JP6268517B2 - Crop cultivation system - Google Patents

Crop cultivation system Download PDF

Info

Publication number
JP6268517B2
JP6268517B2 JP2013234548A JP2013234548A JP6268517B2 JP 6268517 B2 JP6268517 B2 JP 6268517B2 JP 2013234548 A JP2013234548 A JP 2013234548A JP 2013234548 A JP2013234548 A JP 2013234548A JP 6268517 B2 JP6268517 B2 JP 6268517B2
Authority
JP
Japan
Prior art keywords
light source
light
crop
chrysanthemum
red
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013234548A
Other languages
Japanese (ja)
Other versions
JP2015092861A (en
Inventor
山田 真
真 山田
石渡 正紀
正紀 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013234548A priority Critical patent/JP6268517B2/en
Priority to CN201410640108.7A priority patent/CN104885801A/en
Publication of JP2015092861A publication Critical patent/JP2015092861A/en
Application granted granted Critical
Publication of JP6268517B2 publication Critical patent/JP6268517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/165Controlling the light source following a pre-assigned programmed sequence; Logic control [LC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Cultivation Of Plants (AREA)

Description

本発明は、作物(植物)の育成を調節する作物育成システムに関する。   The present invention relates to a crop cultivation system that regulates the cultivation of plants (plants).

従来から植物に対して人工光源からの光を照射することで、植物の育成を調節する方法が知られている。例えば、植物に対して赤色光及び遠赤色光の混合光を、植物の光周期における明期の開始期及び終了期のいずれか一方又は両方に照射することで、植物に短日処理を施す方法が知られている(例えば、特許文献1参照)。   Conventionally, a method for adjusting the growth of a plant by irradiating the plant with light from an artificial light source is known. For example, a method of subjecting a plant to a short-day treatment by irradiating the plant with mixed light of red light and far-red light on one or both of the light period start period and end period in the photoperiod of the plant Is known (see, for example, Patent Document 1).

また、ナス科植物(特に、トマト)に対して赤色光及び遠赤色光の少なくとも一方を日没後に1〜3時間照射することで、植物の果実糖度を高める方法が知られている(例えば、特許文献2参照)。   Moreover, the method which raises the fruit sugar content of a plant by irradiating at least one of red light and far-red light with respect to a solanaceous plant (especially tomato) for 1-3 hours after sunset is known (for example, Patent Document 2).

特開2009−136155号公報JP 2009-136155 A 特開2007−282544号公報JP 2007-282544 A

しかしながら、上記特許文献1に記載された方法は、植物の開花時期を早めるものであって、必ずしも植物の成長を促進するものではない。また、この方法では、植物の花芽分化について何ら言及されておらず、更に、作業者が植物を視認し難いので作業効率が低下する虞がある。   However, the method described in Patent Document 1 accelerates the flowering time of plants, and does not necessarily promote the growth of plants. Moreover, in this method, nothing is mentioned about the flower bud differentiation of the plant, and further, it is difficult for the operator to visually recognize the plant, so that the working efficiency may be lowered.

また、上記特許文献2に記載された方法は、植物の果実糖度を高めるものであって必ずしも植物の成長を促進するものではなく、しかもナス科植物に限定された方法であるので、他の植物に応用できない可能性がある。また、この方法でも、植物の花芽分化について何ら言及されておらず、更に、作業者が植物を視認し難いので作業効率が低下する虞がある。   In addition, the method described in Patent Document 2 increases the fruit sugar content of a plant and does not necessarily promote plant growth, and is a method limited to solanaceous plants. May not be applicable. In this method, there is no mention of the flower bud differentiation of the plant, and further, it is difficult for the operator to visually recognize the plant, so that the working efficiency may be lowered.

本発明は、上記課題を解決するものであって、花芽分化に大きな影響を与えることなく植物(作物)の成長を効率良く促進することができ、しかも作物の視認性を良くして作業効率を高めることができる作物育成システムを提供することを目的とする。   The present invention solves the above-mentioned problems, and can efficiently promote the growth of plants (crop) without greatly affecting flower bud differentiation, and also improves the visibility of crops and improves the work efficiency. The purpose is to provide a crop cultivation system that can be enhanced.

本発明の作物育成システムは、波長域380nm以上610nm未満にピーク波長を有する光を作物に対して照射する第1の光源と、波長域610nm以上680nm以下にピーク波長を有する赤色光を作物に対して照射する第2の光源と、波長域685nm以上780nm以下にピーク波長を有する遠赤色光を作物に対して照射する第3の光源と、前記第1の光源、第2の光源及び第3の光源の照射動作を制御する制御部と、前記制御部に対して前記第1の光源、第2の光源及び第3の光源を照射動作させる時間帯を設定する時間設定部と、を備え、前記時間設定部は、前記第1の光源及び第2の光源が日没前から日没後2時間までの時間帯に照射動作し、前記第3の光源が前記第1の光源及び第2の光源の照射動作終了後の時間帯に照射動作するように設定されていることを特徴とする。   The crop growing system of the present invention includes a first light source that irradiates a crop with light having a peak wavelength in a wavelength range of 380 nm to less than 610 nm, and red light having a peak wavelength in a wavelength range of 610 nm to 680 nm. A second light source that irradiates the crop, a third light source that irradiates the crop with far-red light having a peak wavelength in the wavelength range of 685 nm to 780 nm, the first light source, the second light source, and the third light source. A control unit that controls the irradiation operation of the light source, and a time setting unit that sets a time zone in which the first light source, the second light source, and the third light source are irradiated with respect to the control unit, The time setting unit operates to irradiate the first light source and the second light source during a time period from before sunset to 2 hours after sunset, and the third light source is the first light source and the second light source. Irradiate in the time zone after the irradiation operation Characterized in that it has been configured to work.

前記時間設定部は、前記第1の光源及び第2の光源が照射動作を終了すると共に、前記第3の光源が照射動作を開始するように設定されていることが好ましい。   It is preferable that the time setting unit is set so that the first light source and the second light source finish the irradiation operation, and the third light source starts the irradiation operation.

前記第1の光源、第2の光源及び第3の光源は、1つの筐体内に収容されていることが好ましい。   It is preferable that the first light source, the second light source, and the third light source are accommodated in one housing.

前記第3の光源は、放射照度が0.02W/m以上で且つ積算放射照度が0.2kJ/m以上となるように遠赤色光を照射することが好ましい。 It is preferable that the third light source emits far red light so that the irradiance is 0.02 W / m 2 or more and the integrated irradiance is 0.2 kJ / m 2 or more.

本発明によれば、波長域380nm以上610nm未満にピーク波長を有する光及び赤色光が、日没前から日没後2時間までの時間帯に作物に対して照射され、その後、遠赤色光が作物に対して照射される。そのため、作物の花芽分化に大きな影響を与えることなく、作物の成長を効率良く促進することができる。また、作物に対して波長域380nm以上610nm未満にピーク波長を有する光が照射されるので、作物に対して赤色光及び/又は遠赤色光しか照射されない場合に比べて、作物の視認性を良くして作業効率を高めることができる。   According to the present invention, light having a peak wavelength in the wavelength range of 380 nm or more and less than 610 nm and red light are irradiated to the crop in a time zone from before sunset to 2 hours after sunset. Is irradiated. Therefore, the growth of the crop can be efficiently promoted without greatly affecting the flower bud differentiation of the crop. Further, since the crop is irradiated with light having a peak wavelength in the wavelength range of 380 nm or more and less than 610 nm, the visibility of the crop is improved as compared with the case where the crop is irradiated with only red light and / or far red light. Working efficiency can be improved.

本発明の実施形態に係る作物育成システムの構成を示す図。The figure which shows the structure of the crop cultivation system which concerns on embodiment of this invention. 上記作物育成システムで用いられる第1の光源、第2の光源及び第3の光源の各々から照射される光の分光特性例を示す図。The figure which shows the spectral characteristic example of the light irradiated from each of the 1st light source used in the said crop cultivation system, a 2nd light source, and a 3rd light source. 上記第1の光源、第2の光源及び第3の光源を一つの筐体内に収容したときの様子を示す斜視図。The perspective view which shows a mode when the said 1st light source, a 2nd light source, and a 3rd light source are accommodated in one housing | casing. 上記第1の光源、第2の光源及び第3の光源の作物に対する配置を示す側面図。The side view which shows arrangement | positioning with respect to the crop of the said 1st light source, 2nd light source, and 3rd light source. 上記第1の光源、第2の光源及び第3の光源の作物に対する配置を示す平面図。The top view which shows arrangement | positioning with respect to the crop of the said 1st light source, 2nd light source, and 3rd light source. 実施例による上記第1の光源、第2の光源及び第3の光源の光照射パターンを示す図。The figure which shows the light irradiation pattern of the said 1st light source by the Example, a 2nd light source, and a 3rd light source.

本発明の実施形態に係る作物育成システムについて図1乃至図6を参照して説明する。本作物育成システムは、完全閉鎖型の植物苗生産システム、農業用のビニルハウス若しくはガラスハウス等の施設栽培又は露地栽培等において、作物(特に花き)の成長を促進するものである。   A crop cultivation system according to an embodiment of the present invention will be described with reference to FIGS. This crop cultivation system promotes the growth of crops (especially flowers) in a fully-closed plant seedling production system, facility cultivation such as an agricultural vinyl house or glass house, or outdoor cultivation.

図1に示すように、作物育成システム10は、第1の光源1、第2の光源2及び第3の光源3と、これら光源1、2、3の照射動作を制御する制御部4と、制御部4に対して光源1、2、3を照射動作させる時間帯を設定する時間設定部5と、を備える。光源1、2、3及び時間設定部5は、それぞれ配電線6により制御部4と電気的に接続されている。光源1、2、3は、まとめて筐体(不図示、後述する図3参照)に収容され、畝Fに植えられた作物Pに対して光を照射する。   As shown in FIG. 1, the crop growing system 10 includes a first light source 1, a second light source 2, and a third light source 3, and a control unit 4 that controls the irradiation operation of these light sources 1, 2, and 3. A time setting unit 5 for setting a time zone for irradiating the control unit 4 with the light sources 1, 2, and 3; The light sources 1, 2, and 3 and the time setting unit 5 are electrically connected to the control unit 4 through distribution lines 6. The light sources 1, 2, and 3 are collectively accommodated in a housing (not shown, see FIG. 3 to be described later), and irradiate the crop P planted in the ridge F with light.

図2に示すように、第1の光源1から照射される光(実線及び一点鎖線で示す)は、波長域380nm以上610nm未満にピーク波長を有する光とされる。第1の光源1を昼光色LEDにより構成した場合には、第1の光源1から照射される光(実線で示す)は、例えば、略455nmにピーク波長を有する青色光と、略580nmにピーク波長を有する緑〜黄〜赤色光と、を含む昼光色白色光となる。また、第1の光源1を電球色LEDにより構成した場合には、第1の光源1から照射される光(一点鎖線で示す)は、例えば、略460nmにピーク波長を有する青色光と、略600nmにピーク波長を有する緑〜黄〜赤色光と、を含む電球色白色光となる。なお、第1の光源1は、昼光色LEDや電球色LEDに限定されず、例えば、HIDランプ(高圧ナトリウムランプ、キセノンランプ等)、白色蛍光灯又は白熱灯に、波長610nm以上の光をカットするカットフィルタを組み合わせたものにより構成されてもよい。   As shown in FIG. 2, the light (indicated by the solid line and the alternate long and short dash line) emitted from the first light source 1 is light having a peak wavelength in the wavelength range of 380 nm or more and less than 610 nm. When the first light source 1 is constituted by a daylight color LED, the light emitted from the first light source 1 (indicated by a solid line) is, for example, blue light having a peak wavelength at about 455 nm and a peak wavelength at about 580 nm. It becomes the daylight color white light containing the green-yellow-red light which has. Further, when the first light source 1 is constituted by a light bulb color LED, the light (indicated by a one-dot chain line) emitted from the first light source 1 is, for example, blue light having a peak wavelength at about 460 nm, and about Light bulb color white light including green to yellow to red light having a peak wavelength at 600 nm is obtained. The first light source 1 is not limited to a daylight color LED or a light bulb color LED, and cuts light having a wavelength of 610 nm or more into, for example, an HID lamp (high pressure sodium lamp, xenon lamp, etc.), a white fluorescent lamp or an incandescent lamp. You may comprise by what combined the cut filter.

第2の光源2から照射される光は、波長域610nm以上680nm以下にピーク波長を有する赤色光とされる。第2の光源2を赤色LEDにより構成した場合には、第2の光源2から照射される光(点線で示す)は、例えば、略640nmにピーク波長を有する光となる。なお、第2の光源2は、赤色LEDに限定されず、例えば、HIDランプ、白色蛍光灯又は白熱灯に、波長域610nm以上680nm以下の光を透過する透過フィルタを組み合わせたものにより構成されてもよい。また、第2の光源2は、波長域610nm以上680nm以下の光を発する蛍光体と、該蛍光体を励起する光を出射する光源と、を適宜に組み合わせたものにより構成されてもよい。   The light emitted from the second light source 2 is red light having a peak wavelength in the wavelength range of 610 nm to 680 nm. When the second light source 2 is configured by a red LED, light (indicated by a dotted line) emitted from the second light source 2 is light having a peak wavelength at approximately 640 nm, for example. Note that the second light source 2 is not limited to a red LED, and is configured, for example, by combining a HID lamp, a white fluorescent lamp, or an incandescent lamp with a transmission filter that transmits light in a wavelength range of 610 nm to 680 nm. Also good. The second light source 2 may be configured by appropriately combining a phosphor that emits light having a wavelength range of 610 nm to 680 nm and a light source that emits light that excites the phosphor.

第3の光源3から照射される光(破線及び二点鎖線で示す)は、波長域685nm以上780nm以下にピーク波長を有する遠赤色光とされる。第3の光源3を遠赤色LEDにより構成した場合には、第3の光源3から照射される光(破線で示す)は、例えば、略735nmにピーク波長を有する光となる。また、第3の光源3を遠赤色蛍光灯により構成した場合には、第3の光源3から照射される光(二点鎖線で示す)は、例えば、略740nmにピーク波長を有する光となる。なお、第3の光源3は、遠赤色LEDや遠赤色蛍光灯に限定されず、例えば、遠赤色EL素子や、HIDランプや白熱灯に波長685nm以上の光を透過する透過フィルタを組み合わせたものにより構成されてもよい。   The light (indicated by a broken line and a two-dot chain line) emitted from the third light source 3 is far red light having a peak wavelength in the wavelength range of 685 nm to 780 nm. When the third light source 3 is constituted by a far-red LED, the light (indicated by a broken line) emitted from the third light source 3 is, for example, light having a peak wavelength at about 735 nm. Further, when the third light source 3 is constituted by a far-red fluorescent lamp, the light (indicated by a two-dot chain line) emitted from the third light source 3 is light having a peak wavelength at about 740 nm, for example. . The third light source 3 is not limited to a far-red LED or a far-red fluorescent lamp. For example, a far-red EL element, a HID lamp, or an incandescent lamp combined with a transmission filter that transmits light having a wavelength of 685 nm or more. It may be constituted by.

第1の光源1は、放射照度が0.01W/m以上となるように光を照射することが好ましい。また、第2の光源2は、放射照度が0.005W/m以上となるように光を照射することが好ましい。更に、第3の光源3は、放射照度が0.02W/m以上で、且つ積算放射照度が0.2kJ/m以上となるように光を照射することが好ましい。放射照度は、Leica製のライトメータ「Li-250」及びセンサ「Li-200SA」を用いて測定される。 It is preferable that the first light source 1 emits light so that the irradiance is 0.01 W / m 2 or more. Moreover, it is preferable that the 2nd light source 2 irradiates light so that irradiance may be 0.005 W / m < 2 > or more. Furthermore, it is preferable that the third light source 3 emits light so that the irradiance is 0.02 W / m 2 or more and the integrated irradiance is 0.2 kJ / m 2 or more. Irradiance is measured using a Leica light meter “Li-250” and a sensor “Li-200SA”.

図1に戻って、制御部4は、マイコン、リレー及びスイッチ等により構成され、第1の光源1、第2の光源2及び第3の光源3の各々から照射される光の放射照度を調整する調光装置を有する。調光装置は、例えば、ライトコントローラにより構成され、放射照度を電気的に制御する。   Returning to FIG. 1, the control unit 4 includes a microcomputer, a relay, a switch, and the like, and adjusts the irradiance of light emitted from each of the first light source 1, the second light source 2, and the third light source 3. A light control device. A light control apparatus is comprised by the light controller, for example, and controls irradiance electrically.

時間設定部5は、タイマやマイコン等により構成され、ユーザによって予め設定された時間に第1の光源1、第2の光源2及び第3の光源3を照射動作させる。時間設定部5は、第1の光源1及び第2の光源2が日没前から日没後2時間までの時間帯に照射動作し、第3の光源3が第1の光源1及び第2の光源2の照射動作終了後の時間帯に3時間以上照射動作するように設定されている。時間設定部5は、後述する実施例では、第1の光源1及び第2の光源2が照射動作を終了すると共に、第3の光源3が照射動作を開始するように設定されている。しかしながら、第1の光源1及び第2の光源2からの光照射と第3の光源3からの光照射との間に、30分程度までのブランクがあってもよい。   The time setting unit 5 includes a timer, a microcomputer, and the like, and causes the first light source 1, the second light source 2, and the third light source 3 to perform irradiation operations at a time preset by the user. The time setting unit 5 irradiates the first light source 1 and the second light source 2 during a time period from before sunset to 2 hours after sunset, and the third light source 3 operates as the first light source 1 and the second light source 2. The irradiation operation is set for 3 hours or more in the time zone after the irradiation operation of the light source 2 is completed. In the embodiment to be described later, the time setting unit 5 is set so that the first light source 1 and the second light source 2 end the irradiation operation, and the third light source 3 starts the irradiation operation. However, there may be a blank of up to about 30 minutes between the light irradiation from the first light source 1 and the second light source 2 and the light irradiation from the third light source 3.

時間設定部5は、太陽光(自然光)の強度を感知する光センサを有し、この光センサによって作物P周囲の明るさを感知することで第1の光源1及び第2の光源2の照射動作タイミングを決定してもよい。また、時間設定部5は、1年の日没時刻を予め記憶したソーラタイムスイッチを有し、このソーラタイムスイッチに記憶された日没時刻を基に第1の光源1及び第2の光源2の照射動作タイミングを決定してもよい。更に、時間設定部5は、図例では制御部4と別体とされているが、制御部4と一体に構成されていてもよい。   The time setting unit 5 includes an optical sensor that senses the intensity of sunlight (natural light), and the illumination of the first light source 1 and the second light source 2 is detected by sensing the brightness around the crop P using this optical sensor. The operation timing may be determined. Further, the time setting unit 5 has a solar time switch in which the sunset time of one year is stored in advance, and the first light source 1 and the second light source 2 are based on the sunset time stored in the solar time switch. The irradiation operation timing may be determined. Furthermore, although the time setting unit 5 is separated from the control unit 4 in the illustrated example, the time setting unit 5 may be configured integrally with the control unit 4.

図3に示すように、第1の光源1、第2の光源2及び第3の光源3は、交互に並べられた状態で1つの筐体7内に収容されている。筐体7は、熱伝導率が高くて放熱性に優れると共に高い光反射性を有する材料、例えば、アルミニウムやステンレス等の金属により構成されている。   As shown in FIG. 3, the 1st light source 1, the 2nd light source 2, and the 3rd light source 3 are accommodated in the one housing | casing 7 in the state arranged alternately. The housing 7 is made of a material having high heat conductivity, excellent heat dissipation, and high light reflectivity, for example, a metal such as aluminum or stainless steel.

第1の光源1、第2の光源2及び第3の光源3は、通常、作物Pの上方に配置される。しかしながら、作物Pの背が高い場合や枝葉が多い場合には、作物Pの上方に配置された光源1、2、3だけでは作物Pの下方や内部にまで十分量の光を照射することができないことがある。そこで、図4に示すように、作物Pの上方に配置した光源1、2、3(以下、上方光源1a、2a、3aという)に加え、作物Pの側方や下方にも光源1、2、3を配置してもよい。側方に配置された光源1、2、3(以下、側方光源1b、2b、3bという)及び下方に配置された光源1、2、3(以下、下方光源1c、2c、3cという)は、作物Pに対して任意の角度で光を照射できるように各々の取付角度が調整可能に構成されている。このように光源1、2、3を配置することで、作物Pの背が高くて枝葉が多い場合であっても、光源1、2、3からの光を作物Pの全体及び内部にまで十分量照射することができる。   The first light source 1, the second light source 2, and the third light source 3 are usually disposed above the crop P. However, when the crop P is tall or has many branches and leaves, only the light sources 1, 2, and 3 disposed above the crop P can irradiate a sufficient amount of light below and inside the crop P. There are things that cannot be done. Therefore, as shown in FIG. 4, in addition to the light sources 1, 2, and 3 (hereinafter referred to as the upper light sources 1a, 2a, and 3a) arranged above the crop P, the light sources 1 and 2 are also provided laterally and below the crop P. 3 may be arranged. The light sources 1, 2, and 3 (hereinafter referred to as side light sources 1b, 2b, and 3b) disposed on the side and the light sources 1, 2, and 3 (hereinafter referred to as lower light sources 1c, 2c, and 3c) disposed below are respectively provided. Each attachment angle is configured to be adjustable so that light can be irradiated to the crop P at an arbitrary angle. By arranging the light sources 1, 2, and 3 in this manner, the light from the light sources 1, 2, and 3 can be sufficiently transmitted to the whole and the inside of the crop P even when the crop P is tall and has many branches and leaves. Can be dosed.

図5は、上方から見たときの作物Pに対する上方光源1a、2a、3a、側方光源1b、2b、3b及び下方光源1c、2c、3cの配置を示す。なお、図例では、上方光源1a、2a、3a、側方光源1b、2b、3b及び下方光源1c、2c、3cを、それぞれ一つの部材として示している。上方光源1a、2a、3aは、畝Fが伸びる方向(作物Pが連なる方向)に沿って互いに一定間隔を置いて複数配置されている。側方光源1b、2b、3bは、シリンダ等で覆われることで防水加工が施され、畝Fが伸びる方向に沿って互いに一定間隔を置いて畝Fの間に複数配置されている。下方光源1c、2c、3cは、側方光源1b、2b、3bと同様に防水加工が施され、畝Fが伸びる方向に沿って互いに一定間隔を置いて畝Fの間の地面に複数配置されている。なお、側方光源1b、2b、3b及び下方光源1c、2c、3cは、ホローライトガイド方式の照明器具、光ファイバ又は細長い形状に成形されたEL器具等の連続光源により構成されてもよい。   FIG. 5 shows an arrangement of the upper light sources 1a, 2a, 3a, the side light sources 1b, 2b, 3b and the lower light sources 1c, 2c, 3c with respect to the crop P when viewed from above. In the illustrated example, the upper light sources 1a, 2a, 3a, the side light sources 1b, 2b, 3b and the lower light sources 1c, 2c, 3c are shown as one member. A plurality of upper light sources 1a, 2a, 3a are arranged at regular intervals along the direction in which the ridges F extend (the direction in which the crops P are continuous). The side light sources 1b, 2b, and 3b are waterproofed by being covered with a cylinder or the like, and a plurality of the side light sources 1b, 2b, and 3b are arranged between the ridges F at a predetermined interval along the direction in which the ridges F extend. The lower light sources 1c, 2c, and 3c are waterproofed in the same manner as the side light sources 1b, 2b, and 3b, and a plurality of lower light sources 1c, 2c, and 3c are arranged on the ground between the ridges F at regular intervals along the direction in which the ridges F extend. ing. The side light sources 1b, 2b, and 3b and the lower light sources 1c, 2c, and 3c may be configured by a continuous light source such as a hollow light guide type lighting device, an optical fiber, or an EL device formed into an elongated shape.

上方光源1a、2a、3a、側方光源1b、2b、3b及び下方光源1c、2c、3cの点灯及び配光は、作物Pの生育に応じて調整される。例えば、作物Pが初期の生育ステージにあってまだ小さい場合には、作物Pから離れた上方光源1a、2a、3aは消灯され、作物Pに近い側方光源1b、2b、3b及び下方光源1c、2c、3cは点灯される。このとき、側方光源1b、2b、3b及び下方光源1c、2c、3cは、作物Pに対して集中的に光を照射できるように、各々の取付角度が調整されて配光が狭く設定される。また、初期の生育ステージでは作物Pの枝葉が十分に発達していないので、作物Pに対して照射する光は、光量が低くても作物P全体に行き渡り得る。そのため、側方光源1b、2b、3b及び下方光源1c、2c、3cは、低い光量で光を照射するように調整されてもよい。   The lighting and light distribution of the upper light sources 1a, 2a, 3a, the side light sources 1b, 2b, 3b and the lower light sources 1c, 2c, 3c are adjusted according to the growth of the crop P. For example, when the crop P is in the initial growth stage and is still small, the upper light sources 1a, 2a, 3a away from the crop P are turned off, and the side light sources 1b, 2b, 3b close to the crop P and the lower light source 1c. 2c and 3c are lit. At this time, the side light sources 1b, 2b, and 3b and the lower light sources 1c, 2c, and 3c are adjusted to have a narrow light distribution by adjusting their mounting angles so that the crops P can be irradiated with light in a concentrated manner. The In addition, since the branches and leaves of the crop P are not sufficiently developed at the initial growth stage, the light irradiated to the crop P can reach the entire crop P even if the amount of light is low. Therefore, the side light sources 1b, 2b, and 3b and the lower light sources 1c, 2c, and 3c may be adjusted so as to emit light with a low light amount.

一方、作物Pが大きく成長した場合には、上方光源1a、2a、3a、側方光源1b、2b、3b及び下方光源1c、2c、3cのすべてが点灯される。このとき、側方光源1b、2b、3b及び下方光源1c、2c、3cは、作物Pの広い範囲に光を照射できるように、各々の取付角度が調整されて配光が広く設定される。また、大きく成長した作物Pは背が高くなって多くの枝葉を持ち得るため、作物Pに対して照射される光は、高い光量でないと作物Pの隅々まで行き渡らない。そのため、上方光源1a、2a、3a、側方光源1b、2b、3b及び下方光源1c、2c、3cは、高い光量で光を照射することが好ましい。   On the other hand, when the crop P grows greatly, all of the upper light sources 1a, 2a, 3a, the side light sources 1b, 2b, 3b and the lower light sources 1c, 2c, 3c are turned on. At this time, the side light sources 1b, 2b, and 3b and the lower light sources 1c, 2c, and 3c are set to have a wide light distribution by adjusting their mounting angles so that light can be irradiated to a wide area of the crop P. Moreover, since the crop P which has grown greatly becomes tall and can have many branches and leaves, the light irradiated to the crop P cannot reach every corner of the crop P unless the light is high. Therefore, it is preferable that the upper light sources 1a, 2a, 3a, the side light sources 1b, 2b, 3b and the lower light sources 1c, 2c, 3c emit light with a high light amount.

上記のように構成された作物育成システム10が作物Pの生育に与える効果を、作物Pとしてキク(品種:セイプリンス)を用い、このキクを実際に作物育成システム10により栽培することで検証した。キクに対する成長促進効果は、約9割のキクの茎丈が80cm以上となるのに要した平均日数を算出することで評価した。また、平均出蕾数への影響は、約9割のキクの茎丈が80cm以上となった時点でのキク一株当たりの蕾数を数えることで評価した。更に、花芽分化への影響は、作物育成システム10を用いずに自然光のみでキクを栽培した場合(後述する比較例1)と比較して、花芽分化を「遅れない」、「少し(1日以内)遅れる」及び「2日以上遅れる」の3つに分類することで評価した。なお、後述する表1では、花芽分化が「遅れない」、「少し遅れる」及び「2日以上遅れる」を、それぞれ「◎」、「○」及び「△」で示している。   The effect of the crop growing system 10 configured as described above on the growth of the crop P was verified by using chrysanthemum (variety: Say Prince) as the crop P and actually cultivating the chrysanthemum using the crop growing system 10. . The growth promoting effect on chrysanthemum was evaluated by calculating the average number of days required for about 90% of chrysanthemum stem length to be 80 cm or more. In addition, the influence on the average number of pods was evaluated by counting the number of pods per chrysanthemum when about 90% of the chrysanthemum stem length was 80 cm or more. Furthermore, the effect on flower bud differentiation is that there is no delay in flower bud differentiation compared to the case where chrysanthemum is cultivated only with natural light without using the crop growing system 10 (Comparative Example 1 described later). The evaluation was made by classifying it into three categories: “within a delay” and “a delay of 2 days or more”. In Table 1 to be described later, flower bud differentiation is “not delayed”, “slightly delayed”, and “delayed more than 2 days” by “そ れ ぞ れ”, “◯”, and “Δ”, respectively.

(実施例)
キクは、12月末に定植され、翌年の4月まで略4ヶ月間栽培された。定植後すぐに、キクの栄養生長を維持するために白熱灯点灯による深夜4時間の暗期中断を開始した。この暗期中断は、キクの草丈が20cm以上となった定植開始略45日後の2月中頃まで継続された。その後、キクを生殖生長に移行させると同時に、作物育成システム10によるキクへの光照射を開始した。作物育成システム10による光照射は、キクが開花するまで継続された。
(Example)
Chrysanthemum was planted at the end of December and cultivated for about 4 months until April of the following year. Immediately after planting, in order to maintain the vegetative growth of chrysanthemum, the dark period was interrupted for 4 hours at night by incandescent lighting. This dark period interruption was continued until mid-February about 45 days after the start of planting when the plant height of chrysanthemums was 20 cm or more. Thereafter, the chrysanthemum was transferred to reproductive growth, and at the same time, light irradiation to the chrysanthemum by the crop growing system 10 was started. Light irradiation by the crop growing system 10 was continued until chrysanthemum flowered.

図6に示すように、本実施例では、第1の光源1からの白色光及び第2の光源2からの赤色光が、日没(19時)前の18時から21時までの3時間照射された。すなわち、第1の光源1からの白色光及び第2の光源2からの赤色光は、太陽光と共に1時間照射され、日没後、太陽光無しで2時間照射された。一方、第3の光源3からの遠赤色光は、第1の光源1及び第2の光源2と切り替わるようにして、21時から2時までの5時間照射された。   As shown in FIG. 6, in this embodiment, the white light from the first light source 1 and the red light from the second light source 2 are 3 hours from 18:00 to 21:00 before sunset (19:00). Irradiated. That is, the white light from the first light source 1 and the red light from the second light source 2 were irradiated with sunlight for 1 hour, and were irradiated for 2 hours without sunlight after sunset. On the other hand, the far-red light from the third light source 3 was irradiated for 5 hours from 21:00 to 2 o'clock so as to switch to the first light source 1 and the second light source 2.

第1の光源1からの白色光及び第2の光源2からの赤色光は、それぞれ0.01W/m及び0.005W/mの放射照度で照射され、第3の光源3からの遠赤色光は、0.02W/mの放射照度で照射された。第1の光源1は、上述した昼光色LED(図2参照)により構成され、20個/mの密度でキク(作物P)の上方に配置された。第2の光源2は、上述した赤色LED(図2参照)により構成され、10個/mの密度でキクの上方に配置された。第3の光源3は、上述した遠赤色LED(図2参照)により構成され、20個/mの密度でキクの上方に配置された。 Red light from white light and the second light source 2 from the first light source 1 is irradiated respectively irradiance 0.01 W / m 2 and 0.005 W / m 2, far from the third light source 3 The red light was irradiated with an irradiance of 0.02 W / m 2 . The 1st light source 1 was comprised by the daylight color LED (refer FIG. 2) mentioned above, and was arrange | positioned above the chrysanthemum (crop P) with the density of 20 piece / m < 2 >. The 2nd light source 2 was comprised by red LED (refer FIG. 2) mentioned above, and was arrange | positioned above the chrysanthemum at the density of 10 piece / m < 2 >. The 3rd light source 3 was comprised by far-red LED (refer FIG. 2) mentioned above, and was arrange | positioned above the chrysanthemum at the density of 20 piece / m < 2 >.

表1に示すように、本実施例によるキクでは、茎丈80cmとなるのに平均79日しか要さなかった。また、キク1輪当たりの平均出蕾数は9.4と多く、花芽分化は少し(1日以内)遅れただけであった。

Figure 0006268517
As shown in Table 1, the chrysanthemum according to the present example required only 79 days on average to reach a stem height of 80 cm. In addition, the average number of pods per chrysanthemum was as high as 9.4, and the flower bud differentiation was only slightly delayed (within one day).
Figure 0006268517

これに対して、比較例1では、作物育成システム10を用いずに自然光のみでキクが育成された。この比較例1によるキクでは、茎丈80cmとなるのに平均107日も要し、また、平均出蕾数は8.1しかなかった。この結果と上述した本実施例の結果との比較より、作物育成システム10が、キクの花芽分化に大きな影響を与えることなくキクの成長を効率良く促進すると共に、キク1輪当たりの平均出蕾数を増加させることが分かった。   On the other hand, in Comparative Example 1, chrysanthemum was grown only with natural light without using the crop growing system 10. In the chrysanthemum according to Comparative Example 1, it took an average of 107 days to reach a stem height of 80 cm, and the average number of brews was only 8.1. From a comparison between this result and the result of the present embodiment described above, the crop growing system 10 efficiently promotes chrysanthemum growth without greatly affecting chrysanthemum flower bud differentiation, and average yield per chrysanthemum. It turns out to increase the number.

また、比較例2では、第1の光源1からの白色光と第2の光源2からの赤色光が、それぞれ0.01W/m及び0.005W/mの放射照度で18時から21時までの3時間キクに対して照射され、第3の光源3からの遠赤色光は照射されなかった。この比較例2によるキクでは、茎丈80cmとなるのに平均105日も要し、平均出蕾数は7.9しかなく、花芽分化が2日以上遅れた。この結果より、第3の光源3からの遠赤色光照射が、キクの成長促進及び出蕾数増加に重要であることが分かった。 In Comparative Example 2, white light and red light from the second light source 2 from the first light source 1, from each 18 pm in irradiance 0.01 W / m 2 and 0.005 W / m 2 21 The chrysanthemum was irradiated to the chrysanthemum for 3 hours until the time, and the far red light from the third light source 3 was not irradiated. In the chrysanthemum according to Comparative Example 2, an average of 105 days was required to reach a stem height of 80 cm, the average number of buds was only 7.9, and flower bud differentiation was delayed by 2 days or more. From this result, it was found that irradiation with far-red light from the third light source 3 is important for promoting the growth of chrysanthemum and increasing the number of brewers.

また、比較例3では、第1の光源1からの白色光が0.015W/mの放射照度で18時から21時までの3時間キクに対して照射された後、第3の光源3からの遠赤色光が0.02W/mの放射照度で21時から2時までの5時間キクに対して照射された。比較例3では、第2の光源2からの赤色光は、キクに対して照射されなかった。この比較例3によるキクでは、茎丈80cmとなるのに平均82日を要し、平均出蕾数は8.9しかなく、花芽分化が少し遅れた。 Further, in Comparative Example 3, the white light from the first light source 1 was irradiated to chrysanthemum for 3 hours from 18:00 to 21:00 with an irradiance of 0.015 W / m 2 , and then the third light source 3 Far-red light was irradiated to chrysanthemum for 5 hours from 21 o'clock to 2 o'clock with an irradiance of 0.02 W / m 2 . In Comparative Example 3, red light from the second light source 2 was not irradiated to the chrysanthemum. The chrysanthemum according to Comparative Example 3 required an average of 82 days to reach a stem height of 80 cm, the average number of buds was only 8.9, and flower bud differentiation was slightly delayed.

一方、比較例4では、第2の光源2からの赤色光が0.015W/mの放射照度で18時から21時までの3時間キクに対して照射された後、第3の光源3からの遠赤色光が0.02W/mの放射照度で21時から2時までの5時間キクに対して照射された。比較例4では、第1の光源1からの白色光は、キクに対して照射されなかった。この比較例4によるキクでは、茎丈80cmとなるのに平均81日を要し、平均出蕾数は8.7しかなく、花芽分化が少し遅れた。 On the other hand, in Comparative Example 4, the red light from the second light source 2 was irradiated to chrysanthemum for 3 hours from 18:00 to 21:00 with an irradiance of 0.015 W / m 2 , and then the third light source 3 Far-red light was irradiated to chrysanthemum for 5 hours from 21 o'clock to 2 o'clock with an irradiance of 0.02 W / m 2 . In Comparative Example 4, white light from the first light source 1 was not irradiated to the chrysanthemum. In the chrysanthemum according to Comparative Example 4, it took 81 days on average to reach a stem height of 80 cm, the average number of buds was only 8.7, and flower bud differentiation was slightly delayed.

上述したように、比較例3、4では、第1の光源1からの白色光又は第2の光源2からの赤色光の放射照度が0.015W/mとなるように光が照射された。一方、本実施例では、第1の光源1からの白色光と第2の光源2からの赤色光との「合計」放射照度が0.015W/mとなるように光が照射された。その結果、本実施例では、キクの顕著な成長促進及び出蕾数増加が観察されたのに対し、比較例3、4では、本実施例ほどの効果は観察されなかった。このように同放射照度で光を放射した場合でも、第1の光源1からの白色光又は第2の光源2からの赤色光を単独で照射するよりも、これら白色光及び赤色光を同時に照射した方が、より高い効果をキクに与えることができる。従って、第1の光源1からの白色光と第2の光源2からの赤色光は、相乗的に作用してキクの成長を促進しているものと考えられる。 As described above, in Comparative Examples 3 and 4, light was irradiated so that the irradiance of white light from the first light source 1 or red light from the second light source 2 was 0.015 W / m 2 . . On the other hand, in this example, the light was irradiated so that the “total” irradiance of the white light from the first light source 1 and the red light from the second light source 2 was 0.015 W / m 2 . As a result, in this example, remarkable growth promotion of chrysanthemum and increase in the number of brewers were observed, whereas in Comparative Examples 3 and 4, the effect as in this example was not observed. Thus, even when light is emitted with the same irradiance, the white light and the red light are irradiated simultaneously rather than the white light from the first light source 1 or the red light from the second light source 2 alone. If you do, you can give a higher effect to the chrysanthemum. Therefore, it is considered that the white light from the first light source 1 and the red light from the second light source 2 act synergistically to promote chrysanthemum growth.

作物育成システム10によれば、波長域380nm以上610nm未満にピーク波長を有する光及び赤色光が日没前から日没後2時間までの時間帯に作物Pに対して照射され、次いで、遠赤色光が作物Pに対して照射される。そのため、作物P(キク)の花芽分化に大きな影響を与えることなく、キクの成長を効率良く促進し、且つキクの平均出蕾数を増加させることができる。これにより、キクの栽培サイクルを短縮して一定期間内におけるキクの収量を増加させることができると共に、キクの商品価値を高めることができる。また、波長域380nm以上610nm未満にピーク波長を有する光が照射されるので、赤色光及び/又は遠赤色光しか照射されない場合に比べて、作物Pの視認性を良くして作業効率を向上でき、更に、作物Pの光合成を促進して作物Pの形態を良くできる。   According to the crop growing system 10, light having a peak wavelength in the wavelength range of 380 nm or more and less than 610 nm and red light are irradiated to the crop P in a time period from before sunset to 2 hours after sunset, and then far red light. Is irradiated to the crop P. Therefore, the growth of chrysanthemum can be efficiently promoted and the average number of chrysanthemum can be increased without greatly affecting the flower bud differentiation of the crop P (chrysanthemum). Thereby, the cultivation cycle of chrysanthemum can be shortened to increase the yield of chrysanthemum within a certain period, and the commercial value of chrysanthemum can be increased. In addition, since light having a peak wavelength in the wavelength range of 380 nm or more and less than 610 nm is irradiated, the visibility of the crop P can be improved and work efficiency can be improved as compared with the case where only red light and / or far red light is irradiated. Furthermore, the form of the crop P can be improved by promoting the photosynthesis of the crop P.

作物育成システム10は、通年に亘って利用可能であるが、特に、自然光(太陽光)が減少する秋から春先にかけての短日期に有効に用いることができる。また、作物育成システム10を太陽光が照射されない完全閉鎖型の植物生産工場等に設置した場合には、第1の光源1、第2の光源2及び第3の光源3は、例えば、作物Pの育成に用いられる人工光源の明期/暗期スケジュールに基づいてオン/オフ制御される。   Although the crop cultivation system 10 can be used throughout the year, it can be effectively used particularly in the short days from autumn to early spring when natural light (sunlight) decreases. In addition, when the crop growing system 10 is installed in a completely closed plant production factory where sunlight is not irradiated, the first light source 1, the second light source 2, and the third light source 3 are, for example, the crop P. On / off control is performed based on the light / dark schedule of the artificial light source used for growing the light.

なお、本発明に係る作物育成システムは、上記実施形態及び実施例に限定されず、種々の変形が可能である。例えば、第1の光源及び第3の光源は、1種類の光源から照射される光の波長を制御することで実現されてもよい。これは、例えば、光源としてあらゆる波長の可視光を出射する白熱灯を用い、この白熱灯に波長610nm以上の光をカットするカットフィルタ又は波長685nm以上の光を透過する透過フィルタを適宜に組み合わせることで成される。   In addition, the crop cultivation system which concerns on this invention is not limited to the said embodiment and Example, A various deformation | transformation is possible. For example, the first light source and the third light source may be realized by controlling the wavelength of light emitted from one type of light source. For example, an incandescent lamp that emits visible light of any wavelength is used as a light source, and a cut filter that cuts light having a wavelength of 610 nm or more or a transmission filter that transmits light having a wavelength of 685 nm or more is appropriately combined with the incandescent lamp. It is made with.

10 作物育成システム
1 第1の光源
2 第2の光源
3 第3の光源
4 制御部
5 時間設定部
7 筐体
P 作物
DESCRIPTION OF SYMBOLS 10 Crop cultivation system 1 1st light source 2 2nd light source 3 3rd light source 4 Control part 5 Time setting part 7 Case P Crop

Claims (4)

波長域380nm以上610nm未満にピーク波長を有する光を作物に対して照射する第1の光源と、
波長域610nm以上680nm以下にピーク波長を有する赤色光を作物に対して照射する第2の光源と、
波長域685nm以上780nm以下にピーク波長を有する遠赤色光を作物に対して照射する第3の光源と、
前記第1の光源、第2の光源及び第3の光源の照射動作を制御する制御部と、
前記制御部に対して前記第1の光源、第2の光源及び第3の光源を照射動作させる時間帯を設定する時間設定部と、を備え、
前記時間設定部は、前記第1の光源及び第2の光源が日没前から日没後2時間までの時間帯に照射動作し、前記第3の光源が前記第1の光源及び第2の光源の照射動作終了後の時間帯に照射動作するように設定されていることを特徴とする作物育成システム。
A first light source that irradiates a crop with light having a peak wavelength in a wavelength range of 380 nm or more and less than 610 nm;
A second light source that irradiates the crop with red light having a peak wavelength in a wavelength range of 610 nm to 680 nm;
A third light source that irradiates the crop with far-red light having a peak wavelength in the wavelength range of 685 nm to 780 nm;
A control unit that controls the irradiation operation of the first light source, the second light source, and the third light source;
A time setting unit that sets a time zone for irradiating the first light source, the second light source, and the third light source to the control unit, and
The time setting unit operates to irradiate the first light source and the second light source in a time period from before sunset to 2 hours after sunset, and the third light source is the first light source and the second light source. A crop-cultivating system, which is set to perform an irradiation operation in a time zone after the end of the irradiation operation.
前記時間設定部は、前記第1の光源及び第2の光源が照射動作を終了すると共に、前記第3の光源が照射動作を開始するように設定されていることを特徴とする請求項1に記載の作物育成システム。   The time setting unit is set so that the first light source and the second light source finish the irradiation operation, and the third light source starts the irradiation operation. The crop cultivation system described. 前記第1の光源、第2の光源及び第3の光源は、1つの筐体内に収容されていることを特徴とする請求項1又は請求項2に記載の作物育成システム。   The crop growing system according to claim 1 or 2, wherein the first light source, the second light source, and the third light source are accommodated in one housing. 前記第3の光源は、放射照度が0.02W/m以上で且つ積算放射照度が0.2kJ/m以上となるように遠赤色光を照射することを特徴とする請求項1乃至請求項3のいずれか一項に記載の作物育成システム。 The third light source irradiates far red light so that the irradiance is 0.02 W / m 2 or more and the integrated irradiance is 0.2 kJ / m 2 or more. Item 4. The crop cultivation system according to any one of Items 3 to 3.
JP2013234548A 2013-11-13 2013-11-13 Crop cultivation system Active JP6268517B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013234548A JP6268517B2 (en) 2013-11-13 2013-11-13 Crop cultivation system
CN201410640108.7A CN104885801A (en) 2013-11-13 2014-11-13 Crop cultivation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013234548A JP6268517B2 (en) 2013-11-13 2013-11-13 Crop cultivation system

Publications (2)

Publication Number Publication Date
JP2015092861A JP2015092861A (en) 2015-05-18
JP6268517B2 true JP6268517B2 (en) 2018-01-31

Family

ID=53195711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013234548A Active JP6268517B2 (en) 2013-11-13 2013-11-13 Crop cultivation system

Country Status (2)

Country Link
JP (1) JP6268517B2 (en)
CN (1) CN104885801A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018007620A (en) * 2016-07-14 2018-01-18 株式会社小糸製作所 Plant raising apparatus
JP6914550B2 (en) * 2017-03-16 2021-08-04 Mtエンデバー株式会社 Light generator for plant growth, plant growth device and plant growth method using it
JP2018186710A (en) * 2017-04-28 2018-11-29 昭和電工株式会社 Illumination device for plant cultivation
WO2018218598A1 (en) * 2017-06-01 2018-12-06 苏州佳亿达电器有限公司 Led light filling device for use in potted plant
JP7133812B2 (en) * 2018-07-11 2022-09-09 学校法人玉川学園 How to treat Madagascar periwinkle to increase vinblastine
WO2020022465A1 (en) * 2018-07-27 2020-01-30 日亜化学工業株式会社 Illumination device
WO2021023022A1 (en) * 2019-08-07 2021-02-11 潘皖瑜 Plant growth lighting apparatus having high visual security and control method therefor
US20230033331A1 (en) 2020-01-02 2023-02-02 Signify Holding B.V. Lighting arrangement for illumination with an angle which depends on a distance between plant containers
CN115279172A (en) 2020-03-26 2022-11-01 昕诺飞控股有限公司 Gardening master lighting device and gardening slave lighting device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005192517A (en) * 2004-01-09 2005-07-21 Stanley Electric Co Ltd Method for growing plant
JP2007222039A (en) * 2006-02-22 2007-09-06 Shigetaka Kamahara Plant raising method and raising house
JP5162740B2 (en) * 2007-07-17 2013-03-13 パナソニック株式会社 Lighting device for plant disease control
KR100963690B1 (en) * 2007-12-28 2010-06-15 대한민국 Light quality control equipment for oriental melon and method thereby
JP5077889B2 (en) * 2008-09-18 2012-11-21 シャープ株式会社 Plant lighting cultivation method and plant cultivation lighting device having insect repellent effect
JP5498904B2 (en) * 2010-09-27 2014-05-21 パナソニック株式会社 Crop cultivation system
JP2012239417A (en) * 2011-05-19 2012-12-10 Ushio Inc Light source apparatus for raising plant
WO2013027198A1 (en) * 2011-08-21 2013-02-28 D. Led. Technologies Ltd. Light signaling system for plant behavior manipulation
JP5830661B2 (en) * 2011-08-24 2015-12-09 パナソニックIpマネジメント株式会社 Crop cultivation system
JP5874060B2 (en) * 2011-12-16 2016-03-01 パナソニックIpマネジメント株式会社 Plant breeding lighting device
CN202733623U (en) * 2012-04-18 2013-02-13 罗棣楹 Light-emitting diode (LED) efficient plant growth lamp
JP5813621B2 (en) * 2012-12-26 2015-11-17 シャープ株式会社 Light emitting device for plant cultivation

Also Published As

Publication number Publication date
JP2015092861A (en) 2015-05-18
CN104885801A (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP6268516B2 (en) Crop cultivation system
JP6268517B2 (en) Crop cultivation system
JP5874060B2 (en) Plant breeding lighting device
JP5498904B2 (en) Crop cultivation system
JP5830661B2 (en) Crop cultivation system
JP5219245B2 (en) Lighting device for plant pest control
EP2338326B1 (en) Lighting system for preventing plant disease damage
JP6325771B2 (en) Cultivation method using plant growing lighting device and plant growing lighting device
JP5652954B2 (en) Lighting device for plant disease control
JP6585919B2 (en) Phalaenopsis cultivation method and light source device used therefor
KR102285707B1 (en) Plant cultivation apparatus and plant cultivation method using light source for plant cultivation
JP2013123417A (en) Illuminating device for plant growth disease control
JP6091927B2 (en) Auxiliary light system
JP2014147374A (en) Plant cultivation method
CN104303869A (en) Light source combining device and method for inducing sugarcane trees to blossom
JP2011101616A (en) Method for cultivating plant by radiating three color mixed light
JP4123875B2 (en) Flowering method in flower buds
JP5821037B2 (en) Crop cultivation system
Harada et al. Effects of long-day treatment using fluorescent lamps and supplemental lighting using white LEDs on the yield of cut rose flowers
US20240315176A1 (en) Plant full-cycle growth illuminating device
NL2021121B1 (en) Lamp for the indoor growing of vegetables
CN206134646U (en) Wide spectrum formula electricity light source device of duplex wick
JP2000050731A (en) Culture of long-day plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171213

R151 Written notification of patent or utility model registration

Ref document number: 6268517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151