WO2013088829A1 - Plant-cultivation illumination device - Google Patents

Plant-cultivation illumination device

Info

Publication number
WO2013088829A1
WO2013088829A1 PCT/JP2012/076554 JP2012076554W WO2013088829A1 WO 2013088829 A1 WO2013088829 A1 WO 2013088829A1 JP 2012076554 W JP2012076554 W JP 2012076554W WO 2013088829 A1 WO2013088829 A1 WO 2013088829A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
plant
red
irradiated
Prior art date
Application number
PCT/JP2012/076554
Other languages
French (fr)
Japanese (ja)
Inventor
山田 真
石渡 正紀
青木 慎一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280055430.2A priority Critical patent/CN103929944B/en
Publication of WO2013088829A1 publication Critical patent/WO2013088829A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting

Definitions

  • the present invention relates to a plant-growing lighting device that regulates plant growth.
  • Reference 2 Japanese Patent Publication No. 2007-282544
  • a solanaceous plant especially tomato
  • a method for increasing the fruit sugar content of the plant by irradiation has been proposed.
  • the method proposed in Document 1 is mainly for advancing the flowering time of plants and is not necessarily considered to promote plant growth.
  • the method proposed in Document 2 increases the sugar content of the fruit and is not necessarily considered to promote the growth of plants, and is a method limited to solanaceous plants, so that it can be applied to other plants. It may not be possible.
  • This invention solves the said subject, and aims at providing the plant growth lighting apparatus which can promote the growth of a plant by irradiating the light from an artificial light source to a plant.
  • the plant growth lighting device of the present invention includes a light source that irradiates light to a plant, a first light source that irradiates light including a red light component in a wavelength range of 610 to 680 nm, and a far red color in a wavelength range of 685 to 780 nm.
  • a second light source that emits light including a light component; a control unit that controls an irradiation operation of the first light source and the second light source; and the first light source and the second light source for the control unit.
  • a time setting unit for setting a time zone for performing the irradiation operation wherein the time setting unit has an irradiance of 0.005 W / m 2 or more in a time zone in which the first light source sandwiches sunset, and 0. Irradiation operation is performed at a daily integrated irradiance of 015 kJ / m 2 or more, and then the second light source emits irradiance of 0.02 W / m 2 or more and 0.21 kJ / m for 3 hours or more in the time period until sunrise. It is set to irradiate with a daily integrated irradiance of 2 or more.
  • the integrated irradiance of light that the first light source irradiates in the time zone before sunset is greater than the integrated irradiance of light that the first light source irradiates in the time zone after sunset. It is preferable to control so that it may decrease.
  • the integrated irradiance of light irradiated by the first light source is controlled to be smaller than the integrated irradiance of light irradiated by the second light source.
  • the ratio of the cumulative irradiance of light irradiated by the first light source to the cumulative irradiance of light irradiated by the second light source is 0.05: 9.95 to 4.5. : It is preferable to be controlled to be 5.5.
  • the plant is irradiated with light containing a red light component in a time zone sandwiching sunset, and then irradiated with light containing a far red light component, thereby promoting the growth of the plant.
  • FIG. 1 It is a side view which shows an example of the state by which the 1st light source and 2nd light source of the plant growth lighting apparatus in embodiment of this invention are arrange
  • FIG. 1 It is a top view which shows an example of the state by which the 1st light source and 2nd light source of the plant growth lighting apparatus in embodiment of this invention were arrange
  • FIG. It is a figure which shows the light irradiation pattern of the plant growth lighting apparatus in Example 1.
  • FIG. It is a figure which shows the light irradiation pattern in the comparative example 1.
  • FIG. It is a figure which shows the light irradiation pattern of the plant growth lighting apparatus in the comparative example 2.
  • FIG. 1 The ratio (first integrated irradiance ratio) between the integrated irradiance of light irradiated by the first light source before sunset in the plant growing lighting device and the integrated irradiance of light irradiated by the light source after sunset, and chrysanthemum It is a figure which shows the relationship with the growth rate of a.
  • FIG. It is a figure which shows the light irradiation pattern of the plant growth lighting apparatus in Example 2.
  • FIG. It is a figure which shows the light irradiation pattern in the comparative example 6.
  • FIG. It is a figure which shows the yield of the strawberry by Example 2 and Comparative Example 6.
  • a plant growth lighting device (hereinafter referred to as a lighting device) according to an embodiment of the present invention will be described with reference to FIGS.
  • This lighting device promotes the growth of plants (especially flowers and fruits and vegetables) in a completely closed plant seedling production system, facility cultivation such as an agricultural vinyl house or glass house, or outdoor cultivation. .
  • the illuminating device 1 is provided with the 1st light source 2 and the 2nd light source 3 as a light source which irradiates light with respect to the plant P planted in the fence F.
  • the first light source 2 emits light containing a red light component
  • the second light source 3 emits light containing a far red light component.
  • the red light component from the first light source 2 has a wavelength region of 610 to 680 nm
  • the far red light component from the second light source 3 has a wavelength region of 685 to 780 nm.
  • These light sources 2 and 3 are disposed above the plant P.
  • the irradiation operation of the light sources 2 and 3 is controlled by the control unit 4.
  • the time zone in which the control unit 4 operates is set by the time setting unit 5.
  • the light sources 2 and 3 and the time setting unit 5 are electrically connected to the control unit 4 through distribution lines 6 respectively.
  • the first light source 2 includes a light emitter 21 and a red light filter 22 that mainly transmits a red light component of the light emitted from the light emitter 21.
  • the light emitter 21 is configured by, for example, a red LED that emits red light, a red fluorescent lamp, a red EL element, or an incandescent lamp or HID lamp (such as a high-pressure sodium lamp or a xenon lamp) that emits light including red light.
  • the red light filter 22 is configured by, for example, an optical filter subjected to color resin, color glass, or optical multilayer film processing.
  • the first light source 2 is a 0.005 W / m 2 or more irradiance, and irradiates light to the plant P in 0.015kJ / m 2 or more integrated irradiance per day.
  • the irradiance is measured using a Leica light meter Li-250 and a sensor Li-190SA.
  • the first light source 2 may not have the far red light filter 22. .
  • the second light source 3 includes a light emitter 31 and a far red light filter 32 that mainly transmits a far red light component of the light emitted from the light emitter 31.
  • the light emitter 31 is, for example, a far-red LED that emits far-red light, a far-red fluorescent lamp, a far-red EL element, or an incandescent lamp or HID lamp (such as a high-pressure sodium lamp or xenon lamp) that emits light containing far-red light. Composed.
  • the far-red light filter 32 is configured by, for example, an optical filter that has been subjected to color resin, color glass, or optical multilayer film processing.
  • the second light source 3 irradiates the plant P with light having an irradiance of 0.02 W / m 2 or more and an integrated irradiance of 0.21 kJ / m 2 or more per day. Note that when the light emitter 31 is configured to irradiate light mainly having a wavelength region of 685 to 780 nm, the second light source 3 may not include the far red light filter 32.
  • the control unit 4 includes a microcomputer, a relay, a switch, and the like, and has a light control device that adjusts the irradiance of light emitted from the light sources 2 and 3.
  • a light control apparatus is comprised by the light controller, for example, and adjusts irradiance electrically.
  • the time setting unit 5 is constituted by a timer, a microcomputer, etc., and causes the light sources 2 and 3 to irradiate at a time preset by the user.
  • FIG. 2 shows a state in one day (24 hours) from before sunset to after sunrise.
  • the time setting unit 5 shows that the light including red light from the first light source 2 is sunlight. Irradiation is performed in a time zone sandwiching the sun, and thereafter, light including far-red light from the second light source 3 is set to be irradiated for 3 hours or more in the time zone until sunrise.
  • the red light irradiation from the first light source 2 and the far red light irradiation from the second light source 3 are normally performed continuously, but may overlap each other for a short time (for example, several minutes). There may be blanks.
  • each of the light sources 2 and 3 has one casing as shown in FIG. 7 is preferably housed together.
  • the housing 7 is preferably formed of a material having high thermal conductivity and excellent heat dissipation and high light reflectivity, for example, a metal material such as aluminum or stainless steel.
  • the red light filter 22 is configured to have spectral transmittance with respect to light having a wavelength in the range of about 590 to 710 nm (curve A), for example. Is the highest for light of about 660 nm. Further, the far-red light filter 32 is configured to have spectral transmittance with respect to light having a wavelength of about 690 nm or more (curve B).
  • the light C emitted from the first light source 2 constituted by the fluorescent lamp (the light emitter 21) and the red light filter 22 has the highest light intensity at a wavelength of about 660 nm, for example.
  • the light D emitted from the first light source 2 constituted by the red LED (light emitter 21) has the highest light intensity at a wavelength of about 630 nm, for example.
  • the light E emitted from the second light source 3 composed of the fluorescent lamp (light emitter 31) and the far red light filter 32 has the highest light intensity at a wavelength of about 740 nm, for example.
  • the light G emitted from the second light source 3 configured by the far red LED (light emitter 31) has the highest light intensity at a wavelength of about 735 nm, for example.
  • the light sources 2 and 3 are usually arranged above the plant P.
  • the plant P is tall or has many branches and leaves, there is a possibility that a sufficient amount of light cannot be irradiated to the lower part or the inner part of the plant P only by the light sources 2 and 3 disposed above. Therefore, as shown in FIG. 6, in addition to the upper first light source 2a and the upper second light source 3a (hereinafter referred to as the upper light sources 2a and 3a) disposed above the plant P, the side or lower side of the plant P Alternatively, the light sources 2 and 3 may be arranged.
  • a side first light source 2b and a side second light source 3b are arranged on the side of the plant P, and a lower first light source 2c and A lower second light source 3c (hereinafter referred to as lower light sources 2c and 3c) is arranged.
  • each of the upper light sources 2a and 3a, the side light sources 2b and 3b, and the lower light sources 2c and 3c is movable vertically and horizontally depending on the size of the plant P (for example, the type and growth state of the plant P).
  • it may be fixed by a frame member that surrounds the periphery of the plant P.
  • the present invention is not limited to this, and the frame members may be divided, and the upper light sources 2a and 3a, the side light sources 2b and 3b, and the lower light sources 2c and 3c may be fixed by corresponding frame members. .
  • the plant P can be irradiated with a sufficient amount of light from the light sources 2 and 3.
  • the attachment angles of the side light sources 2b and 3b and the lower light sources 2c and 3c can be adjusted so that light can be applied to the plant P at an arbitrary angle.
  • FIG. 7 shows the arrangement of the upper light sources 2a and 3a, the side light sources 2b and 3b, and the lower light sources 2c and 3c with respect to the plant P when viewed from above.
  • the light sources 2 and 3 are shown as one member.
  • the upper light sources 2a and 3a are arranged so as to be substantially parallel to the direction Y (the direction in which the plants P are continuous) in which the ridges F extend, and a plurality of the upper light sources 2a and 3a are arranged at predetermined intervals in the directions X and Y.
  • the side light sources 2b and 3b are waterproofed by being covered with a cylinder or the like, arranged so as to be substantially parallel to the direction Y in which the heel F extends, and in the direction X and the direction Y of the region between the heel F A plurality are arranged at predetermined intervals.
  • the lower light sources 2c and 3c are waterproofed by being covered with a cylinder or the like, arranged so as to be substantially parallel to the direction Y in which the ridge F extends, and in the direction X and the direction Y on the ground between the ridges F. A plurality are arranged at predetermined intervals.
  • the lower light sources 2c and 3c may be attached so as to irradiate light near the root of the plant P (near the cocoon F).
  • the attachment positions of the lower light sources 2c and 3c are not limited to the ground between the fences F, and a predetermined interval may be provided above the ground (the direction in which the plant P grows and extends). .
  • the side light sources 2b and 3b and the lower light sources 2c and 3c may be configured by a continuous light source such as a hollow light guide type lighting device, an optical fiber, or an EL device formed in an elongated shape.
  • the light distribution and light amount of the upper light sources 2a and 3a, the side light sources 2b and 3b, and the lower light sources 2c and 3c are adjusted according to the growth of the plant P. For example, when the plant P is in the initial growth stage and is still small, the upper light sources 2a and 3a far from the plant P are turned off, and the side light sources 2b and 3b and the lower light sources 2c and 3c close to the plant P are turned on. . At this time, the side light sources 2b and 3b and the lower light sources 2c and 3c are adjusted so that light distribution is set narrow by adjusting their mounting angles and the light can be radiated intensively to the plant P.
  • the side light sources 2b and 3b and the lower light sources 2c and 3c respectively reduce the amount of light emitted.
  • the plant P grows greatly, all of the upper light sources 2a and 3a, the side light sources 2b and 3b, and the lower light sources 2c and 3c are turned on. At this time, the side light sources 2b and 3b and the lower light sources 2c and 3c are adjusted so that light distribution is widely set by adjusting their mounting angles and the like, so that light can be applied to a wide range of the plant P.
  • the plant P which grew greatly can have many branches and leaves, if the light irradiated with respect to the plant P is not high light quantity, it may not reach the inside of the plant P (the stem part of the plant P). Therefore, it is preferable that the upper light sources 2a and 3a, the side light sources 2b and 3b, and the lower light sources 2c and 3c respectively increase the amount of light to be irradiated.
  • the lighting device 1 As for the growth promotion effect which the lighting device 1 configured as described above gives to the plant P, actually using the lighting device 1 cultivates chrysanthemums (variety: Say Prince) and about 80% of chrysanthemums are stems. It confirmed by calculating the average number of days required to become 80 cm or more in height.
  • the above-described red LED was used (see FIG. 5).
  • the first light source 2 was disposed above the chrysanthemum at a density of 5 / m 2 , and the chrysanthemum was irradiated with red light at an irradiance of 0.005 W / m 2 .
  • the second light source 3 the above-described far red LED was used (see FIG. 5).
  • the second light source 3 is arranged into 20 / m above the chrysanthemum at a density of 2, it was irradiated with far-red light irradiance of 0.02 W / m 2 with respect chrysanthemum.
  • FIG. 8 shows a state in one day (24 hours) from before sunset to after sunrise, and as shown in this figure, the red light from the first light source 2 starts from 15 minutes before sunset. Irradiation was applied to chrysanthemum for a total of 1 hour until 45 minutes after Far-red light from the second light source 3 was applied to chrysanthemum for 3 hours from 45 minutes after sunset. That is, the red light from the first light source 2 and the far red light from the second light source 3 were continuously applied to the chrysanthemum. As a result, as shown in Table 1, the chrysanthemum according to the present example required an average of 90 days for the stem height to be 80 cm or more.
  • FIG. 9 shows a state in one day (24 hours) from before sunset to after sunrise, and in this comparative example 1, light from the light sources 2 and 3 is not irradiated. Only sunlight was applied to chrysanthemum.
  • the chrysanthemum according to Comparative Example 1 required an average of 111 days for the stem height to be 80 cm or more. This result shows that the lighting device 1 efficiently promotes chrysanthemum growth.
  • FIG. 10 shows a state in one day (24 hours) from before sunset to after sunrise.
  • red light from the first light source 2 is shown.
  • the far red light from the second light source 3 was not irradiated.
  • the chrysanthemum according to Comparative Example 2 required an average of 110 days for the stem height to be 80 cm or more as shown in Table 1. This result indicates that far-red light from the second light source 3 is required to significantly promote chrysanthemum growth.
  • FIG. 11 shows a state in one day (24 hours) from before sunset to after sunrise.
  • this comparative example 3 in addition to sunlight, far red light from the second light source 3 is shown. Only the light was irradiated, and the red light from the first light source 2 was not irradiated. Far-red light from the second light source 3 was irradiated for 3 hours immediately after sunset.
  • the chrysanthemum according to Comparative Example 3 required an average of 102 days for the stem height to be 80 cm or more. This result indicates that red light from the first light source 2 is necessary to significantly promote chrysanthemum growth.
  • FIG. 12 shows a state in one day (24 hours) from before sunset to after sunrise.
  • red light from the first light source 2 is shown.
  • far-red light from the second light source 3 was irradiated for 3 hours immediately after sunset.
  • the chrysanthemum according to Comparative Example 4 required an average of 97 days for the stem height to be 80 cm or more. This result shows that it is important to irradiate red light from the first light source 2 across sunset in order to significantly promote chrysanthemum growth.
  • FIG. 13 shows a state in one day (24 hours) from before sunset to after sunrise, and in this comparative example 5, in addition to sunlight, red light from the first light source 2 is shown.
  • red light from the first light source 2 was shown.
  • the chrysanthemum according to Comparative Example 5 required an average of 96 days for the stem height to be 80 cm or more as shown in Table 1.
  • This result also shows that it is important to irradiate red light from the first light source 2 across the sunset in order to significantly promote chrysanthemum growth, as in Comparative Example 4 above. Yes.
  • the ratio of the accumulated irradiance R1 of red light irradiated by the first light source 2 before sunset to the accumulated irradiance R2 of red light irradiated by the first light source 2 after sunset (The first cumulative irradiance ratio (R1 / R2) is 0.33 (calculated from 15 (minutes) / 45 (minutes)).
  • FIG. 14 shows changes in the growth period (growth period) of chrysanthemum required for the stem height to be 80 cm or more when R1 / R2 is variously changed.
  • R1 was zero, that is, when red light from the first light source 2 was not irradiated to chrysanthemum before sunset, chrysanthemum took an average of 96 days to reach a stem height of 80 cm or more. From this state, increasing R1 promoted chrysanthemum growth and shortened the period required to reach 80 cm or more in stem length. This growth promoting effect was significant when R1 / R2 was in the range of 0.09 to 0.71, and R1 / R2 was not seen to be greater than 1. This result shows that R1 is preferably less than R2 in order to efficiently promote chrysanthemum growth.
  • the ratio of the integrated irradiance R ( R1 + R2) of the light from the first light source 2 to the integrated irradiance FR of the light from the second light source 3 (second integrated radiation).
  • the illuminance ratio (R / FR) is 0.083 (calculated from (0.005 W / m 2 ⁇ 1 hour) / (0.02 W / m 2 ⁇ 3 hours)).
  • FIG. 15 shows changes in the growth period (growth period) of chrysanthemum required for the stem height to be 80 cm or more when the R / FR is variously changed.
  • the growth promotion effect given to the plant P by the lighting device 1 is actually cultivating strawberries (variety: Tochiotome) belonging to fruit and vegetables using the lighting device 1, and calculating the yield of strawberry (per 10 strains). Confirmed with.
  • Example 2 Strawberries were planted at the end of September and were harvested after being cultivated for approximately 6 months until March of the following year. Light irradiation to the strawberry by the lighting device 1 started in mid-November and continued until the strawberry was harvested.
  • the same light sources as those in Example 1 were used. Further, the installation location and the number of installation of the light sources 2 and 3 were also the same as those in Example 1.
  • the first light source 2 irradiates red strawberries with an irradiance of 0.01 W / m 2
  • the second light source 3 emits far red lights with irradiance 0.02 W / m 2 to the strawberries. Irradiated.
  • FIG. 16 shows a state in one day (24 hours) from before sunset to after sunrise.
  • the red light from the first light source 2 is 20 minutes after sunset.
  • the strawberry was irradiated for a total of 2 hours from before to 100 minutes after sunset, and the far red light from the second light source 3 was irradiated to the strawberry for 3 hours from 100 minutes after sunset. That is, this indicates that the first cumulative irradiance ratio (R1 / R2) is 0.2 and the second cumulative irradiance ratio (R / FR) is 0.33.
  • FIG. 17 shows a state in one day (24 hours) from before sunset to after sunrise, and in Comparative Example 6, light from light sources 2 and 3 is irradiated. In addition to sunlight, the strawberry was irradiated with light from an incandescent lamp for 5 hours immediately after sunset.
  • the light including the red light component is irradiated to the plant P in the time zone sandwiching the sunset, and then the light including the far red light component is irradiated. Is done.
  • the sunlight which mixed a red light component and a far red light component is irradiated, since the conversion from Pr type
  • the lighting device 1 may be installed in a completely closed plant production factory where sunlight does not reach.
  • the 1st light source 2 and the 2nd light source 3 are on / off-controlled on the basis of the light / dark period schedule of the artificial light source used for the growth of the plant P, for example.
  • the illuminating device 1 can be used over the whole year, it is especially effective in the short day period from autumn to early spring when sunlight decreases.
  • the plant growth lighting device is not limited to the above embodiment, and various modifications are possible.
  • the first light source and the second light source may be realized by controlling the wavelength of light emitted from one type of light source. This can be realized, for example, by using an incandescent lamp that emits visible light of any wavelength as a light source, and appropriately combining the incandescent lamp with a red light filter or a far red light filter.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)

Abstract

This plant-cultivation illumination device (1) is provided with a first light source (2) for irradiating a plant (P) with a light that includes a red-colored light component, and a second light source (3) for irradiating the plant (P) with a light that includes a far-red-colored light component. The irradiation operation of the light source (2) is controlled by a control unit (4). A time slot in which the control unit (4) operates is set by a time setting unit (5). The time setting unit (5) performs the setting so that the first light source (2) implements the irradiation operation during a time slot straddling the sunset, and thereafter the second light source (3) implements the irradiation operation for three hours or longer during a time slot lasting until sunrise. This makes it possible to promote the growth of the plant (P), because the plant (P) is irradiated with a light that includes a red-colored light component during a time slot straddling the sunset and is thereafter irradiated with a light that includes a far-red-colored light component.

Description

植物育成照明装置Plant breeding lighting device
 本発明は、植物の育成を調節する植物育成照明装置に関する。 The present invention relates to a plant-growing lighting device that regulates plant growth.
 従来より人工光源からの光を植物に照射して、その植物の育成を調節する方法が知られている。例えば、日本国特許公開公報2009-136155号(以下、文献1)では、赤色光と遠赤色光との混合光を植物の光周期における明期の開始期近傍及び終了期近傍のいずれか一方又は両方において植物に照射することで、その植物に短日処理を施す方法が提案されている。 Conventionally, a method for adjusting the growth of a plant by irradiating the plant with light from an artificial light source is known. For example, in Japanese Patent Publication No. 2009-136155 (hereinafter referred to as Document 1), mixed light of red light and far-red light is used in the vicinity of the start period and the end period of the light period in the plant photoperiod, or There has been proposed a method of applying short-day treatment to a plant by irradiating the plant in both.
 また、例えば、日本国特許公開公報2007-282544号(以下、文献2)では、ナス科植物(特に、トマト)に対して赤色光及び遠赤色光の少なくとも一方の光を日没後1~3時間照射することで、その植物の果実糖度を高める方法が提案されている。 Further, for example, in Japanese Patent Publication No. 2007-282544 (hereinafter referred to as Reference 2), at least one of red light and far red light is applied to a solanaceous plant (especially tomato) for 1 to 3 hours after sunset. A method for increasing the fruit sugar content of the plant by irradiation has been proposed.
 しかしながら、文献1で提案されている方法は、主に植物の開花時期を早めるものであって必ずしも植物の成長を促進するものとは考えにくい。また、文献2で提案されている方法は、果実糖度を高めるものであって必ずしも植物の成長を促進するものとは考えにくく、しかもナス科植物に限定された方法であるので他の植物に応用できない可能性がある。 However, the method proposed in Document 1 is mainly for advancing the flowering time of plants and is not necessarily considered to promote plant growth. In addition, the method proposed in Document 2 increases the sugar content of the fruit and is not necessarily considered to promote the growth of plants, and is a method limited to solanaceous plants, so that it can be applied to other plants. It may not be possible.
 本発明は、上記課題を解決するものであって、人工光源からの光を植物に照射することで植物の成長を促進することができる植物育成照明装置を提供することを目的とする。 This invention solves the said subject, and aims at providing the plant growth lighting apparatus which can promote the growth of a plant by irradiating the light from an artificial light source to a plant.
 本発明の植物育成照明装置は、植物に対して光を照射する光源を備え、波長域610~680nmの赤色光成分を含む光を照射する第1の光源と、波長域685~780nmの遠赤色光成分を含む光を照射する第2の光源と、前記第1の光源及び第2の光源の照射動作を制御する制御部と、前記制御部に対して前記第1の光源及び第2の光源を照射動作させる時間帯を設定する時間設定部と、を備え、前記時間設定部は、前記第1の光源が日没を挟んだ時間帯に0.005W/m2以上の放射照度かつ0.015kJ/m2以上の1日積算放射照度で照射動作し、その後、前記第2の光源が日出までの時間帯に3時間以上0.02W/m2以上の放射照度かつ0.21kJ/m2以上の1日積算放射照度で照射動作するように設定されている。 The plant growth lighting device of the present invention includes a light source that irradiates light to a plant, a first light source that irradiates light including a red light component in a wavelength range of 610 to 680 nm, and a far red color in a wavelength range of 685 to 780 nm. A second light source that emits light including a light component; a control unit that controls an irradiation operation of the first light source and the second light source; and the first light source and the second light source for the control unit. A time setting unit for setting a time zone for performing the irradiation operation, wherein the time setting unit has an irradiance of 0.005 W / m 2 or more in a time zone in which the first light source sandwiches sunset, and 0. Irradiation operation is performed at a daily integrated irradiance of 015 kJ / m 2 or more, and then the second light source emits irradiance of 0.02 W / m 2 or more and 0.21 kJ / m for 3 hours or more in the time period until sunrise. It is set to irradiate with a daily integrated irradiance of 2 or more.
 この植物育成照明装置では、前記第1の光源が日没前の時間帯に照射する光の積算放射照度は、該第1の光源が日没後の時間帯に照射する光の積算放射照度よりも少なくなるように制御されていることが好ましい。 In this plant growth lighting device, the integrated irradiance of light that the first light source irradiates in the time zone before sunset is greater than the integrated irradiance of light that the first light source irradiates in the time zone after sunset. It is preferable to control so that it may decrease.
 この植物育成照明装置では、前記第1の光源が照射する光の積算放射照度は、前記第2の光源が照射する光の積算放射照度よりも少なくなるように制御されていることが好ましい。 In this plant growing lighting device, it is preferable that the integrated irradiance of light irradiated by the first light source is controlled to be smaller than the integrated irradiance of light irradiated by the second light source.
 この植物育成照明装置では、前記第1の光源が照射する光の積算放射照度と前記第2の光源が照射する光の積算放射照度との比は、0.05:9.95~4.5:5.5となるように制御されていることが好ましい。 In this plant growing lighting device, the ratio of the cumulative irradiance of light irradiated by the first light source to the cumulative irradiance of light irradiated by the second light source is 0.05: 9.95 to 4.5. : It is preferable to be controlled to be 5.5.
 本発明によれば、植物に対して日没を挟んだ時間帯に赤色光成分を含む光が照射され、その後、遠赤色光成分を含む光が照射されるので、植物の成長を促進することができる。 According to the present invention, the plant is irradiated with light containing a red light component in a time zone sandwiching sunset, and then irradiated with light containing a far red light component, thereby promoting the growth of the plant. Can do.
本発明の実施形態における植物育成照明装置の概略図である。It is the schematic of the plant cultivation lighting apparatus in embodiment of this invention. 本発明の実施形態における植物育成照明装置の光照射パターンの一例を示す図である。It is a figure which shows an example of the light irradiation pattern of the plant growth lighting apparatus in embodiment of this invention. 本発明の実施形態における植物育成照明装置を構成する第1の光源及び第2の光源が一つの筐体内に収容された状態の斜視図である。It is a perspective view of the state where the 1st light source and the 2nd light source which constitute the plant growth lighting device in an embodiment of the present invention were stored in one case. 本発明の実施形態における植物育成照明装置の第1の光源を構成する赤色光フィルタ及び第2の光源を構成する遠赤色光フィルタの分光透過率を示す図である。It is a figure which shows the spectral transmittance | permeability of the far red light filter which comprises the red light filter which comprises the 1st light source of the plant growth lighting apparatus in embodiment of this invention, and the 2nd light source. 本発明の実施形態における植物育成照明装置の第1の光源及び第2の光源から照射される光の分光特性を示す図である。It is a figure which shows the spectral characteristic of the light irradiated from the 1st light source and 2nd light source of the plant growth lighting apparatus in embodiment of this invention. 本発明の実施形態における植物育成照明装置の第1の光源及び第2の光源が植物に対して配置された状態の一例を示す側視図である。It is a side view which shows an example of the state by which the 1st light source and 2nd light source of the plant growth lighting apparatus in embodiment of this invention are arrange | positioned with respect to the plant. 本発明の実施形態における植物育成照明装置の第1の光源及び第2の光源が植物に対して配置された状態の一例を示す平面図である。It is a top view which shows an example of the state by which the 1st light source and 2nd light source of the plant growth lighting apparatus in embodiment of this invention were arrange | positioned with respect to the plant. 実施例1における植物育成照明装置の光照射パターンを示す図である。It is a figure which shows the light irradiation pattern of the plant growth lighting apparatus in Example 1. FIG. 比較例1における光照射パターンを示す図である。It is a figure which shows the light irradiation pattern in the comparative example 1. FIG. 比較例2における植物育成照明装置の光照射パターンを示す図である。It is a figure which shows the light irradiation pattern of the plant growth lighting apparatus in the comparative example 2. FIG. 比較例3における植物育成照明装置の光照射パターンを示す図である。It is a figure which shows the light irradiation pattern of the plant growth lighting apparatus in the comparative example 3. 比較例4における植物育成照明装置の光照射パターンを示す図である。It is a figure which shows the light irradiation pattern of the plant growth lighting apparatus in the comparative example 4. 比較例5における植物育成照明装置の光照射パターンを示す図である。It is a figure which shows the light irradiation pattern of the plant growth lighting apparatus in the comparative example 5. FIG. 植物育成照明装置における第1の光源が日没前に照射する光の積算放射照度と同光源が日没後に照射する光の積算放射照度との比(第1の積算放射照度比)と、キクの生育速度と、の関係を示す図である。The ratio (first integrated irradiance ratio) between the integrated irradiance of light irradiated by the first light source before sunset in the plant growing lighting device and the integrated irradiance of light irradiated by the light source after sunset, and chrysanthemum It is a figure which shows the relationship with the growth rate of a. 植物育成照明装置における第1の光源からの光の積算放射照度と第2の光源からの光の積算放射照度との比(第2の積算放射照度比)と、キクの生育速度と、の関係を示す図である。Relationship between the ratio of the integrated irradiance of light from the first light source and the integrated irradiance of light from the second light source (second integrated irradiance ratio) and the growth rate of chrysanthemum in the plant growing lighting device FIG. 実施例2における植物育成照明装置の光照射パターンを示す図である。It is a figure which shows the light irradiation pattern of the plant growth lighting apparatus in Example 2. FIG. 比較例6における光照射パターンを示す図である。It is a figure which shows the light irradiation pattern in the comparative example 6. FIG. 実施例2及び比較例6によるイチゴの収量を示す図である。It is a figure which shows the yield of the strawberry by Example 2 and Comparative Example 6.
 本発明の実施形態に係る植物育成照明装置(以下、照明装置という)について、図1乃至図8を参照して説明する。本照明装置は、完全閉鎖型の植物苗生産システム、農業用のビニルハウス若しくはガラスハウス等の施設栽培、又は露地栽培等において植物(特に、花き類及び果菜類)の成長を促進するものである。 A plant growth lighting device (hereinafter referred to as a lighting device) according to an embodiment of the present invention will be described with reference to FIGS. This lighting device promotes the growth of plants (especially flowers and fruits and vegetables) in a completely closed plant seedling production system, facility cultivation such as an agricultural vinyl house or glass house, or outdoor cultivation. .
 図1に示すように、照明装置1は、畝Fに植えられた植物Pに対して光を照射する光源として第1の光源2及び第2の光源3を備える。第1の光源2は赤色光成分を含む光を照射し、第2の光源3は遠赤色光成分を含む光を照射する。この場合、上記第1の光源2からの赤色光成分は、610~680nmの波長領域を有し、上記第2の光源3からの遠赤色光成分は、685~780nmの波長領域を有する。これら光源2、3は、植物Pの上方に配置される。光源2、3の照射動作は、制御部4により制御される。制御部4が動作する時間帯は、時間設定部5により設定される。光源2、3及び時間設定部5は、それぞれ配電線6により制御部4と電気的に接続される。 As shown in FIG. 1, the illuminating device 1 is provided with the 1st light source 2 and the 2nd light source 3 as a light source which irradiates light with respect to the plant P planted in the fence F. As shown in FIG. The first light source 2 emits light containing a red light component, and the second light source 3 emits light containing a far red light component. In this case, the red light component from the first light source 2 has a wavelength region of 610 to 680 nm, and the far red light component from the second light source 3 has a wavelength region of 685 to 780 nm. These light sources 2 and 3 are disposed above the plant P. The irradiation operation of the light sources 2 and 3 is controlled by the control unit 4. The time zone in which the control unit 4 operates is set by the time setting unit 5. The light sources 2 and 3 and the time setting unit 5 are electrically connected to the control unit 4 through distribution lines 6 respectively.
 第1の光源2は、発光体21と、発光体21から発せられる光のうち主に赤色光成分を透過させる赤色光フィルタ22と、を有する。発光体21は、例えば、赤色光を発する赤色LEDや赤色蛍光灯や赤色EL素子、又は赤色光を含む光を発する白熱灯やHIDランプ(高圧ナトリウムランプ、キセノンランプ等)により構成される。赤色光フィルタ22は、例えば、カラー樹脂、カラーガラス又は光学多層膜処理を施した光学フィルタにより構成される。第1の光源2は、0.005W/m2以上の放射照度で、かつ1日あたり0.015kJ/m2以上の積算放射照度で植物Pに対して光を照射する。なお、上記放射照度は、Leica製ライトメータLi-250及びセンサLi-190SAを用いて測定される。この場合、発光体21が主に685~780nmの波長領域を有する光を照射するように構成されている場合には、第1の光源2は、遠赤色光フィルタ22を有さなくてもよい。 The first light source 2 includes a light emitter 21 and a red light filter 22 that mainly transmits a red light component of the light emitted from the light emitter 21. The light emitter 21 is configured by, for example, a red LED that emits red light, a red fluorescent lamp, a red EL element, or an incandescent lamp or HID lamp (such as a high-pressure sodium lamp or a xenon lamp) that emits light including red light. The red light filter 22 is configured by, for example, an optical filter subjected to color resin, color glass, or optical multilayer film processing. The first light source 2 is a 0.005 W / m 2 or more irradiance, and irradiates light to the plant P in 0.015kJ / m 2 or more integrated irradiance per day. The irradiance is measured using a Leica light meter Li-250 and a sensor Li-190SA. In this case, when the light emitter 21 is configured to emit light mainly having a wavelength region of 685 to 780 nm, the first light source 2 may not have the far red light filter 22. .
 第2の光源3は、発光体31と、発光体31から発せられる光のうち主に遠赤色光成分を透過させる遠赤色光フィルタ32と、を有する。発光体31は、例えば、遠赤色光を発する遠赤色LEDや遠赤色蛍光灯や遠赤色EL素子、又は遠赤色光を含む光を発する白熱灯やHIDランプ(高圧ナトリウムランプ、キセノンランプ等)により構成される。遠赤色光フィルタ32は、例えば、カラー樹脂、カラーガラス又は光学多層膜処理を施した光学フィルタにより構成される。第2の光源3は、0.02W/m2以上の放射照度で、かつ1日あたり0.21kJ/m2以上の積算放射照度で植物Pに対して光を照射する。なお、発光体31が主に685~780nmの波長領域を有する光を照射するように構成されている場合には、第2の光源3は、遠赤色光フィルタ32を有さなくてもよい。 The second light source 3 includes a light emitter 31 and a far red light filter 32 that mainly transmits a far red light component of the light emitted from the light emitter 31. The light emitter 31 is, for example, a far-red LED that emits far-red light, a far-red fluorescent lamp, a far-red EL element, or an incandescent lamp or HID lamp (such as a high-pressure sodium lamp or xenon lamp) that emits light containing far-red light. Composed. The far-red light filter 32 is configured by, for example, an optical filter that has been subjected to color resin, color glass, or optical multilayer film processing. The second light source 3 irradiates the plant P with light having an irradiance of 0.02 W / m 2 or more and an integrated irradiance of 0.21 kJ / m 2 or more per day. Note that when the light emitter 31 is configured to irradiate light mainly having a wavelength region of 685 to 780 nm, the second light source 3 may not include the far red light filter 32.
 制御部4は、マイコン、リレー及びスイッチ等により構成され、光源2、3から照射される光の放射照度を調節する調光装置を有する。調光装置は、例えば、ライトコントローラにより構成され、電気的に放射照度を調節する。 The control unit 4 includes a microcomputer, a relay, a switch, and the like, and has a light control device that adjusts the irradiance of light emitted from the light sources 2 and 3. A light control apparatus is comprised by the light controller, for example, and adjusts irradiance electrically.
 時間設定部5は、タイマやマイコン等により構成され、ユーザによって予め設定された時間に光源2、3を照射動作させる。図2は日没前から日出後まで1日間(24時間)における様態を示しており、この図のように、時間設定部5は、第1の光源2からの赤色光を含む光が日没を挟んだ時間帯に照射され、その後、第2の光源3からの遠赤色光を含む光が日出までの時間帯に3時間以上照射されるように設定される。第1の光源2からの赤色光照射と第2の光源3からの遠赤色光照射とは、通常、連続的に行われるが、短い時間(例えば、数分)であれば互いに重畳していたりブランクがあってもよい。 The time setting unit 5 is constituted by a timer, a microcomputer, etc., and causes the light sources 2 and 3 to irradiate at a time preset by the user. FIG. 2 shows a state in one day (24 hours) from before sunset to after sunrise. As shown in this figure, the time setting unit 5 shows that the light including red light from the first light source 2 is sunlight. Irradiation is performed in a time zone sandwiching the sun, and thereafter, light including far-red light from the second light source 3 is set to be irradiated for 3 hours or more in the time zone until sunrise. The red light irradiation from the first light source 2 and the far red light irradiation from the second light source 3 are normally performed continuously, but may overlap each other for a short time (for example, several minutes). There may be blanks.
 光源2、3がLEDのような単体光量の少ない発光体により構成されている場合、十分量の光量を確保するため、図3に示すように、各々複数の光源2、3が一つの筐体7内にまとめて収容されることが好ましい。この場合、筐体7は、熱伝導率が高くて放熱性に優れると共に高い光反射性を有する材料、例えば、アルミニウムやステンレス等の金属材料から形成されていることが好ましい。 In the case where the light sources 2 and 3 are configured by a light emitter having a small amount of single light such as an LED, in order to secure a sufficient amount of light, each of the light sources 2 and 3 has one casing as shown in FIG. 7 is preferably housed together. In this case, the housing 7 is preferably formed of a material having high thermal conductivity and excellent heat dissipation and high light reflectivity, for example, a metal material such as aluminum or stainless steel.
 図4に示すように、赤色光フィルタ22は、例えば、波長が約590~710nmの範囲の光に対して分光透過性を有するように構成されており(曲線A)、この分光透過性は波長が約660nmの光に対して最も高くなっている。また、遠赤色光フィルタ32は、例えば、波長が約690nm以上の光に対しての分光透過性を有するように構成されている(曲線B)。 As shown in FIG. 4, the red light filter 22 is configured to have spectral transmittance with respect to light having a wavelength in the range of about 590 to 710 nm (curve A), for example. Is the highest for light of about 660 nm. Further, the far-red light filter 32 is configured to have spectral transmittance with respect to light having a wavelength of about 690 nm or more (curve B).
 図5に示すように、蛍光灯(発光体21)と赤色光フィルタ22とにより構成された第1の光源2から照射される光Cは、例えば、約660nmの波長で最も大きな光強度を有する。また、赤色LED(発光体21)により構成された第1の光源2から照射される光Dは、例えば、約630nmの波長で最も大きな光強度を有する。 As shown in FIG. 5, the light C emitted from the first light source 2 constituted by the fluorescent lamp (the light emitter 21) and the red light filter 22 has the highest light intensity at a wavelength of about 660 nm, for example. . Further, the light D emitted from the first light source 2 constituted by the red LED (light emitter 21) has the highest light intensity at a wavelength of about 630 nm, for example.
 蛍光灯(発光体31)と遠赤色光フィルタ32とにより構成された第2の光源3から照射される光Eは、例えば、約740nmの波長で最も大きな光強度を有する。また、遠赤色LED(発光体31)により構成された第2の光源3から照射される光Gは、例えば、約735nmの波長で最も大きな光強度を有する。 The light E emitted from the second light source 3 composed of the fluorescent lamp (light emitter 31) and the far red light filter 32 has the highest light intensity at a wavelength of about 740 nm, for example. In addition, the light G emitted from the second light source 3 configured by the far red LED (light emitter 31) has the highest light intensity at a wavelength of about 735 nm, for example.
 光源2、3は、通常、植物Pの上方に配置される。しかしながら、植物Pの背が高い場合や枝葉が多い場合には、上方に配置された光源2、3だけでは植物Pの下方や内部にまで十分量の光を照射することができない虞がある。そこで、図6に示すように、植物Pの上方に配置された上部第1の光源2a及び上部第2の光源3a(以下、上部光源2a、3aという)に加え、植物Pの側方や下方にも光源2、3を配置してもよい。植物Pの側方には側部第1の光源2b及び側部第2の光源3b(以下、側部光源2b、3bという)が配置され、植物Pの下方には下部第1の光源2c及び下部第2の光源3c(以下、下部光源2c、3cという)が配置される。この場合、上部光源2a、3a、側部光源2b、3b、下部光源2c、3cのそれぞれは、植物Pの大きさ(例えば、植物Pの種類や成長状態)に応じて、上下左右に可動となるように配置され、例えば、植物Pの周囲を囲むようなフレーム部材により固定されているとよい。ただし、これに限定され得ることはなく、フレーム部材は区分され、上部光源2a、3a、側部光源2b、3b、下部光源2c、3cは、それぞれに対応したフレーム部材により固定されていてもよい。これにより、光源2、3からの光を植物P全体に十分量照射することができる。ここで、側部光源2b、3b及び下部光源2c、3cは、任意の角度で植物Pに対して光を照射することができるように、それらの取り付け角度が調節可能となっている。 The light sources 2 and 3 are usually arranged above the plant P. However, when the plant P is tall or has many branches and leaves, there is a possibility that a sufficient amount of light cannot be irradiated to the lower part or the inner part of the plant P only by the light sources 2 and 3 disposed above. Therefore, as shown in FIG. 6, in addition to the upper first light source 2a and the upper second light source 3a (hereinafter referred to as the upper light sources 2a and 3a) disposed above the plant P, the side or lower side of the plant P Alternatively, the light sources 2 and 3 may be arranged. A side first light source 2b and a side second light source 3b (hereinafter referred to as side light sources 2b and 3b) are arranged on the side of the plant P, and a lower first light source 2c and A lower second light source 3c (hereinafter referred to as lower light sources 2c and 3c) is arranged. In this case, each of the upper light sources 2a and 3a, the side light sources 2b and 3b, and the lower light sources 2c and 3c is movable vertically and horizontally depending on the size of the plant P (for example, the type and growth state of the plant P). For example, it may be fixed by a frame member that surrounds the periphery of the plant P. However, the present invention is not limited to this, and the frame members may be divided, and the upper light sources 2a and 3a, the side light sources 2b and 3b, and the lower light sources 2c and 3c may be fixed by corresponding frame members. . Thereby, the plant P can be irradiated with a sufficient amount of light from the light sources 2 and 3. Here, the attachment angles of the side light sources 2b and 3b and the lower light sources 2c and 3c can be adjusted so that light can be applied to the plant P at an arbitrary angle.
 図7は、上方から見たときの植物Pに対する上部光源2a、3a、側部光源2b、3b及び下部光源2c、3cの配置を示す。なお、ここでは図を簡単にするために光源2、3を一つの部材として示している。上部光源2a、3aは、畝Fが伸びる方向Y(植物Pが連なる方向)と略平行となるように配置され、且つ方向X及び方向Yにおいて互いに所定の間隔を設けて複数配置される。側部光源2b、3bは、シリンダ等で覆われることで防水加工が施され、畝Fが伸びる方向Yと略平行となるように配置され、畝Fの間の領域の方向X及び方向Yにおいて互いに所定間隔を設けて複数配置される。下部光源2c、3cは、シリンダ等で覆われることで防水加工が施され、畝Fが伸びる方向Yと略平行となるように配置され、畝Fの間の地面上の方向X及び方向Yにおいて互いに所定間隔を設けて複数配置される。この場合、下部光源2c、3cは、植物Pの根元付近(畝F付近)に光を照射するように取り付けられていればよい。このことから、下部光源2c、3cの取り付け位置は、畝Fの間の地面上に限られず、上記地面から上方(植物Pが成長して伸びる方向)に所定の間隔を設けるようにすればよい。これにより、各光源2、3の光照射範囲に対して植物Pが広い範囲に亘って連なっている場合であっても、植物Pに対して十分量の光を照射することができる。なお、側部光源2b、3b及び下部光源2c、3cは、ホローライトガイド方式の照明器具、光ファイバ、又は細長い形状に成形されたEL器具等の連続光源により構成されてもよい。 FIG. 7 shows the arrangement of the upper light sources 2a and 3a, the side light sources 2b and 3b, and the lower light sources 2c and 3c with respect to the plant P when viewed from above. Here, in order to simplify the drawing, the light sources 2 and 3 are shown as one member. The upper light sources 2a and 3a are arranged so as to be substantially parallel to the direction Y (the direction in which the plants P are continuous) in which the ridges F extend, and a plurality of the upper light sources 2a and 3a are arranged at predetermined intervals in the directions X and Y. The side light sources 2b and 3b are waterproofed by being covered with a cylinder or the like, arranged so as to be substantially parallel to the direction Y in which the heel F extends, and in the direction X and the direction Y of the region between the heel F A plurality are arranged at predetermined intervals. The lower light sources 2c and 3c are waterproofed by being covered with a cylinder or the like, arranged so as to be substantially parallel to the direction Y in which the ridge F extends, and in the direction X and the direction Y on the ground between the ridges F. A plurality are arranged at predetermined intervals. In this case, the lower light sources 2c and 3c may be attached so as to irradiate light near the root of the plant P (near the cocoon F). For this reason, the attachment positions of the lower light sources 2c and 3c are not limited to the ground between the fences F, and a predetermined interval may be provided above the ground (the direction in which the plant P grows and extends). . Thereby, even if it is a case where the plant P is continuing over the wide range with respect to the light irradiation range of each light source 2 and 3, the plant P can be irradiated with sufficient quantity of light. The side light sources 2b and 3b and the lower light sources 2c and 3c may be configured by a continuous light source such as a hollow light guide type lighting device, an optical fiber, or an EL device formed in an elongated shape.
 上部光源2a、3a、側部光源2b、3b及び下部光源2c、3cの配光及び光量は、植物Pの生育に応じて調節される。例えば、植物Pが初期の生育ステージにあってまだ小さい場合、植物Pから離れた上部光源2a、3aは消灯され、植物Pに近い側部光源2b、3b及び下部光源2c、3cは点灯される。このとき、側部光源2b、3b及び下部光源2c、3cは、それらの取り付け角度等を調整することで配光が狭く設定され、植物Pに対して集中的に光を照射できるように調節される。また、初期の生育ステージにある植物Pは枝葉がまだ十分に発達していないので、植物Pに対して照射される光は光量が低くても植物P全体に行き渡りやすい。そのため、側部光源2b、3b及び下部光源2c、3cは、それぞれ照射する光の光量を下げることが好ましい。 The light distribution and light amount of the upper light sources 2a and 3a, the side light sources 2b and 3b, and the lower light sources 2c and 3c are adjusted according to the growth of the plant P. For example, when the plant P is in the initial growth stage and is still small, the upper light sources 2a and 3a far from the plant P are turned off, and the side light sources 2b and 3b and the lower light sources 2c and 3c close to the plant P are turned on. . At this time, the side light sources 2b and 3b and the lower light sources 2c and 3c are adjusted so that light distribution is set narrow by adjusting their mounting angles and the light can be radiated intensively to the plant P. The Further, since the plants P in the initial growth stage have not yet sufficiently developed branches and leaves, the light irradiated to the plants P tends to spread throughout the plants P even if the amount of light is low. Therefore, it is preferable that the side light sources 2b and 3b and the lower light sources 2c and 3c respectively reduce the amount of light emitted.
 一方、植物Pが大きく成長した場合には、上部光源2a、3a、側部光源2b、3b及び下部光源2c、3cのすべてが点灯される。このとき、側部光源2b、3b及び下部光源2c、3cは、それらの取り付け角度等を調整することで配光が広く設定され、植物Pの広い範囲に対して光を照射できるように調節される。また、大きく成長した植物Pは多くの枝葉を持ち得るため、植物Pに対して照射される光は高い光量でないと植物Pの内部(植物Pの茎部分)にまで行き渡らない可能性がある。そのため、上部光源2a、3a、側部光源2b、3b及び下部光源2c、3cは、それぞれ照射する光の光量を増加させることが好ましい。 On the other hand, when the plant P grows greatly, all of the upper light sources 2a and 3a, the side light sources 2b and 3b, and the lower light sources 2c and 3c are turned on. At this time, the side light sources 2b and 3b and the lower light sources 2c and 3c are adjusted so that light distribution is widely set by adjusting their mounting angles and the like, so that light can be applied to a wide range of the plant P. The Moreover, since the plant P which grew greatly can have many branches and leaves, if the light irradiated with respect to the plant P is not high light quantity, it may not reach the inside of the plant P (the stem part of the plant P). Therefore, it is preferable that the upper light sources 2a and 3a, the side light sources 2b and 3b, and the lower light sources 2c and 3c respectively increase the amount of light to be irradiated.
 上記のように構成された照明装置1が植物Pに与える成長促進効果を、実際に照明装置1を用いて花き類に属するキク(品種:セイプリンス)を栽培し、約8割のキクが茎丈80cm以上となるのに要した平均日数を算出することで確認した。 As for the growth promotion effect which the lighting device 1 configured as described above gives to the plant P, actually using the lighting device 1 cultivates chrysanthemums (variety: Say Prince) and about 80% of chrysanthemums are stems. It confirmed by calculating the average number of days required to become 80 cm or more in height.
 (実施例1)
 キクは、11月初めに定植され、翌年の3月まで略3.5ヶ月間栽培された後に収穫された。定植後すぐに、キクの栄養生長を維持するために白熱灯点灯による深夜4時間の暗期中断を開始した。この暗期中断は、キクの茎丈が20cm以上となった定植開始から45日後の12月末まで継続された。その後、キクを生殖生長に移行させると同時に、照明装置1によるキクへの光照射を開始した。照明装置1による光照射は、キクが開花するまで継続された。
Example 1
Chrysanthemum was planted in early November and harvested after approximately 3.5 months of cultivation until March of the following year. Immediately after planting, in order to maintain the vegetative growth of chrysanthemum, the dark period was interrupted for 4 hours at night by incandescent lighting. This dark period interruption was continued until the end of December 45 days after the start of planting when chrysanthemum stem length was 20 cm or more. Thereafter, the chrysanthemum was transferred to reproductive growth, and at the same time, the lighting device 1 started to irradiate the chrysanthemum. Light irradiation by the lighting device 1 was continued until the chrysanthemum flowered.
 第1の光源2としては、上述の赤色LEDを用いた(図5参照)。第1の光源2は、5個/m2の密度でキクの上方に配置され、キクに対して0.005W/m2の放射照度で赤色光を照射した。第2の光源3としては、上述の遠赤色LEDを用いた(図5参照)。第2の光源3は、20個/m2の密度でキクの上方に配置され、キクに対して0.02W/m2の放射照度で遠赤色光を照射した。 As the first light source 2, the above-described red LED was used (see FIG. 5). The first light source 2 was disposed above the chrysanthemum at a density of 5 / m 2 , and the chrysanthemum was irradiated with red light at an irradiance of 0.005 W / m 2 . As the second light source 3, the above-described far red LED was used (see FIG. 5). The second light source 3 is arranged into 20 / m above the chrysanthemum at a density of 2, it was irradiated with far-red light irradiance of 0.02 W / m 2 with respect chrysanthemum.
 図8は日没前から日出後まで1日間(24時間)における様態を示しており、この図のように、第1の光源2からの赤色光は、日没の15分前から日没の45分後までの計1時間キクに対して照射された。第2の光源3からの遠赤色光は、日没の45分後から3時間キクに対して照射された。すなわち、第1の光源2からの赤色光と第2の光源3からの遠赤色光とは、連続的にキクに対して照射された。その結果、本実施例によるキクは、表1に示すように、茎丈が80cm以上となるのに平均90日を要した。 FIG. 8 shows a state in one day (24 hours) from before sunset to after sunrise, and as shown in this figure, the red light from the first light source 2 starts from 15 minutes before sunset. Irradiation was applied to chrysanthemum for a total of 1 hour until 45 minutes after Far-red light from the second light source 3 was applied to chrysanthemum for 3 hours from 45 minutes after sunset. That is, the red light from the first light source 2 and the far red light from the second light source 3 were continuously applied to the chrysanthemum. As a result, as shown in Table 1, the chrysanthemum according to the present example required an average of 90 days for the stem height to be 80 cm or more.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 これに対し、図9は日没前から日出後まで1日間(24時間)における様態を示しており、この図のように、比較例1では、光源2、3からの光は照射されず、太陽光のみがキクに対して照射された。その結果、比較例1によるキクは、表1に示すように、茎丈が80cm以上となるのに平均111日を要した。この結果は、照明装置1がキクの成長を効率良く促進することを示している。 On the other hand, FIG. 9 shows a state in one day (24 hours) from before sunset to after sunrise, and in this comparative example 1, light from the light sources 2 and 3 is not irradiated. Only sunlight was applied to chrysanthemum. As a result, as shown in Table 1, the chrysanthemum according to Comparative Example 1 required an average of 111 days for the stem height to be 80 cm or more. This result shows that the lighting device 1 efficiently promotes chrysanthemum growth.
 図10は日没前から日出後まで1日間(24時間)における様態を示しており、この図のように、比較例2では、太陽光に加えて、第1の光源2からの赤色光のみが照射され、第2の光源3からの遠赤色光は照射されなかった。その結果、比較例2によるキクは、表1に示すように、茎丈が80cm以上となるのに平均110日を要した。この結果は、キクの成長を顕著に促進するには、第2の光源3からの遠赤色光が必要であることを示している。 FIG. 10 shows a state in one day (24 hours) from before sunset to after sunrise. In this comparative example 2, in addition to sunlight, red light from the first light source 2 is shown. Only the far red light from the second light source 3 was not irradiated. As a result, the chrysanthemum according to Comparative Example 2 required an average of 110 days for the stem height to be 80 cm or more as shown in Table 1. This result indicates that far-red light from the second light source 3 is required to significantly promote chrysanthemum growth.
 図11は日没前から日出後まで1日間(24時間)における様態を示しており、この図のように、比較例3では、太陽光に加えて、第2の光源3からの遠赤色光のみが照射され、第1の光源2からの赤色光は照射されなかった。第2の光源3からの遠赤色光は、日没直後から3時間照射された。その結果、比較例3によるキクは、表1に示すように、茎丈が80cm以上となるのに平均102日を要した。この結果は、キクの成長を顕著に促進するには、第1の光源2からの赤色光が必要であることを示している。 FIG. 11 shows a state in one day (24 hours) from before sunset to after sunrise. In this comparative example 3, in addition to sunlight, far red light from the second light source 3 is shown. Only the light was irradiated, and the red light from the first light source 2 was not irradiated. Far-red light from the second light source 3 was irradiated for 3 hours immediately after sunset. As a result, as shown in Table 1, the chrysanthemum according to Comparative Example 3 required an average of 102 days for the stem height to be 80 cm or more. This result indicates that red light from the first light source 2 is necessary to significantly promote chrysanthemum growth.
 図12は日没前から日出後まで1日間(24時間)における様態を示しており、この図のように、比較例4では、太陽光に加えて、第1の光源2からの赤色光が日没の1時間前から日没までの1時間照射され、第2の光源3からの遠赤色光が日没直後から3時間照射された。その結果、比較例4によるキクは、表1に示すように、茎丈が80cm以上となるのに平均97日を要した。この結果は、キクの成長を顕著に促進するには、第1の光源2からの赤色光が日没を挟んで照射されることが重要であることを示している。 FIG. 12 shows a state in one day (24 hours) from before sunset to after sunrise. In this comparative example 4, in addition to sunlight, red light from the first light source 2 is shown. Was irradiated for 1 hour from sunset 1 hour to sunset, and far-red light from the second light source 3 was irradiated for 3 hours immediately after sunset. As a result, as shown in Table 1, the chrysanthemum according to Comparative Example 4 required an average of 97 days for the stem height to be 80 cm or more. This result shows that it is important to irradiate red light from the first light source 2 across sunset in order to significantly promote chrysanthemum growth.
 図13は日没前から日出後まで1日間(24時間)における様態を示しており、この図のように、比較例5では、太陽光に加えて、第1の光源2からの赤色光が日没直後から1時間照射され、その後すぐに、第2の光源3からの遠赤色光が3時間照射された。その結果、比較例5によるキクは、表1に示すように、茎丈が80cm以上となるのに平均96日を要した。この結果も、上記比較例4と同様に、キクの成長を顕著に促進するには、第1の光源2からの赤色光が日没を挟んで照射されることが重要であることを示している。 FIG. 13 shows a state in one day (24 hours) from before sunset to after sunrise, and in this comparative example 5, in addition to sunlight, red light from the first light source 2 is shown. Was irradiated for 1 hour immediately after sunset, and immediately after that, far-red light from the second light source 3 was irradiated for 3 hours. As a result, the chrysanthemum according to Comparative Example 5 required an average of 96 days for the stem height to be 80 cm or more as shown in Table 1. This result also shows that it is important to irradiate red light from the first light source 2 across the sunset in order to significantly promote chrysanthemum growth, as in Comparative Example 4 above. Yes.
 本実施例においては、第1の光源2が日没前に照射する赤色光の積算放射照度R1と、第1の光源2が日没後に照射する赤色光の積算放射照度R2と、の比(第1の積算放射照度比:R1/R2)は、0.33となっている(15(分)/45(分)より算出)。図14は、このR1/R2を種々に変化させた場合における、茎丈が80cm以上となるのに要したキクの生育期間(生育期間)の変化を示す。R1がゼロの場合、すなわち、日没前に第1の光源2からの赤色光をキクに対して照射しなかった場合、キクは茎丈80cm以上となるのに平均96日を要した。この状態から、R1を増やしていくとキクの成長が促進されて、茎丈80cm以上となるのに要する期間が短縮された。この成長促進効果は、R1/R2が0.09~0.71の範囲で顕著で、R1/R2が1よりも大きくなると見られなかった。この結果は、キクの成長を効率良く促進するには、R1をR2よりも少なくすることが好ましいことを示している。 In the present embodiment, the ratio of the accumulated irradiance R1 of red light irradiated by the first light source 2 before sunset to the accumulated irradiance R2 of red light irradiated by the first light source 2 after sunset ( The first cumulative irradiance ratio (R1 / R2) is 0.33 (calculated from 15 (minutes) / 45 (minutes)). FIG. 14 shows changes in the growth period (growth period) of chrysanthemum required for the stem height to be 80 cm or more when R1 / R2 is variously changed. When R1 was zero, that is, when red light from the first light source 2 was not irradiated to chrysanthemum before sunset, chrysanthemum took an average of 96 days to reach a stem height of 80 cm or more. From this state, increasing R1 promoted chrysanthemum growth and shortened the period required to reach 80 cm or more in stem length. This growth promoting effect was significant when R1 / R2 was in the range of 0.09 to 0.71, and R1 / R2 was not seen to be greater than 1. This result shows that R1 is preferably less than R2 in order to efficiently promote chrysanthemum growth.
 また、本実施例においては、第1の光源2からの光の積算放射照度R(=R1+R2)と、第2の光源3からの光の積算放射照度FRと、の比(第2の積算放射照度比:R/FR)は、0.083となっている((0.005W/m2x1時間)/(0.02W/m2x3時間)より算出)。図15は、このR/FRを種々に変化させた場合における、茎丈が80cm以上となるのに要したキクの生育期間(生育期間)の変化を示す。Rがゼロの場合、すなわち、第1の光源2からの赤色光をキクに対して照射しなかった場合、キクは茎丈80cm以上となるのに平均102日を要した。この状態から、Rを増やしていくとキクの成長が促進されて、茎丈80cm以上となるのに要する期間が短縮された。この成長促進効果は、R/FRが0.005~0.82の範囲で特に顕著であった。この結果は、キクの成長を効率良く促進するには、RをFRよりも少なくすることが好ましく、特に、R/FRを0.005(R:FR=0.05:9.95に相当)~0.82(R:FR=4.5:5.5に相当)に設定することが好ましいことを示している。 In this embodiment, the ratio of the integrated irradiance R (= R1 + R2) of the light from the first light source 2 to the integrated irradiance FR of the light from the second light source 3 (second integrated radiation). The illuminance ratio (R / FR) is 0.083 (calculated from (0.005 W / m 2 × 1 hour) / (0.02 W / m 2 × 3 hours)). FIG. 15 shows changes in the growth period (growth period) of chrysanthemum required for the stem height to be 80 cm or more when the R / FR is variously changed. When R was zero, that is, when red light from the first light source 2 was not irradiated to chrysanthemum, it took 102 days on average for chrysanthemum to have a stem height of 80 cm or more. From this state, as R was increased, chrysanthemum growth was promoted, and the period required to reach a stem height of 80 cm or more was shortened. This growth promoting effect was particularly remarkable when R / FR was in the range of 0.005 to 0.82. As a result, in order to efficiently promote chrysanthemum growth, R is preferably less than FR, and in particular, R / FR is 0.005 (corresponding to R: FR = 0.05: 9.95). It is shown that it is preferable to set to 0.82 (corresponding to R: FR = 4.5: 5.5).
 次に、照明装置1が植物Pに与える成長促進効果を、実際に照明装置1を用いて果菜類に属するイチゴ(品種:とちおとめ)を栽培し、イチゴの収量(10株当たり)を算出することで確認した。 Next, the growth promotion effect given to the plant P by the lighting device 1 is actually cultivating strawberries (variety: Tochiotome) belonging to fruit and vegetables using the lighting device 1, and calculating the yield of strawberry (per 10 strains). Confirmed with.
 (実施例2)
 イチゴは、9月末に定植され、翌年の3月まで略6ヶ月間栽培された後に収穫された。照明装置1によるイチゴへの光照射は、11月中旬に開始され、イチゴを収穫するまで継続された。
(Example 2)
Strawberries were planted at the end of September and were harvested after being cultivated for approximately 6 months until March of the following year. Light irradiation to the strawberry by the lighting device 1 started in mid-November and continued until the strawberry was harvested.
 光源2、3としては、実施例1と同一のものを用いた。また、光源2、3の設置場所及び設置個数も、実施例1と同一とした。第1の光源2は0.01W/m2の放射照度で赤色光をイチゴに対して照射し、第2の光源3は0.02W/m2の放射照度で遠赤色光をイチゴに対して照射した。 As the light sources 2 and 3, the same light sources as those in Example 1 were used. Further, the installation location and the number of installation of the light sources 2 and 3 were also the same as those in Example 1. The first light source 2 irradiates red strawberries with an irradiance of 0.01 W / m 2 , and the second light source 3 emits far red lights with irradiance 0.02 W / m 2 to the strawberries. Irradiated.
 図16は日没前から日出後まで1日間(24時間)における様態を示しており、この図のように、実施例2では、第1の光源2からの赤色光が日没の20分前から日没の100分後までの計2時間イチゴに対して照射され、第2の光源3からの遠赤色光が日没の100分後から3時間イチゴに対して照射された。つまり、これは、上記第1の積算放射照度比(R1/R2)が0.2であり、上記第2の積算放射照度比(R/FR)が0.33であることを指す。実施例2に対し、図17は日没前から日出後まで1日間(24時間)における様態を示しており、この図のように、比較例6では、光源2、3からの光は照射されず、太陽光に加えて日没直後より5時間白熱灯からの光がイチゴに対して照射された。 FIG. 16 shows a state in one day (24 hours) from before sunset to after sunrise. In this example, in Example 2, the red light from the first light source 2 is 20 minutes after sunset. The strawberry was irradiated for a total of 2 hours from before to 100 minutes after sunset, and the far red light from the second light source 3 was irradiated to the strawberry for 3 hours from 100 minutes after sunset. That is, this indicates that the first cumulative irradiance ratio (R1 / R2) is 0.2 and the second cumulative irradiance ratio (R / FR) is 0.33. In contrast to Example 2, FIG. 17 shows a state in one day (24 hours) from before sunset to after sunrise, and in Comparative Example 6, light from light sources 2 and 3 is irradiated. In addition to sunlight, the strawberry was irradiated with light from an incandescent lamp for 5 hours immediately after sunset.
 その結果、表2に示すように、実施例2によるイチゴの総収量は14222グラムとなり、比較例6によるイチゴの総収量は実施例2のものよりも約2割少ない11653グラムとなった。このことから、本実施例においても、イチゴの成長を促進し、その総収量を向上するためには、RをFRよりも少なくすることが好ましく、特に、R/FRを0.005(R:FR=0.05:9.95に相当)~0.82(R:FR=4.5:5.5に相当)に設定することが好ましいことを示している。また、実施例2及び比較例6におけるイチゴの12月~3月までの月毎の収量及び総収量は、図18に示す通りとなった。比較例6によるイチゴの収量は、いずれの月においても実施例2のものよりも少なかった。この結果は、照明装置1がイチゴの成長を促進することを示している。 As a result, as shown in Table 2, the total yield of strawberries according to Example 2 was 14222 grams, and the total yield of strawberries according to Comparative Example 6 was 11,653 grams, which was about 20% less than that of Example 2. From this, also in this example, in order to promote the growth of strawberry and improve its total yield, it is preferable to reduce R to less than FR, and in particular, R / FR is 0.005 (R: FR = 0.05: 9.95) to 0.82 (R: FR = 4.5: 5.5) is preferable. Moreover, the monthly yield and the total yield of strawberries in Example 2 and Comparative Example 6 from December to March were as shown in FIG. The yield of strawberries according to Comparative Example 6 was less than that of Example 2 in any month. This result has shown that the illuminating device 1 promotes the growth of a strawberry.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記のように、本実施形態の照明装置1によれば、植物Pに対して日没を挟んだ時間帯に赤色光成分を含む光が照射され、その後、遠赤色光成分を含む光が照射される。これにより、赤色光成分と遠赤色光成分とが混在した太陽光が照射される場合に比べて、植物PにおいてPr型フィトクロムからPfr型フィトクロムへの変換にメリハリをつけることができるので、植物Pの成長が促進される。従って、植物Pの栽培サイクルを短くしたり、植物Pの収量を増加することができる。 As described above, according to the lighting device 1 of the present embodiment, the light including the red light component is irradiated to the plant P in the time zone sandwiching the sunset, and then the light including the far red light component is irradiated. Is done. Thereby, compared with the case where the sunlight which mixed a red light component and a far red light component is irradiated, since the conversion from Pr type | mold phytochrome to Pfr type phytochrome in plant P can be sharpened, plant P Growth is promoted. Therefore, the cultivation cycle of the plant P can be shortened or the yield of the plant P can be increased.
 また、R1をR2よりも少なくすると共に、RをFRよりも少なくする(好ましくは、R/FR=0.005~0.82とする)ことで、より一層Pr型フィトクロムからPfr型フィトクロムへの変換にメリハリをつけることができる。これにより、更に、植物Pの成長を促進することができる。 Further, by reducing R1 to less than R2 and R to less than FR (preferably, R / FR = 0.005 to 0.82), it is possible to further change from Pr-type phytochrome to Pfr-type phytochrome. The conversion can be sharpened. Thereby, the growth of the plant P can be further promoted.
 照明装置1は、太陽光が届かない完全閉鎖系の植物生産工場等に設置されてもよい。この場合、第1の光源2及び第2の光源3は、例えば、植物Pの育成に用いられる人工光源の明期/暗期スケジュールを基準にしてオン/オフ制御される。また、照明装置1は、通年に亘って利用可能であるが、特に、太陽光が減少する秋から春先にかけての短日期に有効である。 The lighting device 1 may be installed in a completely closed plant production factory where sunlight does not reach. In this case, the 1st light source 2 and the 2nd light source 3 are on / off-controlled on the basis of the light / dark period schedule of the artificial light source used for the growth of the plant P, for example. Moreover, although the illuminating device 1 can be used over the whole year, it is especially effective in the short day period from autumn to early spring when sunlight decreases.
 なお、本発明に係る植物育成照明装置は、上記実施形態に限定されず、種々の変形が可能である。例えば、第1の光源及び第2の光源は、1種類の光源から照射される光の波長を制御することで実現されてもよい。これは、例えば、光源としてあらゆる波長の可視光を発する白熱灯を用い、この白熱灯と赤色光フィルタ又は遠赤色光フィルタとを適宜組み合わせることで実現することができる。 In addition, the plant growth lighting device according to the present invention is not limited to the above embodiment, and various modifications are possible. For example, the first light source and the second light source may be realized by controlling the wavelength of light emitted from one type of light source. This can be realized, for example, by using an incandescent lamp that emits visible light of any wavelength as a light source, and appropriately combining the incandescent lamp with a red light filter or a far red light filter.

Claims (4)

  1.  植物に対して光を照射する光源を備えた植物育成照明装置であって、
     波長域610~680nmの赤色光成分を含む光を照射する第1の光源と、
     波長域685~780nmの遠赤色光成分を含む光を照射する第2の光源と、
     前記第1の光源及び第2の光源の照射動作を制御する制御部と、
     前記制御部に対して前記第1の光源及び第2の光源を照射動作させる時間帯を設定する時間設定部と、を備え、
     前記時間設定部は、前記第1の光源が日没を挟んだ時間帯に0.005W/m2以上の放射照度かつ0.015kJ/m2以上の1日積算放射照度で照射動作し、その後、前記第2の光源が日出までの時間帯に3時間以上0.02W/m2以上の放射照度かつ0.21kJ/m2以上の1日積算放射照度で照射動作するように設定されていることを特徴とする植物育成照明装置。
    A plant growing lighting device equipped with a light source for irradiating light to a plant,
    A first light source that emits light including a red light component in a wavelength range of 610 to 680 nm;
    A second light source that emits light including a far-red light component in the wavelength range of 685 to 780 nm;
    A control unit for controlling the irradiation operation of the first light source and the second light source;
    A time setting unit for setting a time zone for irradiating the first light source and the second light source to the control unit, and
    The time setting unit irradiates the first light source with an irradiance of 0.005 W / m 2 or more and a daily integrated irradiance of 0.015 kJ / m 2 or more in a time zone sandwiching sunset, and thereafter The second light source is set to irradiate with a daily irradiance of 0.02 W / m 2 or more and a daily integrated irradiance of 0.21 kJ / m 2 or more in the time period until sunrise. A plant-growing lighting device characterized by comprising:
  2.  前記第1の光源が日没前の時間帯に照射する光の積算放射照度は、該第1の光源が日没後の時間帯に照射する光の積算放射照度よりも少なくなるように制御されていることを特徴とする請求項1に記載の植物育成照明装置。 The integrated irradiance of light irradiated by the first light source in the time zone before sunset is controlled to be less than the integrated irradiance of light irradiated by the first light source in the time zone after sunset. The plant growing lighting device according to claim 1, wherein
  3.  前記第1の光源が照射する光の積算放射照度は、前記第2の光源が照射する光の積算放射照度よりも少なくなるように制御されていることを特徴とする請求項1又は請求項2に記載の植物育成照明装置。 3. The integrated irradiance of light irradiated by the first light source is controlled so as to be less than the integrated irradiance of light irradiated by the second light source. The plant cultivation lighting device described in 1.
  4.  前記第1の光源が照射する光の積算放射照度と前記第2の光源が照射する光の積算放射照度との比は、0.05:9.95~4.5:5.5となるように制御されていることを特徴とする請求項3に記載の植物育成照明装置。 The ratio of the cumulative irradiance of light irradiated by the first light source to the cumulative irradiance of light irradiated by the second light source is 0.05: 9.95 to 4.5: 5.5. The plant growing lighting device according to claim 3, wherein the plant growing lighting device is controlled.
PCT/JP2012/076554 2011-12-16 2012-10-13 Plant-cultivation illumination device WO2013088829A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280055430.2A CN103929944B (en) 2011-12-16 2012-10-13 Plant cultivation lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011276350A JP5874060B2 (en) 2011-12-16 2011-12-16 Plant breeding lighting device
JP2011-276350 2011-12-16

Publications (1)

Publication Number Publication Date
WO2013088829A1 true WO2013088829A1 (en) 2013-06-20

Family

ID=48612286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076554 WO2013088829A1 (en) 2011-12-16 2012-10-13 Plant-cultivation illumination device

Country Status (4)

Country Link
JP (1) JP5874060B2 (en)
CN (1) CN103929944B (en)
TW (1) TWI459895B (en)
WO (1) WO2013088829A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092860A (en) * 2013-11-13 2015-05-18 パナソニックIpマネジメント株式会社 Crop raising system
JP2015092861A (en) * 2013-11-13 2015-05-18 パナソニックIpマネジメント株式会社 Crop raising system
CN108522063A (en) * 2018-06-14 2018-09-14 深圳市均益安联光伏系统工程有限责任公司 Photovoltaic green-house plants illumination system
IT201800003161A1 (en) * 2018-03-01 2019-09-01 C Led Srl GREENHOUSE LAMPS

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744166B2 (en) * 1990-07-31 1995-05-15 三菱電機株式会社 Semiconductor wafer cleaning equipment
JP6264151B2 (en) * 2014-03-31 2018-01-24 信越半導体株式会社 Plant growing lighting device and plant growing method
JP6078109B2 (en) * 2014-06-23 2017-02-08 北海道電力株式会社 How to keep freshness
CN104329601B (en) * 2014-10-25 2017-01-25 佛山市三目照明电器有限公司 Special LED (light emitting diode) light source device for flower period regulating and control light supplementing
JP6475035B2 (en) * 2015-02-05 2019-02-27 国立大学法人鳥取大学 Far red illumination device for plant growth and plant cultivation method using far red illumination device for plant growth
JP6351117B2 (en) * 2015-06-12 2018-07-04 株式会社ラジアント Crop house cultivation method and cultivation equipment
JP6761970B2 (en) * 2016-08-18 2020-09-30 パナソニックIpマネジメント株式会社 Pest control device
CN106455265A (en) * 2016-10-31 2017-02-22 深圳前海弘稼科技有限公司 Planting box and method for adjusting lighting time
WO2020022465A1 (en) * 2018-07-27 2020-01-30 日亜化学工業株式会社 Illumination device
CN109937734A (en) * 2019-04-15 2019-06-28 镇江光禾时代科技有限公司 Intelligent plant growth lighting device and working method thereof
CN112335441A (en) * 2019-08-07 2021-02-09 杭州汉徽光电科技有限公司 Plant growth illumination device for preventing and controlling plant diseases and insect pests based on biological recognition and control method thereof
JP7397612B2 (en) * 2019-09-30 2023-12-13 シャープ株式会社 Lighting equipment, plant light irradiation equipment, and plant light irradiation method
CN116267293A (en) * 2023-02-10 2023-06-23 佛山科学技术学院 Lighting method capable of improving plant yield and quality

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000093A (en) * 2002-05-31 2004-01-08 Toshiba Lighting & Technology Corp Light emitter and lighting equipment
JP2006067948A (en) * 2004-09-03 2006-03-16 Central Res Inst Of Electric Power Ind Method for accelerating growth of short day plant and neutral plant by utilizing light supplement for short time at night
JP2007282544A (en) * 2006-04-14 2007-11-01 Hamamatsu Photonics Kk Cultivation method for solanaceae plant
JP2011109925A (en) * 2009-11-24 2011-06-09 Hamamatsu Photonics Kk Method for controlling growth of grass plant
JP2012070642A (en) * 2010-09-27 2012-04-12 Panasonic Corp Plant growing system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08205677A (en) * 1995-01-31 1996-08-13 Mitsubishi Chem Corp Regulation of nutrient ingredient content of plant body
JP2001057816A (en) * 1999-08-19 2001-03-06 Kiyoji Suzuki Irradiation of light for raising plant and apparatus therefor
KR20100014558A (en) * 2007-03-23 2010-02-10 헬리오스펙트라 악티볼라그 System for modulating plant growth or attributes
TWM339207U (en) * 2008-01-30 2008-09-01 Zi-Han Ceng Multi-functional light source device
JP5106228B2 (en) * 2008-04-24 2012-12-26 パナソニック株式会社 Lighting device for plant disease control
CN102084793B (en) * 2009-12-07 2012-12-12 季军 LED light spectrum proportioning method for accelerating or controlling plant growth
CN102144508A (en) * 2010-12-07 2011-08-10 芜湖罗比汽车照明系统有限公司 Control system for LEDs applied to plant illumination

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004000093A (en) * 2002-05-31 2004-01-08 Toshiba Lighting & Technology Corp Light emitter and lighting equipment
JP2006067948A (en) * 2004-09-03 2006-03-16 Central Res Inst Of Electric Power Ind Method for accelerating growth of short day plant and neutral plant by utilizing light supplement for short time at night
JP2007282544A (en) * 2006-04-14 2007-11-01 Hamamatsu Photonics Kk Cultivation method for solanaceae plant
JP2011109925A (en) * 2009-11-24 2011-06-09 Hamamatsu Photonics Kk Method for controlling growth of grass plant
JP2012070642A (en) * 2010-09-27 2012-04-12 Panasonic Corp Plant growing system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092860A (en) * 2013-11-13 2015-05-18 パナソニックIpマネジメント株式会社 Crop raising system
JP2015092861A (en) * 2013-11-13 2015-05-18 パナソニックIpマネジメント株式会社 Crop raising system
CN104620876A (en) * 2013-11-13 2015-05-20 松下知识产权经营株式会社 Plant growing system
CN104885801A (en) * 2013-11-13 2015-09-09 松下知识产权经营株式会社 Crop cultivation system
IT201800003161A1 (en) * 2018-03-01 2019-09-01 C Led Srl GREENHOUSE LAMPS
EP3533318A1 (en) * 2018-03-01 2019-09-04 C-Led S.R.L. Lamps for greenhouse
CN108522063A (en) * 2018-06-14 2018-09-14 深圳市均益安联光伏系统工程有限责任公司 Photovoltaic green-house plants illumination system

Also Published As

Publication number Publication date
JP5874060B2 (en) 2016-03-01
CN103929944A (en) 2014-07-16
TWI459895B (en) 2014-11-11
TW201325439A (en) 2013-07-01
CN103929944B (en) 2015-11-25
JP2013126382A (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5874060B2 (en) Plant breeding lighting device
JP6268516B2 (en) Crop cultivation system
JP5498904B2 (en) Crop cultivation system
JP6268517B2 (en) Crop cultivation system
JP5830661B2 (en) Crop cultivation system
JP5219245B2 (en) Lighting device for plant pest control
JP5652954B2 (en) Lighting device for plant disease control
JP7051259B2 (en) Optimization of awakening light for plant growth
JP6585919B2 (en) Phalaenopsis cultivation method and light source device used therefor
KR102285707B1 (en) Plant cultivation apparatus and plant cultivation method using light source for plant cultivation
WO2013027198A1 (en) Light signaling system for plant behavior manipulation
JP2013123417A (en) Illuminating device for plant growth disease control
JP5424993B2 (en) Lighting device for plant disease control
RU2454066C2 (en) Light diode phyto-irradiator
JP6091927B2 (en) Auxiliary light system
JP2017077203A (en) Plant cultivation method and plant cultivation device
JP4123875B2 (en) Flowering method in flower buds
JP2011101616A (en) Method for cultivating plant by radiating three color mixed light
JP2001258389A (en) Method for cultivating plant
CN116437802A (en) Tomato plant, tomato fruit and cultivation method of tomato plant
JP5821037B2 (en) Crop cultivation system
JP4159485B2 (en) Method for inducing flower buds of cruciferous plants
WO2023161915A2 (en) Horticultural lighting and method of use
JP2000050731A (en) Culture of long-day plant
WO2023217684A1 (en) Regulation of fruit set in peppers by dynamically adapting the led lighting spectrum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857024

Country of ref document: EP

Kind code of ref document: A1