WO2013088722A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2013088722A1
WO2013088722A1 PCT/JP2012/007965 JP2012007965W WO2013088722A1 WO 2013088722 A1 WO2013088722 A1 WO 2013088722A1 JP 2012007965 W JP2012007965 W JP 2012007965W WO 2013088722 A1 WO2013088722 A1 WO 2013088722A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
heat
heat exchanger
fins
fin
Prior art date
Application number
PCT/JP2012/007965
Other languages
English (en)
French (fr)
Inventor
達夫 野瀬
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013088722A1 publication Critical patent/WO2013088722A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Definitions

  • the present invention relates to a heat exchanger for an air conditioner, and more particularly to a heat exchanger for an indoor unit of an air conditioner.
  • Some heat exchangers for indoor units of air conditioners have fins with slits (for example, see Patent Document 1).
  • FIG. 7 is an enlarged view of a main part of a heat exchanger for an air conditioner described in Patent Document 1.
  • a plurality of holes 102 are provided in an aluminum fin 101 that is a thin aluminum plate, and a plurality of aluminum fins are passed through holes 102 through heat transfer tubes (not shown) through which a refrigerant passes. 101 are stacked.
  • the air and the heat transfer tubes By passing air in a direction parallel to the extending direction of the aluminum fins 101 between the laminated aluminum fins 101, the air and the heat transfer tubes through which the refrigerant flows and the aluminum fins 101 connected to the heat transfer tubes Heat exchange takes place between them.
  • the aluminum fins 101 are cut and raised to provide slits 103.
  • the present invention solves the above-mentioned conventional problems, and by adding a device to the shape of the fin cuts in the heat exchanger, adjacent to the cuts in the fin region where the refrigerant becomes supercooled liquid during heating operation. It aims at suppressing the heat exchange between the parts to perform, promoting the heat exchange between the air and the refrigerant, and improving the performance of the heat exchanger.
  • a heat exchanger for an air conditioner includes a plurality of heat transfer fins arranged in parallel at predetermined intervals with plate surfaces parallel to each other, and the plurality of heat transfer fins. And a heat transfer tube penetrating at a plurality of locations, air is supplied in a direction parallel to the plate surface of the heat transfer fin, and the windward side and the leeward side in the air flow direction are thermally blocked.
  • a heat exchanger for an air conditioner wherein at least one cut is provided in the heat transfer fin in a region where the refrigerant flowing through the heat transfer tube becomes a supercooled liquid during heating operation, and the at least one cut is It is characterized in that the heat transfer fins are completely separated from each other between the adjacent heat transfer tubes on the windward side or the leeward side of the heat transfer fins, whereby the adjacent heat transfer tubes are thermally blocked. It is a heat exchanger for air conditioners
  • the heat exchanger for an air conditioner of the present invention can promote heat exchange between air and refrigerant, and can improve the performance of the heat exchanger.
  • FIG. 1 Schematic sectional view of an air conditioner indoor unit according to Embodiment 1 of the present invention.
  • the figure of the heat exchanger in Embodiment 1 of this invention The figure of the heat exchanger in Embodiment 2 of this invention
  • the figure of the heat exchanger in Embodiment 3 of this invention The figure of the heat exchanger in Embodiment 4 of this invention
  • the figure of the heat exchanger in Embodiment 5 of this invention Figure of conventional heat exchanger
  • a first invention includes a plurality of heat transfer fins arranged in parallel at a predetermined interval with plate surfaces parallel to each other, and a heat transfer tube penetrating the plurality of heat transfer fins at a plurality of locations.
  • a heat exchanger for an air conditioner in which air is supplied in a direction parallel to the plate surface, and the windward side and the leeward side in the air flow direction are thermally shut off. At least one cut is provided in the heat transfer fin in the region where the flowing refrigerant becomes the supercooled liquid, and at least one cut is provided between the adjacent heat transfer tubes on the windward side or leeward side of the heat transfer fin. By completely separating, adjacent heat transfer tubes are thermally blocked.
  • the second invention in particular, there are a plurality of at least one notch of the first invention, and they are arranged in parallel at predetermined intervals.
  • the third aspect of the invention relates to the diameter of the hole through which the heat transfer tube passes on the leeward side where at least one notch exists, and the diameter of the hole through which the heat transfer tube passes on the leeward side, particularly in the heat transfer fins of the first and second inventions Is bigger than.
  • the diameter of the heat transfer tube is made different according to the phase state of the refrigerant flowing through the heat transfer tube.
  • the flow rate is increased by using a thinner heat transfer tube to promote heat transfer between the refrigerant and the inner wall surface of the heat transfer tube, and the dryness is high.
  • thicker heat transfer tubes are used to minimize the increase in flow resistance. Thereby, the heat exchange efficiency of the whole heat exchanger can be improved.
  • the interval between the cuts is equal to the interval between the holes through which the heat transfer tubes pass.
  • At least one notch of the first to fifth inventions has a length of 10 mm or more from the end portion of the heat transfer fin, and a distance from each other is 6 mm or more.
  • the sixth invention is a method for manufacturing a heat exchanger for an air conditioner according to any one of the first to sixth inventions, in particular, using a cutting device after expanding a heat transfer tube through a heat transfer fin. Forming at least one notch in the heat transfer fin. Thereby, the process of a notch can be easily performed after inserting a heat exchanger tube in a heat exchanger fin.
  • FIG. 1 shows an indoor unit for an air conditioner according to Embodiment 1 of the present invention.
  • the indoor unit shown in FIG. 1 has an indoor unit main body 201.
  • a heat exchanger 202, a front panel 203, a blower 204, and the like are fixed.
  • the front panel 203 forms a front portion of the indoor unit main body 201 and has a number of ventilation holes.
  • the blower 204 sucks indoor air through the ventilation holes of the front panel 203, exchanges heat with the heat exchanger 202, and blows out the air from the air outlet 205 into the room.
  • the heat exchanger 202 includes a large number of heat transfer fins 11 each having a plurality of through holes 12 and 13 and a plurality of heat transfer tubes 207 that are inserted through the through holes 12 and 13 of the heat transfer fins 11 and pass the refrigerant. Prepare.
  • the plurality of heat transfer fins 11 are arranged in parallel at predetermined intervals with their plate surfaces parallel to each other.
  • the plurality of heat transfer tubes 207 penetrate the plurality of heat transfer fins 11 at a plurality of locations. In the heat exchanger 202, the heat transfer fins 11 are juxtaposed at predetermined intervals in the axial direction of the heat transfer tubes 207.
  • the indoor unit main body 201 two water trays 209 that receive condensed water adhering to the heat exchanger 202 as waste water are provided.
  • the two water trays 209 are provided below the front end portion and the rear end portion of the heat exchanger 202, respectively.
  • FIG. 2 is a diagram showing a heat exchanger for an air conditioner according to the first embodiment.
  • a plurality of holes 12 and 13 are provided in the heat transfer fin 11 of the heat exchanger.
  • the holes 12 and 13 are arranged to pass the heat transfer tubes through which the refrigerant passes.
  • air is supplied in a direction parallel to the plate surface of the heat transfer fin 11 and a direction orthogonal to the heat transfer tube.
  • the first row and second row (windward side and leeward side) of the heat transfer fin 11 in the air flow direction are thermally blocked by a plurality of cuts 14 and 15.
  • the heat transfer fin 11 in the heat transfer fin 11, by providing at least one notch 16, 17, 18, 19, 20 in the region where the refrigerant becomes the supercooled liquid, On the windward side (or leeward side) of the heat transfer fins 11, the heat transfer fins 11 are completely separated between the adjacent heat transfer tubes, so that the adjacent heat transfer tubes are thermally blocked. .
  • the heat exchange amount between the low temperature region through which the supercooled liquid refrigerant passes in the heat exchanger during the heating operation and the high temperature region through which the gas-liquid two-phase refrigerant passes that is, the adjacent region having a temperature difference.
  • the amount of heat exchange between each other is suppressed. Therefore, heat exchange between the air and the refrigerant can be promoted, and the performance of the heat exchanger can be improved.
  • the heat transfer tubes are passed through a plurality of holes 12 and 13 through which the heat transfer tubes through which the refrigerant provided in the same plane of the laminated heat transfer fins 11 passes, and the heat transfer tubes are expanded.
  • the cuts 16, 17, 18, 19, and 20 are divided by a cutting device equipped with a blade. That is, in the manufacturing method of the heat exchanger for an air conditioner according to the first embodiment, the heat transfer tube is expanded through the heat transfer fins 11, and then the at least one heat transfer fin 11 is used for the heat transfer fins 11 using a cutting device. A step of forming the notches 16, 17, 18, 19, 20 is included.
  • the heat transfer fin 11 is divided by the notches 16, 17, 18, 19, and 20 in the mass production process of the heat exchanger, the divided heat transfer fin 11 can be held by the heat transfer tube. Therefore, the heat exchanger can be stably mass-produced.
  • the heat exchanger can be stably mass-produced.
  • FIG. 3 is a diagram showing a heat exchanger according to Embodiment 2 of the present invention.
  • the plurality of cuts 26, 27, 28 provided on the same plane of the heat transfer fin 21 are parallel to each other at a predetermined interval. Are lined up.
  • the heat transfer fins 21 can be more evenly divided, and the supercooled liquid refrigerant passes through the heat exchanger during heating operation.
  • the heat exchange amount between the low temperature region and the high temperature region through which the gas-liquid two-phase refrigerant passes, that is, the heat exchange amount between adjacent regions having a temperature difference can be further suppressed. Therefore, heat exchange between the air and the refrigerant can be further promoted, and the performance of the heat exchanger can be further improved.
  • parallel here also includes “substantially parallel (substantially parallel)” including errors in machine manufacturing.
  • FIG. 4 is a diagram showing a heat exchanger according to Embodiment 3 of the present invention.
  • the diameter of the hole 33 provided on the leeward side of the heat transfer fin 31 is D1
  • the diameter of the hole 32 provided on the leeward side of the heat transfer fin 31 is D2.
  • the diameter D2 of the hole 32 and the diameter D1 of the hole 33 are different.
  • the diameter of the hole 33 on the windward side where at least one notch 36, 37, 38, 39, 40 is present is made larger than the diameter of the hole 32 on the leeward side.
  • the refrigerant flowing through the heat transfer tube disposed in the hole 33 on the windward side flows through the heat transfer tube disposed in the hole 32 on the upstream side and the leeward side.
  • the refrigerant is flowing so that is on the downstream side. Therefore, during the heating operation, the refrigerant flowing through the heat transfer tube located on the windward side is in a gas-liquid two-phase state, has a high dryness and a high flow resistance, and the refrigerant flowing through the heat transfer tube located on the leeward side is It is a single-phase state with only liquid, and the dryness is low and the flow resistance is also low.
  • a thinner heat transfer tube (diameter D2 in the third embodiment) is used to increase the flow rate and transfer the refrigerant. Promotes heat transfer with the inner wall of the heat pipe. Further, in a portion where the dryness is high and the flow resistance is high, an increase in flow resistance is minimized by using a thicker heat transfer tube (diameter D1 in the third embodiment).
  • the heat exchange efficiency of the whole heat exchanger can be improved by making the diameters of the holes 32 and 33 through which the heat transfer tubes pass differ according to the phase state of the refrigerant flowing through the heat transfer tubes.
  • FIG. 5 is a diagram showing a heat exchanger according to Embodiment 4 of the present invention.
  • the distance L2 between the notches 56, 57, 58, 59 provided on the same plane of the heat transfer fin 51 is equal to each other of the holes through which the heat transfer tubes pass. It is equal to the interval L1.
  • the cuts 56, 57, 58, 59 can be easily processed.
  • the heat transfer fins 51 can be divided more uniformly, a low temperature region in which the supercooled liquid refrigerant passes in the heat exchanger during heating operation and a high temperature in which the gas-liquid two-phase refrigerant passes.
  • the amount of heat exchange with the region that is, the amount of heat exchange between adjacent regions having a temperature difference can be further suppressed. Therefore, heat exchange between the air and the refrigerant can be further promoted, and the performance of the heat exchanger can be further improved.
  • FIG. 6 shows a diagram of a heat exchanger in the fifth embodiment of the present invention.
  • At least one notch 66, 67, 68, 69 provided in the heat transfer fin 61 has a length L3 of 10 mm or more from the end of the heat transfer fin. And the distance L4 between each other is 6 mm or more. In this way, by setting the length L3 and the interval L4, it is possible to easily manage the tolerance of the depth when the cuts 66, 67, 68, 69 are processed in the heat transfer fin 61.
  • the heat exchanger for an air conditioner according to the present invention can be applied to, for example, a heat exchanger for heat dissipation used in an electronic device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 板面を互いに平行にして所定間隔で並設された複数の伝熱フィンと、複数の伝熱フィンを複数箇所で貫通している伝熱管とを備え、伝熱フィンの板面と平行な方向に空気が供給され、空気の流れ方向における風上側と風下側とが熱的に遮断されている空気調和機用熱交換器であって、暖房運転時に、伝熱管を流れる冷媒が過冷却液となる領域の伝熱フィンに少なくとも1つの切れ込みを設け、少なくとも1つの切れ込みが、伝熱フィンの風上側もしくは風下側において、隣接する伝熱管の間にて伝熱フィンを完全に分離することにより、隣接する伝熱管の間を熱的に遮断する。

Description

空気調和機
 本発明は、空気調和機用の熱交換器に関するものであり、特に空気調和機の室内機用の熱交換器に関するものである。
 空気調和機の室内機用の熱交換器として、フィンに切れ込みを形成したものがある(例えば、特許文献1参照)。
 図7は、特許文献1に記載された空気調和機用の熱交換器の要部拡大図である。特許文献1の熱交換器では、アルミの薄板であるアルミフィン101に複数の穴102を設け、穴102に、冷媒が通過する伝熱管(図示せず)を貫通させることで、多数のアルミフィン101を積層している。
 積層されたアルミフィン101同士の間に、アルミフィン101の延在方向に平行な方向に空気を通過させることで、空気と、冷媒が流れる伝熱管および伝熱管に接続されたアルミフィン101との間で熱交換が行われる。また、空気とアルミフィン101との熱交換効率を向上させるため、アルミフィン101に切り起こしスリット103を設けている。
 さらに、隣接する伝熱管の間に切れ込み104、105を設けることで、温度差のある伝熱管同士の熱交換を防止して、熱交換器における全体の熱交換効率を向上させるようにしている。
特開2004-85139号公報
 しかしながら、前記従来の構成では、暖房運転時に冷媒が過冷却液となるアルミフィン101の領域において、切れ込み105を挟んで隣接する部分同士の熱交換を防止する効果が十分でなかった。そのため、空気と冷媒との熱交換量が減少し、熱交換器の性能が低下するという課題を有していた。
 本発明は、前記従来の課題を解決するもので、熱交換器におけるフィンの切れ込みの形状に工夫を加える事で、暖房運転時に冷媒が過冷却液となるフィンの領域において、切れ込みを挟んで隣接する部分同士の熱交換を抑制して、空気と冷媒との熱交換を促進し、熱交換器の性能を向上させることを目的とするものである。
 前記従来の課題を解決するために、本発明の空気調和機用の熱交換器は、板面を互いに平行にして所定間隔で並設された複数の伝熱フィンと、前記複数の伝熱フィンを複数箇所で貫通している伝熱管とを備え、前記伝熱フィンの板面と平行な方向に空気が供給され、空気の流れ方向における風上側と風下側とが熱的に遮断されている空気調和機用の熱交換器であって、暖房運転時に、前記伝熱管を流れる冷媒が過冷却液となる領域の前記伝熱フィンに少なくとも1つの切れ込みを設け、前記少なくとも1つの切れ込みが、前記伝熱フィンの風上側もしくは風下側において、隣接する前記伝熱管の間にて前記伝熱フィンを完全に分離することにより、隣接する前記伝熱管の間を熱的に遮断することを特徴とする空気調和機用の熱交換器である。
 本発明の空気調和機用の熱交換器は、空気と冷媒との熱交換を促進し、熱交換器の性能を向上させることができる。
 本発明のこれらの態様と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。
本発明の実施の形態1における空気調和機用室内機の概略断面図 本発明の実施の形態1における熱交換器の図 本発明の実施の形態2における熱交換器の図 本発明の実施の形態3における熱交換器の図 本発明の実施の形態4における熱交換器の図 本発明の実施の形態5における熱交換器の図 従来の熱交換器の図
 第1の発明は、板面を互いに平行にして所定間隔で並設された複数の伝熱フィンと、複数の伝熱フィンを複数箇所で貫通している伝熱管とを備え、伝熱フィンの板面と平行な方向に空気が供給され、空気の流れ方向における風上側と風下側とが熱的に遮断されている空気調和機用の熱交換器であって、暖房運転時に、伝熱管を流れる冷媒が過冷却液となる領域の伝熱フィンに少なくとも1つの切れ込みを設け、少なくとも1つの切れ込みが、伝熱フィンの風上側もしくは風下側において、隣接する伝熱管の間にて伝熱フィンを完全に分離することにより、隣接する伝熱管の間を熱的に遮断する。これにより、熱交換器上の温度差の有る隣接部分同士の伝熱フィン上での熱交換をほぼ完全に無くして熱交換器内の熱ロスを抑え、純粋に空気と冷媒との熱交換量の割合を増大させて、熱交換器全体の熱交換性能を向上させることができる。
 第2の発明は、特に、第1の発明の少なくとも1つの切れ込みは複数あって、所定間隔で平行に並べられる。これにより、伝熱フィン上に挿入され相互に温度差がある複数の伝熱管同士の間の熱の移動をほぼ完全に無くし、熱交換器上の熱ロスを抑え、純粋に空気と冷媒との熱交換量の割合を増大させて、熱交換器全体の熱交換性能を向上することができる。
 第3の発明は、特に、第1~第2の発明の伝熱フィンにおいて、少なくとも1つの切れ込みが存在する風上側における伝熱管を通す穴の直径を、風下側における伝熱管を通す穴の直径よりも大きくしている。これにより、伝熱管内を流通する冷媒の相状態に応じて、伝熱管の直径を異ならせている。すなわち、乾き度が低く流通抵抗(圧力損失)が低い部分では、より細い伝熱管を用いて流通速度を上げて、冷媒と伝熱管の内壁面との伝熱を促進し、乾き度が高く流通抵抗が高い部分では、より太い伝熱管を用いて流通抵抗の増加を最小限にしている。これにより、熱交換器全体の熱交換効率を向上させることができる。
 第4の発明は、特に、第1~第4の発明の伝熱フィンにおいて、切れ込みの互いの間隔は、伝熱管を通す穴の互いの間隔に等しい。これにより、伝熱フィンの切れ込みの加工が容易になる。
 第5の発明は、特に、第1~第5の発明の少なくとも1つの切れ込みは伝熱フィンの端部から10mm以上の長さを有し、互いの間隔が6mm以上である。これにより、伝熱フィンの切れ込みの加工をする際の切れ込み深さの公差管理が容易になり、切れ込みを確実に伝熱フィンの端部から端部に渡って設けることができる。
 第6の発明は、特に、第1~第6の発明の空気調和機用の熱交換器を製造する方法であって、伝熱管を伝熱フィンに通して拡管した後、切断装置を用いて伝熱フィンに少なくとも1つの切れ込みを形成する工程を含む。これにより、伝熱フィンに伝熱管を挿入した後で切れ込みの加工が容易にできる。
 以下、本発明の実施の形態1-5について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 図1は、本発明の実施の形態1における空気調和機用の室内機を示す。図1に示す室内機は、室内機本体201を有する。室内機本体201内には、熱交換器202、前面パネル203および送風装置204等が固定されている。前面パネル203は、室内機本体201の前面部を形成するとともに、多数の通風穴を有する。送風装置204は、前面パネル203の通風穴を介して室内の空気を吸い込み、吸い込んだ空気を熱交換器202と熱交換させた上で、吹出口205から室内に吹き出す。
 熱交換器202は、各々が複数の貫通穴12、13を有する多数の伝熱フィン11と、各伝熱フィン11の貫通穴12、13に挿通されて冷媒を通す複数の伝熱管207とを備える。複数の伝熱フィン11は、板面を互いに平行にして所定間隔で並設されている。複数の伝熱管207は、複数の伝熱フィン11を複数箇所で貫通している。熱交換器202において、伝熱フィン11は伝熱管207の軸方向に所定間隔で並置される。
 室内機本体201内には、熱交換器202に付着した凝縮水を排水として受ける水受け皿209が2つ設けられている。2つの水受け皿209はそれぞれ、熱交換器202の前端部と後端部の下方に設けられている。
 図2は、本実施の形態1にかかる空気調和機用の熱交換器を示す図である。
 図2に示すように、熱交換器の伝熱フィン11には複数の穴12、13が設けられている。穴12、13は、冷媒が通過する伝熱管を通すために配置されている。このように構成される伝熱フィン11において、空気は、伝熱フィン11の板面と平行な方向かつ伝熱管と直交する方向に供給される。伝熱フィン11における空気の流れ方向の風上側1列目と2列目(風上側と風下側)は、複数の切れ込み14、15によって、熱的に遮断されている。
 上述のように構成される熱交換器について、以下に、その動作および作用を説明する。
 まず、空気調和機の暖房運転時には、過冷却状態の冷媒が通過する過冷却領域が存在して、隣接する伝熱管との間に大きな温度差を生じる。これにより、伝熱フィン11において、相対的に過冷却液の冷媒が通過する温度の低い領域と、気液二相の冷媒が通過する温度の高い領域が生まれ、温度差の有る領域が隣接することとなる。隣接する伝熱管相互間で伝熱フィン11を介して熱交換が行われ、冷媒と空気との熱交換が妨げられる。
 本実施の形態1にかかる空気調和機用の熱交換器では、伝熱フィン11において、冷媒が過冷却液となる領域に少なくとも1つの切れ込み16、17、18、19、20を設けることにより、伝熱フィン11の風上側(もしくは風下側)において、隣接する伝熱管の間にて伝熱フィン11を完全に分離することにより、隣接する伝熱管の間を熱的に遮断するようにしている。これにより、暖房運転時に熱交換器において過冷却液の冷媒が通過する温度の低い領域と、気液二相の冷媒が通過する温度の高い領域との熱交換量、すなわち温度差のある隣接領域同士の熱交換量を抑えるようにしている。よって、空気と冷媒との熱交換を促進することができ、熱交換器の性能を向上させることができる。
 また、本実施の形態1では、積層された伝熱フィン11の同一平面状に設けた冷媒が通過する伝熱管を通す複数の穴12と13に伝熱管を通し、その伝熱管を拡管して熱交換器を形成した後、刃物を装備した切断装置で切れ込み16、17、18、19、20の分断をするようにしている。すなわち、本実施の形態1における空気調和機用の熱交換器の製造方法には、伝熱管を伝熱フィン11に通して拡管した後、切断装置を用いて伝熱フィン11に前記少なくとも1つの切れ込み16、17、18、19、20を形成する工程が含まれる。これにより、熱交換器の量産工程において、伝熱フィン11が切れ込み16、17、18、19、20によって分断されても、分断された伝熱フィン11を伝熱管により保持することができる。よって、熱交換器を安定的に量産することができる。
 また、刃物を装備した切断装置を用いて、切れ込み16、17、18、19、20を形成することで、熱交換器の量産工程において、切れ込み16、17、18、19、20に起因して作業者が負傷する可能性を低減するとともに、安定的に熱交換器を量産することができる。
 (実施の形態2)
 図3は、本発明の実施の形態2における熱交換器を示す図である。
 図3に示すように、本実施の形態2における空気調和機用の熱交換器では、伝熱フィン21の同一平面状に設けられた複数の切れ込み26、27、28は、所定間隔で平行に並べられている。このように、複数の切れ込み26、27、28を所定間隔で平行に並べることにより、伝熱フィン21をより均一に分断することができ、暖房運転時に熱交換器において過冷却液の冷媒が通過する温度の低い領域と、気液二相の冷媒が通過する温度の高い領域との熱交換量、すなわち温度差のある隣接領域同士の熱交換量をより抑えることができる。よって、空気と冷媒との熱交換をより促進することができ、熱交換器の性能をさらに向上させることができる。なお、ここで言う「平行」には、機械製造上の誤差を含む「実質的な平行(略平行)」も含むものとする。
 (実施の形態3)
 図4は、本発明の実施の形態3における熱交換器を示す図である。
 図4に示すように、伝熱フィン31の風上側に設けられた穴33の直径をD1とし、伝熱フィン31の風下側に設けられた穴32の直径をD2とする。本実施の形態3においては、穴32の直径D2と穴33の直径D1が異なる。具体的には、伝熱フィン31において、少なくとも1つの切れ込み36、37、38、39、40が存在する風上側における穴33の直径を、風下側における穴32の直径よりも大きくしている。
 また、本実施の形態3における熱交換器では、暖房運転時において、風上側の穴33に配置される伝熱管に流れる冷媒が上流側、風下側の穴32に配置される伝熱管に流れる冷媒が下流側となるように冷媒を流している。よって、暖房運転時において、風上側に位置される伝熱管を流れる冷媒は、気液2相状態で、乾き度が高く流通抵抗も高くなり、風下側に位置される伝熱管を流れる冷媒は、液体のみの単相状態であり、乾き度が低く流通抵抗も低くなっている。
 このような構成によれば、乾き度が低く流通抵抗(圧力損失)が低い部分では、より細い伝熱管(本実施の形態3では直径D2)を用いることで、流通速度を上げて冷媒と伝熱管の内壁面との伝熱を促進する。また、乾き度が高く流通抵抗が高い部分では、より太い伝熱管(本実施の形態3では直径D1)を用いることで、流通抵抗の増加を最小限にしている。このように、伝熱管内を流通する冷媒の相状態に応じて、伝熱管を通す穴32、33の直径を異ならせることで、熱交換器全体の熱交換効率を向上させることができる。
 (実施の形態4)
 図5は、本発明の実施の形態4における熱交換器を示す図である。
 図5に示すように、本実施の形態4においては、伝熱フィン51の同一平面状に設けられた切れ込み56、57、58、59の互いの間隔L2は、伝熱管を通す穴の互いの間隔L1に等しい。このように、複数の切れ込み56、57、58、59を配置することにより、切れ込み56、57、58、59の加工を容易に行うことができる。また、伝熱フィン51をより均一に分断することができるため、暖房運転時に熱交換器において過冷却液の冷媒が通過する温度の低い領域と、気液二相の冷媒が通過する温度の高い領域との熱交換量、すなわち温度差のある隣接領域同士の熱交換量をより抑えることができる。よって、空気と冷媒との熱交換をより促進することができ、熱交換器の性能をさらに向上させることができる。なお、ここで言う「等しい」には、機械製造上の誤差を含む「実質的に等しい(略等しい)」場合も含むものとする。
 (実施の形態5)
 図6は、本発明の実施の形態5における熱交換器の図を示すものである。
 図6に示すように、本実施の形態5においては、伝熱フィン61に設けられた少なくとも1つの切れ込み66、67、68、69は前記伝熱フィンの端部から10mm以上の長さL3を有し、互いの間隔L4が6mm以上である。このように、長さL3および間隔L4を設定することにより、伝熱フィン61に切れ込み66、67、68、69を加工する際の深さの公差管理を容易に行うことができる。
 なお、上記様々な実施の形態のうちの任意の実施の形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 以上のように、本発明にかかる空気調和機用の熱交換器は、例えば電子機器に使用される放熱用熱交換器等にも応用可能である。

Claims (6)

  1.  板面を互いに平行にして所定間隔で並設された複数の伝熱フィンと、前記複数の伝熱フィンを複数箇所で貫通している伝熱管とを備え、前記伝熱フィンの板面と平行な方向に空気が供給され、空気の流れ方向における風上側と風下側とが熱的に遮断されている空気調和機用の熱交換器であって、
    暖房運転時に、前記伝熱管を流れる冷媒が過冷却液となる領域の前記伝熱フィンに少なくとも1つの切れ込みを設け、前記少なくとも1つの切れ込みが、前記伝熱フィンの風上側もしくは風下側において、隣接する前記伝熱管の間にて前記伝熱フィンを完全に分離することにより、隣接する前記伝熱管の間を熱的に遮断することを特徴とする空気調和機用の熱交換器。
  2.  前記少なくとも1つの切れ込みは複数あって、所定間隔で平行に並べられたことを特徴とする請求項1記載の熱交換器。
  3.  前記伝熱フィンにおいて、前記少なくとも1つの切れ込みが存在する風上側における前記伝熱管を通す穴の直径を、風下側における前記伝熱管を通す穴の直径よりも大きくしたことを特徴とする請求項1または2に記載の熱交換器。
  4.  前記伝熱フィンにおいて、前記切れ込みの互いの間隔は、前記伝熱管を通す穴の互いの間隔に等しいことを特徴とする請求項2に記載の熱交換器。
  5.  前記少なくとも1つの切れ込みは前記伝熱フィンの端部から10mm以上の長さを有し、互いの間隔が6mm以上であることを特徴とする請求項1から4のいずれか1つに記載の熱交換器。
  6.  請求項1から5のいずれか1つに記載の空気調和機用の熱交換器を製造する方法であって、
    前記伝熱管を前記伝熱フィンに通して拡管した後、切断装置を用いて前記伝熱フィンに前記少なくとも1つの切れ込みを形成する工程を含むことを特徴とする、空気調和機用の熱交換器の製造方法。
PCT/JP2012/007965 2011-12-14 2012-12-13 空気調和機 WO2013088722A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-273140 2011-12-14
JP2011273140A JP5899413B2 (ja) 2011-12-14 2011-12-14 熱交換器の製造方法

Publications (1)

Publication Number Publication Date
WO2013088722A1 true WO2013088722A1 (ja) 2013-06-20

Family

ID=48612195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007965 WO2013088722A1 (ja) 2011-12-14 2012-12-13 空気調和機

Country Status (2)

Country Link
JP (1) JP5899413B2 (ja)
WO (1) WO2013088722A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113916041A (zh) * 2021-10-18 2022-01-11 珠海格力电器股份有限公司 一种翅片结构及换热装置及空调器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7061251B2 (ja) * 2019-02-27 2022-04-28 株式会社Nedインターナショナル 熱交換装置およびヒートポンプ装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138994A (ja) * 1982-02-15 1983-08-18 Fuji Heavy Ind Ltd 熱交換器
JP3048557U (ja) * 1997-10-31 1998-05-15 東洋ラジエーター株式会社 除湿機用熱交換器
JP2000230795A (ja) * 1999-02-08 2000-08-22 Sanyo Electric Co Ltd フィン型熱交換器
JP2002228301A (ja) * 2001-01-26 2002-08-14 Matsushita Electric Ind Co Ltd 空気調和機のフィン付き熱交換器
JP2004085139A (ja) * 2002-08-28 2004-03-18 Toshiba Kyaria Kk 空気調和機の室内機
JP2005321191A (ja) * 1993-06-01 2005-11-17 Hitachi Ltd 空気調和機
JP2007101111A (ja) * 2005-10-06 2007-04-19 Matsushita Electric Ind Co Ltd フィン付き熱交換器
JP2008121920A (ja) * 2006-11-09 2008-05-29 Matsushita Electric Ind Co Ltd フィン付き熱交換器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY130939A (en) * 1993-06-01 2007-07-31 Hitachi Ltd Air-conditioning equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138994A (ja) * 1982-02-15 1983-08-18 Fuji Heavy Ind Ltd 熱交換器
JP2005321191A (ja) * 1993-06-01 2005-11-17 Hitachi Ltd 空気調和機
JP3048557U (ja) * 1997-10-31 1998-05-15 東洋ラジエーター株式会社 除湿機用熱交換器
JP2000230795A (ja) * 1999-02-08 2000-08-22 Sanyo Electric Co Ltd フィン型熱交換器
JP2002228301A (ja) * 2001-01-26 2002-08-14 Matsushita Electric Ind Co Ltd 空気調和機のフィン付き熱交換器
JP2004085139A (ja) * 2002-08-28 2004-03-18 Toshiba Kyaria Kk 空気調和機の室内機
JP2007101111A (ja) * 2005-10-06 2007-04-19 Matsushita Electric Ind Co Ltd フィン付き熱交換器
JP2008121920A (ja) * 2006-11-09 2008-05-29 Matsushita Electric Ind Co Ltd フィン付き熱交換器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113916041A (zh) * 2021-10-18 2022-01-11 珠海格力电器股份有限公司 一种翅片结构及换热装置及空调器

Also Published As

Publication number Publication date
JP2013124799A (ja) 2013-06-24
JP5899413B2 (ja) 2016-04-06

Similar Documents

Publication Publication Date Title
JP4845943B2 (ja) フィンチューブ型熱交換器および冷凍サイクル空調装置
EP2930456B1 (en) Flat tube heat exchange apparatus, and outdoor unit for air conditioner provided with same
EP2869016B1 (en) Heat exchanger, method for manufacturing heat exchanger, and air conditioner
EP2863159B1 (en) Heat exchanger, method for producing same, and refrigeration cycle device
JP5014372B2 (ja) フィンチューブ型熱交換器並びに空調冷凍装置
JP5627632B2 (ja) 熱交換器およびヒートポンプ装置
WO2013088722A1 (ja) 空気調和機
JP3979118B2 (ja) 熱交換器、熱交換器の製造方法及び空気調和機
JP2009168317A (ja) 熱交換器及び空気調和機
JP3952047B2 (ja) 室内機及び空気調和機
JP2006322703A (ja) 室内機
JP2007255812A (ja) フィン付き熱交換器及び空気調和機
JP2011112315A (ja) フィンチューブ型熱交換器及びこれを用いた空気調和機
JP2009145010A (ja) 空気調和機用フィンレス熱交換器
JP6455103B2 (ja) 熱交換器
WO2013018297A1 (ja) 熱交換器
WO2014125603A1 (ja) 熱交換装置およびこれを備えた冷凍サイクル装置
JP5864030B1 (ja) 熱交換器、及び、この熱交換器を備えた冷凍サイクル装置
WO2016031032A1 (ja) 熱交換器および空気調和装置
JP2012154491A (ja) 空気調和機
JP2008051352A (ja) 熱交換器、空気調和装置の室内機、および熱交換器の製造方法
JP2005147414A (ja) フィン付き熱交換器
JP6582373B2 (ja) 熱交換器
JP5815128B2 (ja) 熱交換器、及び空気調和機
JP2006266611A (ja) 空気調和機の室外機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857156

Country of ref document: EP

Kind code of ref document: A1