WO2013086649A2 - Flavonoles como agonistas de coenzima q (ubiquinona y ubiquinol) en la modulación de la actividad de los complejos de la cadena de transporte de electrones mitocondrial - Google Patents

Flavonoles como agonistas de coenzima q (ubiquinona y ubiquinol) en la modulación de la actividad de los complejos de la cadena de transporte de electrones mitocondrial Download PDF

Info

Publication number
WO2013086649A2
WO2013086649A2 PCT/CL2012/000072 CL2012000072W WO2013086649A2 WO 2013086649 A2 WO2013086649 A2 WO 2013086649A2 CL 2012000072 W CL2012000072 W CL 2012000072W WO 2013086649 A2 WO2013086649 A2 WO 2013086649A2
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic
flavonols
natural
semi
mixtures
Prior art date
Application number
PCT/CL2012/000072
Other languages
English (en)
French (fr)
Other versions
WO2013086649A3 (es
Inventor
Hernán SPEISKY COSOY
Cristian SANDOVAL ACUÑA
Original Assignee
Universidad De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Chile filed Critical Universidad De Chile
Publication of WO2013086649A2 publication Critical patent/WO2013086649A2/es
Publication of WO2013086649A3 publication Critical patent/WO2013086649A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4973Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
    • A61K8/498Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom having 6-membered rings or their condensed derivatives, e.g. coumarin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations

Definitions

  • the present invention relates to a pharmaceutical, nutraceutical, food and / or cosmetic composition, which contains natural, semi-synthetic or synthetic flavonols, analogs and / or derivatives of natural, semi-synthetic or synthetic flavonols, their mixtures and / or mixtures containing them, because they serve as mimetics, agonists or partial agonists, of ubiquinone (or oxidized coenzyme Q; Co-Qox) and / or ubiquinol (or reduced coenzyme Q; Co-Qred) as "electron carriers" (EC ) in the processes included in the electron transport chain in the mitochondria.
  • ubiquinone or oxidized coenzyme Q; Co-Qox
  • ubiquinol or reduced coenzyme Q; Co-Qred
  • NSAIDs non-steroidal anti-inflammatories
  • mitochondrial complexes such as rotenone, paraquat, piericidin A, methyl-phenyl-tetrahydropyridine, antimycin A, mixothiazole, among others.
  • products whose active ingredient corresponds to coenzyme Q, or idebenone MR are intended to prevent and / or reduce the impact of a decrease or loss of the activity of the mitochondrial electron transport chain.
  • KR20100066126 A from Korean Cosmetics CO LTD describes a cosmetic composition containing flavonoid compounds to prevent aging and wrinkles that improves antioxidation, protein and collagen synthesis and suppresses the Metal Protease Matrix (MMP-1).
  • the cosmetic composition contains flavonoid compounds of formula 1 as an active ingredient, where Ri, R 2 and R 3 are independently a hydroxyl group, alkyl group of 1-4 carbon atoms, or alkoxy group of 1-4 carbon atoms.
  • the cosmetic wrinkle composition contains 0.000001 -15.0% by weight of flavonoid compounds of formula 1 as active ingredient and is used in the form of solution, suspension, paste, gel, cream, powder lotion, soup, oil or dew.
  • a make-up method for preventing aging that involves applying the cosmetic composition to human skin.
  • KR20100066125 A by Korean Cosmetics CO LTD describes an anti-aging cosmetic composition containing flavonoid products to suppress the generation of matrix metalloprotease-1 (MMP-1) and improve the anti-wrinkle effect.
  • the anti-wrinkle cosmetic composition contains 0.000001 -15.0% by weight of flavonoid compounds of formula 1 and is used as a solution, suspension, emulsion, paste, gel, cream, lotion, powder, soup, surfactant containing cleansers, oil, powder foundation or dew.
  • WO2004078155 (A1) of Digital Biotech CO. LTD. It provides a composition containing a flavonoid-based compound that has a beta-amyloid aggregation suppressing effect, a beta-amyloid toxicity inhibitory function and a cognitive function recovery effect.
  • This pharmaceutical composition contains a flavonoid component that is naturally present, specifically said component is flavone, kaempferol, morin, quercetin or ramnetine.
  • JP2008092869 A from ToyoSugarRefining provides a flavonoid composition that has excellent functionality such as water dissolving properties, antioxidant potential and ultraviolet (UV) light absorption potential, etc. and greatly improved in tone color compared to that of the enzyme-treated routine.
  • the flavonoid composition contains rutin and / or a routine derivative (a component A) and dehydroquercetin and / or a dehydroquercetin derivative (a component B).
  • Component A preferably comprises a routine enzyme-treated composition obtained by operating cyclodextrin glucanotransferase in routine coexistence and dextrin, and containing routine ⁇ -glucosyl rutin and isoquercytrin.
  • Component B preferably comprises taxifoline as dehydroquercetin.
  • the flavonoid composition has a higher utility value in food and cosmetic products because it is improved in its color value of antioxidant potential compared to the enzyme-treated routine based on the same antioxidant potential
  • KR20020082121 from Korea Res Inst of Bioscience discloses a therapeutic or preventive pharmaceutical composition for hepatitis that contains as derivatives of fiavonol as an effective component that strongly inhibits the formation of an antigen and is less cytotoxic that can be effectively used to treat chronic hepatitis B.
  • the composition Pharmaceutical for the prevention and treatment of Hepatitis contains flavonol derivatives or a pharmaceutically acceptable salt thereof and contains myricetin, quercetin and morin. For example, a mixture of 1 g myricetin, quercetin or morin, 0.6 g of sodium chloride, 0.1 g of ascorbic acid is dissolved in distilled water to produce 100 ml of solution, which is heated to 20 ° C by 30 min.
  • the IC 5 or observed for the NADH-oxidase enzyme system was lower than for the succinoxidase activity demonstrating a primary site of inhibition of the portion of complex I (NADH-coenzyme Q reductase) of the respiratory chain.
  • the potency order for the inhibition of NADH-oxidase activity was robinetin, ramnetine, eupatorin, baicalein, 7,8-dihydroxyfllavone and norwogonin with IC50 values 19, 42, 43, 77, 277 and 340 nmol / mg protein, respectively .
  • Flavonoids tri- hydroxyl-dihydroxyl groups or adjacent exhibit substantial oxidation rate self was accelerated by the addition of cyanide (CN ").
  • Flavonoids possessed a configuration catechol exhibited a slow rate of auto oxidation damper j was stimulated by the addition of CN " .
  • the addition of superoxide dismutase (SOD) and catalase in self-oxidation experiments each decreased the rate of oxygen consumption indicating that O 2 - and H 2 O 2 were generated during self-oxidation.
  • SOD superoxide dismutase
  • the rate of oxygen consumption was also decreased. findings showed that the CNVflavonoid interaction generated O2 " not enzymatically, which would have biological implications.
  • compositions containing flavonoids and specifically flavonols which by virtue of their hitherto recognized antioxidant properties, for use as anti-cancer agents, anti -hypertensive, anti-atherosclerotic, anti-thrombotic, against gastritis, peptic ulcer, osteoporosis, hepatitis, edema, colon diseases and as skin protectors.
  • the present invention relates to the use of certain natural, semi-synthetic or synthetic flavonols, analogs and / or derivatives of natural, semi-synthetic or synthetic flavonols, of their mixtures and / or mixtures containing them, as agonists (partial or total) of coenzyme Q.
  • Flavonols are molecules biosynthesized by plants. A very good source of these compounds are the vegetables and fruits that humans consume. Depending on the diet, the intake of flavonoids reaches, in general, around 750-1000 mg / day, depending on the participation and the type of fruits and vegetables included in it. In such a scenario, the intake of flavonols can account for 30-40% of the total ingested flavonoids. The latter comprise, at least six sub-groups, of which the flavonols are only one.
  • flavonols could represent a significant improvement over the currently available treatments, given the great capacity that, within the framework of this invention, some of said compounds they show to compensate and / or restore the functionality of the mitochondria and particularly of the electron transport chain, at low micromolar concentrations.
  • the present invention is useful for the prevention and / or treatment of the symptoms / signs associated with the cell aging process, for treating and / or mitigating the symptoms / signs associated with diseases and / or pathological conditions related to a decrease in the function or with mitochondrial dysfunctions, and / or to improve the performance of individuals and / or other animals by increasing the energy-producing capacity of mitochondria.
  • the present invention relates to a pharmaceutical, nutraceutical, food and / or cosmetic composition, which contains natural, semi-synthetic or synthetic flavonols, analogs and / or derivatives of natural, semi-synthetic or synthetic flavonols, their mixtures and / or mixtures containing them, such as coenzyme Q agonists, and their use in physiological situations associated with energy hyper-demand.
  • the present invention more specifically relates to a pharmaceutical, nutraceutical, food and / or cosmetic composition for use in aging, other physiological situations, and in pathologies associated with the need to respond to a higher energy demand, secondary to a lower condition.
  • ATP production by the mitochondria The present pharmaceutical, nutraceutical, food and / or cosmetic composition contains natural, semi-synthetic or synthetic flavonols, analogs and / or derivatives of natural, semi-synthetic or synthetic flavonols, their mixtures and / or mixtures containing them, as agonists of the role of coenzyme Q in the mitochondrial electron transport chain.
  • the preferred natural flavonols are quercetin, isoramnetine, galangine, ramnetine, myricetin, tamarixetine.
  • the present composition comprising natural, semi-synthetic or synthetic flavonols, analogs and / or derivatives of natural, semi-synthetic or synthetic flavonols, their mixtures and / or mixtures containing them, is useful in the modulation of biochemical processes. physiological related to aging and other processes characterized by an energy hyper-demand, and in the prevention, mitigation and / or treatment of disorders, syndromes or pathologies associated and / or attributed to an altered activity of mitochondrial complexes I, II and / or III.
  • the present invention further comprises the use of certain natural, semi-synthetic or synthetic flavonols, analogs and / or derivatives of natural, semi-synthetic or synthetic flavonols, of their mixtures and / or mixtures containing them, in the prevention and / or treatment of those (unwanted) side effects that cause certain non-spheroidal anti-inflammatories as a result of their ability to decrease mitochondrial complex I activity.
  • Figure 1 shows the effectiveness of quercetin, as a flavonol paradigm, to act as a coenzyme Q mimetic in the activity of complex I. Flavonolquercetin as a "mimetic coenzyme Q" in Cx-I activity.
  • the mitochondria were incubated with quercetin (1-10 ⁇ ) in the absence of coenzyme Q, for 10 minutes before the start of the reaction.
  • Cx-I activity was measured following the disappearance of NADH at 340 nm.
  • the control corresponds to the activity of Cx-I in mitochondria incubated with coenzyme Q (65 ⁇ ) in the absence of quercetin.
  • a p ⁇ 0.001 relative to the NADH and CoQ control
  • b p ⁇ 0.001 relative to the control in the absence of NADH and quercetin.
  • the figure shows results obtained with mitochondria isolated from rat duodenal epithelium. However, identical results were obtained with mitochondria of skin, brain and muscle cells.
  • Figure 2 shows results of experiments in which the ability of quercetin to behave as an electron transporter between complexes I and III, to capture and transfer them, respectively, was measured. The activity of complex III was evaluated through the reduction of cytochrome c. Flavonolquercetin as "mimetic coenzyme Q" with the activity of the l-lll complex.
  • the mitochondria were incubated with quercetin 5 or 10 ⁇ in the absence of CoQ.
  • the activity of the l-lll complex was measured as the reduction of cytochrome c (decrease in OD at 550 nm) by incubating mitochondria with NADH as an initial electron donor in Cx-I and CoQ or quercetin as an "electron carrier" between the Cx-I and Cx-lll.
  • the control corresponds to the activity measured by incubating mitochondria with CoQ 65 ⁇ in the absence of quercetin.
  • b p ⁇ 0.001 relative to the control in the absence of CoQ and quercetin.
  • FIG. 1 shows results obtained with mitochondria isolated from rat duodenal epithelium. However, identical results were obtained with mitochondria of skin, brain and muscle cells.
  • Figure 3 shows that, relative to the 100% reduction or consumption of oxygen (white bar), in the absence of coenzyme Q the mitochondrial oxygen consumption fell to less than 20%. From this level, the addition of quercetin in concentrations 5 and 10 micromolar allowed to recover the oxygen reduction by 70% and 100%, respectively.
  • These results show the ability of flavonol, quercetin, to act as a mimetic and / or agonist of coenzyme Q along the entire electron transport chain. Effect of flavonolquercetin on the activity of the electron transport chain (CTE).
  • the mitochondria were incubated with quercetin 5 or 10 ⁇ in the absence of CoQ.
  • CTE activity was measured as the percentage of oxygen consumption when incubating mitochondria with NADH at 130 ⁇ as an electron donor.
  • the Control activity was defined by incubating mitochondria with CoQ 65 ⁇ in the absence of quercetin.
  • a p ⁇ 0.001 relative to the CoQ control
  • b p ⁇ 0.001 relative to the control in the absence of CoQ and quercetin.
  • the figure shows results obtained with mitochondria isolated from rat duodenal epithelium. However, identical results were obtained with mitochondria of skin, brain and muscle cells.
  • Figure 4 shows the result of experiments in which the production of ATP was quantified by mitochondria incubated under different conditions.
  • the control (white bar, 100%) corresponds to mitochondria incubated in the presence of coenzyme Q 65 ⁇ but in the absence of quercetin.
  • the production of mitochondrial ATP decreased significantly, to only 23% of the control value.
  • the addition of increasing concentrations of the latter (1, 5 and 10 ⁇ ) allowed to recover in a dependent concentration the levels of mitochondrial ATP production.
  • the addition of increasing concentrations of quercetin made it possible to recover, again in a dependent concentration, the mitochondrial capacity of ATP production.
  • Figure 5 shows the ability of different NSAIDs to inhibit the activity of complex I. Effect of different NSAIDs on the activity of mitochondrial Cx-I. The mitochondria were incubated with different NSAIDs (50 ⁇ ) for 10 minutes, prior to the start of the reaction. The activity of complex I was measured by the oxidation of NADH at 340 nm. The control activity corresponds to the measure in mitochondria incubated in the absence of NSAIDs. a: p ⁇ 0.001 relative to the control.
  • Table 1 shows the effect of quercetin on the inhibition of complex I induced by NSAIDs.
  • NSAIDs non-spheroidal anti-inflammatories
  • IC50s for different NSAIDs on Cx-I from isolated mitochondria are shown. Isolated mitochondria of rat duodenal epithelium were incubated for 10 minutes with different concentrations of NSAIDs (5, 10, 25, 50, 100 ⁇ ) in the absence and in the presence of 5 ⁇ quercetin. Cx-I activity was monitored by the oxidation of NADH (340 nm) and the IC50 was interpolated from a Log [NSAID] curve versus% Cx-I activity. The table shows results obtained with mitochondria isolated from rat duodenal epithelium. However, identical results were obtained with mitochondria of stomach and liver cells.
  • Figure 6 shows the ability of rotenone to inhibit the activity of complex I together with the ability of quercetin to prevent such inhibition. Effect of flavonolquercetin on the inhibition of rotenone-induced complex I.
  • the mitochondria were incubated with rotenone 20 ⁇ for 10 minutes, in the absence or presence of quercetin (15 or 30 ⁇ ).
  • the activity of complex I was measured by the oxidation of NADH at 340 nm.
  • the control activity corresponds to the measure in mitochondria incubated in the absence of rotenone and quercetin.
  • a p ⁇ 0.001 relative to the control
  • b p ⁇ 0.001 relative to mitochondria incubated with rotenone in the absence of quercetin.
  • the figure shows results obtained with mitochondria isolated from rat brain. However, identical results were obtained with mitochondria of skin, intestine and muscle cells.
  • the present invention is of particular interest to both pharmaceutical and cosmetic companies that sell products whose active ingredient corresponds to coenzyme Q, or to the analogue of said molecule, idebenone, intended to prevent or reduce the impact of a loss or loss (acute or chronic). ) of activity of the mitochondrial electron transport chain.
  • active ingredients are recommended or prescribed for the prevention and / or treatment of the symptoms / signs associated with the aging process, and / or intended to treat or mitigate the symptoms / signs associated with physiological, pathophysiological conditions.
  • the present invention is also of interest to companies that sell nutraceuticals, aimed at improving the physical performance of individuals and / or other animals, which contain active ingredients whose function is to increase the energy-producing capacity at the mitochondrial level.
  • flavonols are biosynthesized molecules by plants. A very good source of these compounds are various vegetables and fruits that we regularly consume. Depending on the diet, the intake of flavonoids reaches, in general, around 750-1000 mg / day, depending on the participation and of the type of fruits and vegetables included in it. In such a scenario, the intake of flavonols can account for 30-40% of the total ingested flavonoids.
  • the present invention comprises the use of natural, semi-synthetic or synthetic flavonols, analogs and / or derivatives of natural, semi-synthetic or synthetic flavonols, of their mixtures and / or mixtures containing them, in a pharmaceutical, nutraceutical, food and / or cosmetic composition, as agonists of the function that coenzyme Q (ubiquinone and ubiquinol) fulfills as "electron carrier" in the mitochondrial electron transport chain.
  • coenzyme Q ubiquinone and ubiquinol
  • Said use comprises the modulation of the activity of the complexes I, II and / or III of the electron transport chain, and its application is inserted in the treatment of both physiological and pathological conditions in which it is sought to normalize or increase the concentration, action and / or function that ubiquinone and / or ubiquinol fulfill in the processes of electron transport in the mitochondria.
  • the foregoing includes the use of certain natural, semi-synthetic or synthetic flavonols, analogues and / or derivatives of natural, semi-synthetic or synthetic flavonols, of their mixtures and / or mixtures containing them, in the modulation of the course of physiological processes such as aging and others characterized by a greater energy demand, and in the prevention, mitigation and / or treatment of disorders, syndromes or pathologies associated and / or attributed to an altered activity of mitochondrial complexes I, II and / or III.
  • the present invention further comprises the use of certain natural, semi-synthetic or synthetic flavonols, analogs and / or derivatives of natural, semi-synthetic or synthetic flavonols, of their mixtures and / or mixtures containing them, in the prevention and / or treatment of those side effects that cause certain non-steroidal anti-inflammatories as a result of their ability to decrease the activity of mitochondrial complex I.
  • ATP is generated primarily by the mitochondria (Harris, et al. 1991; Duchen 2004).
  • CTE electron transport chain
  • F oxidative phosphorylation
  • the normal operation of the CTE implies an efficient flow of electrons through a series of multi-enzymatic systems comprising complexes I, II, III and IV.
  • the initial electron donor is the NADH molecule.
  • complex II it is succinate.
  • the final electron acceptor in CTE is an oxygen molecule.
  • coenzyme Q (or Q10), frequently referred to as ubiquinone (Co-Qox) in its oxidized state and as ubiquinol (Co-Qred) in its reduced state (Heales et al. 2004; Turunen et al. 2004 ; Quinzii et al. 2010).
  • the function of coenzyme Q is to accept electrons from complexes I or II, and then donate them to complex III.
  • Complex III yields its electrons to a cytochrome c molecule, second "electron carrier,” reducing it.
  • the reduced cytochrome c then donates its electrons to the IV complex, which eventually transfers them to an oxygen molecule. As a result of the latter, oxygen is converted to water.
  • the redox processes mediated by complexes I, III and IV are coupled to a proton transport from the matrix to the inter-membrane space of the mitochondria. Taking advantage of the resulting proton gradient, the V complex catalyzes the phosphorylation of ADP, to form ATP (FO) (Gledhill et al. 2006; Hong et al. 2008).
  • Flavonols are part of a large group of molecules called flavonoids, whose structure consists of two aromatic rings linked by 3 carbon atoms; the latter generally form an oxygenated heterocycle, as shown in the structural formula (I) indicated below:
  • flavonols are distinguished from other flavonoids by having in their ring C, a hydroxyl group (HO " ) attached to C-3 and a carbonyl group in C-4, as shown in the structural formula (II) indicated below:
  • Formula II While there are various natural sources of flavonols, certain fruits and vegetables usually consumed by the population (such as yellow onions, apples, some berries, tea and broccoli) are particularly rich in these compounds. Although dozens of flavonols have been described in food, among the best known are: quercetin, myricetin, isoramnetine, galangine, ramnetine and tamarixetine.
  • a flavonol is distinguished from another in the number, position and / or type of substituents present in rings A and B of its basic structure.
  • the quercetin molecule has hydroxyl groups (a total of four) at carbons 5 and 7 of ring A and 3 'and 4' of ring B.
  • Miricetin exhibits, instead hydroxyl groups at positions 5 and 7 of ring A and 3 ', 4' and 5 'of ring B.
  • the flavonol structure has methoxy groups (CH3-O) as substituents.
  • each flavonol can be found in its free form (called aglycone) or as a compound conjugated with a sugar (form called glycon; eg with glucose, rhamnose, galactose).
  • the present application arises from experimental investigations that systematically evaluated the capacity that more than a hundred flavonoids could have, to act as coenzyme Q mimetics in the CTE, in concentrations of the order of 1-10 x 10 "6 M (1 at 10 micromolar.)
  • some molecules, always belonging to the flavonole subtype, see formula II, were the only ones that proved to be sufficiently active to act, in the range of concentrations referred to, as agonists or as coenzyme Q mimetics.
  • Figure 1 shows the effectiveness of quercetin, as a flavonol paradigm, to act as a coenzyme Q mimetic in the activity of complex I.
  • the normal activity of complex I to III corresponds to that obtained after exposing mitochondria to a concentration of NADH of 130 micromolar and coenzyme Q of 65 micromolar (white bar) .
  • said activity is close to 30% of the baseline (possibly as a result of the endogenous remaining presence of NADH and coenzyme Q in the isolated mitochondria).
  • the addition of quercetin flavonol, 5 and 10 micromolar resulted in the recovery of the activity of complex I to III by 60% and 90% respectively.
  • Figures 1-3 directly or indirectly, show the possibility that the compounds whose chemical-structural distinction corresponds to that of the flavonols (formula II), have a capacity to act as mimetics or agonists of coenzyme Q, as to his role as "electron carrier" in the CTE.
  • flavonols formula II
  • such capacity is particularly interesting since the potential benefits associated with the use of flavonols as coenzyme Q agonists would take place at extremely low concentrations, that is to the limit of the micromolar. Background of the literature shows that in humans, such concentrations could be achieved without the need to use high doses of these compounds, thereby reducing the possibility of side effects (Hollman et al. 1999; Ailing Aherne et al. 2002). Said effect at low concentrations would also avoid complications associated with the relatively low solubility that some of these compounds present in polar solvents.
  • flavonols As coenzyme Q mimetics, is the large number of chemical and pharmacological strategies already developed to increase the solubility, absorption and bioavailability of said compounds after being administered orally to patients and / or animals of experimentation (Yuan et al. 2006; Biasutto et al. 2007; Yap et al. 2008; Borghetti et al. 2009). Also, interestingly, there are reports that certain flavonols, such as Quercetin, would preferentially concentrate on mitochondria (Biasutto et al. 2009; Fiorani et al. 2009), that is, in a subcellular site where, for the uses raised in this application, they would exert their actions and effects.
  • flavonols are identically active as antioxidants, they differ totally in their properties as “electroncarriers” at the mitochondrial level, some being very effective as agonists, and the rest totally devoid of properties related to the "electron” function. carrier "of coenzyme Q. Additionally, the antioxidant actions of most flavonols are associated with concentrations 10 and up to 100 times higher than those for which they are active as coenzyme Q agonists in the mitochondria.
  • the uses to protect are framed, therefore, in all those conditions of physiological or pathological character in which the use of coenzyme Q agonists can be useful and / or beneficial for health.
  • Such conditions are the use of flavonols as coenzyme Q agonists in the modulation of the cell aging process (where there is characteristically a loss of efficiency of the CTE (Lores-Arnaiz et al. 20); in the normalization and / or support of the CTE activity in muscle tissue subjected to situations of medium or high energy demand; in the prevention, mitigation or treatment of those disorders or syndromes associated and / or attributed to a decreased activity of complexes I, II and / or III (Pási et al.
  • Figure 3 shows the results of experiments in which the activity of the electron transport chain in mitochondria isolated from rat duodenal epithelium was studied.
  • cell aging is related to a loss of efficiency of the electron transport chain. This loss of efficiency is mainly caused by a decrease in coenzyme Q levels within the mitochondria.
  • Figure 3 shows that situations of absence of coenzyme Q reduce the functioning of the electron transport chain (evidenced as a decrease in mitochondrial oxygen consumption).
  • the addition of quercetin was able to recover, in a concentration-dependent manner, the functioning of the CTE, increasing the oxygen levels consumed by the mitochondria.
  • the evidence allows to apply for quercetin and other flavonols, as molecules with the ability to reverse the dysfunction of CTE related to said process.
  • mitochondria can constantly meet the basic energy needs of each cell, during periods of medium or high cardiovascular and muscular demand, the mitochondrial processes of ATP synthesis are forced to function at maximum capacity.
  • One of the limitations for such maximum operation is the availability of the substrates and intermediaries of the electron transport chain. Within these intermediaries, the availability of coenzyme Q is vital to maintain optimal functioning of the electron transport and therefore of the synthesis of ATP through oxidative phosphorylation.
  • Figure 4 shows that in situations of absence of coenzyme Q, the synthesis of ATP in mitochondria isolated from rat muscle is diminished to 23% of the control, performed in mitochondria in the presence of 65 ⁇ of coenzyme Q.
  • quercetin and other flavonols which also they show the ability to modulate the activity of complexes I and III, they are potentially effective molecules in the treatment of various conditions, myo- and neurodegenerative, associated with a decreased activity of mitochondrial electron transport chain complexes.
  • Figure 6 shows the ability of rotenone, when added to mitochondria isolated from rat duodenal epithelium, for decrease the activity of the complex I.
  • the addition of quercetin allowed to recover, in a dependent concentration, the activity of said complex, obtaining a total prevention of inhibition with a concentration of quercetin of 30 ⁇ .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Birds (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Dermatology (AREA)
  • Botany (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Uso de flavonoles naturales, semi-sintéticos o sintéticos, de análogos y/o de derivados de flavonoles naturales, semi-sintéticos o sintéticos, de sus mezclas y/o de mezclas que los contengan, como agonistas (parciales o totales) de la coenzima Q oxidada o reducida como "electron-carriers" (EC).

Description

FLAVONQLES COMO AGONISTAS DE COENZIMA Q (UBiQUINONA Y UBIQUINOÜ EN LA MODULACIÓN DE LA ACTIVIDAD DE LOS COMPLEJOS DE LA CADENA DE TRANSPORTE DE ELECTRONES MITOCONDRIAL.
CAMPO DEL INVENTO
La presente invención se relaciona con una composición farmacéutica, nutracéutica, alimenticia y/o cosmética, que contiene flavonoles naturales, semi-sintéticos o sintéticos, análogos y/o de derivados de flavonoles naturales, semi-sintéticos o sintéticos, sus mezclas y/o mezclas que los contengan, porque sirven como miméticos, agonistas o agonistas parciales, de ubiquinona (o coenzima Q oxidada; Co-Qox) y/o de ubiquinol (o coenzima Q reducida; Co-Qred) como "electron-carriers" (EC) en los procesos comprendidos en la cadena de transporte de electrones en la mitocondria.
Particularmente, su uso para modular la acción que cumplen y/o el efecto que promueven la ubiquinona y/o el ubiquinol en los procesos comprendidos en la cadena de transporte de electrones en la mitocondria.
Más particularmente, su uso para prevenir la aparición, ralentizar la progresión y/o disminuir el riesgo de desarrollo de condiciones asociadas a una disminución aguda y/o progresiva de aquellas funciones que dependen de una adecuada disponibilidad, concentración, acción y/o efecto, de ubiquinona y/o ubiquinol, tales como aquellas condiciones que acompañan y/o se asocian al proceso de envejecimiento celular, incluyendo la merma y/o deterioro de funciones cutáneas, musculares, motoras, neurológicas y/o cognitivas.
Aún más particularmente, su uso para mantener un funcionamiento normal y/o para optimizar aquellos procesos fisiológicos que en la piel de humanos dependen de una adecuada disponibilidad, concentración, acción y/o efecto, de ubiquinona y/o ubiquinol en la cadena de transporte de electrones mitocondrial. Asimismo, particularmente, su uso para mantener un funcionamiento normal y/o para optimizar aquellos procesos musculares que dependen de una adecuada concentración, acción y/o efecto, de ubiquinona y/o ubiquinol en la cadena de transporte de electrones mitocondrial en humanos y/o en otros animales expuestos a actividades de mediana o alta demanda energética y/o cardiovascular.
Además, el uso para prevenir, mitigar y/o tratar condiciones fisiopatológicas y/o enfermedades causadas, promovidas, resultantes y/o relacionadas con alteraciones en la disponibilidad, concentración, acción, función y/o efecto deubiquinona y/o ubiquinol en la cadena de transporte de electrones mitocondrial, tales como las siguientes mió- y/o neuro-patías: "Leber'sHereditaryOpticNeuropathy" (LHON), "MitochondrialMyopathy, Encelopathy, Lactacidosis and Stroke" (MELAS), "Friedreich's ataxia" (FA), "Kearns-SayreSyndrome" (KSS) y "LeighSyndrome" (LS), entre otras.
El uso para prevenir, mitigar y/o tratar condiciones iatrogénicas y/o de toxicidad causadas, resultantes y/o relacionadas con alteraciones en la disponibilidad, los niveles, la acción y/o la función deubiquinona y/o ubiquinol, tales como aquellas que resultan de la disfunción del proceso de transporte de electrones a nivel de complejo I y/o complejo II, inducida por el uso agudo o crónico de anti-inflamatorios no- esteroidales (AINEs), tales como aspirina, ibuprofeno, diclofenaco, piroxicam e indometacina; e inhibidores de los complejos mitocondriales tales como rotenona, paraquat, piericidina A, metil-fenil-tetrahidropiridina, antimicina A, mixotiazol, entre otros.
ESTADO DEL ARTE
Debido a la escasez relativa de productos farmacéuticos, nutracéuticos, cosméticos, cosmecéuticoso funcionales coadyuvantes y/o reguladores del metabolismo energético celular, de origen natural, existe una necesidad explícita de sumar a las alternativas disponibles, moléculas que conjuguen su efectividad para actuar como miméticos de coenzima Q (ubiquinona y ubiquinol) con una inocuidad compatible con una administración reiterada en seres humanos.
En la actualidad, productos cuyo principio activo corresponde a coenzima Q, o a idebenonaMR (único análogo de dicha molécula actualmente comercializadocomomimetico de coenzima Q), están destinados a prevenir y/o a reducir el impacto que supone una merma o pérdida de la actividad de la cadena transportadora de electrones mitocondrial.
KR20100066126 A de Coreana Cosmetics CO LTD describe una composición cosmética que contienen compuestos flavonoides para prevenir envejecimiento y arrugas que mejora la antioxidación, síntesis de proteínas y colágeno y suprime la Matriz de Metalproteasa (MMP-1 ). La composición cosmética contiene compuestos flavonoides de formula 1 como un ingrediente activo, donde Ri , R2 y R3 son independientemente un grupo hidroxilo, grupo alquilo de 1 -4 átomos de carbono, o grupo alcoxi de 1 -4 átomos de carbono.
La composición cosmética antiarrugas contienen 0,000001 -15,0% en peso de compuestos flavonoides de formula 1 como ingrediente activo y se usa en forma de solución, suspensión, pasta, gel, crema, loción polvo, sopa, aceite o rocío. Un método maquillador para prevenir el envejecimiento que comprende aplicar la composición cosmética en la piel humana.
KR20100066125 A de Coreana Cosmetics CO LTD describe una composición cosmética anti-envejecimiento que contiene productos flavonoides para suprimir la generación de matriz metaloproteasa-1 (MMP-1 ) y mejorar el efecto anti-arrugas. La composición cosmética anti-envejecimiento contiene compuestos de formula 1 como ingrediente activo, donde R1 , R2 y R3 son independientemente grupo hidroxi, grupo alquilo C1 -C4 o grupo alcoxi C1 -C4.
La composición cosmética anti-arrugas contiene 0,000001 -15,0% en peso de compuestos flavonoides de formula 1 y se usa en forma de solución, suspensión, emulsión, pasta, gel, crema, loción, polvo, sopa, surfactante que contiene limpiadores, aceite, base de maquillaje en polvo o rocío.
WO2004078155 (A1 ) de Digital Biotech CO. LTD. proporciona una composición que contiene un compuesto basado en flavonoide que tiene un efecto supresor de agregación beta-amiloide, una función inhibidora de toxicidad de beta amiloide y un efecto de recuperación de la función cognitiva. Esta composición farmacéutica contiene un componente flavonoide que está presente naturalmente, concretamente dicho componente es flavona, kaempferol, morin, quercetina o ramnetina.
JP2008092869 A de ToyoSugarRefining proporciona una composición de flavonoide que tiene excelente funcionalidad tales como propiedades de disolverse en agua, potencial antioxidante y potencial de absorción de luz ultravioleta (UV), etc. y ampliamente mejorada en color de tono en comparación con aquella de la rutina tratada con enzima. La composición flavonoide contiene rutina y/o un derivado de rutina (un componente A) y dehidroquercetina y/o un derivado de dehidroquercetina (un componente B). El componente A preferentemente comprende una composición de rutina tratada con enzima obtenida al hacer actuar ciclodextrinaglucanotransferasa en coexistencia de rutina y dextrina, y que contiene rutina α-glucosil rutina e isoquercitrina. El componente B preferentemente comprende taxifolina como dehidroquercetina. La composición flavonoide tiene un valor de utilidad mayor en productos del campo alimenticio y cosmético porque está mejorada en su valor de color de potencial antioxidante comparado con la rutina tratada con enzima en base al mismo potencial antioxidante.
KR20020082121 de Korea Res Inst of Bioscience divulga una composición farmacéutica terapéutica o preventiva para hepatitis que contiene como derivados de fiavonol como componente efectivo que inhiben fuertemente la formación de un antígeno y son menos citotóxicos que pueden ser efectivamente usados para tratar hepatitis crónica B. La composición farmacéutica para la prevención y tratamiento de hepatitis contiene derivados de flavonol o una sal farmacéuticamente aceptable del mismo y contiene miricetina, quercetina y morina. Por ejemplo, una mezcla de 1 g miricetina, quercetina o morina, 0,6 g de cloruro de sodio, 0,1 g de ácido ascórbico se disuelve en agua destilada para producir 100 mi de solución, que se calienta a 20°C por 30 min.
La publicación de BiochemPharmacol. 1994 Feb 9; 47(3): 573-80. " Inhibition of mitochondrial respiration and cyanide-stimulated generation of reactive oxygen species by selected flavonoids". Hodnick WF, Duval DL, Pardini RS.SourceAllie M. Lee. Laboratory for Cáncer Research, Department of Biochemistry, University of Nevada-Reno 89557, divulga un estudio de actividad-estructura en flavonoidesqueposeenvariadasconfiguraciones de anillohidroxilo. Seis flavonoides adicionales fueron probados por su capacidad para inhibir succinoxidasa mitocondrial de corazón de res y actividades NADH-oxidasa. En cada caso, el IC5o observado para el sistema de enzima NADH-oxidasa fue menor que para la actividad succinoxidasa que demuestra un sitio primario de inhibición de la porción de complejo I (NADH-coenzima Q reductasa) de la cadena respiratoria. El orden de potencia para la inhibición de la actividad NADH-oxidasa fue robinetina, ramnetina, eupatorina, baicaleina, 7,8-dihidroxiflavona y norwogonina con valores IC50 19, 42, 43, 77, 277 y 340 nmol/mg de proteína, respectivamente. Flavonoides con grupos tri- hidroxilo o para-dihidroxilo adyacentes exhiben una tasa sustancial de auto- oxidación que fue acelerada por la adición de cianuro (CN"). Los flavonoides que poseían una configuración catechol exhibieron una tasa lenta de autojoxidación en amortiguador que fue estimulado por la adición de CN". La adición de superoxidodismutasa (SOD) y catalasa en experimentos de auto-oxidación cada uno disminuía la tasa de consumo de oxígeno indicando que O2- y H2O2 eran generados durante la auto-oxidación. En los experimentos de oxidación estimulada por CN("), con la adición de SOD también fue disminuida la tasa de consumo de oxígeno. Estos hallazgos demostraron que la interacción CNVflavonoide generó O2" no enzimáticamente, lo que tendría implicaciones biológicas.
La literatura científica estudiada y de patentes muestra que los esfuerzos recientes en el área temática se han centrado en la obtención de composiciones que contienen flavonoides y específicamente flavonoles, que en virtud de sus hasta ahora reconocidas propiedades antioxidantes, para su uso como agentes anticáncer, anti-hipertensivos, anti-ateroscleróticos, anti-trombóticos, contra la gastritis, úlcera péptica, osteoporosis, hepatitis, edemas, enfermedades al colon y como protectoras de la piel.
Los documentos del estado del arte antes mencionados no describen el uso de la composición y/o de flavonoles naturales, semi-sintéticos o sintéticos, de análogos y/o de derivados de flavonoles naturales, semi-sintéticos o sintéticos, de sus mezclas y/o de mezclas que los contengan, como agentes miméticos o agonistas de la coenzima Q (ubiquinona y ubiquinol).
Tampoco en el estado de la técnica se describe el uso composiciones de flavonoles naturales, semi-sintéticos o sintéticos, de análogos y/o de derivados de flavonoles naturales, semi-sintéticos o sintéticos, de sus mezclas y/o de mezclas que los contengan, como agentes útiles para la prevención y/o el tratamiento de patologías asociadas a una disminuida disponibilidad, concentración, acción y/o efecto de coenzima Q (ubiquinona y ubiquinol), o a una disminuida actividad y/o funcionamiento de la cadena de transporte de electrones, particularmente de enfermedades como "Leber'sHereditaryOpticNeuropathy", "MitochondrialMyopathy, Encephalopathy, Lactacidosis and Stroke", "Friedreich's ataxia", "Keams- SayreSyndrome" y "LeighSyndrome".
BREVE DESCRIPCIÓN DE LA INVENCIÓN
En una realización la presente invención se relaciona con el uso de ciertos flavonoles naturales, semi-sintéticos o sintéticos, de análogos y/o de derivados de flavonoles naturales, semi-sintéticos o sintéticos, de sus mezclas y/o de mezclas que los contengan, como agonistas (parciales o totales) de la coenzima Q.
Los flavonoles son moléculas biosintetizadas por las plantas. Una muy buena fuente de estos compuestos son las hortalizas y frutas que consumen los seres humanos. Dependiendo de la dieta, la ingesta de flavonoides alcanza, en general, alrededor de 750-1000 mg/día, dependiendo de la participación y del tipo de frutas y verduras comprendidas en ésta. En tal escenario, la ingesta de flavonoles puede suponer un 30-40% del total de flavonoides ingeridos. Estos últimos comprenden, a lo menos seis sub-grupos, de los cuales los flavonoles son tan solo uno.
Todos los flavonoles exhiben propiedades antioxidantes. Sin embargo, la presente invención no depende de las propiedades antioxidantes de éstos, las cuales se manifiestan in vitro, generalmente, a concentraciones que superan los 50 micromolar (esto es, a lo menos 10 veces superiores a las requeridas en la presente invención para asegurar la acción mimética de ubiquinona).
Más bien se destaca que, en el tratamiento de complicaciones asociadas al proceso de envejecimiento, el uso de flavonoles podría representar una importante mejora respecto a los tratamientos actualmente disponibles, dada la gran capacidad que, en el marco de esta invención, algunos de dichos compuestos muestran para compensar y/o restablecer la funcionalidad de la mitocondria y particularmente de la cadena transportadora de electrones, a bajas concentraciones micromolares.
Por otra parte, cabe señalar la extremadamente baja toxicidad de los flavonoles, lo que es consistente con el consumo de ciertos alimentos que contienen dichos compuestos en abundancia.
Así, la presente invención es útil para la prevención y/o tratamiento de los síntomas/signos asociados al proceso de envejecimiento celular, para tratar y/o mitigar los síntomas/signos asociados a enfermedades y/o condiciones patológicas relacionadas con una merma de la función o con disfunciones mitocondriales, y/opara mejorar el rendimiento de individuos y/o otros animales incrementando la capacidad productora de energía de las mitocondrias.
Cabe destacar que a nivel de las enfermedades y/o desordenes metabólicos primariamente causados poruña disfunción mitocondrial, no existen en la actualidad, tratamientos eficaces para prevenir, mitigar y/o tratar sus síntomas/signos, por lo que el uso de ciertos flavonoles naturales, semi-sintéticos o sintéticos, o de preparados que los contengan podría ser una estrategia importante en dichos tratamientos, especialmente, dada la baja concentración de flavonoles que se requiere para observar un efecto modulador (agonista) sobre el transporte de electrones a nivel mitocondrial.
La presente invención se relaciona con una composición farmacéutica, nutracéutica, alimenticia y/o cosmética, que contiene flavonoles naturales, semi-sintéticos o sintéticos, análogos y/o de derivados de flavonoles naturales, semi-sintéticos o sintéticos, sus mezclas y/o mezclas que los contengan, como agonistas de coenzima Q, y su uso en situaciones fisiológicas asociadas a hiper-demanda energética.
La presente invención más específicamente, se refiere a una composición farmacéutica, nutracéutica, alimenticia y/o cosmética para uso en envejecimiento, otras situaciones fisiológicas, y en patologías asociadas con la necesidad de responder a una mayor demanda energética, secundaria a una condición de menor producción de ATPpor parte de la mitocondria. La presente composición farmacéutica, nutracéutica, alimenticia y/o cosmética contiene flavonoles naturales, semi-sintéticos o sintéticos, análogos y/o derivados de flavonoles naturales, semi- sintéticos o sintéticos, sus mezclas y/o mezclas que los contengan, como agonistas de la función que cumple la coenzima Q en la cadena de transporte de electrones mitocondrial. Los flavonoles naturales preferidos son quercetina, isoramnetina, galangina, ramnetina, miricetina, tamarixetina. La presente composición, que comprende flavonoles naturales, semi-sintéticos o sintéticos, análogos y/o de derivados de flavonoles naturales, semi-sintéticos o sintéticos, sus mezclas y/o mezclas que los contengan, es útil en la modulación de procesos bioquímico-fisiológicos relacionados con el envejecimiento y otros procesos caracterizados por una hiper-demanda energética, y en la prevención, mitigación y/o tratamiento de desórdenes, síndromes o patologías asociadas y/o atribuidas a una actividad alterada de los complejos mitocondriales I, II y/o III. Ejemplos de tales patologías son: "Leber'sHereditaryOpticNeuropathy", "Mitochondrial yopathy, Encephalopathy, Lactacidosis and Stroke", "Friedreich's ataxia", "Kearns-SayreSyndrome" y "LeighSyndrome".
El presente invento comprende además el uso de ciertos flavonoles naturales, semi- sintéticos o sintéticos, de análogos y/o de derivados de flavonoles naturales, semi- sintéticos o sintéticos, de sus mezclas y/o de mezclas que los contengan, en la prevención y/o tratamiento de aquellos efectos secundarios (no deseados) que provocan ciertos anti-inflamatorios no esferoidales como resultado de su capacidad para disminuir la actividad del complejo I mitocondrial.
DESCRIPCION DE LAS FIGURAS
En la Figura 1 se muestra la efectividad de quercetina, como paradigma de flavonol, para actuar como mimético de coenzima Q en la actividad del complejo I. El flavonolquercetina como "coenzima Q mimético" en la actividad del Cx-I. Las mitocondrias fueron incubadas con quercetina (1-10 μΜ) en ausencia de coenzima Q, por 10 minutos antes del inicio de la reacción. La actividad Cx-I fue medida siguiendo la desaparición de NADH a 340 nm. El control corresponde a la actividad del Cx-I en mitocondrias incubadas con coenzima Q (65 μΜ) en ausencia de quercetina. a: p < 0,001 relativo al control NADH y CoQ, b: p < 0,001 relativo al control en ausencia de NADH y quercetina. La figura muestra resultados obtenidos con mitocondria aislada de epitelio duodenal de rata. Sin embargo, idénticos resultados fueron obtenidos con mitocondria de células de la piel, cerebro y músculo. En la Figura 2 se muestran resultados de experimentos en los cuales se midió la capacidad de quercetina para comportarse como transportador de electrones entre los complejos I y III, para captarlos y cederlos, respectivamente. La actividad del complejo III fue evaluada través de la reducción de citocromo c. El flavonolquercetina como "coenzima Q mimetico" con la actividad del complejo l-lll. Las mitocondrias fueron incubadas con quercetina 5 ó 10 μΜ en ausencia de CoQ. La actividad del complejo l-lll fue medida como la reducción de citocromo c (descenso en la DO a 550 nm) al incubar mitocondria con NADH como donante inicial de electrones en el Cx-I y CoQ o quercetina como "electrón carrier" entre el Cx-I y el Cx-lll. El control corresponde a la actividad medida al incubar mitocondria con CoQ 65 μΜ en ausencia de quercetina. a: p < 0,001 relativo al control CoQ, b: p < 0,001 relativo al control en ausencia de CoQ y quercetina. La figura muestra resultados obtenidos con mitocondria aislada de epitelio duodenal de rata. Sin embargo, idénticos resultados fueron obtenidos con mitocondria de células de la piel, cerebro y músculo. En la Figura 3 se muestra que, relativo al 100% de reducción o consumo de oxígeno (barra blanca), en ausencia de coenzima Q el consumo de oxígeno mitocondrial cayó a menos del 20%. A partir de dicho nivel, la adición de quercetina en concentraciones 5 y 10 micromolar permitió recuperar la reducción de oxígeno en un 70% y un 100%, respectivamente. Estos resultados dan cuenta de la capacidad del flavonol, quercetina, para actuar como mimético y/o agonista de la coenzima Q a lo largo de toda la cadena transportadora de electrones. Efecto del flavonolquercetinasobre la actividad de la cadena transportadora de electrones (CTE). Las mitocondrias fueron incubadas con quercetina 5 ó 10 μΜ en ausencia de CoQ. La actividad de la CTE fue medida como el porcentaje de consumo de oxígeno al incubar mitocondrias con NADH a 130 μηη como donante de electrones. La actividad del control se definió al incubar mitocondrias con CoQ 65 μΜ en ausencia de quercetina. a: p < 0,001 relativo al control CoQ, b: p < 0,001 relativo al control en ausencia de CoQ y quercetina. La figura muestra resultados obtenidos con mitocondria aislada de epitelio duodenal de rata. Sin embargo, idénticos resultados fueron obtenidos con mitocondria de células de la piel, cerebro y músculo.
En la Figura 4 se muestra el resultado de experimentos en los que se cuantificó la producción de ATP por parte de mitocondrias incubadas en distintas condiciones. El control (barra blanca, 100%) corresponde a mitocondrias incubadas en presencia de coenzima Q 65 μΜ pero en ausencia de quercetina. En ausencia de coenzima Q adicionada, la producción de ATP mitocondrial disminuyó considerablemente, hasta solo un 23% del valor control. Bajo la condición de ausencia inicial de coenzima Q, la adición de concentraciones crecientes de esta última (1 , 5 y 10 μΜ) permitió recuperar en forma concentración dependiente los niveles de producción de ATP mitocondrial. Bajo la misma condición de ausencia inicial de coenzima Q, la adición de concentraciones crecientes de quercetina permitió recuperar, nuevamente en forma concentración dependiente, la capacidad mitocondrial de producción de ATP. Efecto del flavonolquercetina en la producción de ATP mitocondrial. Las mitocondrias fueron incubadas en ausencia de CoQ durante 10 minutos y posteriormente se adicionaron coenzima Q o quercetina (1 , 5 o 10 μΜ). La producción de ATP se cuantificó inmediatamente después utilizando el kit CelITiter- Glo®LuminescentCellViabilityAssay, de Promega. El control corresponde a la producción medida al incubar mitocondrias con CoQ 65 μΜ sin la adición de quercetina o de coenzima Q tras 10 minutos, a: p < 0,001 relativo al control en presencia de CoQ inicial, b: p < 0,001 relativo al control en ausencia de CoQ y quercetina. La figura muestra resultados obtenidos con mitocondria aislada de músculo de rata. Sin embargo, idénticos resultados fueron obtenidos con mitocondria de células de la piel, cerebro y epitelio intestinal. En la Figura 5, se muestra la capacidad que tienen distintos AINEs para inhibir la actividad del complejo I. Efecto de diferentes AINEs sobre la actividad del Cx-I mitocondrial. Las mitocondrias fueron incubadas con diferentes AINEs (50 μΜ) durante 10 minutos, previo al inicio de la reacción. La actividad del complejo I se midió mediante la oxidación de NADH a 340 nm. La actividad control corresponde a la medida en mitocondrias incubadas en ausencia de AINEs. a: p < 0,001 relativo al control.
La tabla 1 muestra el efecto de quercetina sobre la inhibición del complejo I inducida por AINEs. Efecto protector del flavonolquercetina sobre la inhibición del complejo inducida por diversos anti-inflamatorios no esferoidales (AÍNEs). IC50 de diferentes AINES sobre el Cx-I de mitocondrias aisladas.
Se muestran los IC50 para diferentes AINEs sobre el Cx-I de mitocondrias aisladas. Mitocondrias aisladas de epitelio duodenal de rata fueron incubadas durante 10 minutos con diferentes concentraciones de los AINEs (5, 10, 25, 50, 100 μΜ) en ausencia y en presencia de quercetina 5 μΜ. La actividad del Cx-I fue monitoreada mediante la oxidación de NADH (340 nm) y el IC50 fue interpolado de una curva Log [AINE] versus % actividad Cx-I. La tabla muestra resultados obtenidos con mitocondria aislada de epitelio duodenal de rata. Sin embargo, idénticos resultados fueron obtenidos con mitocondria de células de estómago e hígado.
En la Figura 6 se muestra la capacidad de rotenona para inhibir la actividad del complejo I junto con la capacidad de quercetina para prevenir dicha inhibición. Efecto del flavonolquercetina sobre la inhibición del complejo I inducida por rotenona. Las mitocondrias fueron incubadas con rotenona 20 μΜ durante 10 minutos, en ausencia o presencia de quercetina (15 o 30 μΜ). La actividad del complejo I se midió mediante la oxidación de NADH a 340 nm. La actividad control corresponde a la medida en mitocondrias incubadas en ausencia de rotenona y quercetina. a: p < 0,001 relativo al control, b: p < 0,001 relativo a mitocondrias incubadas con rotenona en ausencia de quercetina. La figura muestra resultados obtenidos con mitocondria aislada de cerebro de rata. Sin embargo, idénticos resultados fueron obtenidos con mitocondria de células de la piel, intestino y músculo.
DESCRIPCION DETALLADA DE LA INVENCION
La presente invención es de particular interés tanto para compañías farmacéuticas como cosméticas que comercializan productos cuyo principio activo corresponde a coenzima Q, o al análogo de dicha molécula, idebenona, destinados a prevenir o reducir el impacto que supone una merma o pérdida (aguda o crónica) de actividad de la cadena transportadora de electrones mitocondrial. Así, es de interés para laboratorios cuyos principios activos sean recomendados o prescritos para la prevención y/o tratamiento de los síntomas/signos asociados al proceso de envejecimiento, y/o destinados a tratar o mitigar los síntomas/signos asociados a condiciones fisiológicas, fisiopatológicas y/o a enfermedades relacionadas con una merma de la función o una disfunción mitocondrial, principalmente de aquellas causadas y/o perpetuadas por disfunciones a nivel de la producción de energía a nivel mitocondrial, y particularmente a nivel de los complejos I, II y/o III de la cadena transportadora de electrones.
La presente invención es también del interés de compañías que comercializan nutracéuticos, destinados a mejorar el rendimiento físico de individuos y/o de otros animales, que contengan principios activos cuya función sea la de incrementar la capacidad productora de energía a nivel mitocondrial.
Tal como se señaló antes, los flavonoles son moléculas biosintetizadas por las plantas. Una muy buena fuente de estos compuestos son diversas hortalizas y frutas que regularmente consumimos. Dependiendo de la dieta, la ingesta de flavonoides alcanza, en general, alrededor de 750-1000 mg/día, dependiendo de la participación y del tipo de frutas y verduras comprendidas en ésta. En tal escenario, la ingesta de flavonoles puede suponer un 30-40% del total de flavonoides ingeridos.
Todos los flavonoles exhiben propiedades antioxidantes. Sin embargo, tal como esta solicitud lo indica, el potencial de las composiciones o usos aquí descritos, no se desprenden ni dependen de sus propiedades antioxidantes, las cuales se manifiestan in vitro, generalmente, a concentraciones que superan los 50 micromolar (esto es, a lo menos 10 veces superiores a las requeridas en la presente invención para asegurar la acción mimética de ubiquinona).
Del mismo modo, como se sabe, in vivo, las acciones antioxidantes de los flavonoides requieren la administración de dosis bastante altas (en humanos, generalmente cercanas y/o superiores a los 1000 mg/día). En efecto, no está claro aún si los beneficios para la salud (mayormente cardiovascular) atribuidos al consumo de frutas y verduras ricas en flavonoles son, efectivamente, resultado de las propiedades antioxidantes directas de estos compuestos.
A nivel de las enfermedades relacionadas con una disfunción mitocondrial, como las anteriormente referidas, no existen en la actualidad tratamientos eficaces para prevenir, mitigar y/o tratar sus síntomas/signos, por lo que el uso de ciertos flavonoles naturales, sintéticos o semi-sintéticos.o de preparados que los contengan podría ser una estrategia importante en dichos tratamientos, especialmente, dada la baja concentración que, para aquellos flavonolesque se muestran capaces de cumplir un rol mimético de coenzima Q, se requiere para observar un efecto modulador (agonista) sobre el transporte de electrones a nivel mitocondrial.
En el tratamiento de complicaciones asociadas al proceso de envejecimiento, el uso de dichos flavonoles podría representar una importante mejora respecto a los tratamientos actualmente disponibles, dada la gran capacidad de tales compuestos para compensar y/o restablecer la funcionalidad de la mitocondria y particularmente de la cadena transportadora de electrones (generando ATP), haciéndolo a bajas concentraciones, y atendiendo a la alta disponibilidad de estas moléculas en los alimentos.
Más particularmente, la presente invención comprende el uso de flavonoles naturales, semi-sintéticos o sintéticos, de análogos y/o de derivados de flavonoles naturales, semi-sintéticos o sintéticos, de sus mezclas y/o de mezclas que los contengan, en una composición farmacéutica, nutracéutica, alimenticia y/o cosmética, como agonistas de la función que coenzima Q (ubiquinona y ubiquinol) cumple como "electrón-carrier" en la cadena de transporte de electrones mitocondrial.
Dicho uso comprende la modulación de la actividad de los complejos I, II y/o III de la cadena de transporte de electrones, y su aplicación se inserta en el tratamiento de aquellas condiciones tanto fisiológicas como patológicas en las cuales se busque normalizar o incrementar la concentración, acción y/o función que ubiquinona y/o ubiquinol cumplen en los procesos de transporte de electrones en la mitocondria.^ Lo anterior comprende el uso de ciertos flavonoles naturales, semi-sintéticos o sintéticos, de análogos y/o de derivados de flavonoles naturales, semi-sintéticos o sintéticos, de sus mezclas y/o de mezclas que los contengan, en la modulación del curso de procesos fisiológicos como envejecimiento y de otros caracterizados por una mayor demanda energética, y en la prevención, mitigación y/o tratamiento de desórdenes, síndromes o patologías asociadas y/o atribuidas a una actividad alterada de los complejos mitocondriales I, II y/o III. Ejemplos de tales patologías son: "Leber'sHereditaryOpticNeuropathy", "MitochondrialMyopathy, Encephalopathy, Lactacidosis and Stroke", "Friedreich's ataxia", "Kearns-SayreSyndrome" y "LeighSyndrome".
El presente invento comprende además el uso de ciertos flavonoles naturales, semi- sintéticos o sintéticos, de análogos y/o de derivados de flavonoles naturales, semi- sintéticos o sintéticos, de sus mezclas y/o de mezclas que los contengan, en la prevención y/o tratamiento de aquellos efectos secundarios que provocan ciertos anti-inflamatorios no esteroidales como resultado de su capacidad para disminuir la actividad del complejo I mitocondrial.
El funcionamiento normal de cualquier organismo requiere de la provisión continua de energía bajo la forma de ATP. Dentro de la célula, el ATP es generado principalmente por la mitocondria (Harris, et al. 1991 ; Duchen 2004). Para ello, dos procesos metabólicos, que están interconectados, son absolutamente fundamentales. El primero, consistente en la cadena transportadora de electrones (CTE), la que permite generar entre la matriz y el espacio inter-membrana de la mitocondria un gradiente de concentración de protones. El segundo, consistente en la fosforilación oxidativa (FO), aprovecha dicho gradiente en un proceso que es conducente a la síntesis de ATP (Schultz et al. 2001 ).
El funcionamiento normal de la CTE supone un flujo eficiente de electrones a través de una serie de sistemas multi-enzimáticos que comprende los complejos I, II, III y IV. A nivel del complejo !, el donante inicial de electrones es la molécula de NADH. En el caso del complejo II es succinato. El aceptor final de electrones en la CTE es una molécula de oxígeno. Para asegurar que el flujo de electrones entre un complejo y el siguiente sea ininterrumpido, existen en la mitocondria moléculas cuya función es altamente específica en cuanto a que sirven como "aceptores y luego como donantes de electrones" ("electron-carriers"; EC) a través de los complejos mencionados (ver Esquema 1 ).
Figure imgf000018_0001
Una de dichas moléculas es la coenzima Q (o Q10), frecuentemente referida como ubiquinona (Co-Qox) en su estado oxidado y como ubiquinol (Co-Qred) en su estado reducido (Heales et al. 2004; Turunen et al. 2004; Quinzii et al. 2010). La función de la coenzima Q es aceptar electrones desde los complejos I o II, para posteriormente donarlos al complejo III. El complejo III cede sus electrones a una molécula de citocromo c, segundo "electrón-carrier", reduciéndolo. El citocromo c reducido pasa luego a donar sus electrones al complejo IV, el cual, finalmente, los transfiere a una molécula de oxígeno. Como resultado de esto último, el oxígeno se convierte en agua.
Los procesos redox mediados por los complejos I, III y IV están acoplados a un transporte de protones desde la matriz hacia el espacio inter-membrana de la mitocondria. Aprovechando el gradiente de protones resultante, el complejo V, cataliza la fosforilación de ADP, para formar ATP (FO) (Gledhill et al. 2006; Hong et al. 2008).
Existen diversas condiciones tanto fisiológicas como patológicas en las cuales el transporte de electrones a través de la CTE se ve disminuido. Tales condiciones están asociadas a una menor velocidad de síntesis de ATP, posiblemente como resultado de una actividad disminuida de los complejos I, II y/o III. Un ejemplo de condición fisiológica, quizás la más Importante, en la cual la actividad de la CTE se ve disminuida, es aquella que da cuenta del proceso de envejecimiento celular (Lores-Arnaiz et al. 2011 ; Wenz 2011 ).
Bajo tal condición se evidencia a nivel mitocondrial una progresiva "disfunción" que afecta, preferentemente, los complejos I y III de la CTE (Navarro et al. 2001 ; Stefanatos et al. 2011). Algunas de las estrategias destinadas a retardar el proceso de envejecimiento, implican principalmente el uso o la administración de coenzima Q y/o de análogos sintéticos de dicha molécula como una forma de re-establecer el funcionamiento y/o la actividad normal de la CTE (Prahl et al. 2008; Kumchenko et al. 2010; López-Lluch et al. 2010).
La intención de los tratamientos mencionados para retardar y/o prevenir los efectos asociados al proceso de envejecimiento es restablecer el adecuado funcionamiento de la mitocondria, particularmente de la cadena transportadora de electrones. Efectivamente, tratamientos en los que coenzima Q es incorporada en cremas y ungüentos de aplicación tópica, han demostrado ser capaces de disminuir la profundidad de arrugas y el oscurecimiento de la piel propios del envejecimiento. Sin embargo, la efectividad de tales tratamientos se ve, a menudo, limitada por la baja solubilidad de la coenzima Q, lo que limita significativamente su absorción. Esto último es particularmente relevante cuando la efectividad del uso de coenzima Q demanda su alta biodisponibilidad a nivel sistémico. Con el afán de mejorar la absorción de coenzima Q, se ha evaluado un preparadollamado Q-Ter®, desarrollado mediante un proceso llamado terclatración, en el que la coenzima Q es adosada a una matriz lipo-o hidro-soluble, aumentando alrededor de 200 veces su solubilidad sin alterar su capacidad metabólica (Xu et al. 2010).
Más numerosos son, sin embargo, los ejemplos de condiciones patológicas en las cuales la actividad de los complejos I, II y/o III se encuentra disminuida (Finsterer 201 1 ). Entre las patologías más conocidas, se encuentran algunas enfermedades y síndromes (generalmente degenerativas y con una base genética) que comprometen el funcionamiento de los sistemas nervioso central, muscular y/o cardiovascular. Tales enfermedades incluyen la "Leber'sHereditaryOpticNeuropathy" (LHON), "MitochondrialMyopathy, Encelopathy, Lactacidosis and Stroke" (MELAS), "Friedreich's ataxia" (FA), "Kearns-SayreSyndrome" (KSS) y "LeighSyndrome" (LS) (Maceluch et al. 2006; Pandolfo 2008; Korsten et al. 2010; Cotán et al. 201 1 ; Khaled et al. 201 ; Ostergaard et al. 201 1 ). Al igual que en el caso del envejecimiento, entre las estrategias más importantes destinadas a normalizar la disfunción del complejo I que típicamente acompaña a estas enfermedades, y/o a mitigar sus consecuencias, destaca el uso o la administración de coenzima Q (Ramaekers et al. 2007, López et al. 2010) y/o de análogos sintéticos derivados directamente de dicha molécula. Entre dichos análogos, quizás el único promisorio, cuyo uso ha sido evaluado en el tratamiento de las enfermedades anteriormente mencionadas es la idebenona. Algunos estudios clínicos que se han llevado a cabo muestran una mejora en el estado general de los pacientes tratados con este compuesto (Haginoya et al. 2009; Lekoubou et al. 2011), sin embargo también se han reportados casos en los que idebenona no tuvo efecto alguno, o incluso empeoró los síntomas de los pacientes incluidos en los estudios (Auré et al. 2004; Barnils et al. 2007; Lagedrost et al. 2011 ).
Si bien el uso de coenzima Q y/o de su análogo sintético idebenona en el tratamiento de desórdenes caracterizados por una disminuida actividad de los complejos I, II y/o III, emerge de una base racional y constituye la principal forma de intervención terapéutica, la efectividad clínica asociada al uso de estos agentes es aún controversial (Berbel-García et al. 2004; Drinkard et al. 2010; Ker 2010). Lo anterior tendría como explicación, en parte, la relativamente baja bio-disponibilidad que tanto la coenzima Q como sus análogos tienen tras su administración oral, lo que ciertamente limita las concentraciones que finalmente estos compuestos puedan alcanzar en los sitios de acción (mitocondria en sistema nervioso central, en músculos, etc.) (Bentinger et al. 2003).
No menos importante es la frecuencia relativamente alta de efectos adversos asociados a la administración de idebenona y/o de algunos de los análogos sintéticos hasta ahora desarrollados (Fleming et al. 2008; Natkunarajah et al. 2008). En consecuencia, existe en la actualidad una clara necesidad de sumar a las pocas alternativas existentes, moléculas alternativas que, en lo posible, conjuguen su efectividad para actuar como miméticos de coenzima Q con una inocuidad compatible con su administración repetida a seres humanos.
En la presente invención se enseña que ciertas moléculas, que se encuentran naturalmente presentes en algunos alimentos y cuya distinción químico-estructural corresponde estrictamente a la que caracteriza a los flavonoles, son extremadamente eficientes para actuar como miméticos o agonistas de la coenzima Q, en lo concerniente a la función de esta última como "electron-carrier" en la cadena de transporte de electrones de la mitocondria.
Los flavonoles forman parte de un gran grupo de moléculas denominadas flavonoides, cuya estructura consiste en dos anillos aromáticos unidos por 3 átomos de carbono; estos últimos conforman generalmente un heterociclo oxigenado, como se muestra en la fórmula estructural (I) indicada a continuación:
Figure imgf000022_0001
Fórmula I
Desde un punto de vista estructural, los flavonoles se distinguen de los demás flavonoides por poseer en su anillo C, un grupo hidroxilo (HO") unido al C-3 y un grupo carbonilo en C-4, como se muestra en la fórmula estructural (II) indicada a continuación:
Figure imgf000022_0002
Fórmula II Si bien existen diversas fuentes naturales de flavonoles, ciertas frutas y verduras habitualmente consumidas por la población (como cebollas amarillas, manzanas, algunos berries, té y brócoli) son particularmente ricas en estos compuestos. Aunque se han descrito decenas de flavonoles en los alimentos, entre los más conocidos se encuentran: quercetina, miricetina, isoramnetina, galangina, ramnetina y tamarixetina.
Un flavonol se distingue de otro en el número, posición y/o en el tipo de sustituyentes presentes en los anillos A y B de su estructura básica. Así, por ejemplo, la molécula de quercetina presenta grupos hidroxilo (un total de cuatro) en los carbonos 5 y 7 del anillo A y 3' y 4' del anillo B. La miricetina exhibe, en cambio grupos hidroxilo en las posiciones 5 y 7 del anillo A y 3', 4' y 5' del anillo B. En algunos casos, además de tener ciertos grupos HO", la estructura flavonol tiene como sustituyentes a grupos metoxi (CH3-O ). Ejemplos de esto último son la isoramnetina, ramnetina y tamarixetina. En la naturaleza, cada flavonol puede encontrarse en su forma libre (llamada aglicona) o como compuesto conjugado con un azúcar (forma llamada glicona; ej. con glucosa, ramnosa, galactosa).
La presente solicitud surge de investigaciones experimentales que evaluaron en forma sistemática la capacidad que podrían tener más de un centenar de flavonoides, para actuar como miméticos de coenzima Q en la CTE, en concentraciones del orden de 1-10 x 10"6 M (1 a 10 micromolar). Entre los flavonoides testeados, algunas moléculas, pertenecientes siempre al subtipo flavonoles, ver formula II, fueron las únicas que resultaron ser suficientemente activas para actuar, en el rango de concentraciones referido, como agonistas o como miméticos de coenzima Q.
Desde un punto de vista experimental, los resultados descritos fueron obtenidos empleando mitocondrias (aisladas de epitelio de duodeno, piel, estómago, hígado, músculo o cerebro de ratas) expuestas a cada uno de los compuestos ensayados, en ausencia y/o presencia de coenzima Q. La efectividad de ciertos flavonoles para actuar como miméticos de la coenzima Q fue experimentalmente evaluada bajo condiciones que permiten medir, en forma separada, la actividad de los complejos I, II y III.
A modo de ejemplo, en la Figura 1 se muestra la efectividad de quercetina, como paradigma de flavonol, para actuar como mimético de coenzima Q en la actividad del complejo I.
Como se puede ver, la actividad normal del complejo I, definida como 100% en la Figura 1 , se observa con una concentración de coenzima Q de 65 micromolar (barra blanca, condición empleando 130 micromolar de NADH). En ausencia de adición de Coenzima Q, dicha actividad es tan solo cercana a un 15% de la basal (posiblemente como resultado de la presencia remanente endógena de la coenzima Q en las mitocondrias aisladas).
Bajo tal condición, la adición de quercetina, en concentraciones crecientes (1-10 micromolar) permite una recuperación cercana al 90% de la actividad del complejo I. Estos resultados dan cuenta de la capacidad del flavonol, en este caso quercetina, para actuar como mimético y/o agonista de coenzima Q en cuanto a la función de "aceptor de electrones" de esta última molécula. Aunque no se muestra, resultados comparables se observaron con otros flavonoles.
La función de la coenzima Q en la CTE implica no solo aceptar electrones desde el complejo I (lo que se traduce en la conversión de ubiquinona en ubiquinol), sino también ceder inmediatamente después dichos electrones al complejo III. Los resultados que se muestran en la Figura 1 dan cuenta solo de la capacidad que tienen flavonoles como quercetina para actuar como aceptores de electrones. Por tanto, para que una molécula distinta de coenzima Q pueda ser considerada mimética o agonista, ésta debe además, mostrar una capacidad para ceder los electrones que ha captado previamente. La Figura 2 muestra los resultados de experimentos en los cuales se midió la capacidad de quercetina para comportarse como transportador de electrones entre los complejos I y III, para captarlos y cederlos, respectivamente. La actividad del complejo III fue evaluada través de la reducción de citocromo c.
La actividad normal del complejo I a III (reducción de citocromo c), definida como 100% en la Figura 2, corresponde a aquella obtenida tras exponer mitocondrias a una concentración de NADH de 130 micromolar y de coenzima Q de 65 micromolar (barra blanca). En ausencia de adición de Coenzima Q o de NADH, dicha actividad es cercana a un 30% de la basal (posiblemente como resultado de la presencia remanente endógena de la NADH y coenzima Q en las mitocondrias aisladas). En mitocondrias incubadas con NDAH pero sin coenzima Q, la adición del flavonol quercetina, 5 y 10 micromolar, dio lugar a la recuperación de la actividad del complejo I a III en un 60% y 90% respectivamente.
Estos resultados dan cuenta de la capacidad del flavonol, quercetina, para actuar como mimético y/o agonista de la coenzima Q no solo como "aceptor de electrones" sino también como donante de estos. Así, se encontraron resultados comparables con varios otros flavonoles.
Finalmente, la perspectiva de emplear ciertos flavonoles como miméticos de coenzima Q demandó demostrar que, en ausencia de coenzima Q, los agonistas putativos pueden reemplazar dicha molécula a lo largo de todo el proceso de la CTE (complejos I, III y IV). Esto último fue evidenciado en experimentos en los cuales se midió la capacidad de quercetina y de otros flavonoles para reducir oxígeno molecular (que como se mencionó anteriormente, es el aceptor final de electrones en la cadena) en mitocondrias expuestas a NADH (130 micromolar), coenzima Q (65 micromolar) y citocromo c (50 micromolar). Como se muestra en la Figura 3, relativo al 100% de reducción o consumo de oxígeno (barra blanca), en ausencia de coenzima Q, el consumo de oxígeno mitocondrial cayó a menos del 20%. A partir de dicho nivel, la adición de quercetina en concentraciones 5 y 10 micromolar permitió recuperar la reducción de oxígeno en un 70% y un 100%, respectivamente. Estos resultados dan cuenta de la capacidad del flavonol, quercetina, para actuar como mimético y/o agonista de la coenzima Q a lo largo de toda la cadena transportadora de electrones. Nuevamente, se encontraron resultados comparables con varios otros flavonoles.
Las Figuras 1-3, directa o indirectamente, dan cuenta de la posibilidad de que los compuestos cuya distinción químico-estructural corresponde a la de los flavonoles (formula II), poseen una capacidad para actuar como miméticos o agonistas de coenzima Q, en cuanto a su función como "electrón-carrier" en la CTE. Como tal, dicha capacidad es particularmente interesante ya que los potenciales beneficios asociados al uso de flavonoles como agonistas de coenzima Q tendrían lugar a concentraciones extremadamente bajas, esto es en el límite de lo micromolar. Antecedentes de literatura dan cuenta que en humanos, tales concentraciones podrían alcanzarse sin necesidad de emplear altas dosis de estos compuestos, reduciendo con ello la posibilidad de ocurrencia de efectos secundarios (Hollman et al. 1999; Ailing Aherne et al. 2002). Dicho efecto a bajas concentraciones permitiría también evitar las complicaciones asociadas a la relativamente baja solubilidad que algunos de estos compuestos presentan en solventes polares.
Otro factor que refuerza la posibilidad de usar flavonoles como miméticos de coenzima Q, es el gran número de estrategias químicas y farmacológicas ya desarrolladas para aumentar la solubilidad, absorción y biodisponibilidad de dichos compuestos tras ser administrados en forma oral a pacientes y/o animales de experimentación (Yuan et al. 2006; Biasutto et al. 2007; Yap et al. 2008; Borghetti et al. 2009). Además, interesantemente, existen reportes que ciertos flavonoles, como quercetina, se concentrarían preferentemente en mitocondrias (Biasutto et al. 2009; Fiorani et al. 2009), es decir, en un sitio subcelular donde, para los usos planteados en esta solicitud, éstos ejercerían sus acciones y efectos.
Junto a lo anterior, cabe destacar que los hallazgos en que se basa la presente invención sientan las bases para plantear bajo la protección de esta solicitud de patente, el uso de un tipo de compuestos que son naturales y además están presentes en algunos alimentos de habitual consumo humano, es decir, compuestos que ya forman parte de nuestra dieta diaria.
Cabe mencionar que en la presente solicitud, los usos que se proponen para los flavonoles naturales, semi-sintéticos o sintéticos, de análogos y/o de derivados de flavonoles naturales, semi-sintéticos o sintéticos, de sus mezclas y/o de mezclas que los contengan, se desprenden y quedan limitados a su accionar como agonistas de coenzima Q en la CTE.
Esto último distingue a los flavonoles naturales, semi-sintéticos o sintéticos, a sus análogos y/o de derivados, a sus mezclas y/o a mezclas que los contengan, en cuanto al uso que se busca proteger, ya que muchos de estos agentes, en virtud de la presencia de grupos hidroxilo en su estructura, son efectivos antioxidantes (Booshan et al. 2009).
Consistente con datos de literatura (Lee et al. 2010; Landi-Librandi et al. 2011), en nuestro laboratorio ratificamos, a través de investigaciones de las cuales no se da cuenta en la presente solicitud de patente, las propiedades antioxidantes (mediante ensayos ORAC, FRAP y TEAC) de cada uno de los flavonoles evaluados. Al respecto destacamos que siendo las propiedades antioxidantes comunes a todos los flavonoles testeados, dichas propiedades no están en absoluto vinculadas con las propiedades que a solo algunos de ellos les permite actuar como agonistas de coenzima Q. En efecto, mientras algunos flavonoles se muestran idénticamente activos como antioxidantes, los mismos difieren totalmente en cuanto a sus propiedades como "electroncarriers" a nivel mitocondrial, siendo algunos muy efectivos como agonistas, y los restantes totalmente carentes de propiedades relacionadas con la función "electrón carrier" de la coenzima Q. Adicionalmente, las acciones antioxidantes de la mayor parte de los flavonoles están asociadas a concentraciones 10 y hasta 100 veces superiores a aquellas para las cuales los mismos se muestran activos como agonistas de coenzima Q en la mitocondria.
En consecuencia, los potenciales usos que la presente invención se desprenden "no de los efectos antioxidantes que los flavonoles pudieran promover, sino rigurosamente de la capacidad que tienen algunos de estos compuestos para actuar como agonistas de coenzima Q en la CTE".
Los usos a proteger se enmarcan, por ende, en todas aquellas condiciones de carácter fisiológico o patológico en las cuales el uso de agonistas de coenzima Q pueda resultar útil y/o beneficioso para la salud. Tales condiciones son el uso de flavonoles como agonistas de coenzima Q en la modulación del proceso de envejecimiento celular (donde característicamente existe una pérdida de eficiencia de la CTE (Lores-Arnaiz et al. 20 ); en la normalización y/o sustentación de la actividad de la CTE en tejido muscular sometido a situaciones de mediana o alta demanda energética; en la prevención, mitigación o tratamiento de aquellos desórdenes o síndromes asociados y/o atribuidos a una disminuida actividad de los complejos I, II y/o III (Pási et al. 2008; Heidari et al. 2009), (enfermedades neuro y miodegenerativas);en la prevención o tratamiento de los efectos secundarios asociados al uso de anti-inflamatorios no esferoidales, particularmente aquellos que afectan a la mucosa del tracto gastrointestinal y que se desprenden de la inhibición del complejo I mitocondrial inducida por estos agentes terapéuticos (Carrasco-Pozo et al. 2011 ); y en la prevención o tratamiento de condiciones toxicológicas inducidas por inhibidores de los complejos mitocondriales I, II y/o III, como rotenona, paraquat, piericidina A, metil-fenil-tetrahidropiridina, antimicina A, mixotiazol, entre otros.
Los usos anteriormente planteados están fundamentados en los hallazgos experimentales descritos anteriormente en las Figuras 1-6 y en la Tabla 1.
En lo que se refiere al uso de ciertos flavonoles en el proceso de envejecimiento celular, la figura 3 muestra los resultados de experimentos en los que se estudió la actividad de la cadena transportadora de electrones en mitocondrias aisladas de epitelio duodenal de rata. Como se mencionó anteriormente, el envejecimiento celular está relacionado con una pérdida de eficiencia de la cadena transportadora de electrones. Dicha pérdida de eficiencia es originada principalmente por un descenso en los niveles de coenzima Q dentro de la mitocondria. En la Figura 3 se observa que situaciones de ausencia de coenzima Q reducen el funcionamiento de la cadena transportadora de electrones (evidenciado como una disminución en el consumo de oxígeno mitocondrial). Frente a dichas situaciones metabólicas, muy similares a las que se pueden observar en células envejecidas, la adición de quercetina fue capaz de recuperar, en forma concentración dependiente el funcionamiento de la CTE, incrementando los niveles de oxígeno consumidos por la mitocondria. En el contexto del proceso de envejecimiento celular, la evidencia permite postular a quercetina y a otros flavonoles, como moléculas con la habilidad de revertir la disfunción de la CTE relacionada con dicho proceso.
Si bien la mitocondria puede suplir constantemente las necesidades energéticas básicas de cada célula, durante períodos de mediana o alta demanda cardiovascular y muscular, los procesos mitocondriales de síntesis de ATP se ven forzados a funcionar en su máxima capacidad. Uno de los limitantes para dicho funcionamiento máximo es la disponibilidad de los sustratos e intermediarios de la cadena transportadora de electrones. Dentro de dichos intermediarios, la disponibilidad de coenzima Q es vital para mantener un óptimo funcionamiento del transporte de electrones y por lo tanto de la síntesis de ATP a través de la fosforilación oxidativa. La figura 4 muestra que ante situaciones de ausencia de coenzima Q, la síntesis de ATP en mitocondrias aisladas de músculo de rata se ve disminuida hasta un 23% del control, realizado en mitocondrias en presencia de 65 μΜ de coenzima Q. Bajo tales condiciones de ausencia de ubiquinona, la adición posterior de concentraciones crecientes de dicho compuesto permitieron recuperar la capacidad de síntesis de ATP, siendo 10 μΜ de coenzima Q suficientes para lograr una producción comparable al 100% obtenido en el control. De la misma forma, bajo condiciones de ausencia de coenzima, quercetina fue capaz de inducir un incremento en la producción de ATP mitocondrial, con una efectividad similar a aquella observada para coenzima Q. Lo anterior nos indica que ante situaciones de depleción de ubiquinona, como las observadas en individuos o animales sometidos a períodos de mediana o alta demanda cardiovascular, quercetina y otros flavonoles son capaces de inducir la síntesis de ATP mitocondrial. Este último efecto de algunos flavonoles nos permite postular su uso como potenciales agentes potenciadores de la capacidad física (muscular y cardiovascular mayormente) de individuos y animales.
En lo que respecta ala prevención, mitigación o tratamiento de aquellos desórdenes o síndromes asociados y/o atribuidos a una disminuida actividad de los complejos I, II y/o III, dicha perdida de actividad está en muchos casos relacionada con una disminuida concentración y/o acción de coenzima Q como sustrato de los respectivos complejos. Las Figuras 1 y 2 muestran que tanto la actividad del complejo I, como aquella del complejo III disminuyen considerablemente en condiciones de ausencia de coenzima Q. Ante dicho escenario, la adición de quercetina (y ciertos análogos) permite recuperar, en forma concentración dependiente, la actividad de ambos complejos estudiados. Basados en dicha evidencia es posible postular que quercetina y otros flavonoles, que también muestran la habilidad de modular la actividad de los complejos I y III, son moléculas potencialmente efectivas en el tratamiento de diversas condiciones, mió- y neurodegenerativas, asociadas a una disminuida actividad de los complejos de la cadena transportadora de electrones mitocondrial.
A modo de ejemplo de potencial uso de algunos flavonoles como agonistas en la prevención o mitigación del daño gastrointestinal que se desprende del uso de antiinflamatorios no esteroidales (AINEs) y que, como se mencionó anteriormente, reside a lo menos parcialmente en la inhibición del complejo I inducida por estos agentes, la figura 5 muestra la capacidad que tienen distintos AINEs para inhibir la actividad del complejo I (datos no publicados aún en consideración a la protección de la presente invención), y la tabla 1 muestra la capacidad de quercetina, como un caso de flavonol, para prevenir y/o revertir dicha inhibición. Experimentos similares fueron realizados en cultivos de células Caco-2, obteniendo resultados comparables en cuanto a la inhibición del complejo I inducida por AINEs y a la capacidad de bajas concentraciones de quercetina para proteger contra dicha inhibición.
Los resultados mencionados permiten postular a ciertos flavonoles como agentes efectivos en la prevención de la inhibición del complejo I inducida por AINEs y, por lo tanto, como agentes potencialmente protectores frente a los efectos secundarios gastrointestinales que dichos fármacos presentan.
Finalmente, en lo que respecta a condiciones toxicológicas asociadas a inhibidores de los complejos I, II y III de la cadena transportadora de electrones mitocondrial, la figura 6 muestra la habilidad de rotenona, al ser adicionada a mitocondrias aisladas de epitelio duodenal de rata, para disminuir la actividad del complejo I. En dichas mitocondrias incubadas con rotenona, la adición de quercetina permitió recuperar, de forma concentración dependiente, la actividad del mencionado complejo, obteniéndose una prevención total de la inhibición con una concentración de quercetina de 30μΜ. Estos resultados permiten postular a los flavonoles como potenciales agentes en la prevención, mitigación y/o tratamiento de condiciones toxicológicas asociadas al uso y/o exposición aguda o crónica a diversos agentes inhibidores de los complejos mitocondriales I, II y/o III.

Claims

REIVINDICACIONES
1. Uso de flavonoles naturales, semi-sintéticos o sintéticos, de análogos y/o de derivados de flavonoles naturales, semi-sintéticos o sintéticos, de sus mezclas y/o de mezclas que los contengan, en donde sirven como miméticos, agonistas o agonistas parciales de ubiquinona (o coenzima Q oxidada; Co-Qox) y/o de ubiquinol (o coenzima Q reducida; Co-Qred) como "electron-carriers" (EC) en los procesos comprendidos en la cadena de transporte de electrones en la mitocondria.
2. El uso de acuerdo con la reivindicación 1 , en donde dichos flavonoles se seleccionan del grupo consistente de quercetina, miricetina, isoramnetina, ramnetina, fisetina, galangina, tamarixetina, taxifolina.
3. El uso de acuerdo con la reivindicación 1 , en donde dichos análogos y/o derivados de flavonoles se seleccionan del grupo consistente de sus glicósidos, ésteres, éteres, isopreno-derivados, alcoxi-derivados, y sales correspondientes.
4. El uso de acuerdo con la reivindicación 1 , en donde dichos flavonoles naturales, semi-sintéticos o sintéticos, de análogos y/o de derivados de flavonoles naturales, semi-sintéticos o sintéticos, de sus mezclas y/o de mezclas que los contengan, sirven para preparar un producto seleccionado de un medicamento, un producto farmacéutico, un producto cosmético, un cosmecéutico, un nutracéutico o un suplemento alimenticio.
5. El uso de acuerdo con la reivindicación 4, en donde dichos flavonoles naturales, semi-sintéticos o sintéticos, sus análogos y/o de derivados de flavonoles naturales, semi-sintéticos o sintéticos, sus mezclas y/o mezclas que los contengan, sirven para modular la acción que cumplen y/o el efecto que promueven, bajo condiciones fisiológicas, la ubiquinona y/o el ubiquinol, en los procesos de transporte de electrones en la mitocondria.
6. El uso de acuerdo con la reivindicación 5, en donde dichos flavonoles naturales, semi-sintéticos o sintéticos, sus análogos y/o derivados de flavonoles naturales, semi-sintéticos o sintéticos, sus mezclas y/o mezclas que los contengan, sirven para prevenir la aparición, ralentizar la progresión y/o disminuir el riesgo de desarrollo de condiciones asociadas a una pérdida aguda y/o progresiva de aquellas funciones que dependen de una adecuada concentración, acción y/o efecto, de ubiquinona y/o ubiquinol en la cadena de transporte de electrones mitocondrial, particular y preferentemente, de aquellas condiciones que acompañan y/o se asocian al proceso de envejecimiento, incluyendo funciones musculares, cutáneas, motoras, neurológicas y/o cognitivas.
7. El uso de acuerdo con la reivindicación 5, en donde dichos flavonoles naturales, semi-sintéticos o sintéticos, sus análogos y/o derivados de flavonoles naturales, semi-sintéticos o sintéticos, sus mezclas y/o mezclas que los contengan, sirven para mantener un funcionamiento normal y/o para optimizar aquellos procesos musculares que dependen de una adecuada concentración, acción y/o efecto, de ubiquinona y/o ubiquinol en la cadena de transporte de electrones mitocondrial en humanos y/o en otros animales expuestos a actividades de mediana o alta demanda energética y/o cardiovascular.
8. El uso de acuerdo con la reivindicación 5, en donde dichos flavonoles naturales, semi-sintéticos o sintéticos, sus análogos y/o derivados de flavonoles naturales, semi-sintéticos o sintéticos, sus mezclas y/o mezclas que los contengan, sirven para prevenir, mitigar y/o tratar condiciones fisiopatológicas y/o enfermedades causadas, promovidas, resultantes y/o relacionadas con alteraciones en las concentraciones, la acción, la función y/o el efecto que ubiquinona y/o ubiquinol tienen en los procesos de transporte de electrones en la mitocondria, particular y preferentemente, enfermedades como "Leber'sHereditaryQpticNeurppathy" (LHON), "MitochondrialMyopathy, Encelopathy, Lactacidosis and Stroke" (MELAS), "Friedreich's ataxia" (FA), "Kearns-SayreSyndrome" (KSS) y "LeighSyndrome" (LS), entre otras.
9. El uso de flavonoles naturales, semi-sintéticos o sintéticos, de análogos y/o de derivados de flavonoles naturales, semi-sintéticos o sintéticos, de sus mezclas y/o de mezclas que los contengan, en donde sirven para prevenir, mitigar y/o tratar condiciones iatrogénicas y/o de toxicidad causadas, resultantes y/o relacionadas con alteraciones en los niveles, la acción y/o la función que ubiquinona y/o ubiquinol tienen en los procesos de transporte de electrones en la mitocondria, particular y preferentemente, aquellas que resultan de la disfunción del proceso de transporte de electrones a nivel de complejo I inducida por el uso agudo o crónico de antiinflamatorios no-esteroidales (AINEs) como aspirina, ibuprofeno, diclofenaco, piroxicam e indometacina.
10. El uso de flavonoles naturales, semi-sintéticos o sintéticos, de análogos y/o de derivados de flavonoles naturales, semi-sintéticos o sintéticos, de sus mezclas y/o de mezclas que los contengan, en donde sirven para prevenir, mitigar y/o tratar condiciones iatrogénicas y/o de toxicidad causadas, resultantes y/o relacionadas con alteraciones en los niveles, la acción y/o la función que ubiquinona y/o ubiquinol tienen en los procesos de transporte de electrones en la mitocondria, particular y preferentemente, aquellas que resultan de la disfunción del proceso de transporte de electrones a nivel de los complejos I, II y/o III inducida por el uso y/o la exposición aguda o crónica inhibidores de dichos complejos mitocondriales como rotenona, paraquat, piericidina A, metil-fenil-tetrahidropiridina, antimicina A, mixotiazol, entre otros.
PCT/CL2012/000072 2011-12-13 2012-12-12 Flavonoles como agonistas de coenzima q (ubiquinona y ubiquinol) en la modulación de la actividad de los complejos de la cadena de transporte de electrones mitocondrial WO2013086649A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2011003142A CL2011003142A1 (es) 2011-12-13 2011-12-13 Uso de flavonoles naturales, de sus mezclas y/o de mezclas que los contengan que sirven como mimeticos, agonistas o agonistas parciales de ubiquinona y/o ubiquinol.
CL3142-2011 2011-12-13

Publications (2)

Publication Number Publication Date
WO2013086649A2 true WO2013086649A2 (es) 2013-06-20
WO2013086649A3 WO2013086649A3 (es) 2013-10-10

Family

ID=48613300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2012/000072 WO2013086649A2 (es) 2011-12-13 2012-12-12 Flavonoles como agonistas de coenzima q (ubiquinona y ubiquinol) en la modulación de la actividad de los complejos de la cadena de transporte de electrones mitocondrial

Country Status (2)

Country Link
CL (1) CL2011003142A1 (es)
WO (1) WO2013086649A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109369589A (zh) * 2018-10-12 2019-02-22 王刚 黄栌黄酮苷的同步提取工艺和其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020082121A (ko) 2001-04-23 2002-10-30 한국생명공학연구원 플라보놀 유도체를 유효성분으로 함유하는 간염 예방 또는치료용 약학적 조성물
WO2004078155A1 (fr) 2003-03-03 2004-09-16 Zhejiang University (Hangzhou) Leaf Bio-Technology Co., Ltd. Utilisation d'un extrait total de flavonoide d'une feuille de bambou dans des compositions cosmetiques comme facteur anti-vieillissement
JP2008092869A (ja) 2006-10-12 2008-04-24 Toyo Seito Kk フラボノイド組成物、その製造方法および用途
KR20100066125A (ko) 2008-12-09 2010-06-17 주식회사 코리아나화장품 플라보노이드계 화합물을 유효성분으로 함유하는 항노화 화장료 조성물
KR20100066126A (ko) 2008-12-09 2010-06-17 주식회사 코리아나화장품 플라보노이드계 화합물을 유효 성분으로 함유하는 피부 노화 방지용 화장료 조성물

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008003509U1 (de) * 2008-03-12 2009-10-15 Langhoff, Gertrud Pharmazeutische Zusammensetzung zur Prophylaxe und Behandlung der Arteriosklerose, sowie zur Schmerzbekämpfung und zur Entzündungshemmung
EP2418965B1 (en) * 2009-04-17 2016-06-29 DSM IP Assets B.V. Hydroxytyrosol combinations for enhancing mitochondrial function and energy production.
US20110123651A1 (en) * 2009-05-20 2011-05-26 Mower Thomas E Dietary supplement drink for delivery of resveratrol and other polyphenols

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020082121A (ko) 2001-04-23 2002-10-30 한국생명공학연구원 플라보놀 유도체를 유효성분으로 함유하는 간염 예방 또는치료용 약학적 조성물
WO2004078155A1 (fr) 2003-03-03 2004-09-16 Zhejiang University (Hangzhou) Leaf Bio-Technology Co., Ltd. Utilisation d'un extrait total de flavonoide d'une feuille de bambou dans des compositions cosmetiques comme facteur anti-vieillissement
JP2008092869A (ja) 2006-10-12 2008-04-24 Toyo Seito Kk フラボノイド組成物、その製造方法および用途
KR20100066125A (ko) 2008-12-09 2010-06-17 주식회사 코리아나화장품 플라보노이드계 화합물을 유효성분으로 함유하는 항노화 화장료 조성물
KR20100066126A (ko) 2008-12-09 2010-06-17 주식회사 코리아나화장품 플라보노이드계 화합물을 유효 성분으로 함유하는 피부 노화 방지용 화장료 조성물

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIOCHEMPHARMACOL., vol. 47, no. 3, 9 February 1994 (1994-02-09), pages 573 - 80
HODNICK WF; DUVAL DL; PARDINI RS; SOURCEALLIE M. LEE: "Inhibition of mitochondrial respiration and cyanide-stimulated generation of reactive oxygen species by selected flavonoids", LABORATORY FOR CANCER RESEARCH, DEPARTMENT OF BIOCHEMISTRY

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109369589A (zh) * 2018-10-12 2019-02-22 王刚 黄栌黄酮苷的同步提取工艺和其应用

Also Published As

Publication number Publication date
CL2011003142A1 (es) 2012-07-20
WO2013086649A3 (es) 2013-10-10

Similar Documents

Publication Publication Date Title
De Oliveira et al. Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view
Kosuru et al. Gallic acid and gallates in human health and disease: do mitochondria hold the key to success?
Wu et al. Differential effects of quercetin and two of its derivatives, isorhamnetin and isorhamnetin-3-glucuronide, in inhibiting the proliferation of human breast-cancer MCF-7 cells
Hail Jr et al. Cancer chemoprevention: a radical perspective
Ratnam et al. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective
Chen et al. Preferential killing of cancer cells with mitochondrial dysfunction by natural compounds
Williams et al. The beneficial health effects of green tea amino acid l‐theanine in animal models: Promises and prospects for human trials
ES2260293T3 (es) Composicion que comprende acido hidroxicitrico y garcinol para reduccion de peso.
ES2427170T3 (es) Mezcla de polifenoles para la prevención de la aparición de cáncer de próstata en una persona diagnosticada con alto grado de neoplasia intraepitelial de próstata (HGPIN)
AU2014342185A1 (en) Nicotinamide riboside compositions for topical use in treating skin conditions
WO2015066382A1 (en) Nicotinamide riboside compositions for topical use in treating skin conditions
ES2539831T3 (es) Composición para controlar el incremento de la glucemia
ZA200304247B (en) Method and composition for the treatment of diabetic neuropathy.
ES2340363T3 (es) Metodo y composicion para el tratamiento de la neuropatia diabetica.
Mustapha et al. Antitumoral, antioxidant, and antimelanogenesis potencies of Hawthorn, a potential natural agent in the treatment of melanoma
CA2769819C (en) Nutritional supplements
Fuentes et al. Protection against indomethacin-induced loss of intestinal epithelial barrier function by a quercetin oxidation metabolite present in onion peel: In vitro and in vivo studies
Ortega-Gutiérrez et al. Melatonin improves deferoxamine antioxidant activity in protecting against lipid peroxidation caused by hydrogen peroxide in rat brain homogenates
WO2013086649A2 (es) Flavonoles como agonistas de coenzima q (ubiquinona y ubiquinol) en la modulación de la actividad de los complejos de la cadena de transporte de electrones mitocondrial
WO2014116097A2 (es) Composiciones para tratamiento sistémico de condiciones patológicas resultantes de estrés oxidativo y/o desequilibrio redox
JP6573919B2 (ja) 植物製剤の相乗的組み合わせによってトリグリセリド合成を阻害するための組成物及び方法
ES2665011T3 (es) Composición farmacéutica para la prevención y el tratamiento de trastornos degenerativos de la piel especialmente producidos por radiaciones ionizantes
ES2684408B1 (es) Uso de melatonina para el tratamiento de tumores
Tang et al. Pinoline and N-acetylserotonin reduce glutamate-induced lipid peroxidation in retinal homogenates
US20180362456A1 (en) New compounds with antioxidant and antiaging activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857785

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12857785

Country of ref document: EP

Kind code of ref document: A2