JP4159485B2 - Method for inducing flower buds of cruciferous plants - Google Patents

Method for inducing flower buds of cruciferous plants Download PDF

Info

Publication number
JP4159485B2
JP4159485B2 JP2004025851A JP2004025851A JP4159485B2 JP 4159485 B2 JP4159485 B2 JP 4159485B2 JP 2004025851 A JP2004025851 A JP 2004025851A JP 2004025851 A JP2004025851 A JP 2004025851A JP 4159485 B2 JP4159485 B2 JP 4159485B2
Authority
JP
Japan
Prior art keywords
seedling
light
seedlings
temperature
flower bud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004025851A
Other languages
Japanese (ja)
Other versions
JP2005211052A (en
Inventor
史郎 氏原
健太郎 藤安
實 大杉
修治 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMATO INDUSTRIAL CO., LTD.
Original Assignee
YAMATO INDUSTRIAL CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMATO INDUSTRIAL CO., LTD. filed Critical YAMATO INDUSTRIAL CO., LTD.
Priority to JP2004025851A priority Critical patent/JP4159485B2/en
Publication of JP2005211052A publication Critical patent/JP2005211052A/en
Application granted granted Critical
Publication of JP4159485B2 publication Critical patent/JP4159485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)

Description

本発明は、アブラナ科植物の花芽形成を促進するための花芽誘導方法及び花芽誘導装置に関する。   The present invention relates to a flower bud induction method and a flower bud induction device for promoting flower bud formation of cruciferous plants.

アブラナ科植物には、大根、白菜、キャベツ、カブ、チンゲンサイ等の多くの野菜が含まれる。これらのアブラナ科植物は、一般的に、低温で花芽が形成され、その後の長日・高温の条件下で抽苔(とう立ち)が促進される。そして、花芽形成や抽苔は商品価値を決定付けるため、特にアブラナ科植物の花芽形成が起こりやすい冬から春どりの栽培においては、徹底した温湿度管理及び肥培管理が行われ、花芽形成及び抽苔を回避しつつ通年栽培が行われている。   The cruciferous plants include many vegetables such as radish, Chinese cabbage, cabbage, turnip and chingensai. In these cruciferous plants, flower buds are generally formed at a low temperature, and extraction of moss (sprouting) is promoted under the conditions of long days and high temperatures thereafter. And since flower bud formation and extraction determine the value of the product, thorough temperature and humidity management and fertilization management are performed, especially in winter and spring cultivation, where cruciferous plant flower bud formation is likely to occur. Year-round cultivation is carried out while avoiding moss.

しかしながら、近年、チンゲンサイ等のアブラナ科植物の花芽は栄養があって大変おいしいことが証明されており、食材の一つとして注目されつつある。また、種子を採取する場合にも、花芽を形成させて抽苔を起こさせる必要がある。これらのことから、上述した花芽形成及び抽苔を回避しつつ栽培する方法とは別に、一年を通してアブラナ科植物に花芽を形成させる方法の開発が要求されている。   However, in recent years, flower buds of cruciferous plants such as Chingensai have been proved to be nutritious and very delicious, and are attracting attention as one of the ingredients. In addition, when seeds are collected, it is necessary to form flower buds to cause extraction. For these reasons, apart from the method of cultivating while avoiding the above-mentioned flower bud formation and extraction, there is a demand for the development of a method for causing cruciferous plants to form flower buds throughout the year.

また、従来から植物の苗に人工光を照射する栽培方法が検討されている。このような技術として、下記特許文献1には、生育中の植物に対して特定の出力波長と特定の光量子束密度を有する青色光からなる人工光を照射する植物の栽培方法が記載されており、かかる方法により植物の花芽形成を促進することが記載されている。
特開2001−258389号公報
Conventionally, a cultivation method for irradiating plant seedlings with artificial light has been studied. As such a technique, the following Patent Document 1 describes a method for cultivating a plant in which artificial light composed of blue light having a specific output wavelength and a specific photon flux density is irradiated to a growing plant. It is described to promote flower bud formation by such a method.
JP 2001-258389 A

しかしながら、上記特許文献1に記載された栽培方法は、主に花卉園芸植物、果菜類、果樹類、穀物の花芽形成の促進を目的とした栽培方法であるため、葉菜類、根菜類或いは花菜類に属し、冬の低温条件及び長日条件で花芽が形成されるアブラナ科植物に上記の栽培方法を適用しても、一年を通して花芽形成を十分に促進することは困難であった。   However, since the cultivation method described in Patent Document 1 is a cultivation method mainly aimed at promoting flower bud formation, fruit vegetables, fruit trees, and cereal flower bud formation, it is suitable for leaf vegetables, root vegetables, or flower vegetables. Even if the above cultivation method is applied to the cruciferous plants in which flower buds are formed under low temperature conditions and long day conditions in winter, it is difficult to sufficiently promote flower bud formation throughout the year.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、一年を通してアブラナ科植物の花芽形成を十分に促進することが可能なアブラナ科植物の花芽誘導方法及び花芽誘導装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and provides a flower bud induction method and a flower bud induction apparatus capable of sufficiently promoting flower bud formation throughout the year. The purpose is to do.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、アブラナ科植物の苗に特定の温度条件下で特定の人工光を照射することにより、一年を通してアブラナ科植物の花芽形成が十分に促進されることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned object, the present inventors have radiated a specific artificial light under a specific temperature condition to a seed of a cruciferous plant, thereby forming flower buds of a cruciferous plant throughout the year. Has been found to be sufficiently promoted, and the present invention has been completed.

すなわち、本発明は、外部からの光を遮断した育苗室において、アブラナ科植物の苗に半導体光源から放射される波長400〜500nmの青色光と、半導体光源から放射される波長600〜700nmの赤色光とを含む人工光を断続的に照射し、人工光を照射している時の育苗室内の温度を13〜20℃とし、人工光を照射していない時の育苗室内の温度を3〜7℃とし、苗を、本葉1〜2枚が出た状態で育苗室内に入れ、苗への人工光の断続的な照射を、少なくとも10日間以上行うことを特徴とするアブラナ科植物の花芽誘導方法を提供する。
That is, in the seedling room in which light from the outside is blocked, the present invention is a blue light having a wavelength of 400 to 500 nm emitted from a semiconductor light source to a seed of a cruciferous plant and a red light having a wavelength of 600 to 700 nm emitted from a semiconductor light source. The temperature in the nursery room when the artificial light including light is intermittently irradiated and the artificial light is irradiated is set to 13 to 20 ° C., and the temperature in the nursery room when the artificial light is not irradiated is set to 3 to 7 A flower bud of a cruciferous plant characterized in that the seedling is placed in a nursery room in a state where one or two main leaves have emerged, and the artificial light is intermittently irradiated to the seedling for at least 10 days. Provide a guidance method.

ここで、上記赤色光は、他の波長の光に比べてアブラナ科植物の光合成への寄与が極めて高い光であり、苗は効率的に光合成を行うことができるものと考えられる。また、上記青色光は、赤色光に次いでアブラナ科植物の光合成への寄与が高いとともに、植物の姿を形づくる上で重要な光であると考えられる。なお、これら青色光及び赤色光のアブラナ科植物への寄与は、アブラナ科植物の光受容体に起因するものと考えられる。   Here, the red light is light that contributes significantly to the photosynthesis of cruciferous plants compared to light of other wavelengths, and it is considered that seedlings can efficiently perform photosynthesis. The blue light is considered to be an important light in shaping the shape of a plant as well as contributing to the photosynthesis of Brassicaceae plants next to red light. The contribution of blue light and red light to Brassicaceae plants is thought to be due to the photoreceptors of Brassicaceae plants.

そして、このような青色光及び赤色光を含む人工光をアブラナ科植物の苗に断続的に照射するとともに、人工光を照射している時の温度を相対的に高温な上述の範囲とし、照射していない時の温度を相対的に低温な上述の範囲とする。これにより、人工光の照射時は、アブラナ科植物の苗の成長を促すのに最適な環境となり、人工光の非照射時は、アブラナ科植物の苗の花芽分化を促進するのに最適な環境となり、これを繰り返すことで、アブラナ科植物の苗の健全な成長及び花芽形成を十分に且つ確実に促進することができる。なお、苗を健全に成長させることで、より短期間でより多くの花芽を形成させることができる。また、一年を通して一定の環境下でアブラナ科植物の苗の育成を行うことができるため、育成時期によらず、一年を通して花芽形成を十分に促進することができる。   And the artificial light containing such blue light and red light is intermittently irradiated to the seedlings of the cruciferous plant, and the temperature when irradiating the artificial light is set to the above-mentioned relatively high temperature range, and the irradiation is performed. The temperature at the time of not performing is set to the above-mentioned range having a relatively low temperature. This makes it an optimal environment for promoting the growth of Brassica seedlings when irradiated with artificial light, and an optimal environment for promoting the flower bud differentiation of Brassicaceae plants when not irradiated with artificial light. By repeating this, it is possible to sufficiently and reliably promote the healthy growth and flower bud formation of cruciferous plant seedlings. In addition, by growing seedlings soundly, more flower buds can be formed in a shorter period of time. Moreover, since the seedlings of Brassicaceae plants can be grown under a constant environment throughout the year, flower bud formation can be sufficiently promoted throughout the year regardless of the growing season.

また、上述したアブラナ科植物の花芽誘導方法において、上記人工光は、上記青色光及び上記赤色光のみからなることが好ましい。   Moreover, in the flower bud induction method of the cruciferous plant mentioned above, it is preferable that the said artificial light consists only of the said blue light and the said red light.

このような人工光を用いることによって、アブラナ科植物の苗の健全な成長と花芽形成とを十分に且つ確実に促進することができる。そして、青色光及び赤色光のみを用いるため、更に他の光を用いた場合と比較して各々の苗に均一に光を照射することができるとともに、コスト的にも有利であり、効率的に苗の育成を行うことができる。   By using such artificial light, it is possible to sufficiently and reliably promote the healthy growth and flower bud formation of cruciferous plant seedlings. And since only blue light and red light are used, it is possible to irradiate light uniformly to each seedling as compared with the case of using other light, and it is advantageous in terms of cost and efficiently. Seedlings can be grown.

更に、上述したアブラナ科植物の花芽誘導方法において、上記人工光を1日当たり連続して8〜10時間、苗に照射することが好ましい。   Furthermore, in the above-mentioned method for inducing flower buds of cruciferous plants, it is preferable to irradiate the seedlings with the artificial light continuously for 8 to 10 hours per day.

人工光の照射時間が8時間未満では、照射時間が上記範囲内である場合と比較して、苗の成長速度が低下する傾向にあり、人工光の照射時間が10時間を超えると、照射時間が上記範囲内である場合と比較して、花芽が形成される時期が遅くなる傾向にある。   When the artificial light irradiation time is less than 8 hours, the growth rate of the seedling tends to be lower than when the irradiation time is within the above range, and when the artificial light irradiation time exceeds 10 hours, the irradiation time Compared with the case where is within the above range, the time when flower buds are formed tends to be delayed.

また更に、上述したアブラナ科植物の花芽誘導方法において、苗を、本葉1〜2枚が出た状態で育苗室内に入れ、苗への人工光の断続的な照射を、少なくとも10日間以上行う。 Furthermore, in the flower bud induction method Brassicaceae described above, seedlings were placed in nursery room in a state in which one or two sheets true leaves exits, intermittent irradiation of artificial light to the plants, or at least 10 days It intends line.

苗に本葉が出る前に苗を育苗室に入れて人工光の照射を開始すると、苗は十分な光合成を行うことができず、成長速度が低下してしまい、上記のように苗を育成した場合と比較して、最終的に花芽が形成される時期が遅くなる傾向にある。一方、本葉の枚数が2枚を超えた後で人工光の照射を開始すると、花芽が形成される前に形成される本葉の数が多くなり、上記のように苗を育成した場合と比較して、最終的に花芽が形成される時期が遅くなる傾向にある。そして、苗に本葉1〜2枚が出た状態で人工光の照射を開始するとともに、少なくとも10日間以上人工光の照射を行うことにより、より短期間でより多くの花芽を形成させることができる傾向がある。   If the seedlings are placed in the nursery room before the seedlings appear in the nursery room and artificial light irradiation is started, the seedlings will not be able to perform sufficient photosynthesis, and the growth rate will be reduced. Compared to the case, the time when the flower bud is finally formed tends to be delayed. On the other hand, when artificial light irradiation is started after the number of true leaves exceeds two, the number of true leaves formed before the flower buds are formed increases, and seedlings are grown as described above. In comparison, the time when the flower bud is finally formed tends to be delayed. And while starting the irradiation of artificial light in a state where 1 to 2 true leaves have appeared in the seedling, it is possible to form more flower buds in a shorter period of time by performing the irradiation of artificial light for at least 10 days. There is a tendency to be able to.

本発明はまた、アブラナ科植物の花芽形成を促進するための花芽誘導装置であって、外部からの光を遮断した育苗室と、育苗室内に設置され、半導体光源から放射される波長400〜500nmの青色光、及び、半導体光源から放射される波長600〜700nmの赤色光を含む人工光を苗に断続的に照射するための光照射手段と、人工光を照射している時の育苗室内の温度を13〜20℃とし、人工光を照射していない時の育苗室内の温度を3〜7℃とするための温度制御手段と、を備えることを特徴とするアブラナ科植物の花芽誘導装置を提供する。   The present invention is also a flower bud induction device for promoting flower bud formation of a cruciferous plant, which is a nursery room in which light from the outside is blocked, and a wavelength of 400 to 500 nm that is installed in the nursery room and emitted from a semiconductor light source. Light irradiation means for intermittently irradiating the seedlings with artificial light containing blue light and red light having a wavelength of 600 to 700 nm emitted from the semiconductor light source, and in the nursery room when the artificial light is irradiated And a temperature control means for setting the temperature in the nursery room to 3 to 7 ° C. when the temperature is 13 to 20 ° C. and not being irradiated with artificial light. provide.

かかる装置によれば、一年を通してアブラナ科植物の苗の健全な成長及び花芽形成を十分に且つ確実に促進することができる。   According to such an apparatus, it is possible to sufficiently and reliably promote the healthy growth and flower bud formation of cruciferous plants throughout the year.

また、上記アブラナ科植物の花芽誘導装置において、上記人工光は、上記青色光及び上記赤色光のみからなることが好ましい。   In the apparatus for inducing flower buds of the Brassicaceae plant, the artificial light preferably comprises only the blue light and the red light.

このような人工光を照射する光照射手段を備えることによって、アブラナ科植物の苗の健全な成長と花芽形成とを十分に且つ確実に促進することができる。そして、光照射手段が青色光及び赤色光のみを照射するためのものであるため、更に他の光を用いた場合と比較して各々の苗に均一に光を照射することができるとともに、コスト的にも有利であり、効率的に苗の育成を行うことができる。   By providing such light irradiation means for irradiating artificial light, it is possible to sufficiently and reliably promote healthy growth and flower bud formation of cruciferous plant seedlings. And since a light irradiation means is for irradiating only blue light and red light, while being able to irradiate light uniformly to each seedling compared with the case where other light is further used, cost This is also advantageous, and seedlings can be efficiently grown.

本発明によれば、一年を通してアブラナ科植物の苗の健全な成長及び花芽形成を十分に且つ確実に促進することが可能なアブラナ科植物の花芽誘導方法及びアブラナ科植物の花芽誘導装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the flower bud induction method and the flower bud induction apparatus of the cruciferous plant which can fully and reliably promote the healthy growth and flower bud formation of the cruciferous plant seedling throughout the year are provided. can do.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明のアブラナ科植物の花芽誘導装置の好適な一実施形態を示す構成図である。図1に示すように、花芽誘導装置10は、外部からの光を遮断した育苗室12と、育苗室12内に設置された光照射手段14と、電源制御手段16と、育苗室12内の温度を制御するための温度制御手段18と、育苗室12内の温度を検出するための温度検出手段20と、を備えている。そして、育苗室12内に、アブラナ科植物の苗22を育成するための育苗槽24が配置される。以下、花芽誘導装置10を構成する各構成要素について説明する。   FIG. 1 is a block diagram showing a preferred embodiment of the apparatus for inducing flower buds of the cruciferous plant of the present invention. As shown in FIG. 1, the flower bud induction device 10 includes a seedling room 12 that blocks light from the outside, a light irradiation means 14 installed in the seedling room 12, a power source control means 16, and a seedling room 12. A temperature control means 18 for controlling the temperature and a temperature detection means 20 for detecting the temperature in the nursery room 12 are provided. In the seedling room 12, a seedling tank 24 for growing the cruciferous plant seedling 22 is arranged. Hereinafter, each component which comprises the flower bud guidance apparatus 10 is demonstrated.

育苗室12は、太陽光等の外部からの光を遮断した状態でアブラナ科植物22の苗を育成するための部屋であり、内部の温度を、設定した温度に一定に保つことが可能なチャンバーや恒温槽等を用いることができる。   The seedling room 12 is a room for growing seedlings of the cruciferous plant 22 in a state in which light from the outside such as sunlight is blocked, and is a chamber capable of keeping the internal temperature constant at a set temperature. A thermostat or the like can be used.

光照射手段14は、苗22に、半導体光源から放射される波長400〜500nmの青色光、及び、半導体光源から放射される波長600〜700nmの赤色光を含む人工光を断続的に照射するためのものである。ここで、アブラナ科植物の健全な成長をより十分に促進する観点から、青色光の波長は450〜490nmであることが好ましく、赤色光の波長は640〜680nmであることが好ましい。   The light irradiation means 14 intermittently irradiates the seedling 22 with artificial light including blue light having a wavelength of 400 to 500 nm emitted from the semiconductor light source and red light having a wavelength of 600 to 700 nm emitted from the semiconductor light source. belongs to. Here, from the viewpoint of sufficiently promoting the healthy growth of the cruciferous plants, the wavelength of blue light is preferably 450 to 490 nm, and the wavelength of red light is preferably 640 to 680 nm.

このような半導体光源を備えた光照射手段14は、苗22のそれぞれに対して十分に均一に青色光及び赤色光を照射可能な構成を有していることが好ましく、例えば、光照射手段14は、図2に示すように半導体光源32が基板30上に格子状に配置された構成を有している。ここで、半導体光源32において、青色を発する光源(以下、「青色光源」という)及び赤色光を発する光源(以下、「赤色光源」という)の配置構成は、例えば、青色光源と赤色光源とが1つ1つ交互に配置された構成や、列又は行ごとに交互に配置された構成となっており、これにより、苗22のそれぞれに対して十分に均一に青色光及び赤色光が照射される構成となっている。   It is preferable that the light irradiation means 14 provided with such a semiconductor light source has a configuration capable of emitting blue light and red light sufficiently uniformly to each of the seedlings 22, for example, the light irradiation means 14. 2 has a configuration in which the semiconductor light sources 32 are arranged in a lattice pattern on the substrate 30 as shown in FIG. Here, in the semiconductor light source 32, the arrangement configuration of a light source that emits blue light (hereinafter referred to as “blue light source”) and a light source that emits red light (hereinafter referred to as “red light source”) includes, for example, a blue light source and a red light source. Each of the seedlings 22 is irradiated with the blue light and the red light sufficiently uniformly. It is the composition which becomes.

また、青色光源と赤色光源との数の比は特に制限されないが、苗22の健全な成長及び花芽形成を十分に促進するために、青色光源の数:赤色光源の数を10:90〜50:50とすることが好ましい。なお、青色光源と赤色光源との数が同数でない場合の配置は、苗22のそれぞれに対して可能な限り均一に青色光及び赤色光が照射されるような配置とすればよい。例えば、青色光源の数が20個、赤色光源の数が80個の場合、図3に示すような青色光源34及び赤色光源36の配置が挙げられる。   Further, the ratio of the number of blue light sources to red light sources is not particularly limited, but in order to sufficiently promote the healthy growth and flower bud formation of the seedling 22, the number of blue light sources: the number of red light sources is set to 10: 90-50. : 50 is preferable. The arrangement when the number of blue light sources and red light sources is not the same may be such that blue light and red light are irradiated as uniformly as possible to each of the seedlings 22. For example, when the number of blue light sources is 20 and the number of red light sources is 80, the arrangement of blue light sources 34 and red light sources 36 as shown in FIG.

上記半導体光源32としては、単色性及び発光効率に優れた半導体レーザや発光ダイオード(LED)等が用いられる。ここで、半導体光源32の形状は特に限定されず、砲弾型のものであってもチップ型のものであってもよく、また、LED等の素子そのものであってもよい。なお、チップ型の場合には、半導体光源32をより密集させて基板30上に配置することができるという利点があり、LED等の素子そのものを用いた場合(例えば、LED素子配置型のLEDアレイを光照射手段14とした場合)には、半導体光源32をより密集させて基板30上に配置することができるとともに、チップ型のものよりも指向性の影響を低減することができ、理想的な光照射を行うことができるという利点がある。これらの半導体光源を用いることにより、光照射時の熱の発生を十分に低減することができるため、光源に起因した苗22の高温障害の発生を防止することができるとともに、苗22と半導体光源との距離を十分に短くすることが可能であり、更に育苗室12内の温度管理も容易となる。   As the semiconductor light source 32, a semiconductor laser or a light emitting diode (LED) having excellent monochromaticity and light emission efficiency is used. Here, the shape of the semiconductor light source 32 is not particularly limited, and may be a cannonball type or a chip type, or may be an element such as an LED itself. In the case of the chip type, there is an advantage that the semiconductor light sources 32 can be more densely arranged on the substrate 30. When an element such as an LED itself is used (for example, an LED array of an LED element arrangement type) In the case of the light irradiation means 14), the semiconductor light sources 32 can be arranged more densely on the substrate 30, and the influence of directivity can be reduced more than the chip type, which is ideal. There is an advantage that it is possible to perform simple light irradiation. By using these semiconductor light sources, the generation of heat at the time of light irradiation can be sufficiently reduced, so that it is possible to prevent the occurrence of high temperature failure of the seedling 22 due to the light source, and the seedling 22 and the semiconductor light source Can be sufficiently shortened, and temperature management in the nursery room 12 is facilitated.

また、光照射手段14は、苗22の健全な成長及び花芽形成を阻害しない範囲であれば、赤色光源及び青色光源以外の光源を備えていても良い。   Further, the light irradiation means 14 may include a light source other than the red light source and the blue light source as long as the growth of the seedling 22 and the flower bud formation are not inhibited.

電源制御手段16は、光照射手段14のオンオフ制御や供給電力の制御等を行うためのものであり、これにより、人工光の断続的な照射が行われる。   The power supply control means 16 is for performing on / off control of the light irradiation means 14, control of supplied power, and the like, whereby intermittent irradiation of artificial light is performed.

温度制御手段18は、光照射手段14により苗22に人工光を照射している時の育苗室12内の温度を13〜20℃とし、人工光を照射していない時の育苗室12内の温度を3〜7℃とするためのものである。なお、花芽を短期間でより確実に形成させる観点から、温度制御手段18は、人工光を照射している時の育苗室12内の温度を13〜18℃とするためのものであることが好ましい。温度制御手段16は、育苗室12内の温度が上記範囲内で設定された温度となるように、温度センサ等の温度検出手段20で検出される育苗室12内の温度に応じて、育苗室12内に配置された加熱・冷却器(図示せず)を制御して温度調節を行う。   The temperature control means 18 sets the temperature in the nursery room 12 when the artificial light is irradiated to the seedling 22 by the light irradiation means 14 to 13 to 20 ° C., and the temperature control means 18 in the nursery room 12 when the artificial light is not irradiated. It is for setting temperature to 3-7 degreeC. In addition, from a viewpoint of forming a flower bud more reliably in a short period, the temperature control means 18 is for making the temperature in the nursery room 12 at the time of irradiating artificial light into 13-18 degreeC. preferable. The temperature control means 16 is a seedling room according to the temperature in the seedling room 12 detected by the temperature detection means 20 such as a temperature sensor so that the temperature in the seedling room 12 becomes a temperature set within the above range. The temperature is adjusted by controlling a heating / cooling device (not shown) disposed in the inside.

育苗槽24は、アブラナ科植物の苗22を育苗するためのものであり、例えば、育苗パレット等の容器に培土を入れて灌水が施された状態となっている。   The seedling raising tank 24 is for raising the seedlings 22 of the cruciferous plant, and is in a state in which, for example, the cultivated soil is put in a container such as a seedling pallet and irrigated.

次に、本発明のアブラナ科植物の花芽誘導方法を、上述した構成を有するアブラナ科植物の花芽誘導装置10を用いて行う場合について説明する。なお、以下の説明では、アブラナ科植物がチンゲンサイである場合について説明する。   Next, the case where the flower bud induction | guidance | derivation method of the cruciferous plant of this invention is performed using the flower bud induction | guidance apparatus 10 of the cruciferous plant which has the structure mentioned above is demonstrated. In addition, in the following description, the case where the cruciferous plant is Chingensai will be described.

まず、育苗槽24にチンゲンサイの種を播種し、通常の環境下で自然栽培する。このとき、光源は特に制限されず、太陽光のほか、ランプや半導体光源等を適宜使用することができる。また、灌水や施肥等も通常と同様の条件で行う。そして、チンゲンサイの種が発芽して、本葉が数枚(1〜3枚程度)出るまで自然栽培を行う。   First, seedling seeds are sown in the seedling tank 24 and naturally cultivated in a normal environment. At this time, the light source is not particularly limited, and in addition to sunlight, a lamp, a semiconductor light source, or the like can be used as appropriate. In addition, irrigation and fertilization are performed under the same conditions as usual. Then, natural cultivation is performed until the seeds of Chingensai germinate and several true leaves (about 1 to 3) emerge.

次に、上記のように育成した苗22を、育苗槽24とともに花芽誘導装置10の育苗室12内に入れ、光照射手段14により人工光の照射を行う。ここで、育苗室12内は太陽光等の外部からの光が遮断されており、半導体光源から放射される波長400〜500nm(好ましくは450〜490nm)の青色光と、半導体光源から放射される波長600〜700nm(好ましくは640〜680nm)の赤色光とを含む人工光を苗22に断続的に照射する。なお、苗22を育苗室12内に入れて人工光の照射を開始する時期は、花芽をより短期間で形成させる観点から、苗22に本葉1〜2枚が出た後とすることが好ましい。   Next, the seedlings 22 grown as described above are placed in the seedling raising room 12 of the flower bud induction device 10 together with the seedling raising tank 24, and artificial light is irradiated by the light irradiation means 14. Here, the inside of the seedling room 12 is blocked from outside light such as sunlight, and is emitted from the semiconductor light source with blue light having a wavelength of 400 to 500 nm (preferably 450 to 490 nm) emitted from the semiconductor light source. Artificial light including red light having a wavelength of 600 to 700 nm (preferably 640 to 680 nm) is intermittently applied to the seedling 22. In addition, the time which puts the seedling 22 in the nursery room 12 and starts irradiation of artificial light may be after 1 to 2 main leaves appear on the seedling 22 from the viewpoint of forming flower buds in a shorter period of time. preferable.

ここで、人工光は上記青色光及び上記赤色光のみからなることが好ましい。また、人工光の照射は、1日当たり連続して8〜10時間行うことが好ましく、このような周期で断続的に人工光を照射することにより、チンゲンサイの苗22の健全な成長及び花芽形成をより十分に促進することができる。   Here, the artificial light preferably includes only the blue light and the red light. Moreover, it is preferable that the artificial light irradiation is performed continuously for 8 to 10 hours per day, and the healthy growth and flower bud formation of the Chingensai seedling 22 are performed by intermittently irradiating the artificial light with such a period. It can be promoted more fully.

また、人工光の光強度は、育苗室12内で育成を開始した時の苗22の上面における光合成有効光量子束密度(PPFD)が50〜60μmol・m−2・s−1となるように調節することが好ましい。これにより、チンゲンサイの健全な成長及び花芽形成をより十分に促進することができる。なお、光強度は、育苗室12内での苗22の育成開始時から終了時まで一定としてもよく、苗22の上面におけるPPFDが常に一定となるように、苗22の成長に合わせて調節してもよい。 Further, the light intensity of the artificial light is adjusted so that the photosynthesis effective photon flux density (PPFD) on the upper surface of the seedling 22 when growing is started in the nursery room 12 is 50 to 60 μmol · m −2 · s −1. It is preferable to do. Thereby, the healthy growth and flower bud formation of Chingensai can be more fully promoted. The light intensity may be constant from the start to the end of the seedling 22 in the nursery room 12, and is adjusted according to the growth of the seedling 22 so that the PPFD on the upper surface of the seedling 22 is always constant. May be.

また、育苗室12内の温度は、温度制御手段18により、人工光を照射している時の育苗室12内の温度を13〜20℃とし、人工光を照射していない時の育苗室12内の温度を3〜7℃とする。なお、花芽を短期間でより確実に形成させる観点から、人工光を照射している時の育苗室12内の温度を13〜18℃とすることが好ましい。   The temperature in the seedling room 12 is set to 13 to 20 ° C. when the artificial light is irradiated by the temperature control means 18, and the seedling room 12 when the artificial light is not irradiated. The inside temperature is 3-7 ° C. In addition, it is preferable to make the temperature in the seedling raising room 12 at the time of irradiating artificial light into 13-18 degreeC from a viewpoint of forming a flower bud more reliably in a short period.

本発明の花芽誘導方法において、上述した人工光の照射を行う期間については特に制限されないが、苗22に本葉が更に数枚出るまで(本葉の枚数が合計で2〜5枚程度となるまで)行うことが好ましい。また、具体的な日数としては、育苗室12内に苗22を入れた時の苗令や、育苗室12内の設定温度等によっても異なるが、苗22を育苗室12内に入れてから10日間以上行うことが好ましく、20〜30日間行うことが好ましい。   In the flower bud induction method of the present invention, the period for performing the artificial light irradiation described above is not particularly limited, but until several more true leaves appear on the seedling 22 (the total number of true leaves is about 2 to 5). It is preferable to carry out. Further, the specific number of days varies depending on the seedling age when the seedling 22 is put in the nursery room 12, the set temperature in the seedling room 12, and the like, but it is 10 after the seedling 22 is put in the seedling room 12. It is preferable to carry out for more than a day, and it is preferable to carry out for 20-30 days.

また、花芽誘導装置10を用いた苗22の育成中、灌水や施肥等は通常のチンゲンサイの苗の育成時と同様の条件で行う。   In addition, during the growth of the seedlings 22 using the flower bud induction device 10, irrigation, fertilization, etc. are performed under the same conditions as those for the normal growth of seedlings.

このように花芽誘導装置10を用いて苗22を育成した後、苗22の定植を行い、通常の環境下で自然栽培する。このときの光源としても特に制限されず、太陽光のほか、ランプや半導体光源等を適宜使用することができる。また、灌水や施肥等も通常と同様の条件で行う。   Thus, after growing the seedling 22 using the flower bud induction device 10, the seedling 22 is planted and cultivated naturally under a normal environment. The light source at this time is not particularly limited, and in addition to sunlight, a lamp, a semiconductor light source, or the like can be used as appropriate. In addition, irrigation and fertilization are performed under the same conditions as usual.

以上説明した花芽誘導方法によりアブラナ科植物の苗22を育成することにより、苗22を健全に成長させることができるとともに、一年を通して花芽を確実に形成することができる。   By growing the Brassicaceae plant seedlings 22 by the flower bud induction method described above, the seedlings 22 can be grown healthy and the flower buds can be reliably formed throughout the year.

そして、食用として花芽を必要とする場合には、チンゲンサイが十分に生育し、花芽の形成及び抽苔を確認した後に収穫する。一方、種子を必要とする場合には、花芽の形成及び抽苔を確認し、花芽が開花し、更に種子ができた後に種子を採取する。   And when flower buds are needed for food, Chingensai grows sufficiently and is harvested after confirming flower bud formation and extraction. On the other hand, when seeds are required, the formation of flower buds and extraction are confirmed, the seeds are collected after the flower buds have bloomed and seeds have been formed.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

[実施例1及び比較例1〜4]
育苗パレット(10穴×20列)に培土を入れ、チンゲンサイの種(品種:早生華京)を各穴に播種した後に、十分な灌水を行った。なお、播種は自然栽培した場合でも花芽が形成される時期となる11月末(日中の気温:8〜10℃)に行った。
[Example 1 and Comparative Examples 1 to 4]
Soil was placed in a seedling pallet (10 holes × 20 rows) and seeds of Chingensai (variety: Sayaka Hayase) were sown in each hole, followed by sufficient irrigation. In addition, sowing was performed at the end of November (daytime temperature: 8 to 10 ° C.), which is the time when flower buds are formed even when naturally cultivated.

そして、種が発芽した後、本葉1〜3枚が出るまでの約1週間、太陽光を光源として自然栽培した。このときの灌水や施肥等の条件は、通常のチンゲンサイの苗を育成する際の条件と同様とした。この段階まで苗を育成した育苗パレットを、実施例1及び比較例1〜4用に5つ用意した。   And after seed germination, it was naturally cultivated by using sunlight as a light source for about one week until 1 to 3 main leaves appeared. The conditions such as irrigation and fertilization at this time were the same as the conditions for growing a normal Chingensai seedling. Five seedling pallets for growing seedlings up to this stage were prepared for Example 1 and Comparative Examples 1 to 4.

次に、上記のように育成した苗について、本葉2〜5枚が出るまでの30日間、実施例1及び比較例1〜4のそれぞれについて以下の条件で育苗を行った。なお、灌水や施肥等の条件は、通常のチンゲンサイの苗を育成する際の条件と同様とした。   Next, for the seedlings grown as described above, seedlings were grown under the following conditions for each of Example 1 and Comparative Examples 1 to 4 for 30 days until 2 to 5 true leaves appeared. The conditions for irrigation, fertilization, etc. were the same as the conditions for growing a normal Chingensai seedling.

(1)実施例1
まず、上記の育苗パレットを外部の光が遮断されたチャンバー内に移した。次に、中心波長470nmの青色光を発する砲弾型の青色LED(商品名:NSPB500、日亜化学工業社製、照射角:30°、光度:2.4cd)20個と、中心波長660nmの赤色光を発する砲弾型の赤色LED(商品名:HLMP−C025、ヒューレットパッカード社製、照射角:25°、光度:1cd)80個とを図3に示すように基板上に配置し、これを防水性の透明プラスチックカバーで覆った構成を有するLEDアレイを用意した。このLEDアレイを、苗の上面からの距離が約10cmの位置に、育苗パレットと平行となるように配置した。
(1) Example 1
First, the above seedling pallet was moved into a chamber where external light was blocked. Next, 20 bullet-shaped blue LEDs (trade name: NSPB500, manufactured by Nichia Corporation, irradiation angle: 30 °, luminous intensity: 2.4 cd) emitting blue light with a central wavelength of 470 nm, and red with a central wavelength of 660 nm 80 bullet-shaped red LEDs emitting light (trade name: HLMP-C025, manufactured by Hewlett-Packard, irradiation angle: 25 °, luminous intensity: 1 cd) are arranged on a substrate as shown in FIG. An LED array having a configuration covered with a transparent plastic cover was prepared. This LED array was arranged at a position about 10 cm away from the top surface of the seedling so as to be parallel to the seedling pallet.

この状態で、LEDアレイにより青色光及び赤色光からなる人工光を苗に照射した。なお、人工光の照射時間は、1日当たり8時から17時までの9時間照射し、それ以外の15時間は照射しないこととした。また、チャンバー内の温度は、人工光の照射時は15℃とし、非照射時は5℃とした。また、人工光の照射時の光強度は、苗の上面でのPPFDが約54μmol・m−2・s−1(照度:1000lx)となるように調節し、LEDアレイに印加する電圧を24V、電流を0.3Aとした。 In this state, the seedlings were irradiated with artificial light composed of blue light and red light by the LED array. The artificial light was irradiated for 9 hours from 8:00 to 17:00 per day, and the other 15 hours were not irradiated. The temperature in the chamber was 15 ° C. when irradiated with artificial light and 5 ° C. when not irradiated. Moreover, the light intensity at the time of artificial light irradiation is adjusted so that the PPFD on the upper surface of the seedling is about 54 μmol · m −2 · s −1 (illuminance: 1000 lx), and the voltage applied to the LED array is 24 V, The current was 0.3A.

(2)比較例1
本葉1〜2枚が出るまでの自然栽培と同様の条件で、太陽光を光源として自然栽培を行った。なお、育苗時の平均気温は、日中(8:00〜17:00)で約10℃、夜間(17:00〜8:00)で約4℃であった。
(2) Comparative Example 1
Natural cultivation was performed using sunlight as a light source under the same conditions as natural cultivation until one to two true leaves were produced. In addition, the average temperature at the time of raising seedlings was about 10 ° C. during the day (8:00 to 17:00) and about 4 ° C. at night (17:00 to 8:00).

(3)比較例2
LEDアレイとして、中心波長660nmの赤色光を発する砲弾型の赤色LED(商品名:HLMP−C025、ヒューレットパッカード社製、照射角:25°、光度:1cd)100個を備えるものを使用した以外は実施例1と同様の条件で育苗を行った。
(3) Comparative Example 2
Except for using an LED array comprising 100 bullet-type red LEDs (trade name: HLMP-C025, manufactured by Hewlett-Packard, irradiation angle: 25 °, luminous intensity: 1 cd) emitting red light having a center wavelength of 660 nm. Seedlings were grown under the same conditions as in Example 1.

(4)比較例3
LEDアレイとして、中心波長660nmの赤色光を発するチップ型の赤色LED(商品名:TLOH1100、東芝社製、照射角:180°、光度:0.27cd)84個を備えるものを使用した以外は実施例1と同様の条件で育苗を行った。
(4) Comparative Example 3
Implemented except that an LED array having 84 chip-type red LEDs (trade name: TLOH1100, manufactured by Toshiba Corporation, irradiation angle: 180 °, luminous intensity: 0.27 cd) emitting red light with a central wavelength of 660 nm was used as the LED array. Seedlings were grown under the same conditions as in Example 1.

(5)比較例4
LEDアレイとして、中心波長470nmの青色光を発するチップ型の青色LED(商品名:NSCB310、日亜化学工業社製、照射角:180°、光度:0.63cd)84個を備えるものを使用した以外は実施例1と同様の条件で育苗を行った。
(5) Comparative Example 4
As the LED array, one having 84 chip-type blue LEDs (trade name: NSCB310, manufactured by Nichia Corporation, irradiation angle: 180 °, luminous intensity: 0.63 cd) emitting blue light having a central wavelength of 470 nm was used. The seedlings were grown under the same conditions as in Example 1 except for the above.

以上のように実施例1及び比較例1〜4のそれぞれについて育苗条件を変えた日を1日目とし、経過日数30日目までの苗の生育状態(苗の高さ及び本葉の枚数)を観察した。苗の高さ[mm]の測定結果を表1に、本葉の枚数[枚]の計数結果を表2にそれぞれ示す。ここで、苗の高さ及び本葉の枚数は、任意に選択した苗5株の平均値である。また、図4は実施例1及び比較例1〜4の苗における経過日数と苗の高さとの関係を示すグラフである。   As mentioned above, the day when the seedling conditions were changed for each of Example 1 and Comparative Examples 1 to 4 was regarded as the first day, and the seedling growth state (the height of seedlings and the number of true leaves) up to the 30th day after the lapse of days. Was observed. Table 1 shows the results of measuring the height [mm] of the seedlings, and Table 2 shows the results of counting the number of real leaves [sheets]. Here, the height of the seedling and the number of true leaves are average values of arbitrarily selected 5 seedlings. Moreover, FIG. 4 is a graph which shows the relationship between the elapsed days and the height of a seedling in the seedling of Example 1 and Comparative Examples 1-4.

Figure 0004159485
Figure 0004159485

Figure 0004159485
Figure 0004159485

また、図5(a)は、実施例1の30日目の苗の組織を示す図であり、図5(b)は、図5(a)において示された苗の線図である。図6(a)は、比較例1の30日目の苗の組織を示す図であり、図6(b)は、図6(a)において示された苗の線図である。図7(a)は、比較例2の30日目の苗の組織を示す図であり、図7(b)は、図7(a)において示された苗の線図である。図8(a)は、比較例3の30日目の苗の組織を示す図であり、図8(b)は、図8(a)において示された苗の線図である。図9(a)は、比較例4の30日目の苗の組織を示す図であり、図9(b)は、図9(a)において示された苗の線図である。   FIG. 5 (a) is a diagram showing the tissue of the seedlings on the 30th day of Example 1, and FIG. 5 (b) is a diagram of the seedlings shown in FIG. 5 (a). FIG. 6A is a diagram showing the structure of the seedling of the 30th day of Comparative Example 1, and FIG. 6B is a diagram of the seedling shown in FIG. 6A. FIG. 7A is a diagram showing the structure of the seedling of the 30th day of Comparative Example 2, and FIG. 7B is a diagram of the seedling shown in FIG. FIG. 8A is a diagram showing the structure of the seedling of the 30th day of Comparative Example 3, and FIG. 8B is a diagram of the seedling shown in FIG. 8A. FIG. 9A is a diagram showing the structure of the seedling of the 30th day of Comparative Example 4, and FIG. 9B is a diagram of the seedling shown in FIG. 9A.

表1〜2及び図5〜9に示した結果から明らかなように、実施例1の苗は、比較例1の苗とよく似た成長を示しつつ、茎の太さや葉の大きさが比較例1の苗の2倍ほどあり、葉は濃緑が強く、健全に成長していることが確認された。比較例2の苗は、全体が黄緑で本葉が出ないくらいに弱々しくモヤシ状であることが確認された。比較例3の苗は、極端に成長が悪く、茎も細く葉も小さくモヤシ状であることが確認され、その後の定植が不可能な状態であった。比較例4の苗は、徒長が著しくて茎が細くモヤシ状であり、葉の大きさも実施例1と比べて非常に小さいことが確認された。   As is clear from the results shown in Tables 1 and 2 and FIGS. 5 to 9, the seedlings of Example 1 showed similar growth to the seedlings of Comparative Example 1 while comparing stem thickness and leaf size. There were about twice as many seedlings as in Example 1, and the leaves were strong in dark green and confirmed to be growing healthy. It was confirmed that the seedlings of Comparative Example 2 were weak green and green so that the whole was yellow-green and the true leaves did not come out. The seedling of Comparative Example 3 was confirmed to be extremely poor in growth, thin in stem, thin in leaf and small, and in a state where subsequent planting was impossible. It was confirmed that the seedling of Comparative Example 4 had a very large length, a thin stem and a palm shape, and the leaf size was very small as compared with Example 1.

次に、上記のように育苗した実施例1及び比較例1〜2、4の苗を定植(定植間隔:30cm×15cm)し、収穫が可能な程度に成長するまでの約2ヶ月間、太陽光を光源として自然栽培した。なお、灌水や施肥等の条件は、通常のチンゲンサイの栽培条件と同様とした。   Next, the seedlings of Example 1 and Comparative Examples 1 to 2 and 4 that were raised as described above were planted (fixed planting interval: 30 cm × 15 cm), and the sun was grown for about 2 months until they were grown to the extent that they could be harvested. Naturally cultivated using light as a light source. In addition, conditions, such as irrigation and fertilization, were made the same as the normal cultivation conditions of Chingensai.

この栽培期間中、外観を観察することにより、実施例1のチンゲンサイで最も早く花芽が確認され(定植後52日目)、次いで、比較例1(定植後59日目)、比較例2(定植後62日目)、比較例4(定植後65日目)の順で花芽が確認された。また、収穫直前のチンゲンサイの高さ[cm]を表3に示す。ここで、チンゲンサイの高さは、任意に選択したチンゲンサイ5株の平均値である。   During this cultivation period, by observing the appearance, flower buds were confirmed earliest in Chingensai of Example 1 (52 days after planting), then Comparative Example 1 (59 days after planting), and Comparative Example 2 (planting) On the 62nd day after), flower buds were confirmed in the order of Comparative Example 4 (65th day after planting). In addition, Table 3 shows the height [cm] of the Chingsai rhinoceros just before harvesting. Here, the height of Ching Xing Sai is an average value of 5 Ching Xing Sai selected arbitrarily.

Figure 0004159485
Figure 0004159485

以上のように、実施例1のチンゲンサイは、比較例1〜4のものと比べて成長がよく、花芽が最も早く確認された。   As described above, the Ching Xingi of Example 1 grew better than those of Comparative Examples 1 to 4, and flower buds were confirmed earliest.

[実施例2〜3及び比較例5]
育苗パレット(10穴×20列)に培土を入れ、十分な灌水を施した後に、チンゲンサイの種(品種:早生華京)を各穴に播種した。なお、播種は、自然栽培した場合には、通常、花芽が形成されない3月末(日中の気温:18〜23℃)に行った。
[Examples 2-3 and Comparative Example 5]
After cultivating soil into a seedling pallet (10 holes × 20 rows) and sufficient irrigation, seeds of chingensai (variety: Hayakyo Hankyo) were sown in each hole. In addition, sowing was normally performed at the end of March (daytime temperature: 18 to 23 ° C.) when flower buds were not formed.

そして、種が発芽した後、本葉1〜2枚が出るまでの約1週間、太陽光を光源として自然栽培した。このときの灌水や施肥等の条件は、通常のチンゲンサイの苗を育成する際の条件と同様とした。この段階まで苗を育成した育苗パレットを、実施例2〜3及び比較例5用に3つ用意した。   And after seed germination, it was naturally cultivated using sunlight as a light source for about one week until 1 to 2 true leaves were produced. The conditions such as irrigation and fertilization at this time were the same as the conditions for growing a normal Chingensai seedling. Three seedling pallets for growing seedlings up to this stage were prepared for Examples 2-3 and Comparative Example 5.

次に、上記のように育成した苗について、本葉2〜5枚が出るまでの34日間、実施例2〜3及び比較例5のそれぞれについて以下の条件で育苗を行った。なお、灌水や施肥等の条件は、通常のチンゲンサイの苗を育成する際の条件と同様とした。   Next, for the seedlings grown as described above, seedlings were grown under the following conditions for Examples 2 to 3 and Comparative Example 5 for 34 days until 2 to 5 true leaves were produced. The conditions for irrigation, fertilization, etc. were the same as the conditions for growing a normal Chingensai seedling.

(1)実施例2
実施例1と同様の条件で育苗を行った。
(1) Example 2
Seedlings were grown under the same conditions as in Example 1.

(2)実施例3
実施例1と同様の条件で育苗を行った。
(2) Example 3
Seedlings were grown under the same conditions as in Example 1.

(3)比較例5
比較例1と同様の条件で育苗を行った。なお、育苗時の平均気温は、日中(8:00〜17:00)で約20℃、夜間(17:00〜8:00)で約8℃であった。
(3) Comparative Example 5
Seedlings were grown under the same conditions as in Comparative Example 1. In addition, the average temperature at the time of raising seedlings was about 20 ° C. during the day (8:00 to 17:00) and about 8 ° C. at night (17:00 to 8:00).

以上のように実施例2〜3及び比較例5のそれぞれについて育苗条件を変えた日を1日目とし、経過日数34日目までの苗の生育状態(苗の高さ及び本葉の枚数)を観察した。苗の高さ[mm]の測定結果を表4に、本葉の枚数[枚]の計数結果を表5にそれぞれ示す。ここで、苗の高さ及び本葉の枚数は、任意に選択した苗5株の平均値である。また、図10は実施例2〜3及び比較例5の苗における経過日数と苗の高さとの関係を示すグラフである。   As described above, the day when the seedling conditions were changed for each of Examples 2 to 3 and Comparative Example 5 was regarded as the first day, and the growth state of the seedlings up to the 34th day (number of seedlings and the number of true leaves). Was observed. Table 4 shows the results of measuring the height [mm] of the seedlings, and Table 5 shows the results of counting the number of true leaves [sheets]. Here, the height of the seedling and the number of true leaves are average values of arbitrarily selected 5 seedlings. Moreover, FIG. 10 is a graph which shows the relationship between the elapsed days and the height of a seedling in the seedlings of Examples 2-3 and Comparative Example 5.

Figure 0004159485
Figure 0004159485

Figure 0004159485
Figure 0004159485

実施例2〜3及び比較例5の苗は、いずれも健全に成長していることが確認された。但し、葉の色は、実施例2〜3の苗の方が比較例5の苗よりも濃緑が強く良好であった。   It was confirmed that all the seedlings of Examples 2 to 3 and Comparative Example 5 were growing healthy. However, the leaf color of the seedlings of Examples 2-3 was stronger and darker than that of Comparative Example 5.

次に、上記のように育苗した実施例2〜3及び比較例5の苗を定植(定植間隔:30cm×15cm)し、収穫が可能な程度に成長するまでの22日間、太陽光のもとで自然栽培した。なお、灌水や施肥等の条件は、通常のチンゲンサイの栽培条件と同様とした。   Next, the seedlings of Examples 2 to 3 and Comparative Example 5 that were grown as described above were planted (fixed planting interval: 30 cm × 15 cm), and were subjected to sunlight for 22 days until they were grown to the extent that they could be harvested. Grown naturally. In addition, conditions, such as irrigation and fertilization, were made the same as the normal cultivation conditions of Chingensai.

この栽培期間中、外観を観察することにより、実施例2及び3の株では定植してから15日目に花芽が確認されたが、比較例5の株では22日目になっても花芽が確認されなかった。   During this cultivation period, by observing the appearance, flower buds were confirmed on the 15th day after planting in the strains of Examples 2 and 3, but in the strain of Comparative Example 5, flower buds were observed even on the 22nd day. It was not confirmed.

図11(a)は、実施例2の定植から22日目のチンゲンサイの株を縦割りにしたものの組織を示す図であり、図11(b)は、図11(a)において示されたチンゲンサイの株の線図である。また、図12(a)は、比較例5の定植から22日目のチンゲンサイの株を縦割りにしたものの組織を示す図であり、図12(b)は、図12(a)において示されたチンゲンサイの株の線図である。   FIG. 11 (a) is a view showing the structure of the chingensai strain on the 22nd day after the planting of Example 2 in a vertical section, and FIG. 11 (b) shows the chinjinsai shown in FIG. 11 (a). FIG. FIG. 12 (a) is a diagram showing the structure of the chingensai strain on the 22nd day after the planting of Comparative Example 5 in a vertically divided manner, and FIG. 12 (b) is shown in FIG. 12 (a). FIG.

図11に示した結果から明らかなように、実施例2のチンゲンサイには花芽が形成されており、抽苔していることが確認された。一方、比較例5のチンゲンサイには花芽が形成されていないことが確認された。   As is clear from the results shown in FIG. 11, it was confirmed that flowering buds were formed on the dung beetle of Example 2 and extraction was carried out. On the other hand, it was confirmed that no flower buds were formed on the Chingensai of Comparative Example 5.

以上、実施例及び比較例を用いて説明したように、本発明のアブラナ科植物の花芽誘導方法によれば、苗を健全に成長させることができるとともに、季節によらず花芽を確実に形成することが可能である。   As described above with reference to Examples and Comparative Examples, according to the method of inducing flower buds of the Brassicaceae plant of the present invention, it is possible to grow seedlings soundly and reliably form flower buds regardless of the season. It is possible.

本発明のアブラナ科植物の花芽誘導装置の好適な一実施形態を示す構成図である。It is a block diagram which shows suitable one Embodiment of the flower bud induction | guidance | derivation apparatus of the cruciferous plant of this invention. 花芽誘導装置10における光照射手段14の一例を示す模式図である。It is a schematic diagram which shows an example of the light irradiation means 14 in the flower bud induction apparatus 10. 光照射手段14における青色光源34及び赤色光源36の配置の一例を示す模式図である。4 is a schematic diagram showing an example of the arrangement of a blue light source 34 and a red light source 36 in the light irradiation means 14. FIG. 実施例1及び比較例1〜4の苗における経過日数と苗の高さとの関係を示すグラフである。It is a graph which shows the relationship between the elapsed days and the height of a seedling in the seedling of Example 1 and Comparative Examples 1-4. (a)は、実施例1の30日目の苗の組織を示す図であり、(b)は、(a)において表された苗の線図である。(A) is a figure which shows the structure | tissue of the seedling of the 30th day of Example 1, (b) is a diagram of the seedling represented in (a). (a)は、比較例1の30日目の苗の組織を示す図であり、(b)は、(a)において表された苗の線図である。(A) is a figure which shows the structure | tissue of the seedling of the 30th day of the comparative example 1, (b) is a diagram of the seedling represented in (a). (a)は、比較例2の30日目の苗の組織を示す図であり、(b)は、(a)において表された苗の線図である。(A) is a figure which shows the structure | tissue of the seedling of the 30th day of the comparative example 2, (b) is a diagram of the seedling represented in (a). (a)は、比較例3の30日目の苗の組織を示す図であり、(b)は、(a)において表された苗の線図である。(A) is a figure which shows the structure | tissue of the seedling of the 30th day of the comparative example 3, (b) is a diagram of the seedling represented in (a). (a)は、比較例4の30日目の苗の組織を示す図であり、(b)は、(a)において表された苗の線図である。(A) is a figure which shows the structure | tissue of the seedling of the 30th day of the comparative example 4, (b) is a diagram of the seedling represented in (a). 実施例2〜3及び比較例5の苗における経過日数と苗の高さとの関係を示すグラフである。It is a graph which shows the relationship between the elapsed days in the seedlings of Examples 2-3 and Comparative Example 5, and the height of a seedling. (a)は、実施例2の定植から22日目のチンゲンサイの株を縦割りにしたものの組織を示す図であり、(b)は、(a)において表されたチンゲンサイの株の線図である。(A) is a figure which shows the structure | tissue of what divided the strain of the Chingensai of the 22nd day from the fixed planting of Example 2, and (b) is the diagram of the strain of the Chingensai represented in (a). is there. (a)は、比較例5の定植から22日目のチンゲンサイの株を縦割りにしたものの組織を示す図であり、(b)は、(a)において表されたチンゲンサイの株の線図である。(A) is a figure which shows the structure | tissue of what divided the strain of Chingensai of the 22nd day from the fixed planting of the comparative example 5 and (b) is a diagram of the strain of Chingensai represented in (a). is there.

符号の説明Explanation of symbols

10…花芽誘導装置、12…育苗室、14…光照射手段、16…電源制御手段、18…温度制御手段、20…温度センサ、22…苗、24…育苗槽、30…基板、32…半導体光源、34…青色光源、36…赤色光源。   DESCRIPTION OF SYMBOLS 10 ... Flower bud induction | guidance apparatus, 12 ... Nursery room, 14 ... Light irradiation means, 16 ... Power supply control means, 18 ... Temperature control means, 20 ... Temperature sensor, 22 ... Seedling, 24 ... Nursery tank, 30 ... Substrate, 32 ... Semiconductor Light source 34 ... blue light source 36 ... red light source.

Claims (3)

外部からの光を遮断した育苗室において、アブラナ科植物の苗に半導体光源から放射される波長400〜500nmの青色光と、半導体光源から放射される波長600〜700nmの赤色光とを含む人工光を断続的に照射し、
前記人工光を照射している時の前記育苗室内の温度を13〜20℃とし、前記人工光を照射していない時の前記育苗室内の温度を3〜7℃とし、
前記苗を、本葉1〜2枚が出た状態で前記育苗室内に入れ、前記苗への前記人工光の断続的な照射を、少なくとも10日間以上行うことを特徴とするアブラナ科植物の花芽誘導方法。
Artificial light containing blue light with a wavelength of 400 to 500 nm emitted from a semiconductor light source and red light with a wavelength of 600 to 700 nm emitted from a semiconductor light source in a nursery room that blocks light from the outside Is irradiated intermittently,
The temperature in the nursery room when irradiating the artificial light is 13 to 20 ° C, the temperature in the nursery room when not irradiating the artificial light is 3 to 7 ° C ,
A flower bud of a cruciferous plant characterized in that the seedling is placed in the nursery room in a state where one or two main leaves are exposed, and the artificial light is intermittently irradiated to the seedling for at least 10 days. Guidance method.
前記人工光は、前記青色光及び前記赤色光のみからなることを特徴とする請求項1記載のアブラナ科植物の花芽誘導方法。   The method according to claim 1, wherein the artificial light comprises only the blue light and the red light. 前記人工光を1日当たり連続して8〜10時間、前記苗に照射することを特徴とする請求項1又は2記載のアブラナ科植物の花芽誘導方法。
The method for inducing flower buds of cruciferous plants according to claim 1 or 2, wherein the artificial light is irradiated to the seedling continuously for 8 to 10 hours per day.
JP2004025851A 2004-02-02 2004-02-02 Method for inducing flower buds of cruciferous plants Expired - Fee Related JP4159485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004025851A JP4159485B2 (en) 2004-02-02 2004-02-02 Method for inducing flower buds of cruciferous plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004025851A JP4159485B2 (en) 2004-02-02 2004-02-02 Method for inducing flower buds of cruciferous plants

Publications (2)

Publication Number Publication Date
JP2005211052A JP2005211052A (en) 2005-08-11
JP4159485B2 true JP4159485B2 (en) 2008-10-01

Family

ID=34908104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004025851A Expired - Fee Related JP4159485B2 (en) 2004-02-02 2004-02-02 Method for inducing flower buds of cruciferous plants

Country Status (1)

Country Link
JP (1) JP4159485B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007082492A (en) * 2005-09-26 2007-04-05 Institute For Environmental Sciences Method for collecting seaweed seeds
JP4969114B2 (en) * 2006-02-22 2012-07-04 佐藤工業株式会社 Lawn surface laying material
JP4759746B2 (en) * 2006-12-08 2011-08-31 国立大学法人 筑波大学 Plant cultivation method
CN112056196A (en) * 2020-09-03 2020-12-11 福建省中科生物股份有限公司 Method for promoting bolting of bolting vegetables in plant factory

Also Published As

Publication number Publication date
JP2005211052A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
EP2946654B1 (en) Method for cultivating fruit or vegetable
JP6325771B2 (en) Cultivation method using plant growing lighting device and plant growing lighting device
JP7476192B2 (en) Plant cultivation light source and plant cultivation device
JP5779604B2 (en) Plant cultivation method
JP6444611B2 (en) Plant cultivation method
JP5102190B2 (en) Plant cultivation method
JP2020500027A (en) Segmented addressable light engine for horticulture
JP5723903B2 (en) Plant cultivation method
WO2022102328A1 (en) Tomato plant, tomato fruit, and method for cultivating tomato plant
JP2001054320A (en) Method for culturing plant
JP2005192517A (en) Method for growing plant
US9241445B2 (en) Method for cultivating plant
Klamkowski et al. Influence of supplementary lighting on growth and photosynthetic activity of tomato transplants
JP2011109934A (en) Method for cultivating plant
JP4159485B2 (en) Method for inducing flower buds of cruciferous plants
JP6005787B2 (en) Fruit and vegetable cultivation method
JP2021145605A (en) Method for high-density cultivation of plants
JP2020171205A (en) Cultivation method and cultivation system of leafy vegetables
JP2001258389A (en) Method for cultivating plant
US20230128621A1 (en) Red and far-red light ratio during growth of basil
JP5723902B2 (en) Plant cultivation method
JP5376667B2 (en) Flower seedling raising method and seedling system
Goto et al. Effects of using LED supplementary lighting to improve photosynthesis on growth and yield of strawberry forcing culture
KR102686983B1 (en) Method for producing Boehmeria nivea with increased anthocyanin content in smart farm
JP7373852B2 (en) How to grow cherry tomato seedlings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140725

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees