WO2013084536A1 - リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池 - Google Patents

リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池 Download PDF

Info

Publication number
WO2013084536A1
WO2013084536A1 PCT/JP2012/068493 JP2012068493W WO2013084536A1 WO 2013084536 A1 WO2013084536 A1 WO 2013084536A1 JP 2012068493 W JP2012068493 W JP 2012068493W WO 2013084536 A1 WO2013084536 A1 WO 2013084536A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
ion battery
lithium ion
lithium
active material
Prior art date
Application number
PCT/JP2012/068493
Other languages
English (en)
French (fr)
Inventor
章人 保倉
隆一 長瀬
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Publication of WO2013084536A1 publication Critical patent/WO2013084536A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery.
  • Lithium-containing transition metal oxides are generally used as positive electrode active materials for lithium ion batteries. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc., improved characteristics (higher capacity, cycle characteristics, storage characteristics, reduced internal resistance) In order to improve the rate characteristics and safety, it is underway to combine them. Lithium ion batteries for large-scale applications such as in-vehicle use and load leveling are required to have different characteristics from those of conventional mobile phones and personal computers.
  • Patent Document 1 discloses: Li x Ni 1- y My O 2- ⁇ (0.8 ⁇ x ⁇ 1.3, 0 ⁇ y ⁇ 0.5, and M is Co, Mn, Fe, Cr, V, Ti, Cu, Al, Ga, Bi, Sn, Zn, Mg, It represents at least one element selected from the group consisting of Ge, Nb, Ta, Be, B, Ca, Sc and Zr, ⁇ corresponds to oxygen deficiency or oxygen excess, ⁇ 0.1 ⁇ ⁇ 0.1
  • a method for producing a positive electrode material for a lithium secondary battery characterized in that small substances are blended at a weight ratio of 0: 100 to 100: 0. And according to this, it is described that the positive electrode material for lithium secondary batteries with various balance of rate characteristics and capacity can be easily manufactured.
  • Patent Document 1 Although the lithium nickel composite oxide described in Patent Document 1 has an excessive amount of oxygen in its composition formula, there is still room for improvement as a high-quality positive electrode active material for lithium ion batteries.
  • an object of the present invention is to provide a positive electrode active material for a lithium ion battery having good battery characteristics.
  • the present inventors have found that there is a close correlation between the amount of oxygen of the positive electrode active material and the battery characteristics. That is, it has been found that good battery characteristics can be obtained when the amount of oxygen in the positive electrode active material is greater than or equal to a certain value.
  • XRD powder X-ray diffraction
  • Composition formula Li x Ni 1- y My O 2 + ⁇ (In the above formula, 0.9 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.7, M is a metal, and ⁇ > 0.05.) Represented by In powder X-ray diffraction (XRD), the positive electrode active material for a lithium ion battery has a half-width at 2 ⁇ of a diffraction peak of (003) plane of 0.14 ° or less.
  • XRD powder X-ray diffraction
  • the M is Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, One or more selected from Ca, B and Zr.
  • the positive electrode active material for a lithium ion battery according to the present invention is at least one selected from Mn and Co.
  • the positive electrode active material for a lithium ion battery according to the present invention has ⁇ > 0.10 in the composition formula.
  • the positive electrode active material for a lithium ion battery according to the present invention has ⁇ > 0.20 in the composition formula.
  • the positive electrode active material for a lithium ion battery according to the present invention has a diffraction peak intensity ratio [(104) / (003) between (104) plane and (003) plane in powder X-ray diffraction (XRD). )] Is 0.80 or less.
  • the positive electrode active material for a lithium ion battery according to the present invention has a diffraction peak 2 ⁇ of (110) plane represented by the following formulas (1) and (2) in powder X-ray diffraction (XRD).
  • XRD powder X-ray diffraction
  • the present invention is a positive electrode for a lithium ion battery using the positive electrode active material for a lithium ion battery according to the present invention.
  • the present invention is a lithium ion battery using the positive electrode for a lithium ion battery according to the present invention.
  • a positive electrode active material for a lithium ion battery having good battery characteristics can be provided.
  • lithium cobaltate LiCoO 2
  • lithium-containing transition metal oxides such as lithium nickelate (LiNiO 2 ) and lithium manganate (LiMn 2 O 4 ).
  • the positive electrode active material for a lithium ion battery of the present invention produced using such a material is Composition formula: Li x Ni 1- y My O 2 + ⁇ (In the above formula, 0.9 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.7, M is a metal, and ⁇ > 0.05.) It is represented by The ratio of lithium to all metals other than Li in the positive electrode active material for lithium ion batteries is 0.9 to 1.2. However, when the ratio is less than 0.9, it is difficult to maintain a stable crystal structure. This is because a high capacity of the battery cannot be secured if it is too high.
  • the metal M is at least one selected from Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B, and Zr. Preferably, it is at least one selected from Mn and Co.
  • oxygen is expressed as O 2 + ⁇ ( ⁇ > 0.05) as described above in the composition formula, and is excessively contained. Battery characteristics such as capacity, rate characteristics and capacity retention ratio are improved.
  • is preferably ⁇ > 0.10, more preferably ⁇ > 0.15, and furthermore ⁇ > 0.20.
  • the positive electrode active material for a lithium ion battery of the present invention has a half width at 2 ⁇ of a diffraction peak of (003) plane of 0.14 ° or less in powder X-ray diffraction (XRD).
  • XRD powder X-ray diffraction
  • the half width at 2 ⁇ of the diffraction peak of the (003) plane is preferably 0.135 ° or less, more preferably 0.130 ° or less, and typically 0.110 ° to 0.140 °. It is.
  • the positive electrode active material for a lithium ion battery of the present invention has a diffraction peak intensity ratio [(104) / (003)] between the (104) plane and the (003) plane of 0.80 or less in powder X-ray diffraction (XRD). Is preferred.
  • This diffraction peak intensity ratio is a scale indicating that Ni divalent ions occupy Li sites in the crystal (cation mixing). When the peak intensity ratio increases, the ratio of cation mixing increases and the Li site in the crystal increases. Since the diffusion of Li in the inside is inhibited, various battery characteristics are deteriorated.
  • the diffraction peak intensity ratio [(104) / (003)] between the (104) plane and the (003) plane is preferably 0.75 or less, more preferably 0.70 or less, It is 0.60 to 0.80.
  • the oxygen excess composition of the positive electrode active material Both good crystallinity can be achieved. Therefore, various characteristics of the battery are improved.
  • the positive electrode active material for a lithium ion battery is composed of primary particles, secondary particles formed by aggregation of primary particles, or a mixture of primary particles and secondary particles.
  • the positive electrode active material for a lithium ion battery preferably has an average particle diameter of primary particles or secondary particles of 2 to 10 ⁇ m. When the average particle size is less than 2 ⁇ m, it becomes difficult to apply to the current collector. When the average particle size is more than 10 ⁇ m, voids are likely to occur at the time of filling, and the filling property is lowered.
  • the average particle size is more preferably 3 to 9 ⁇ m.
  • the positive electrode for a lithium ion battery includes, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion battery having the above-described configuration, a conductive additive, and a binder from an aluminum foil or the like.
  • the current collector has a structure provided on one side or both sides.
  • the lithium ion battery which concerns on embodiment of this invention is equipped with the positive electrode for lithium ion batteries of such a structure.
  • a metal salt solution is prepared.
  • the metal is at least one selected from Ni and Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Ge, Al, Bi, Sn, Mg, Ca, B, and Zr. It is.
  • the metal salt is sulfate, chloride, nitrate, acetate, etc., and nitrate is particularly preferable.
  • each metal contained in the metal salt is adjusted so as to have a desired molar ratio. Thereby, the molar ratio of each metal in the positive electrode active material is determined.
  • lithium carbonate is suspended in pure water, and then the metal salt solution of the metal is added to prepare a metal carbonate slurry. At this time, fine particles of lithium-containing carbonate precipitate in the slurry. If the lithium compound does not react during heat treatment such as sulfate or chloride as a metal salt, it is washed with a saturated lithium carbonate solution and then filtered off. When the lithium compound reacts as a lithium raw material during the heat treatment, such as nitrate or acetate, it can be used as a calcined precursor by washing and drying as it is without washing. Next, the lithium-containing carbonate separated by filtration is dried to obtain a lithium salt composite (precursor for lithium ion battery positive electrode material) powder.
  • a lithium salt composite precursor for lithium ion battery positive electrode material
  • a firing container having a predetermined capacity is prepared, and this firing container is filled with a precursor powder for a lithium ion battery positive electrode material.
  • the firing container filled with the precursor powder for the lithium ion battery positive electrode material is transferred to a firing furnace and fired. Firing is performed by heating and holding in an oxygen atmosphere for a predetermined time. Further, it is preferable to perform baking under a pressure of 101 to 202 KPa because the amount of oxygen in the composition further increases.
  • the positive electrode active material for a lithium ion battery of the present invention is controlled by a powder X-ray diffraction while ensuring an excess composition of oxygen content by controlling a firing pattern (firing temperature and subsequent cooling pattern) according to the Ni content ratio.
  • firing is performed at a higher temperature as the Ni content ratio increases. For example, firing is performed at 750 to 800 ° C. when the Ni content ratio is 33.3 mol%, and at 950 to 1050 ° C. when the Ni content is 80 mol%. After holding at such a firing temperature (holding temperature) for a certain period of time, the temperature is lowered, but it is necessary to appropriately perform the temperature lowering step at that time. Specifically, the time from the holding temperature to 300 ° C. is performed in the range of 3 to 10 hours.
  • the temperature lowering time is too long or the holding temperature is too high, it becomes difficult to hold oxygen, and the oxygen constituting the oxide will be less than 0.05 as ⁇ in the composition formula.
  • ⁇ of the composition formula indicating excess oxygen is 0.05 or more, but the half width of the diffraction peak on the (003) plane is 0.14.
  • Exceeding ° crystallinity and phase homogeneity are not sufficient.
  • the temperature lowering time is long, cation mixing in which Ni enters the Li site becomes more remarkable. As a result, in any case, battery characteristics related to crystallinity such as rate characteristics and capacity retention and phase homogeneity are inferior.
  • Examples 1 to 14 First, after suspending lithium carbonate of the input amount shown in Table 1 in 3.2 liters of pure water, 4.8 liter of metal salt solution was charged. Here, the nitrate hydrate of each metal was adjusted so that each metal might become the composition ratio of Table 1, and the total metal mole number might be set to 14 mol.
  • the suspended amount of lithium carbonate was such that the product (lithium ion secondary battery positive electrode material, ie, positive electrode active material) was Li x Ni 1- y My O 2 + ⁇ and x was a value shown in Table 1. Are respectively calculated by the following equations.
  • W (g) 73.9 ⁇ 14 ⁇ (1 + 0.5X) ⁇ A
  • “A” is a numerical value to be multiplied in order to subtract the amount of lithium from the lithium compound other than lithium carbonate remaining in the raw material after filtration from the amount of suspension in addition to the amount necessary for the precipitation reaction. is there.
  • “A” is 0.9 when lithium salt reacts as a firing raw material such as nitrate or acetate, and “1” when lithium salt does not react as a firing raw material such as sulfate or chloride. 0.
  • fine particles of lithium-containing carbonate were precipitated in the solution, and this precipitate was filtered off using a filter press.
  • a lithium-containing carbonate (a precursor for a lithium ion battery positive electrode material).
  • a firing container was prepared, and this firing container was filled with a lithium-containing carbonate.
  • the firing container was placed in an oxygen atmosphere furnace under atmospheric pressure and heated and held at the firing temperature shown in Table 1 for 10 hours, and then cooled to 300 ° C. over the time shown in Table 1. Subsequently, after cooling to room temperature, it was crushed to obtain a powder of a positive electrode material for a lithium ion secondary battery.
  • Example 15 Example 15 was carried out except that each material of the raw material had the composition shown in Table 1, the metal salt was chloride, the lithium-containing carbonate was precipitated, washed with a saturated lithium carbonate solution, and filtered. The same treatment as in Examples 1 to 14 was performed.
  • Example 16 Example 16 was carried out except that each metal of the raw material had a composition as shown in Table 1, the metal salt was a sulfate, a lithium-containing carbonate was precipitated, washed with a saturated lithium carbonate solution, and filtered. The same treatment as in Examples 1 to 14 was performed.
  • Example 17 As Example 17, the same processing as in Examples 1 to 14 was performed, except that each metal of the raw material had a composition as shown in Table 1 and firing was performed under a pressure of 120 KPa instead of atmospheric pressure.
  • Comparative Examples 1 to 11 As Comparative Examples 1 to 11, the same processing as in Examples 1 to 14 was performed with each metal of the raw material having a composition as shown in Table 1 and the holding temperature and temperature drop time in the firing step as shown in Table 1.
  • the half-value width at 2 ⁇ of the diffraction peak of the (003) plane, the diffraction peak intensity ratio between the (104) plane and the (003) plane [(104) / (003)], (110 2) of the diffraction peak of the surface) was measured.
  • Each positive electrode material, conductive material, and binder are weighed in a ratio of 85: 8: 7, and the positive electrode material and the conductive material are mixed into a slurry in which the binder is dissolved in an organic solvent (N-methylpyrrolidone). And coated on an Al foil, dried and pressed to obtain a positive electrode. Subsequently, a 2032 type coin cell for evaluation with Li as the counter electrode was prepared, and 1M-LiPF 6 dissolved in EC-DMC (1: 1) was used as the electrolyte, and the current density was 0.2C. The discharge capacity was measured.
  • Examples 1 to 14 all had good battery characteristics. In each of Examples 15 and 16, the battery characteristics were good. However, as a raw material, not a nitrate hydrate of each metal but a chloride or sulfate hydrate as in Examples 1 to 14 was used. Some of the battery characteristics were inferior to those of Examples 1 to 14. In Example 17, nitrate hydrates of each metal were used as raw materials as in Examples 1 to 14, and firing was performed under pressure, and the battery characteristics were the best. In Comparative Examples 1 to 4, since the temperature drop time to 300 ° C. was short in the firing step, the battery characteristics were poor. Since Comparative Examples 5 to 8 could not secure an oxygen-excess composition in the composition, the battery characteristics were poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

 良好な電池特性を有するリチウムイオン電池用正極活物質を提供する。リチウムイオン電池用正極活物質は、組成式:LixNi1-yy2+α (前記式において、0.9≦x≦1.2であり、0<y≦0.7であり、Mは金属であり、α>0.05である。) で表され、 粉末X線回折(XRD)において、(003)面の回折ピークの2θでの半値幅が0.14°以下である。

Description

リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
 本発明は、リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池に関する。
 リチウムイオン電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、レート特性)や安全性を高めるためにこれらを複合化することが進められている。車載用やロードレベリング用といった大型用途におけるリチウムイオン電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。
 電池特性の改善には、従来、種々の方法が用いられており、例えば特許文献1には、
 LixNi1-yy2-δ
(0.8≦x≦1.3、0<y≦0.5であり、Mは、Co、Mn、Fe、Cr、V、Ti、Cu、Al、Ga、Bi、Sn、Zn、Mg、Ge、Nb、Ta、Be、B、Ca、Sc及びZrからなる群から選ばれる少なくとも一種の元素を示し、δは酸素欠損又は酸素過剰量に相当し、-0.1<δ<0.1を表す。)の組成で表されるリチウムニッケル複合酸化物を分級機に通し、粒子径の大きい物と小さい物とに平衡分離粒子径Dh=1~10μmで分離し、粒子径の大きい物と小さい物を、重量比で0:100~100:0で配合することを特徴とするリチウム二次電池用正極材料の製造方法が開示されている。そして、これによれば、レート特性と容量のさまざまなバランスのリチウム二次電池用正極材料を容易に製造できる、と記載されている。
特許第4175026号公報
 特許文献1に記載のリチウムニッケル複合酸化物は、その組成式中の酸素量が過剰のものであるが、それでもなお高品質のリチウムイオン電池用正極活物質としては改善の余地がある。
 そこで、本発明は、良好な電池特性を有するリチウムイオン電池用正極活物質を提供することを課題とする。
 本発明者らは、鋭意検討した結果、正極活物質の酸素量と電池特性との間に密接な相関関係があることを見出した。すなわち、正極活物質の酸素量がある値以上であるとき、良好な電池特性が得られることを見出した。
 また、正極活物質の粉末X線回折(XRD)において、(003)面の回折ピークの2θでの半値幅と、電池特性との間に密接な相関関係があることを見出した。すなわち、正極活物質の(003)面の回折ピークの2θでの半値幅がある値以下であるとき、特に良好な電池特性が得られることを見出した。
 上記知見を基礎にして完成した本発明は一側面において、
 組成式:LixNi1-yy2+α
(前記式において、0.9≦x≦1.2であり、0<y≦0.7であり、Mは金属であり、α>0.05である。)
で表され、
 粉末X線回折(XRD)において、(003)面の回折ピークの2θでの半値幅が0.14°以下であるリチウムイオン電池用正極活物質である。
 本発明に係るリチウムイオン電池用正極活物質は一実施形態において、前記MがSc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上である。
 本発明に係るリチウムイオン電池用正極活物質は別の実施形態において、前記Mが、Mn及びCoから選択される1種以上である。
 本発明に係るリチウムイオン電池用正極活物質は更に別の実施形態において、前記組成式において、α>0.10である。
 本発明に係るリチウムイオン電池用正極活物質は更に別の実施形態において、前記組成式において、α>0.20である。
 本発明に係るリチウムイオン電池用正極活物質は更に別の実施形態において、粉末X線回折(XRD)において、(104)面と(003)面との回折ピーク強度比〔(104)/(003)〕が0.80以下である。
 本発明に係るリチウムイオン電池用正極活物質は更に別の実施形態において、粉末X線回折(XRD)において、(110)面の回折ピークの2θが、以下の式(1)及び(2)で示される2直線で挟まれた領域内の数値である:
 (1)2θ=-0.0072c+65.23
 (2)2θ=-0.0072c+65.43
〔上記式(1)及び(2)において、cはLiを除く金属中のNiのモル比率である。〕。
 本発明は、別の側面において、本発明に係るリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極である。
 本発明は、更に別の側面において、本発明に係るリチウムイオン電池用正極を用いたリチウムイオン電池である。
 本発明によれば、良好な電池特性を有するリチウムイオン電池用正極活物質を提供することができる。
実施例及び比較例の、Liを除く金属中のNiのモル比率:cと(110)面の回折ピークの2θとの関係を示すグラフである。
(リチウムイオン電池用正極活物質の構成)
 本発明のリチウムイオン電池用正極活物質の材料としては、一般的なリチウムイオン電池用正極用の正極活物質として有用な化合物を広く用いることができるが、特に、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等のリチウム含有遷移金属酸化物を用いるのが好ましい。このような材料を用いて作製される本発明のリチウムイオン電池用正極活物質は、
 組成式:LixNi1-yy2+α
(前記式において、0.9≦x≦1.2であり、0<y≦0.7であり、Mは金属であり、α>0.05である。)
で表される。
 リチウムイオン電池用正極活物質におけるLiを除く全金属に対するリチウムの比率が0.9~1.2であるが、これは、0.9未満では、安定した結晶構造を保持し難く、1.2超では電池の高容量が確保できなくなるためである。
 また、金属Mは、Sc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上であってもよく、好ましくはMn及びCoから選択される1種以上である。
 本発明のリチウムイオン電池用正極活物質は、酸素が組成式において上記のようにO2+α(α>0.05)と示され、過剰に含まれており、リチウムイオン電池に用いた場合、容量、レート特性及び容量保持率等の電池特性が良好となる。ここで、αについて、好ましくはα>0.10であり、より好ましくはα>0.15、更にはα>0.20である。
 本発明のリチウムイオン電池用正極活物質は、粉末X線回折(XRD)において、(003)面の回折ピークの2θでの半値幅が0.14°以下である。このように、XRDにおける(003)面の回折ピークの2θでの半値幅を0.14°以下に制御することで、正極活物質の結晶性が良好となり、組成ばらつきが小さくなるため、それを用いた電池の種々の特性が良好となる。(003)面の回折ピークの2θでの半値幅は、好ましくは0.135°以下であり、より好ましくは0.130°以下であり、典型的には、0.110°~0.140°である。
 本発明のリチウムイオン電池用正極活物質は、粉末X線回折(XRD)において、(104)面と(003)面との回折ピーク強度比〔(104)/(003)〕が0.80以下であるのが好ましい。この回折ピーク強度比は、Niの2価イオンが結晶中のLiサイトを占有する(カチオンミキシング)を示す尺度であり、ピーク強度比が大きくなるとカチオンミキシングの比率が多くなり、結晶中のLiサイト内のLiの拡散が阻害されるため、種々の電池特性を低下させる。これに対し、この回折ピーク強度比が0.80以下に制御されていると、カチオンミキシングの比率が小さく、結晶中のLiサイト内のLiの拡散が阻害されず、電池特性が良好になる。(104)面と(003)面との回折ピーク強度比〔(104)/(003)〕は、好ましくは0.75以下であり、より好ましくは0.70以下であり、典型的には、0.60~0.80である。
 本発明のリチウムイオン電池用正極活物質は、粉末X線回折(XRD)において、(110)面の回折ピークの2θが、以下の式(1)及び(2)で示される2直線で挟まれた領域内の数値であるのが好ましい:
 (1)2θ=-0.0072c+65.23
 (2)2θ=-0.0072c+65.43
〔上記式(1)及び(2)において、cはLiを除く金属中のNiのモル比率である。〕。
 (110)面の回折ピークの2θが、式(1)及び(2)で示される2直線で挟まれた領域内の数値となるように制御することにより、正極活物質の酸素過剰量組成と良好な結晶性とを両立できる。そのため、電池の種々の特性が良好となる。
 リチウムイオン電池用正極活物質は、一次粒子、一次粒子が凝集して形成された二次粒子、又は、一次粒子及び二次粒子の混合物で構成されている。リチウムイオン電池用正極活物質は、その一次粒子又は二次粒子の平均粒径が2~10μmであるのが好ましい。
 平均粒径が2μm未満であると集電体への塗布が困難となる。平均粒径が10μm超であると充填時に空隙が生じやすくなり、充填性が低下する。また、平均粒径は、より好ましくは3~9μmである。
(リチウムイオン電池用正極及びそれを用いたリチウムイオン電池の構成)
 本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を備えている。
(リチウムイオン電池用正極活物質の製造方法)
 次に、本発明の実施形態に係るリチウムイオン電池用正極活物質の製造方法について詳細に説明する。
 まず、金属塩溶液を作製する。当該金属は、Ni、及び、Sc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上である。また、金属塩は硫酸塩、塩化物、硝酸塩、酢酸塩等であり、特に硝酸塩が好ましい。これは、焼成原料中に不純物として混入してもそのまま焼成できるため洗浄工程が省けることと、硝酸塩が酸化剤として機能し、焼成原料中の金属の酸化を促進する働きがあるためである。金属塩に含まれる各金属を所望のモル比率となるように調整しておく。これにより、正極活物質中の各金属のモル比率が決定する。
 次に、炭酸リチウムを純水に懸濁させ、その後、上記金属の金属塩溶液を投入して金属炭酸塩スラリーを作製する。このとき、スラリー中に微小粒のリチウム含有炭酸塩が析出する。なお、金属塩として硫酸塩や塩化物等熱処理時にそのリチウム化合物が反応しない場合は飽和炭酸リチウム溶液で洗浄した後、濾別する。硝酸塩や酢酸塩のように、そのリチウム化合物が熱処理中にリチウム原料として反応する場合は洗浄せず、そのまま濾別し、乾燥することにより焼成前駆体として用いることができる。
 次に、濾別したリチウム含有炭酸塩を乾燥することにより、リチウム塩の複合体(リチウムイオン電池正極材用前駆体)の粉末を得る。
 次に、所定の大きさの容量を有する焼成容器を準備し、この焼成容器にリチウムイオン電池正極材用前駆体の粉末を充填する。次に、リチウムイオン電池正極材用前駆体の粉末が充填された焼成容器を、焼成炉へ移設し、焼成を行う。焼成は、酸素雰囲気下で所定時間加熱保持することにより行う。また、101~202KPaでの加圧下で焼成を行うと、さらに組成中の酸素量が増加するため、好ましい。
 本発明のリチウムイオン電池用正極活物質は、Ni含有比率に応じた焼成パターン(焼成温度及びその後の降温のパターン)を制御することで、酸素含有量過剰組成を確保しつつ、粉末X線回折(XRD)において、(003)面の回折ピークの2θでの半値幅が0.14°以下として優れた結晶性が得られる。具体的には、上記焼成工程において、Ni含有比率が高くなるほど高い温度で焼成する。例えば、Ni含有比率が33.3モル%のとき750~800℃、同じく80モル%のとき、950~1050℃で焼成する。このような焼成温度(保持温度)で一定時間保持した後、温度を下げることになるが、そのときの降温工程を適切に行う必要がある。具体的には、保持温度から300℃に至る時間を3~10時間の範囲で行う。この降温時間が長すぎたり、保持温度が高すぎた場合は、酸素が保持しにくくなり、酸化物を構成する酸素が組成式のαで0.05未満となってしまう。一方、この降温時間が短かったり、保持温度が低すぎた場合は、酸素の過剰を示す組成式のαが0.05以上となるものの、(003)面の回折ピークの半値幅が0.14°を超え、結晶性や相の均質性が十分でなくなる。また、上記降温時間が長い場合は、さらにNiがLiサイトに入り込むカチオンミキシングが顕著になる。その結果、いずれの場合においても、レート特性や容量保持率等の結晶性や相の均質性が関わる電池特性が劣ることになる。
 以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。
(実施例1~14)
 まず、表1に記載の投入量の炭酸リチウムを純水3.2リットルに懸濁させた後、金属塩溶液を4.8リットル投入した。ここで、金属塩溶液は、各金属の硝酸塩の水和物を、各金属が表1に記載の組成比になるように調整し、また全金属モル数が14モルになるように調整した。
 なお、炭酸リチウムの懸濁量は、製品(リチウムイオン二次電池正極材料、すなわち正極活物質)をLixNi1-yy2+αでxが表1の値となる量であって、それぞれ次式で算出されたものである。
 W(g)=73.9×14×(1+0.5X)×A
 上記式において、「A」は、析出反応として必要な量の他に、ろ過後の原料に残留する炭酸リチウム以外のリチウム化合物によるリチウムの量をあらかじめ懸濁量から引いておくために掛ける数値である。「A」は、硝酸塩や酢酸塩のように、リチウム塩が焼成原料として反応する場合は0.9であり、硫酸塩や塩化物のように、リチウム塩が焼成原料として反応しない場合は1.0である。
 この処理により溶液中に微小粒のリチウム含有炭酸塩が析出したが、この析出物を、フィルタープレスを使用して濾別した。
 続いて、析出物を乾燥してリチウム含有炭酸塩(リチウムイオン電池正極材用前駆体)を得た。
 次に、焼成容器を準備し、この焼成容器内にリチウム含有炭酸塩を充填した。次に、焼成容器を、大気圧下、酸素雰囲気炉に入れて、表1に記載の焼成温度で10時間加熱保持した後、300℃までは表1に記載の時間をかけて冷却した。続いて室温まで冷却した後、解砕してリチウムイオン二次電池正極材の粉末を得た。
(実施例15)
 実施例15として、原料の各金属を表1に示すような組成とし、金属塩を塩化物とし、リチウム含有炭酸塩を析出させた後、飽和炭酸リチウム溶液で洗浄し、濾過する以外は、実施例1~14と同様の処理を行った。
(実施例16)
 実施例16として、原料の各金属を表1に示すような組成とし、金属塩を硫酸塩とし、リチウム含有炭酸塩を析出させた後、飽和炭酸リチウム溶液で洗浄し、濾過する以外は、実施例1~14と同様の処理を行った。
(実施例17)
 実施例17として、原料の各金属を表1に示すような組成とし、焼成を大気圧下ではなく120KPaの加圧下で行った以外は、実施例1~14と同様の処理を行った。
(比較例1~11)
 比較例1~11として、原料の各金属を表1に示すような組成とし、焼成工程の保持温度及び降温時間を表1に示す値として、実施例1~14と同様の処理を行った。
(評価)
 -正極材組成の評価-
 各正極材中の金属含有量は、誘導結合プラズマ発光分光分析装置(ICP-OES)で測定し、各金属の組成比(モル比)を算出した。各金属の組成比は、表1に記載の通りであることを確認した。また、酸素含有量はLECO法で測定しαを算出した。
 粉末X線回折(XRD)により、(003)面の回折ピークの2θでの半値幅、(104)面と(003)面との回折ピーク強度比〔(104)/(003)〕、(110)面の回折ピークの2θをそれぞれ測定した。
-電池特性の評価-
 各正極材と、導電材と、バインダーとを85:8:7の割合で秤量し、バインダーを有機溶媒(N-メチルピロリドン)に溶解したものに、正極材料と導電材とを混合してスラリー化し、Al箔上に塗布して乾燥後にプレスして正極とした。続いて、対極をLiとした評価用の2032型コインセルを作製し、電解液に1M-LiPF6をEC-DMC(1:1)に溶解したものを用いて、電流密度0.2Cの際の放電容量を測定した。また電流密度0.2Cのときの電池容量に対する電流密度2Cのときの、放電容量の比を算出してレート特性を得た。さらに、容量保持率は、室温で1Cの放電電流で得られた初期放電容量と100サイクル後の放電容量を比較することによって測定した。
 これらの結果を表1及び2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~14はいずれも電池特性が良好であった。
 実施例15及び16はいずれも電池特性が良好であったが、原料として実施例1~14のように各金属の硝酸塩の水和物ではなく、塩化物又は硫酸塩の水和物を用いたため、実施例1~14と比較すると電池特性が劣るものもあった。
 実施例17は原料として実施例1~14のように各金属の硝酸塩の水和物を用い、さらに焼成を加圧下で行っており、電池特性が最も良好であった。
 比較例1~4は焼成工程において300℃までの降温時間が短いため、電池特性が不良となった。
 比較例5~8は組成において酸素過剰組成を確保できなかったため、電池特性が不良となった。
 比較例9~11は焼成温度が低く、電池特性が不良となった。
 また、上記実施例及び比較例について、Liを除く金属中のNiのモル比率:cと、(110)面の回折ピークの2θとをx軸及びy軸にとり、図1のグラフを描いた。図1によれば、実施例は全て以下の式(1)及び(2)で示される2直線で挟まれた領域内であり、比較例は一部以外は全てこの領域から外れていた。
 (1)2θ=-0.0072c+65.23
 (2)2θ=-0.0072c+65.43

Claims (9)

  1.  組成式:LixNi1-yy2+α
    (前記式において、0.9≦x≦1.2であり、0<y≦0.7であり、Mは金属であり、α>0.05である。)
    で表され、
     粉末X線回折(XRD)において、(003)面の回折ピークの2θでの半値幅が0.14°以下であるリチウムイオン電池用正極活物質。
  2.  前記MがSc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Ge、Al、Bi、Sn、Mg、Ca、B及びZrから選択される1種以上である請求項1に記載のリチウムイオン電池用正極活物質。
  3.  前記Mが、Mn及びCoから選択される1種以上である請求項2に記載のリチウムイオン電池用正極活物質。
  4.  前記組成式において、α>0.10である請求項1~3のいずれかに記載のリチウムイオン電池用正極活物質。
  5.  前記組成式において、α>0.20である請求項4に記載のリチウムイオン電池用正極活物質。
  6.  粉末X線回折(XRD)において、(104)面と(003)面との回折ピーク強度比〔(104)/(003)〕が0.80以下である請求項1~5のいずれかに記載のリチウムイオン電池用正極活物質。
  7.  粉末X線回折(XRD)において、(110)面の回折ピークの2θが、以下の式(1)及び(2)で示される2直線で挟まれた領域内の数値である請求項1~6のいずれかに記載のリチウムイオン電池用正極活物質:
     (1)2θ=-0.0072c+65.23
     (2)2θ=-0.0072c+65.43
    〔上記式(1)及び(2)において、cはLiを除く金属中のNiのモル比率である。〕。
  8.  請求項1~7のいずれかに記載のリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極。
  9.  請求項8に記載のリチウムイオン電池用正極を用いたリチウムイオン電池。
PCT/JP2012/068493 2011-12-07 2012-07-20 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池 WO2013084536A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-267782 2011-12-07
JP2011267782A JP5985818B2 (ja) 2011-12-07 2011-12-07 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池

Publications (1)

Publication Number Publication Date
WO2013084536A1 true WO2013084536A1 (ja) 2013-06-13

Family

ID=48573921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068493 WO2013084536A1 (ja) 2011-12-07 2012-07-20 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池

Country Status (3)

Country Link
JP (1) JP5985818B2 (ja)
TW (1) TWI535094B (ja)
WO (1) WO2013084536A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049803A1 (ja) * 2018-09-05 2020-03-12 パナソニックIpマネジメント株式会社 正極活物質およびそれを備えた電池
WO2022130982A1 (ja) 2020-12-18 2022-06-23 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極、及び非水電解質二次電池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101785262B1 (ko) * 2013-07-08 2017-10-16 삼성에스디아이 주식회사 양극 활물질, 그 제조방법, 이를 채용한 양극 및 리튬이차전지
US9391327B2 (en) 2013-11-22 2016-07-12 Samsung Sdi Co, Ltd. Positive electrode for rechargeable lithium battery, preparing same, and rechargeable lithium battery
JP6435093B2 (ja) * 2013-11-22 2018-12-05 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. 正極活物質、およびリチウムイオン二次電池
JP6605518B2 (ja) * 2017-01-27 2019-11-13 ユミコア 高性能のリチウムイオン電池用正極活物質及びその製造方法
US10847781B2 (en) 2017-12-04 2020-11-24 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11670754B2 (en) 2017-12-04 2023-06-06 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11522189B2 (en) 2017-12-04 2022-12-06 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
KR102424398B1 (ko) 2020-09-24 2022-07-21 삼성에스디아이 주식회사 리튬 이차 전지용 양극, 그 제조 방법, 및 이를 포함한 리튬 이차 전지
CN111837265A (zh) 2018-03-07 2020-10-27 日立金属株式会社 锂离子二次电池用正极活性物质和锂离子二次电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096525A1 (ja) * 2010-02-05 2011-08-11 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2011096522A1 (ja) * 2010-02-05 2011-08-11 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP2011187419A (ja) * 2010-03-11 2011-09-22 Jx Nippon Mining & Metals Corp リチウムイオン電池用正極、及び、リチウムイオン電池
JP2011210463A (ja) * 2010-03-29 2011-10-20 Jx Nippon Mining & Metals Corp リチウムイオン電池用正極活物質の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096525A1 (ja) * 2010-02-05 2011-08-11 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2011096522A1 (ja) * 2010-02-05 2011-08-11 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP2011187419A (ja) * 2010-03-11 2011-09-22 Jx Nippon Mining & Metals Corp リチウムイオン電池用正極、及び、リチウムイオン電池
JP2011210463A (ja) * 2010-03-29 2011-10-20 Jx Nippon Mining & Metals Corp リチウムイオン電池用正極活物質の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049803A1 (ja) * 2018-09-05 2020-03-12 パナソニックIpマネジメント株式会社 正極活物質およびそれを備えた電池
JPWO2020049803A1 (ja) * 2018-09-05 2021-09-09 パナソニックIpマネジメント株式会社 正極活物質およびそれを備えた電池
JP7220431B2 (ja) 2018-09-05 2023-02-10 パナソニックIpマネジメント株式会社 正極活物質およびそれを備えた電池
WO2022130982A1 (ja) 2020-12-18 2022-06-23 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極、及び非水電解質二次電池

Also Published As

Publication number Publication date
TW201324931A (zh) 2013-06-16
JP2013120676A (ja) 2013-06-17
JP5985818B2 (ja) 2016-09-06
TWI535094B (zh) 2016-05-21

Similar Documents

Publication Publication Date Title
JP5819199B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5819200B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
US10122012B2 (en) Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
JP5985818B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5467144B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及びリチウムイオン電池
JP5923036B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5963745B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
KR101450421B1 (ko) 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
WO2011108595A1 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2012128288A1 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6026404B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6030546B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5985819B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6243600B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2012073550A1 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855532

Country of ref document: EP

Kind code of ref document: A1