and c) an embodiment using particles containing an ultraviolet absorber as the particles (B) constituting the second particle-containing layer.
  • the aspect of b) or c) is preferably used from the viewpoint of suppressing the bleeding out of the ultraviolet absorber.
  • the second particle-containing layer has a relatively high content of particles (B) of 20 to 80% by mass, it is more preferable to use at least the aspect (c) from the viewpoint of enhancing the ultraviolet absorption efficiency. ) Is particularly preferred.
  • the resin component constituting the resin (B) and the ultraviolet absorber are copolymerized.
  • the resin obtained is used.
  • the resin is preferably copolymerized with a light stabilizer.
  • a resin for example, “HALS HYBRID” (registered trademark) series (manufactured by Nippon Shokubai Co., Ltd.) containing an acrylic monomer, a UV absorber, and a copolymer of a light stabilizer as active ingredients is preferably used.
  • grains containing the ultraviolet absorber of (c) are obtained, for example by copolymerizing the ultraviolet absorber which has a reactive double bond, when manufacturing resin which comprises particle
  • vinyl monomers such as acrylic and styrene are preferable. Since the styrene vinyl monomer has an aromatic ring, it is easily yellowed, and an acrylic vinyl monomer is most preferable in terms of light resistance.
  • 2- (2′-hydroxy-5′-methacryloxyethylphenyl) -2H-benzotriazole ( ⁇ ⁇ ⁇ “RUVA” (registered trademark) -93) is a compound in which a reactive vinyl monomer is bonded to an ultraviolet absorber benzotriazole. ; Otsuka Chemical Co., Ltd.) can be used.
  • a hindered amine compound that is a light stabilizer a reactive vinyl monomer is substituted, and 4-methacryloyloxy-2,2,6,6-tetramethylpiperidine (“Adekastab” (registered trademark) LA-82; ADEKA Co., Ltd.) can be used.
  • the content of the ultraviolet absorber in the second particle-containing layer is preferably in the range of 0.1 to 30% by mass. If it is less than 0.1% by mass, the ultraviolet ray absorbing ability is not sufficient, and the life of the surface light emitter may be shortened. On the other hand, if it exceeds 30% by mass, absorption in the visible light region having a short wavelength cannot be ignored, resulting in a loss of light emission efficiency or insufficient strength of the second particle-containing layer.
  • the content of the ultraviolet absorber in the second particle-containing layer is more preferably in the range of 0.5 to 10% by mass, and still more preferably in the range of 1 to 5% by mass.
  • the content rate of an ultraviolet absorber here is the ratio of the mass of an ultraviolet absorber with respect to the total mass of the substance which comprises a 2nd particle content layer.
  • the resin (B) is a resin containing an ultraviolet absorber or when the particles (B) are particles containing an ultraviolet absorber, the ultraviolet absorber contained in the resin (B) or the particles (B)
  • the content mass ratio can be determined by analysis such as NMR.
  • the thickness of the second particle-containing layer is not particularly limited, but is preferably 0.3 to 30 ⁇ m. When the thickness is smaller than 0.3 ⁇ m, the appearance may be deteriorated, and when it is larger than 30 ⁇ m, the cost required for the raw material may be increased.
  • the thickness of the second particle-containing layer is more preferably 1 to 20 ⁇ m, still more preferably 3 to 10 ⁇ m, and is preferably about a fraction of the average particle diameter of the contained particles.
  • the method for providing the first and second particle-containing layers according to the present invention is not particularly limited, and gravure coating, roll coating, die coating, spin coating, reverse coating, bar coating, screen coating, blade coating, air knife coating, and the like.
  • Various coating methods such as dipping can be used.
  • it can be applied at the time of production of the film used as the base layer (in-line coating), or can be applied by another process (off-line coating) after winding the film used as the base layer after film formation Good.
  • the light-emitting element used in the present invention may have any light-transmitting substrate.
  • an indium-tin oxide film hereinafter referred to as ITO
  • ITO indium-tin oxide film
  • An existing electrode in which a transparent electrode and a light emitting layer are provided and a reflective electrode (silver or aluminum is often used) is laminated may be used.
  • a charge transport layer may be provided or a plurality of light emitting layers may be laminated.
  • These elements are known to be deteriorated by water or oxygen, and the back surface and side surfaces are preferably sealed with a sealant.
  • it is preferable to use the organic electroluminescent light emitting element whose light emitter used for a light emitting layer is an organic electroluminescent light emitter.
  • the front film made of the material mentioned in the detailed description of the constituent members of the front film is disposed so that the first particle-containing layer 6 is in contact with the translucent substrate 5.
  • a method of arranging the front film in such a case, (i) a method in which an adhesive is applied on the first particle-containing layer and bonded together, or (ii) a resin (A) when forming the first particle-containing layer
  • the first particle-containing layer having adhesiveness on the surface by adjusting or selecting the glass transition temperature, molecular weight, cross-linking density, etc. described above, and directly adhering it to the translucent substrate can be mentioned.
  • the latter is more preferable because the number of interfaces between layers that may cause loss due to reflection of light is small.
  • the surface light emitter was turned on and allowed to stand for 30 minutes.
  • the total luminous flux was measured using the viewing angle measuring device EZContrast (ELDIM Co., Ltd.) for the measurement.
  • the ratio of each level was determined with the total luminous flux when the front film was not placed on the translucent substrate as 100%.
  • the surface light emitter was a rotary microtome manufactured by Nippon Microtome Research Co., Ltd., and the surface light emitter at a knife inclination angle of 3 °. Cut in a direction perpendicular to the plane.
  • the scanning electron microscope ABT-32 manufactured by Topcon Co., Ltd. the resulting cross section is appropriately adjusted at an observation magnification of 2500 to 10,000 times and an image contrast so that the film layer is projected in the field of view.
  • the particle shape of the first and second particle-containing layers was observed.
  • the thickness of the layer at a point that divides the width of the image into 20 parts is calculated, The arithmetic average value of 21 places including both ends was obtained. This operation was performed at five observation locations at the same magnification, and the average value was defined as the average thickness of the particle-containing layer.
  • the average particle diameter was determined from images observed from the surfaces of the first and second particle-containing layers using a laser microscope VK-8700 (manufactured by Keyence Corporation). The image is divided into 11 equal parts vertically and horizontally, a straight line is drawn in the shape of a grid, and the average value of the particle diameters measured from two orthogonal directions of the particles is shown for each of the particles closest to each of the 100 intersections of the straight lines. The particle diameter of the particles was used, and the arithmetic average value was defined as the number average particle diameter. In addition, for the intersection where the closest particles become the same particle, one is excluded from the target, and when the target particle is less than 80, until the number of particles to be measured is 80 or more, An observation image was added.
  • Refractive Index Measurement Method After extracting the resin from the particle-containing layer using an organic solvent and distilling off the organic solvent, the measurement was performed with respect to light having a wavelength of 589.3 nm at 25 ° C. by ellipsometry. . The value obtained here was defined as “resin refractive index”. Next, after immersing the particle-containing layer in an organic solvent and peeling and collecting the coating layer, the particles are dropped from the coating layer by pressing and sliding on a slide glass, and then the particles are collected until the total particle amount becomes 10 g. Collected. Using the Becke line detection method, it was confirmed that the outline of the particles became invisible at a temperature at which the refractive index of each liquid organic compound was known. Refractive index ".
  • a white organic EL light emitting panel standard panel (Lumiotech Co., Ltd., light emitting area size: 145 mm ⁇ 145 mm) (hereinafter referred to as “light emitting panel A”) was used.
  • a PET film “Lumirror” (registered trademark) T60 (manufactured by Toray Industries, Inc.) having a thickness of 125 ⁇ m was used as the base film.
  • Example 1 Acrylic resin “Acridic” (registered trademark) A-165 (DIC Corporation, 45% concentration solution) 9.0 g and toluene 9.0 g, Melamine resin / silica composite particle “Optobeads” (registered trademark) 2000M Coating agent A was prepared by mixing 0.5 g (manufactured by Nissan Chemical Industries, Ltd., number average particle size: 2.0 ⁇ m).
  • the refractive index of the resin (A) of the first particle-containing layer produced using the coating agent A is 1.50, the refractive index of the particles (A) is 1.65, and the difference in refractive index is 0.15. there were.
  • Acrylic resin “Acridic” (registered trademark) A-165 (manufactured by DIC Co., Ltd., 9.0 g, 45 mass% solution) 9.0 g and toluene 15.0 g, crosslinked polymethyl methacrylate particles “TECHPOLYMER” (registered trademark) MBX series MBX-5 (manufactured by Sekisui Plastics Co., Ltd., number average particle size: 5.0 ⁇ m) was mixed with 6.0 g to prepare a coating agent B. Coating A was applied to one surface of the substrate film using Metabar # 16, and heated and dried at 120 ° C. for 1 minute to form a first particle-containing layer.
  • Coating B was applied to the opposite surface of the base film using wire bar # 16 and heated and dried at 120 ° C. for 1 minute to form a second particle-containing layer.
  • an acrylic pressure-sensitive adhesive TD43A manufactured by Yodogawa Paper Co., Ltd.
  • the first particle-containing layer of the front film and the light-emitting panel A are bonded so as not to bite air, and 2 kg / 25 mm.
  • the rubber roller was reciprocated once and pressed to produce a pseudo sample of the surface light emitter.
  • Example 2 Acrylic adhesive “SK Dyne” (registered trademark) 811L (manufactured by Soken Chemical Co., Ltd., concentration 23% by mass solution) 100.0 g, isocyanate curing agent “D-90” (manufactured by Soken Chemical Co., Ltd., concentration 90)
  • a coating agent C was prepared by mixing 1.5 g of a mass% solution) and 2.9 g of epoxy particles “Trepal” (registered trademark) EP-B (manufactured by Toray Industries, Inc., number average particle diameter 5.5 ⁇ m).
  • the refractive index of the resin (A) of the first particle-containing layer prepared using the coating agent C is 1.51, the refractive index of the particles (A) is 1.59, and the difference in refractive index is 0.08. there were.
  • the coating material B was applied on one surface of the base film using Metabar # 12, and then heated and dried at 120 ° C. for 1 minute to form a second particle-containing layer.
  • a first particle-containing layer having adhesiveness is formed by applying the coating agent C at a coating thickness of 100 ⁇ m before drying using an applicator and then heating and drying at 100 ° C. for 2 minutes.
  • a film was prepared.
  • the first particle-containing layer of the front film and the light emitting panel A are bonded so that air does not get caught, and a rubber roller is reciprocated once under a pressure condition of 2 kg / 25 mm to make a pseudo sample of a surface light emitter. did.
  • Coating solution D was prepared by mixing 2.7 g of epoxy solution “Trepearl” (registered trademark) EP-B (manufactured by Toray Industries, Inc., number average particle size 5.5 ⁇ m).
  • the refractive index of the resin (A) is 1.51
  • the refractive index of the particles (A) is 1.59
  • the difference in refractive index is 0.08.
  • the coating material B was applied on one surface of the base film using Metabar # 12, and then heated and dried at 120 ° C. for 1 minute to form a second particle-containing layer.
  • On the opposite surface of the base film after applying the coating D with a coating thickness of 100 ⁇ m before drying using an applicator, heat-dried at 100 ° C. for 2 minutes to form a first particle-containing layer having adhesiveness.
  • a film was prepared.
  • the first particle-containing layer of the front film and the light emitting panel A are bonded so that air does not get caught, and a rubber roller is reciprocated once under a pressure condition of 2 kg / 25 mm to make a pseudo sample of a surface light emitter. did.
  • Example 4 A benzotriazole-containing acrylic copolymer resin “Hals Hybrid” (registered trademark) UV-G720T (manufactured by Nippon Shokubai Co., Ltd., concentration 40% by mass solution) 10.0 g, ethyl acetate 14.0 g, and the following particles 1.0 g Coating E was prepared by mixing.
  • Particles were produced by the following method.
  • the dispersion was cooled to room temperature.
  • the dispersion was filtered using a mesh filter having an opening of 40 ⁇ m to remove aggregates and the like.
  • the obtained dispersion had no aggregates and the filterability of this dispersion was very good.
  • the average particle size of the particles dispersed in the dispersion thus filtered was 6.4 ⁇ m, and this shape was spherical.
  • the particle dispersion was filtered to separate the particles and the dispersion medium, and the separated particles were dried.
  • the coating material E was applied on one surface of the base film using Metabar # 12, and then heated and dried at 120 ° C. for 1 minute to form a second particle-containing layer.
  • a first particle-containing layer having adhesiveness is formed by applying the coating agent C at a coating thickness of 100 ⁇ m before drying using an applicator and then heating and drying at 100 ° C. for 2 minutes.
  • a film was prepared. The first particle-containing layer of the front film and the light emitting panel A are bonded so that air does not get caught, and a rubber roller is reciprocated once under a pressure condition of 2 kg / 25 mm to make a pseudo sample of a surface light emitter. did.
  • the coating material B was apply
  • acrylic pressure-sensitive adhesive TD43A manufactured by Yodogawa Paper Co., Ltd.
  • the opposite surface of the second particle-containing layer of the front film and the light-emitting panel A are bonded so as not to bite air
  • a rubber roller was reciprocated once under a pressure condition of 2 kg / 25 mm and pressed to prepare a pseudo sample of a surface light emitter.
  • the first particle-containing layer was formed on one surface of the base film by applying the coating agent C with an application thickness of 100 ⁇ m before drying using an applicator and then heating and drying at 100 ° C. for 2 minutes.
  • the first particle-containing layer of the front film and the light emitting panel A are bonded so that air does not get caught, and a rubber roller is reciprocated once under a pressure condition of 2 kg / 25 mm to make a pseudo sample of a surface light emitter. did.
  • Table 1 shows the evaluation results of the above examples and comparative examples.

Abstract

 本発明の目的は、光取り出し効率が高く、且つ色ずれの小さいことに加え、透光性基板が割れた時に飛散しにくい面発光体を提供せんとするものである。 片面に透光性基板を有する発光素子の該透光性基板の側に、基材フィルムの両面に粒子を含む樹脂層を有する少なくとも3層構成の前面フィルムが配置された面発光体であって、前記前面フィルムの入光側に位置する樹脂層(第1粒子含有層)が粒子を1~50質量%含有し、前記前面フィルムの出光側に位置する樹脂層(第2粒子含有層)が粒子を20~80質量%含有することを特徴とする面発光体。

Description

面発光体および前面フィルム
 本発明は、光取り出し効率が高く、且つ視認する角度による色味の変化が小さいことに加え、透光性基板が割れた場合にもその破片が飛散しにくい面発光体およびそれに用いられる前面フィルムに関する。
 近年、有機エレクトロルミネセンス素子(以下エレクトロルミネセンスをELと略すこともある)を用いたものを始めとする面発光体が注目を集めている。有機EL素子は、その光の色を白色又はそれに近い色とすることが可能であるため、照明装置の光源として、または表示装置のバックライトとしての用途に用いることができる。
 現在知られている有機EL素子は、有機EL層、透明電極およびガラスや高分子フィルムからなる透光性基板等の構成部材からなり、有機EL層で発生した光を、透光性基板を通して外部に光を取り出す際の損失が大きく、発生した光のうち外部へ取り出せる効率(以下光取り出し効率という)は20%程度に留まっている。また、白色有機EL素子は、赤・緑・青または黄・青などの複数の発光素子を備えているのが一般的であるが、光の波長により各構成部材中の屈折および反射の挙動が異なることから、視認する角度による色味の変化(以下色ずれという)が解決すべき課題となっている。
 さらに現状の有機EL素子に用いられる透光性基板はガラスが主流であり、衝撃が加わった際に、割れて破片が飛散する懸念がある。
 有機EL素子の光取り出し効率を向上させる方法としては、透光性基板の発光体と反対側の面に、散乱材を含む樹脂層を設ける(特許文献1)、光拡散性粘着層を設ける(特許文献2)などの方法が提案されている。また、光取り出し効率、色ずれ低減および透光性基板割れ時の飛散防止を達成する方法として、透明電極と透光性基板の間に粒子を含む樹脂層を設け、且つ出光面にレンズシートを設ける(特許文献3)方法が提案されている。
特開2003-109747号公報 特開2010-218738号公報 特開2011-86527号公報
 しかしながら、特許文献1記載の方法では透光性基板割れ時の破片の飛散防止機能がないか、あるいは、色ずれの発生が十分に防止できない。
 特許文献2記載の光拡散性粘着層を用いる方法は、光取り出し効率が十分でなく、色ずれの発生も十分に防止できない。
 特許文献3記載の方法は、光拡散粒子の影響で表面凹凸が大きい樹脂層上に厚み数十nmの透明電極を形成する必要があり、実際の製造技術を考慮すると実現性に欠けているものであった。
 本発明の目的は上記のような従来の技術の問題点の解決を図ってなされたものであり、光取り出し効率が高く、且つ色ずれの小さいことに加え、透光性基板が割れた時に飛散しにくい面発光体およびそれに用いられる前面フィルムを提供することにある。
 本発明は上記課題を解決するために、以下の構成を採る。すなわち、
1.片面に透光性基板を有する発光素子の該透光性基板の側に、基材フィルムの両面に粒子を含む樹脂層を有する少なくとも3層構成の前面フィルムが接して配置された面発光体であって、前記前面フィルムの入光側に位置する樹脂層(第1粒子含有層)が粒子を1~50質量%含有し、前記前面フィルムの出光側に位置する樹脂層(第2粒子含有層)が粒子を20~80質量%含有することを特徴とする面発光体。
2.前記第1粒子含有層を構成する樹脂と粒子の屈折率の差が0.05~0.5である、上記1に記載の面発光体。
3.前記第1粒子含有層と透光性基板との間の剥離強度が0.5N/25mm以上である、上記1または2に記載の面発光体。
4.前記第2粒子含有層が紫外線吸収剤を含有する、上記1~3のいずれかに記載の面発光体。
5.前記第2粒子含有層における樹脂が紫外線吸収剤を含有する樹脂である、上記1~4のいずれかに記載の面発光体。
6.前記第2粒子含有層における粒子が紫外線吸収剤を含有する粒子である、上記1~5のいずれかに記載の面発光体。
7.前記面発光体に用いられる発光素子が有機エレクトロルミネセンス発光素子である、上記1~6のいずれかに記載の面発光体。
8.上記1~6のいずれかに記載の面発光体に用いられる前面フィルム。
 光取り出し効率が高く、色ずれが小さいことに加え、透光性基板が割れた時に破片が飛散しにくい面発光体を提供することができる。
本発明の面発光体の構成の一例を示す模式図である。 本発明に用いられる発光素子の構成の一例を示す模式図である。 本発明に用いられる前面フィルムの構成の一例を示す模式図である。
 以下、図面を基に本発明の実施の形態を説明する。
 図1は、本発明の面発光体の構成の一例を示す模式図である。本発明の面発光体1は、発光素子2と前面フィルム3から構成され、発光素子2と前面フィルム3とは接して配置される。発光素子2は、発光層4および透光性基板5からなり、前面フィルム3は、発光素子2の透光性基板5の側から順に、第1粒子含有層6、基材フィルム7および第2粒子含有層8の3層の構成を有する積層体である。
 本発明の面発光体1は面状の発光体であれば特に限定されない。面状とは平面に限定されず、一定の曲率を持った曲面や、不定形に曲がった面も含めて面状といい、部分的な凹凸を有するものも含まれる。
 図2は、本発明に用いられる発光素子の構成の一例を示す模式図である。透光性基板5は、ガラスや高分子フィルム基板からなるが、現状はガスバリア性が良好であるガラスが主として用いられている。また、発光層4の構成は、順に、封止層9、背面電極10、発光体11、透明電極12が配置された例を示す。封止層9は背面や側面からの水や酸素の浸入により発光体11が劣化するのを防止するために設置される。背面電極10は、反射性を有する電極であり、銀やアルミニウムが用いられることが多い。発光体11としては、有機エレクトロルミネセンス発光体や無機エレクトロルミネセンス発光体等が挙げられる。なお、発光体11としては、有機エレクトロルミネセンス発光体を用いた発光素子を、有機エレクトロルミネセンス発光素子と、無機エレクトロルミネセンス発光体を用いた発光素子を、無機エレクトロルミネセンス発光素子と呼ぶ。透明電極には、インジウム-錫酸化物膜(以下、ITO)等が用いられることが多い。
 図3は、本発明に用いられる前面フィルムの構成の一例として3層構成の前面フィルムを示す模式図である。前面フィルム3は、図1にて説明したように発光素子2の透光性基板5に接して配置されるので、透光性基板5に接する側を基材フィルム7の入光側、入光側から基材フィルムを挟んだ反対側を出光側と定義する。そして、図3に示すように前面フィルムは、その両面に粒子を含む樹脂層を有しており、入光側を第1粒子含有層6、出光側を第2粒子含有層8、第1粒子含有層6を構成する樹脂を樹脂(A)13、第1粒子含有層6に含まれる粒子を粒子(A)14、第2粒子含有層8を構成する樹脂を樹脂(B)15、第2粒子含有層8に含まれる粒子を粒子(B)16と定義する。なお、基材フィルムが2層以上の層から構成されていてもよく、例えば第1粒子含有層側の表面領域および/または第2粒子含有層側の表面領域に機能層が配置されていてもよい。
 本発明の面発光体に用いられる前面フィルムにおいて、第1粒子含有層6は粒子(A)14を1~50質量%含有する。前記質量含有率とすることにより、第1粒子含有層6において、粒子(A)14が、樹脂(A)13中に埋没して分散した形態となり発光素子2の透光性基板5と前面フィルム3の第1粒子含有層6とが接して配置されることが可能となる。ここで接して配置されるとは透光性基板5と第1粒子含有層6とが密着していることをいう。透光性基板5と第1粒子含有層6との間に空気の層が存在すると空気の層との間で光の反射によるロスが大きくなるので、空気の層を介在させない様に、透光性基板5と第1粒子含有層6とが密着した構成を採るものである。すなわちかかる構成を取ることにより、透光性基板5と第1粒子含有層6との間での反射ロスを低減することができる。なお、本発明においてはかかる理由から、透光性基板5と第1粒子含有層6との間に、微少な空気の噛み込み(この場合の空気の噛み込みをボイドと表現する)についても少ないことが好ましく、かかる微小なボイドが単位面積当たり1%以下であることが好ましい。また、第1粒子含有層6において、粒子(A)14が、樹脂(A)13中に埋没して分散した形態となることにより、樹脂(A)13と粒子(A)14の屈折率の差で透過光を散乱させることができる。
 さらに、第2粒子含有層8は、樹脂(B)15中に粒子(B)16を20~80質量%含有する。前記質量含有率とすることにより、第2粒子含有層8においては、粒子(B)16が出光側の表面に凸部を形成する形態となり、第2粒子含有層8と空気の界面で発生する全反射を低減し、出光側に効率よく光を取り出すことができる。
 前面フィルムに粒子含有層を入光側または出光側に1層のみ設ける従来技術の構成では、色ずれ低減と光取り出し効率向上はトレードオフの関係にあり両立させることが困難であった。そこで、発明者らは、色ずれの低減には第1粒子含有層6の散乱機能が有効であり、光取り出し効率の向上には第2粒子含有層8の表面凹凸形状が有効であろうとの仮説のもとに鋭意検討した結果、2層の粒子含有層を設け、さらに前記条件に粒子の質量含有率を制御することで、色ずれの低減と光取り出し効率の向上を両立する本発明の面発光体を見出したものである。加えて、基材フィルム7を有することにより、透光性基板が割れた時に飛散しにくい面発光体1を得ることができたものである。
以下、前面フィルムの部分の構成部材について詳細に説明する。
 (基材フィルム)
 基材フィルムとして用いられる材料は特に制限されないが、供給性やハンドリング性の観点からプラスチックフィルムが好ましく用いられる。プラスチックフィルムの材料としてはポリオレフィン系、ポリエステル系、ポリカーボネート系、ポリエーテル系、ポリアミド系、ポリイミド系、ポリアクリル等が挙げられる。中でもポリエステル系のフィルムが耐久性等の観点から好ましく用いられ、ポリエチレンテレフタレート(以下PETという)が供給性にも優れていることから、特に好ましく用いられる。
 基材フィルムとして用いられるフィルムは製造工程で1軸あるいは2軸方向の延伸工程を経て製造されたフィルムでもよいし、延伸工程を経ないで製造されたフィルムでもいずれでもよいが、2軸方向の延伸工程を経て製造されたフィルムは強度が高いことから好ましい。かかる際の延伸工程における延伸倍率等については、強度や製膜性等から総合的に判断すればよい。
 また、基材フィルムは透明であってもよいし、光を拡散する目的で各種の有機及び/または無機の粒子や空洞を含有させることで半透明にしたものであってもよいが、着色していないことが好ましい。
 基材フィルムとして用いられるフィルムは1種類の材料からなるいわゆる単層フィルムであってもよいし、複数の材料を積層した複合フィルムであってもよいし、さらに表面に機能層が配置されていてもよく、これらを求める特性に応じて選択すればよい。
 本発明にかかる基材フィルムの厚みは特に制限されないが、10μm以上500μm以下であることが好ましい。10μm未満であるとハンドリングが困難になる場合があり、500μmを超えると基材フィルム内での光の損失が発生する場合がある。基材フィルムの厚みは好ましくは30μm以上300μm以下、さらに好ましくは50μm以上200μm以下である。なお、基材フィルムと第1または第2粒子含有層の境界は、電子顕微鏡による断面観察またはレーザー顕微鏡による層の厚み測定により判別できる。
 (第1粒子含有層)
 第1粒子含有層は、樹脂(A)中に、粒子(A)を含む。
第1粒子含有層に用いる樹脂(A)としては、特に限定されないが、有機成分を主成分とする樹脂が好ましく、例えばポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリ酢酸ビニル樹脂、フッ素系樹脂、エポキシ樹脂、シリコーン系樹脂などを挙げることができる。ここで、有機成分を主成分とする樹脂とは、第1粒子含有層に用いる樹脂(A)中に有機成分が60質量%以上含まれる樹脂をいい、有機成分が80質量%以上含まれる樹脂であればより好ましい(以下、「主成分」については同様の定義とする)。これらの樹脂は単独で用いてもよく、あるいは2種以上の共重合体もしくは混合物としたものを用いてもよい。中でもポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂または、メタクリル樹脂が耐熱性、外観、粒子分散性が優れる点から好ましく使用される。
 さらに、第1粒子含有層と透光性基板との間の剥離強度は、0.5N/25mm以上であると耐久性が向上するため好ましく、1N/25mm以上がより好ましく、更に2N/25mm以上が好ましい。また、第1粒子含有層と透光性基板との間の剥離強度は、50N/25mmを超えても前記の耐久性の向上への寄与はほとんどないため、50N/25mm以下で実用上十分である。前面フィルム3にキズなどが生じた場合に、前面フィルムのみ剥離して交換することが可能であるため、40N/25mm以下が好ましく、特に30N/25mm以下がより好ましい。
 第1粒子含有層と透光性基板との間の剥離強度は後述する実施例の「(6)第1粒子含有層と透光性基板との間の剥離強度」に記載の方法で測定される値と定義する。
 第1粒子含有層と透光性基板との間の剥離強度をこの様な好ましい範囲とするために、第1粒子含有層に用いられる樹脂としては、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、エポキシ樹脂、シリコーン系樹脂などの樹脂を挙げることができる。これらの樹脂は単独で用いてもよく、あるいは2種以上の共重合体もしくは混合物としたものを用いてもよい。中でもアクリル系樹脂は、第1粒子含有層と透光性基板との間の剥離強度をこの様な好ましい範囲とすることに加えて、耐水性、耐熱性、耐光性等の信頼性に優れ、透明性が高いため好ましい。
 なお、後述する面発光体の製造方法において、前面フィルム3を第1粒子含有層6が透光性基板5に接するように配置する際の(ii)の方法に適用する表面に粘着性を有する第1粒子含有層とするために、流動変形により接触面積を得るための低ガラス転移温度(例えば、220~250K)、十分な濡れ姓を得るための低表面エネルギー、凝集力を得るための素材毎に適切な分子量の設定などの条件を考慮して材料を選ぶことが好ましい。このような条件を満たす材料として、アクリル系粘着剤 “SKダイン”(登録商標)(総研化学(株)製)、アクリル系粘着剤“オリバイン”(登録商標)(東洋インキ(株)製)などを用いることができる。さらに、濡れ時の流動変形と剥離時の抵抗力のバランスを最適化するための架橋剤(イソシアネート系硬化剤)の種類や量により架橋密度の調整をすることが好ましい。
 第1粒子含有層に用いられる粒子(A)の形状は、例えば、星状、葉状や円盤状のような扁平状、菱形状、直方状、針状、金平糖状、不定形状のような非球形状、また球状(必ずしも真球だけを意味するのではなく、粒子の断面形状が円形、楕円形、ほぼ円形、ほぼ楕円形等など曲面で囲まれているものを意味する)等が挙げられる。また、それら形状の粒子が多孔質、無孔質、中空質であってもよく、さらに異なる粒子形状を有する粒子を混合してもよいが、透過光の散乱が均一に起こる球状が好ましい。
 また第1粒子含有層に用いる粒子(A)の材質は、有機系化合物、無機系化合物のいずれでもよく特に限定されるものではない。さらに異なる材質の粒子を混合して用いてもよい。
 第1粒子含有層に用いる粒子(A)の材質として有機系化合物を適用する場合に用いられる有機系化合物としては、高融点である架橋高分子成分を主成分とする樹脂が好ましく、例えばポリエステル樹脂、ベンゾグアナミンのようなポリアミド系樹脂粒子、ポリウレタン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリ酢酸ビニル樹脂、フッ素系樹脂、シリコーン樹脂等が挙げられる。これらの樹脂は単独で用いてもよく、または2種以上の共重合体もしくは混合物としたものを用いてもよい。
 第1粒子含有層に用いる粒子(A)の材質として無機系化合物を適用する場合に用いられる無機系化合物としては、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、酸化チタン、酸化亜鉛、酸化セリウム、酸化マグネシウム、硫酸バリウム、硫化亜鉛、リン酸カルシウム、シリカ、アルミナ、マイカ、雲母チタン、タルク、クレー、カオリン、フッ化リチウム、フッ化カルシウム等が挙げられる。
 第1粒子含有層に用いる粒子(A)の材質としては、これらの中でも、光学特性に優れ、耐溶剤性も有することから、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、エポキシ樹脂、メラミン樹脂等を用いることが好ましい。
 第1粒子含有層に用いる粒子の平均粒子径は、0.1~30μmが好ましく、0.5~20μmがより好ましく、さらに好ましくは1.0~10μmである。平均粒子径が0.1μmより小さいと、粒子を含有した効果が発揮され難くなり、光拡散性が低下することがある。一方、平均粒子径が30μmより大きくなると、外観が悪くなることがある。ここでいう平均粒子径とは、数平均粒子径であり、実施例に測定法を記載する粒子径の数平均値をいうものとする(第2粒子含有層における粒子(B)についても同様である)。
 第1粒子含有層における粒子の含有率は、1~50質量%であり、1~40質量%が好ましく、1~30質量%がより好ましく、さらに好ましくは1~20質量%である。粒子の含有率が1質量%を下回ると粒子を含有した効果が発揮され難くなり、光拡散性が低下する場合がある。一方、粒子の含有率が50質量%を上回ると、光拡散性が過大となり光取り出し効率が低下する場合があるためである。ここでいう粒子の含有率とは、第1粒子含有層を構成する物質の総質量に対する粒子の質量の割合である。
 第1粒子含有層を構成する樹脂と粒子の屈折率の差は、0.05~0.5が好ましく、より好ましくは0.05~0.3である。屈折率の差が0.05より小さいと、光拡散性が得られない場合があり、屈折率の差が0.5よりも大きくなると、内部拡散が大きすぎて全光線透過率が低下し、結果として光取り出し効率が低下してしまう場合がある。
 第1粒子含有層は、紫外線吸収剤を含有することが好ましい。第1粒子含有層が紫外線吸収剤を含有することによって、第1粒子含有層および発光素子の外光(紫外線)による劣化を抑制することができる。紫外線吸収剤としては、後述の第2粒子含有層で挙げた紫外線吸収剤と同様の群の中から選択できる。
 第1粒子含有層の厚みは特に制限されないが、好ましくは0.3~70μmである。厚みが0.3μmより小さい場合は外観が悪くなる場合があり、70μmより大きい場合は原料に要する費用が高くなる場合がある。第1粒子含有層の厚みは、より好ましくは1~60μm、さらに好ましくは3~50μmであり、含有する粒子の平均粒子径の数倍程度が好ましい。
 (第2粒子含有層)
 第2粒子含有層は、樹脂(B)および粒子(B)を含む。
第2粒子含有層に用いる樹脂(B)は、第1粒子含有層で挙げた樹脂(A)と同様の群から選択できるが、必ずしも第1粒子含有層と同一の樹脂である必要はない。
 第2粒子含有層に用いる粒子(B)の形状は、第1粒子含有層で挙げた粒子(A)と同様の群から選択できるが、特に球状であることが好ましい。粒子形状が球状であることにより、取り出される光の角度がより正面方向に集中しやすく、正面方向が明るい面発光体とすることができる。
 また、第2粒子含有層に用いる粒子(B)の材質は、第1粒子含有層で挙げた粒子(A)と同様の群から選択できる。
 第2粒子含有層に用いる粒子の平均粒子径は、0.3~30μmが好ましく、0.5~20μmがより好ましく、さらに好ましくは1.0~10μmである。平均粒子径が0.3μmより小さいと、粒子により第2粒子含有層表面に設けられる凹凸による光学挙動が波長により変化するため、色ずれが発生する可能性がある。一方、粒子の平均粒子径が30μmより大きいと、外観が悪くなることがある。また、第2粒子含有層に用いる粒子の平均粒子径は、実施例に測定法を記載する第2粒子含有層の平均厚みよりも大きいことが、第2粒子含有層表面に粒子による凹凸を設けやすいため好ましい。ここでいう平均粒子径とは、数平均粒子径であり、実施例に測定法を記載する粒子径の数平均値をいうものとする。
 第2粒子含有層に用いる粒子の含有率は、20~80質量%であり、30~80質量%が好ましく、40~80質量%がより好ましい。前記含有率が20質量%未満であると、表面に形成される凹凸が十分ではなく、粒子を添加した効果が十分に得られない場合がある。一方、80質量%を超えると外観が悪くなることがある。ここでいう粒子の含有率とは、第2粒子含有層を構成する物質の総質量に対する、粒子の質量の割合である。
 また、第2粒子含有層は、硬化剤、架橋剤、紫外線吸収剤等の添加剤を含むことができる。特に、外光の紫外線による基材フィルムや発光素子の劣化を防ぐという観点から、第2粒子含有層は紫外線吸収剤を含むことが好ましい。また、第2粒子含有層は、紫外線吸収剤と光安定剤とを含むことが更に好ましい。
 紫外線吸収剤としては、例えばベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、シアノアクリレート系、サリチル酸系、ベンゾエート系、蓚酸アニリド系などの有機系の紫外線吸収剤の他、酸化チタンや酸化亜鉛、酸化セリウム、酸化ジルコニウム等の無機系の紫外線吸収剤も使用することができる。
 以下、有機系の紫外線吸収剤として用いられる化合物の例を列挙する。
サリチル酸系化合物:p-t-ブチルフェニルサリシレート、p-オクチルフェニルサリシレート
ベンゾフェノン系化合物:2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2,2’-4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニル)メタン
ベンゾトリアゾール系化合物:2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ・t-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェノール)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ・t-アミルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2(2’ヒドロキシ-5’-メタアクリロキシフェニル)-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-3’-(3”,4”,5”,6”-テトラヒドロフタルイミドメチル)-5’-メチルフェニル]ベンゾトリアゾール
シアノアクリレート系化合物:エチル-2-シアノ-3,3’-ジフェニルアクリレート
上記以外の化合物:2-エトキシ-2’-エチルオキザックアシッドビスアニリド、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール
 上記の化合物は、単独でも使用してもよいし、2種類以上を併用してもよい。
 これらの紫外線吸収剤は紫外線を吸収するが、紫外線に暴露されることにより発生する有機ラジカルを捕捉する性質はないため、紫外線に暴露されることにより発生する有機ラジカルにより劣化が発生することがある。かかる場合において有機ラジカルを捕捉するためには、光安定剤を併用することが好ましい。
 以下、光安定剤として用いられる化合物の例を列挙する。
ヒンダードアミン系化合物:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、コハク酸ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物
ベンゾエート系:2,4-ジ-t-ブチルフェニル-3’,5’-ジ・t-ブチル-4’-ヒドロキシベンゾエート、2,4-ジ・t-ブチルフェニル-3’,5’-ジ・t-ブチル-4’-ハイドロキシベンゾエート
ヒンダードフェノール系化合物:オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシンナマミド)
 これらの中でもヒンダードアミン系化合物が、ラジカル捕捉能が高く、着色が少ないため好適に使用される。
 上記の化合物は、単独でも使用できるし、2種類以上を併用してもよい。
 第2粒子含有層が紫外線吸収剤を含有する態様として、イ)第2粒子含有層の塗剤に紫外線吸収剤を含有する態様、ロ)第2粒子含有層を構成する樹脂(B)の骨格中に紫外線吸収剤を含有する樹脂を用いる態様、ハ)第2粒子含有層を構成する粒子(B)として紫外線吸収剤を含有する粒子を用いる態様が挙げられる。これらの態様の中でも、紫外線吸収剤のブリードアウトを抑制するという観点から、ロ)またはハ)の態様が好ましく用いられる。
 第2粒子含有層は粒子(B)の含有率が20~80質量%と比較的高いので、紫外線吸収効率を高めるという観点から、少なくともハ)の態様を用いることがより好ましく、ロ)およびハ)の態様の組み合わせが特に好ましい。
 ロ)の第2粒子含有層を構成する樹脂(B)の骨格中に紫外線吸収剤を含有する樹脂を用いる態様においては、樹脂(B)を構成する樹脂成分と紫外線吸収剤とを共重合して得られる樹脂を用いる。かかる場合の樹脂は光安定剤も共重合されていることが好ましい。このような樹脂として、例えば、アクリルモノマーと紫外線吸収剤、光安定剤の共重合物を有効成分として含む“ハルスハイブリッド”(登録商標)シリーズ((株)日本触媒製)などが好適に使用される。
 ハ)の紫外線吸収剤を含有する粒子は、例えば、粒子(B)を構成する樹脂を製造する際に反応性二重結合を有する紫外線吸収剤を共重合することによって得られる。また更に、上記粒子(B)を構成する樹脂は反応性二重結合を有する光安定剤も併せて共重合されていることが好ましい。
 ここで、反応性二重結合を有する紫外線吸収剤あるいは反応性二重結合を有する光安定剤における反応性二重結合を有するモノマーとしては、アクリル系、スチレン系などのビニル系モノマーが好ましい。スチレン系ビニルモノマーは芳香族環を有しているため、黄変しやすく、耐光性という点では、アクリル系ビニルモノマーが最も好ましい。
 紫外線吸収剤であるベンゾトリアゾールに反応性ビニルモノマーが結合したものとして、2-(2’-ヒドロキシ-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾール( “RUVA”(登録商標)-93);大塚化学(株)製)を使用することができる。また、光安定剤であるヒンダードアミン系化合物に反応性ビニルモノマーが置換されたものとして、4-メタクリロイルオキシ-2,2,6,6-テトラメチルピペリジン( “アデカスタブ”(登録商標)LA-82;(株)ADEKA製)を使用することができる。
 第2粒子含有層における紫外線吸収剤の含有率は、0.1~30質量%の範囲が好ましい。0.1質量%未満であると紫外線吸収能が十分でなく、面発光体の寿命が短くなる場合がある。また30質量%を超えると短波長の可視光領域の吸収が無視できなくなり、発光効率の損失を招いたり、第2粒子含有層の強度が不足する場合がある。第2粒子含有層における紫外線吸収剤の含有率は、0.5~10質量%の範囲がより好ましく、1~5質量%の範囲がさらに好ましい。ここでいう紫外線吸収剤の含有率とは、第2粒子含有層を構成する物質の総質量に対する、紫外線吸収剤の質量の割合である。
なお、樹脂(B)が紫外線吸収剤を含有する樹脂である場合あるいは粒子(B)が紫外線吸収剤を含有する粒子である場合、樹脂(B)あるいは粒子(B)に含有する紫外線吸収剤の含有質量比はNMR等の分析により求めることができる。
 第2粒子含有層の厚みは特に制限されないが、好ましくは0.3~30μmである。厚みが0.3μmより小さい場合は外観が悪くなる場合があり、30μmより大きい場合は原料に要する費用が高くなる場合がある。第2粒子含有層の厚みは、より好ましくは1~20μm、さらに好ましくは3~10μmであり、含有する粒子の平均粒子径の数分の1程度が好ましい。
 また本発明にかかる第1および第2粒子含有層を設ける方法については特に限定されず、グラビアコート、ロールコート、ダイコート、スピンコート、リバースコート、バーコート、スクリーンコート、ブレードコート、エアーナイフコートおよびディッピングなどの各種塗布方法を用いることができる。また、基材層として用いられるフィルムの製造時に塗布(インラインコーティング)しても、基材層として用いられるフィルムを製膜後巻き取った後に別のプロセスで塗布(オフラインコーティング)してもどちらでもよい。
 (発光素子)
 本発明に使用する発光素子は、透光性基板を有するものであればよく、例えば、ガラス、高分子フィルムなどの透光性基板上に、インジウム-錫酸化物膜(以下、ITO)等からなる透明電極と、発光層とが設けられ、さらに反射性を有する電極(銀やアルミニウムが用いられることが多い)が積層されてなる既存のものを用いればよい。また、必要に応じて、電荷輸送層が設けられたり、複数の発光層を積層したりしてもよい。これらの素子は水や酸素により劣化することが知られており、背面や側面も封止剤により封止されることが好ましい。本発明においては、発光層に用いられる発光体が有機エレクトロルミネセンス発光体である有機エレクトロルミネセンス発光素子を用いることが好ましい。
 (面発光体の製造方法)
 本発明における面発光体の製造方法は、特に限定されないが、以下のような方法が挙げられる。
 発光素子の透光性基板上に、前面フィルムの部分の構成部材の詳細説明において挙げた材質により構成された前面フィルムを第1粒子含有層6が透光性基板5に接するように配置して製造する。かかる際の前面フィルムの配置の方法としては、(i)第1粒子含有層の上に粘着剤を塗布して貼り合わせる方法や、(ii)第1粒子含有層を形成する際に樹脂(A)について前述したガラス転移温度、分子量、架橋密度等を調整あるいは選択することにより表面に粘着性を有する第1粒子含有層とし、これを透光性基材に直接貼り合わせるなどの方法、が挙げられるが、光の反射によるロスが発生する可能性のある層間の界面数が少ない後者の方がより好ましい。
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
本実施例における測定方法及び評価方法は下記の通りである。特に断らない限り、n数は1で評価を行った。
 (1)光取り出し効率測定
 面発光体を点灯させ、30分静置した後に測定を実施した。測定には視野角測定機EZContrast(ELDIM(株)製)を用い、全光束を測定した。透光性基板上に前面フィルムを設置しないときの全光束を100%として、各水準の比率を求めた。
 (2)色ずれ評価
 面発光体を点灯させ、30分静置した後に評価を実施した。各水準のサンプルを、サンプル面に対して法線方向を0度として、0~60度の範囲で目視確認し、色ずれの程度を5段階評価した。
1 前面フィルム無しの面発光体と同程度の色ずれが視認される
2 1と3の間(1より改善はされているが、実用上問題あり)
3 色ずれが視認されるが実用上問題ないぎりぎりのレベル
4 3と5の間
5 色ずれが視認されない。
 (3)第1、第2粒子含有層の粒子の形状および層の平均厚みの評価
 面発光体を日本ミクロトーム研究所(株)製ロータリー式ミクロトームにて、ナイフ傾斜角度3°にて面発光体平面に垂直な方向に切断した。得られた断面を、(株)トプコン製走査型電子顕微鏡ABT-32を用いて、フィルム層が視野領域に映し出されるように、観察倍率2500~10000倍にて、また、画像のコントラストを適宜調節しながら、第1、第2粒子含有層の粒子形状を観察した。また、同じ断面観察画像を用いてその画像の幅を20等分する点での層の厚み(当該点で粒子や突起が含まれている場合には粒子の厚さを含む)を算出し、両端を含めた21箇所の算術平均値を求めた。この作業を同一倍率で5箇所の観察箇所について実施し、その平均値を粒子含有層の平均厚みとした。
 (4)数平均粒子径の測定
 平均粒子径は、レーザーマイクロスコープVK-8700((株)キーエンス製)を用い、第1、第2粒子含有層の表面からの観察画像から求めた。画像を縦横11等分して、方眼状に直線を引き、直線の各交点100点に最も近くに存在する粒子について、それらの粒子の直交する2方向から測定した粒子径の平均値を各々の粒子の粒子径とし、これらの算術平均値を数平均粒子径とした。なお、最も近くに存在する粒子が同一の粒子となる交点については一方を対象から外し、対象となる粒子が80個に満たない場合には、測定対象となる粒子が80個以上となるまで、観察画像を追加した。
 (5)屈折率の測定方法
 粒子含有層から有機溶剤を用いて樹脂を抽出し、有機溶剤を留去した後、エリプソメトリー法によって、25℃における589.3nmの波長の光に関して測定を行った。ここで得られた値を「樹脂の屈折率」とした。
次いで、粒子含有層を有機溶剤に浸漬して、塗布層を剥離採取した後、スライドガラスに圧着・摺動することで粒子を塗布層から脱落させた後、粒子総量が10gになるまで粒子を採取した。採取した粒子をベッケ線検出法により、各液体有機系化合物の屈折率既知の温度に於いて、粒子の輪郭が見えなくなることを確認し、このとき用いた液体有機系化合物の屈折率を「粒子の屈折率」とした。
 (6)第1粒子含有層と透光性基板との間の剥離強度
 面発光体の前面フィルムを幅25mmに切断し、測定用サンプルを作製した。この測定用サンプルを温度23℃、相対湿度50%の雰囲気下で30分保管後、同雰囲気下で、引張試験機(例えば、(株)オリエンテック製の「テンシロンRTM-100」)用い、JIS-Z0237(2000)に準じて引張速度300mm/分で180度剥離した際の剥離強度を測定した。
 なお、(1)、(2)の評価には、白色有機EL発光パネル スタンダードパネル(ルミオテック(株)製、発光エリアサイズ:145mm×145mm)(以下発光パネルAという)を用いた。
 また、何れの実施例比較例においても、基材フィルムとして厚さ125μmのPETフィルム“ルミラー”(登録商標)T60(東レ(株)製)を使用した。
 (実施例1)
 アクリル樹脂“アクリディック”(登録商標)A-165(DIC(株)製、濃度45質量%溶液)9.0gとトルエン9.0g、メラミン樹脂・シリカ複合粒子“オプトビーズ”(登録商標)2000M(日産化学工業(株)製、数平均粒子径2.0μm)0.5gを混合することで塗剤Aを調製した。塗剤Aを用いて作製した第1粒子含有層の、樹脂(A)の屈折率は1.50、粒子(A)の屈折率は1.65であり、屈折率の差は0.15であった。
アクリル樹脂“アクリディック”(登録商標)A-165(DIC(株)製、濃度45質量%溶液)9.0gとトルエン15.0g、架橋ポリメタクリル酸メチル粒子“TECHPOLYMER”(登録商標)MBXシリーズ、MBX-5(積水化成品工業(株)製、数平均粒子径5.0μm)6.0gを混合することで塗剤Bを調製した。基材フィルムの一面に塗剤Aをメタバー#16を使用して塗布し、120℃で1分間加熱乾燥させ第1粒子含有層を形成した。基材フィルムの反対面には塗剤Bをワイヤーバー#16を使用して塗布し、120℃で1分間加熱乾燥させ第2粒子含有層を形成した。粘着剤としてアクリル系粘着剤TD43A((株)巴川製紙所製)を使用して、前面フィルムの第1粒子含有層と発光パネルAとを空気を噛み込まないように貼合し、2kg/25mmの加圧条件でゴムローラを1往復させて圧着し、面発光体の疑似サンプルを作製した。
 (実施例2)
 アクリル系粘着剤“SKダイン” (登録商標)811L(総研化学(株)製、濃度23質量%溶液)100.0g、イソシアネート系硬化剤“D-90”(総研化学(株)製、濃度90質量%溶液)1.5g、エポキシ粒子“トレパール” (登録商標)EP-B(東レ(株)製、数平均粒子径5.5μm)2.9gを混合することで塗剤Cを調製した。塗剤Cを用いて作製した第1粒子含有層の、樹脂(A)の屈折率は1.51、粒子(A)の屈折率は1.59であり、屈折率の差は0.08であった。
基材フィルムの一面に、塗剤Bをメタバー#12を使用して塗布後、120℃で1分間加熱乾燥させ第2粒子含有層を形成した。基材フィルムの反対面には、アプリケーターを使用して乾燥前塗布厚み100μmで塗剤Cを塗布後、100℃で2分間加熱乾燥させて粘着性を有する第1粒子含有層を形成し、前面フィルムを作製した。前面フィルムの第1粒子含有層と発光パネルAとを空気を噛み込まないように貼合し、2kg/25mmの加圧条件でゴムローラを1往復させて圧着し、面発光体の疑似サンプルを作製した。
 (実施例3)
 アクリル系粘着剤“オリバイン” (登録商標)EG-655(東洋インキ(株)製、濃度21質量%溶液)109.5g、イソシアネート系硬化剤“BXX5627”(東洋インキ(株)製、濃度50質量%溶液)2.7g、エポキシ粒子“トレパール” (登録商標)EP-B(東レ(株)製、数平均粒子径5.5μm)2.9gを混合することで塗剤Dを調製した。塗剤Dを用いて作製した第1粒子含有層の、樹脂(A)の屈折率は1.51、粒子(A)の屈折率は1.59であり、屈折率の差は0.08であった。
基材フィルムの一面に、塗剤Bをメタバー#12を使用して塗布後、120℃で1分間加熱乾燥させ第2粒子含有層を形成した。基材フィルムの反対面には、アプリケーターを使用して乾燥前塗布厚み100μmで塗剤Dを塗布後、100℃で2分間加熱乾燥させて粘着性を有する第1粒子含有層を形成し、前面フィルムを作製した。前面フィルムの第1粒子含有層と発光パネルAとを空気を噛み込まないように貼合し、2kg/25mmの加圧条件でゴムローラを1往復させて圧着し、面発光体の疑似サンプルを作製した。
 (実施例4)
 ベンゾトリアゾール含有アクリル系共重合体樹脂“ハルスハイブリッド”(登録商標)UV-G720T((株)日本触媒製、濃度40質量%溶液)10.0gと酢酸エチル14.0g、下記粒子1.0gを混合することで塗剤Eを調製した。
 粒子は以下の方法で作製した。
 攪拌装置と温度計と窒素ガス導入管を備えた容量1リットルの四つ口フラスコに、メタクリル酸メチル70質量部、架橋構造を形成する多官能モノマーとしてトリメチロールプロパントリアクリレート10質量部、ヒンダードアミン系重合性化合物として2,2,6,6-テトラメチル-4-ピペリジルメタクリレート3質量部、ベンゾトリアゾール系重合性化合物として2-(2’-ヒドロキシ-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾール10質量部、重合開始剤としてラウロイルパーオキサイド1質量部を投入した。さらにこの溶液の分散安定剤としてポリビニルアルコール(PVA-224、(株)クラレ製)1質量部および水200質量部を加えた。これらをホモミキサーを用いて9000rpmの回転数で3分間攪拌して、重合性化合物を水に分散させた。次いで、この分散液を75℃に加熱して2時間、この温度に維持して反応させ、さらに90℃に昇温して3時間共重合反応させた。
 上記のように反応させた後、分散液を室温まで冷却した。この分散液を、目開き40μmのメッシュフィルターを用いて濾過して凝集物などを除去した。得られた分散液には凝集物はなく、この分散液の濾過性は非常に良好であった。こうして濾過した分散液中に分散されている粒子の平均粒子径は6.4μmであり、この形状は球状であった。粒子の分散液を濾過して粒子と分散媒とを分離し、分離した粒子を乾燥させた。
 基材フィルムの一面に、塗剤Eをメタバー#12を使用して塗布後、120℃で1分間加熱乾燥させ第2粒子含有層を形成した。基材フィルムの反対面には、アプリケーターを使用して乾燥前塗布厚み100μmで塗剤Cを塗布後、100℃で2分間加熱乾燥させて粘着性を有する第1粒子含有層を形成し、前面フィルムを作製した。前面フィルムの第1粒子含有層と発光パネルAとを空気を噛み込まないように貼合し、2kg/25mmの加圧条件でゴムローラを1往復させて圧着し、面発光体の疑似サンプルを作製した。
 (比較例1)
 基材フィルムの一面に、塗剤Bをメタバー#12を使用して塗布し、120℃で1分間加熱乾燥させ第2粒子含有層を形成した。粘着剤としてアクリル系粘着剤TD43A((株)巴川製紙所製)を使用して、前面フィルムの第2粒子含有層の反対面と発光パネルAとを空気を噛み込まないように貼合し、2kg/25mmの加圧条件でゴムローラを1往復させて圧着し、面発光体の疑似サンプルを作製した。
 (比較例2)
 基材フィルムの一面に、アプリケーターを使用して乾燥前塗布厚み100μmで塗剤Cを塗布後、100℃で2分間加熱乾燥させて第1粒子含有層を形成した。前面フィルムの第1粒子含有層と発光パネルAとを空気を噛み込まないように貼合し、2kg/25mmの加圧条件でゴムローラを1往復させて圧着し、面発光体の疑似サンプルを作製した。
 上記の実施例及び比較例の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
1 面発光体
2 発光素子
3 前面フィルム
4 発光層
5 透光性基板
6 第1粒子含有層
7 基材フィルム
8 第2粒子含有層
9 封止層
10 背面電極
11 発光体
12 透明電極
13 樹脂(A)
14 粒子(A)
15 樹脂(B)
16 粒子(B)

Claims (8)

  1.  片面に透光性基板を有する発光素子の該透光性基板の側に、基材フィルムの両面に粒子を含む樹脂層を有する少なくとも3層構成の前面フィルムが接して配置された面発光体であって、前記前面フィルムの入光側に位置する樹脂層(第1粒子含有層)が粒子を1~50質量%含有し、前記前面フィルムの出光側に位置する樹脂層(第2粒子含有層)が粒子を20~80質量%含有することを特徴とする面発光体。
  2. 前記第1粒子含有層を構成する樹脂と粒子の屈折率の差が0.05~0.5である、請求項1に記載の面発光体。
  3.  前記第1粒子含有層と透光性基板との間の剥離強度が0.5N/25mm以上である、請求項1または2に記載の面発光体。
  4.  前記第2粒子含有層が紫外線吸収剤を含有する、請求項1~3のいずれかに記載の面発光体。
  5.  前記第2粒子含有層における樹脂が紫外線吸収剤を含有する樹脂である、請求項1~4のいずれかに記載の面発光体。
  6.  前記第2粒子含有層における粒子が紫外線吸収剤を含有する粒子である、請求項1~5のいずれかに記載の面発光体。
  7.  前記面発光体に用いられる発光素子が有機エレクトロルミネセンス発光素子である、請求項1~6のいずれかに記載の面発光体。
  8.  請求項1~6のいずれかの面発光体に用いられる前面フィルム。
PCT/JP2012/081451 2011-12-15 2012-12-05 面発光体および前面フィルム WO2013088997A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280060860.3A CN103975647A (zh) 2011-12-15 2012-12-05 面发光体及前面膜
EP12858082.6A EP2793531A4 (en) 2011-12-15 2012-12-05 SURFACE-LIGHT-EMITTING BODY AND FRONT-SIDED FOIL
JP2013513309A JP6156143B2 (ja) 2011-12-15 2012-12-05 面発光体
US14/360,728 US9237630B2 (en) 2011-12-15 2012-12-05 Planar light emitting device and front film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011274130 2011-12-15
JP2011-274130 2011-12-15

Publications (1)

Publication Number Publication Date
WO2013088997A1 true WO2013088997A1 (ja) 2013-06-20

Family

ID=48612451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081451 WO2013088997A1 (ja) 2011-12-15 2012-12-05 面発光体および前面フィルム

Country Status (6)

Country Link
US (1) US9237630B2 (ja)
EP (1) EP2793531A4 (ja)
JP (1) JP6156143B2 (ja)
CN (1) CN103975647A (ja)
TW (1) TW201332178A (ja)
WO (1) WO2013088997A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209557A (ja) * 2012-03-30 2013-10-10 Daio Paper Corp 粘着シート及び構造体
JP2015088323A (ja) * 2013-10-30 2015-05-07 富士フイルム株式会社 有機電界発光装置
JP2015159033A (ja) * 2014-02-24 2015-09-03 三菱レイヨン株式会社 光取り出しフィルム、面発光体及び光取り出しフィルムの製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101642120B1 (ko) * 2014-12-24 2016-07-22 코닝정밀소재 주식회사 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
CN106229420A (zh) * 2016-08-18 2016-12-14 昆山工研院新型平板显示技术中心有限公司 薄膜封装结构及其制备方法、以及显示装置
CN106450026A (zh) * 2016-10-17 2017-02-22 深圳市华星光电技术有限公司 Oled显示器及其制作方法
CN109065755B (zh) * 2018-08-03 2019-12-31 武汉华星光电半导体显示技术有限公司 显示面板及封装构件
US10651421B2 (en) 2018-08-03 2020-05-12 Wuhan China Star Optoelectronics Semiconductor Display Technology Co. Ltd. Display panel and encapsulation component
CN109841758B (zh) 2019-03-29 2021-01-26 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109747A (ja) 2001-07-24 2003-04-11 Matsushita Electric Works Ltd 有機エレクトロルミネッセンス面発光体及び液晶表示装置
WO2006095632A1 (ja) * 2005-03-11 2006-09-14 Mitsubishi Chemical Corporation エレクトロルミネッセンス素子及び照明装置
JP2010033780A (ja) * 2008-07-25 2010-02-12 Panasonic Electric Works Co Ltd 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の発光色調整方法
JP2010049210A (ja) * 2008-08-25 2010-03-04 Fujifilm Corp 塗布組成物、該塗布組成物の製造方法、透光性光散乱性膜、有機エレクトロルミネッセンス表示素子及び面状光源体
JP2010218738A (ja) 2009-03-13 2010-09-30 Konica Minolta Opto Inc 有機el素子、それを用いたディスプレイ、及び照明装置
JP2011086527A (ja) 2009-10-16 2011-04-28 Toppan Printing Co Ltd El素子、照明装置及びディスプレイ装置
WO2011093120A1 (ja) * 2010-01-26 2011-08-04 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び照明装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370493C (zh) * 2002-07-08 2008-02-20 日本电石工业株式会社 内部照明标记
JP4074847B2 (ja) * 2003-09-30 2008-04-16 恵和株式会社 光学シート及びこれを用いたバックライトユニット
KR20070100893A (ko) * 2004-12-22 2007-10-12 우베 고산 가부시키가이샤 표면 활성이 향상된 폴리이미드 필름
TW200706576A (en) * 2005-02-01 2007-02-16 Kolon Inc Light-diffusion plate
JP2007233343A (ja) * 2005-12-21 2007-09-13 Nippon Shokubai Co Ltd 光拡散シートおよび複合光拡散板、ならびにそれらを用いたバックライトユニットおよび液晶表示装置
CN100470331C (zh) * 2005-12-27 2009-03-18 瀚宇彩晶股份有限公司 平面显示器与其聚光式扩散板
JP2007219027A (ja) * 2006-02-14 2007-08-30 Tomoegawa Paper Co Ltd 異方散乱粘着部材
JP2010060743A (ja) * 2008-09-02 2010-03-18 Fujifilm Corp 防眩フィルム、反射防止フィルム、偏光板および画像表示装置
US9541681B2 (en) * 2010-05-26 2017-01-10 Konica Minolta Holdings, Inc. Light extraction sheet, organic electroluminescence element and illumination device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109747A (ja) 2001-07-24 2003-04-11 Matsushita Electric Works Ltd 有機エレクトロルミネッセンス面発光体及び液晶表示装置
WO2006095632A1 (ja) * 2005-03-11 2006-09-14 Mitsubishi Chemical Corporation エレクトロルミネッセンス素子及び照明装置
JP2010033780A (ja) * 2008-07-25 2010-02-12 Panasonic Electric Works Co Ltd 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の発光色調整方法
JP2010049210A (ja) * 2008-08-25 2010-03-04 Fujifilm Corp 塗布組成物、該塗布組成物の製造方法、透光性光散乱性膜、有機エレクトロルミネッセンス表示素子及び面状光源体
JP2010218738A (ja) 2009-03-13 2010-09-30 Konica Minolta Opto Inc 有機el素子、それを用いたディスプレイ、及び照明装置
JP2011086527A (ja) 2009-10-16 2011-04-28 Toppan Printing Co Ltd El素子、照明装置及びディスプレイ装置
WO2011093120A1 (ja) * 2010-01-26 2011-08-04 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2793531A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209557A (ja) * 2012-03-30 2013-10-10 Daio Paper Corp 粘着シート及び構造体
JP2015088323A (ja) * 2013-10-30 2015-05-07 富士フイルム株式会社 有機電界発光装置
JP2015159033A (ja) * 2014-02-24 2015-09-03 三菱レイヨン株式会社 光取り出しフィルム、面発光体及び光取り出しフィルムの製造方法

Also Published As

Publication number Publication date
TW201332178A (zh) 2013-08-01
EP2793531A1 (en) 2014-10-22
US20140320000A1 (en) 2014-10-30
EP2793531A4 (en) 2015-08-12
CN103975647A (zh) 2014-08-06
US9237630B2 (en) 2016-01-12
JPWO2013088997A1 (ja) 2015-04-27
JP6156143B2 (ja) 2017-07-05

Similar Documents

Publication Publication Date Title
JP6156143B2 (ja) 面発光体
JP6020684B1 (ja) 光波長変換シート、これを備えるバックライト装置、および画像表示装置
US20060291055A1 (en) Diffuse Multilayer Optical Article
US8950924B2 (en) Optical constructions incorporating a light guide and low refractive index films
KR101588811B1 (ko) 광 확산 시트 및 액정 표시 장치용의 백라이트 유닛
JP6598121B2 (ja) 偏光光源装置
JP4928693B2 (ja) 制御された散乱・透過特性を有する光学積層体
JP6277065B2 (ja) バックライトユニットおよび液晶表示装置
WO2016186158A1 (ja) 照明装置、及び表示装置
JP2004513483A (ja) 明るさおよびコントラスト増強直視型発光型ディスプレイ
KR20090024739A (ko) 비드화 층을 포함하는 광학 용품
JP2016194552A (ja) 量子ドットシート、バックライト装置、表示装置および量子ドットシートの製造方法
JP6665477B2 (ja) 光波長変換シート、バックライト装置、および画像表示装置
JP2004103335A (ja) 面状光源装置
TW201106021A (en) Anisotropic light-diffusing film, anisotropic light-diffusing film laminated sheet and production method thereof
JP2017161938A (ja) 光波長変換シート、これを備えるバックライト装置、および画像表示装置
JP5532799B2 (ja) 白色反射フィルム
JP2009237290A (ja) 光学部材とそれを用いたバックライト・ユニット、ディスプレイ
JP2010044270A (ja) 光拡散板、光学シート、バックライトユニット及びディスプレイ装置
JP2008286907A (ja) 反射用積層体
JP2012234809A (ja) 面発光体
JP2010044269A (ja) 光拡散板、光学シート、バックライトユニット及びディスプレイ装置
KR100980068B1 (ko) 광학용 복합 필름
JP4610356B2 (ja) 光学素子の製造方法
JP6152917B2 (ja) 光波長変換シート、これを備えるバックライト装置、および画像表示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013513309

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858082

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012858082

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012858082

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14360728

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE