WO2013084402A1 - 硫化水素分離方法および装置並びにこれを用いた水素製造システム - Google Patents

硫化水素分離方法および装置並びにこれを用いた水素製造システム Download PDF

Info

Publication number
WO2013084402A1
WO2013084402A1 PCT/JP2012/006928 JP2012006928W WO2013084402A1 WO 2013084402 A1 WO2013084402 A1 WO 2013084402A1 JP 2012006928 W JP2012006928 W JP 2012006928W WO 2013084402 A1 WO2013084402 A1 WO 2013084402A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen sulfide
carbon dioxide
hydrogen
gas
adsorbent
Prior art date
Application number
PCT/JP2012/006928
Other languages
English (en)
French (fr)
Inventor
崇 中元
利紀 村岡
重伸 岡島
熊田 憲彦
雅俊 廣川
庄司 恭敏
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201280058498.6A priority Critical patent/CN103958029B/zh
Priority to AU2012347153A priority patent/AU2012347153B2/en
Priority to US14/363,423 priority patent/US9365423B2/en
Publication of WO2013084402A1 publication Critical patent/WO2013084402A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/508Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by selective and reversible uptake by an appropriate medium, i.e. the uptake being based on physical or chemical sorption phenomena or on reversible chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • C01B17/167Separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20431Tertiary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • C01B2203/147Three or more purification steps in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a hydrogen sulfide separation method and apparatus and a hydrogen production system using the same, and more particularly, a hydrogen sulfide separation method capable of selectively separating hydrogen sulfide from a gas to be treated containing hydrogen sulfide and carbon dioxide. And a hydrogen production system using the hydrogen sulfide separation device.
  • a synthesis gas obtained by partially burning coal or the like as a raw material in a high-temperature gasification furnace is produced, and hydrogen is separated from this synthesis gas .
  • This synthesis gas contains hydrogen sulfide (H 2 S) in addition to hydrogen (H 2 ), carbon monoxide (CO), carbon dioxide (CO 2 ), and water (H 2 O) as main components.
  • hydrogen sulfide is separated along with carbon dioxide, which is an acid gas, by chemical absorption (for example, absorption using an amine) or physical absorption (for example, absorption using a polymer solution). Yes.
  • Patent Document 1 In order to separate hydrogen sulfide contained in carbon dioxide, a technology for selectively separating hydrogen sulfide using a triethanolamine aqueous solution has been developed (Patent Document 1). However, in this technique, most of the supplied carbon dioxide is absorbed in the triethanolamine aqueous solution together with hydrogen sulfide, so that it is insufficient in terms of a reduction in the amount of carbon dioxide recovered and an increase in the amount of heat of hydrogen sulfide separation.
  • Patent Document 2 a technique for selectively separating hydrogen sulfide using an aqueous solution of a sterically hindered amine.
  • This technology is an invention made to improve the reduction in the amount of hydrogen sulfide absorbed due to the large concentration difference between carbon dioxide and hydrogen sulfide, and is capable of selectively absorbing hydrogen sulfide. It is shown.
  • carbon dioxide is absorbed simultaneously with hydrogen sulfide. Therefore, it is insufficient in terms of mixing hydrogen sulfide into the recovered carbon dioxide, increasing the amount of heat of hydrogen sulfide separation, and reducing the amount of carbon dioxide recovered.
  • Patent Document 3 an attempt has been made to remove hydrogen sulfide by bringing a biogas containing carbon dioxide and hydrogen sulfide into contact with zeolite preliminarily adsorbed with water as a catalytic reaction inhibitor.
  • the amount of water contained in the zeolite must be maintained at 0.2 to 3.3% by weight, and a high temperature of 200 ° C. or higher is required as a condition for desorbing hydrogen sulfide.
  • problems remain in terms of difficulty in controlling moisture and large consumption of regenerative energy.
  • the concentration of carbon dioxide in the synthesis gas is as high as 30% or more, whereas the concentration of hydrogen sulfide is as low as 1000 ppm or less, and the concentration difference is quite large.
  • carbon dioxide and hydrogen sulfide are absorbed in proportion to the concentration difference (partial pressure). It is difficult to selectively absorb and separate low concentration hydrogen sulfide.
  • the physical absorption method using a polymer solution it is possible to separate hydrogen sulfide with high efficiency by, for example, multistage absorption in which hydrogen sulfide is removed stepwise by changing the pressure. Compared to the energy required for separation. Further, even by multistage absorption, it is virtually impossible to make the concentration of hydrogen sulfide in the recovered carbon dioxide below the allowable limit.
  • the present invention solves the above-described problems of the prior art in a hydrogen sulfide separator and a hydrogen production system, and an object of the present invention is to selectively select only hydrogen sulfide from a gas to be treated containing carbon dioxide and hydrogen sulfide. It is to provide a hydrogen sulfide separation method and apparatus that can be separated, and to provide a hydrogen production system using such a hydrogen sulfide separation method and apparatus.
  • the hydrogen sulfide separation method of the present invention is an adsorption method in which hydrogen sulfide is selectively adsorbed by bringing a treatment gas containing hydrogen sulfide and carbon dioxide into contact with a hydrogen sulfide adsorbent in which an amine compound is supported on a porous material. And a desorption process of desorbing hydrogen sulfide by heating the adsorbed hydrogen sulfide adsorbent, wherein the amine compound is a tertiary amine, The contact between the hydrogen sulfide adsorbent and the gas to be treated is performed in a dry state, whereby only hydrogen sulfide is selectively separated.
  • carbon dioxide When water is present, carbon dioxide is considered to be adsorbed by forming tertiary amine and alkylammonium ions supported on the porous material of the hydrogen sulfide adsorbent as shown below.
  • R in the above formulas (1) and (2) represents a substituent.
  • the reaction (1) since the contact between the hydrogen sulfide adsorbent and the gas to be processed is performed in a dry state, the reaction (1) does not occur, and only hydrogen sulfide is selectively adsorbed by the reaction (2). It is thought that it is adsorbed by the material.
  • the tertiary amine in the present invention is preferably a tertiary alkanolamine. This is because tertiary alkanolamines are substantially odorless because of their low vapor pressure, and because they are water-soluble, they are easy to handle when carried on a porous material.
  • the hydrogen sulfide separation device of the present invention uses a hydrogen sulfide adsorbent in which an amine compound is supported on a porous material, and selectively separates hydrogen sulfide from a gas to be treated containing hydrogen sulfide and carbon dioxide.
  • An apparatus comprising an adsorbent packed tower filled with the hydrogen sulfide adsorbent, and an air supply for contacting the hydrogen sulfide adsorbent and the gas to be treated by supplying the gas to be treated to the adsorbent packed tower.
  • a heated air flow supply means for supplying a heated air flow for desorbing hydrogen sulfide from the hydrogen sulfide adsorbent after adsorbing hydrogen sulfide to the adsorbent packed tower, wherein the amine compound is a tertiary amine.
  • the contact between the hydrogen sulfide adsorbent and the gas to be treated in the adsorbent packed tower is performed in a dry state.
  • reaction (1) is suppressed and only hydrogen sulfide is selectively adsorbed on the hydrogen sulfide adsorbent by the reaction (2).
  • a hydrogen sulfide separation device uses a hydrogen sulfide adsorbent in which an amine compound is supported on a porous substance, and selectively selects hydrogen sulfide from a gas to be treated containing hydrogen sulfide and carbon dioxide.
  • a hydrogen sulfide separation device that separates into a plurality of adsorbents, a plurality of adsorbent packed towers filled with the hydrogen sulfide adsorbent, and the gas to be treated supplied to the adsorbent packed towers, respectively, And a plurality of air supply means for bringing the gas to be treated into contact with each other, and a plurality of supply air flows to each of the adsorbent packed towers for heating and desorbing hydrogen sulfide from the hydrogen sulfide adsorbent after adsorbing hydrogen sulfide And the amine compound is a tertiary amine, and the contact between the hydrogen sulfide adsorbent and the gas to be treated in each of the adsorbent packed towers is performed in a dry state,
  • the gas to be treated is supplied to a part of the plurality of adsorbent packed towers from the air supply means to selectively adsorb hydrogen sul
  • the adsorbent packed column for selective adsorption of hydrogen sulfide and the adsorbent packed column for desorption of hydrogen sulfide can operate simultaneously, so that hydrogen sulfide can be separated continuously. It is possible.
  • a tertiary alkanolamine is preferable as the tertiary amine because it is easy to handle.
  • the hydrogen production system of the present invention is a hydrogen production system for producing hydrogen from a raw material gas containing hydrogen sulfide, carbon dioxide, and hydrogen, and producing hydrogen from the raw material gas.
  • the hydrogen sulfide separator and the carbon dioxide separator are arranged on a high-pressure gas treatment line. Since the adsorption of hydrogen sulfide is performed under high pressure, the amount of hydrogen sulfide recovered per unit weight of the hydrogen sulfide adsorbent becomes larger than that at normal pressure, and the amount of hydrogen sulfide adsorbent can be reduced. It is to become.
  • a hydrogen production system is a hydrogen production system for producing hydrogen from a raw material gas containing a raw material gas containing hydrogen sulfide, carbon dioxide and hydrogen, A carbon dioxide separator for separating hydrogen sulfide and carbon dioxide from the raw material gas, a hydrogen purifier for separating hydrogen from a gas provided downstream of the carbon dioxide separator and from which hydrogen sulfide and carbon dioxide have been removed, and carbon dioxide
  • the hydrogen sulfide separation device according to any one of claims 3 to 5, wherein hydrogen sulfide is selectively separated from a gas containing hydrogen sulfide and carbon dioxide, which is provided downstream of the separation device and separated in the carbon dioxide separation device. It is provided with.
  • hydrogen sulfide and carbon dioxide are first separated from the raw material gas, hydrogen is further separated from the gas from which hydrogen sulfide and carbon dioxide are separated, and hydrogen sulfide is selected from the gas containing hydrogen sulfide and carbon dioxide. Separated. Also in this hydrogen production system, since the hydrogen sulfide separation device is used, hydrogen sulfide can be separated from the mixed waste gas containing high-concentration carbon dioxide.
  • the carbon dioxide separator is preferably disposed on the high-pressure gas treatment line, and the hydrogen sulfide separator is preferably disposed on the atmospheric pressure gas treatment line. This is because the hydrogen sulfide separation device separates hydrogen sulfide at normal temperature and normal pressure, so that it is not necessary to design the hydrogen sulfide separation device to a high pressure specification, and the system can be reduced in cost and size.
  • a carbon dioxide separator that separates carbon dioxide using a carbon dioxide adsorbent in which an amine compound is supported on a porous material can be used.
  • it is configured to generate a heated air flow for desorbing hydrogen sulfide from the hydrogen sulfide adsorbent in the hydrogen sulfide separator using the combustible off gas after separating hydrogen in the hydrogen purifier. Is possible.
  • a carbon dioxide recovery device for recovering the finally separated carbon dioxide may be provided.
  • the hydrogen production system of the present invention includes the above-described hydrogen sulfide separation device, only hydrogen sulfide can be selectively separated, and hydrogen and carbon dioxide having a very low hydrogen sulfide content can be obtained.
  • FIG. 1 is a graph showing adsorption characteristic data indicating that hydrogen sulfide can be selectively separated by the hydrogen sulfide separation method of the present invention.
  • FIG. 2 is a conceptual diagram of a hydrogen sulfide separation device according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram of a hydrogen production system according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram of a hydrogen production system according to another embodiment of the present invention.
  • FIG. 5 is a conceptual diagram of a hydrogen production system according to still another embodiment of the present invention.
  • the hydrogen sulfide adsorbent used in the present invention can be prepared by loading a porous material with a tertiary amine in which contact between the hydrogen sulfide adsorbent and the gas to be treated is performed in a dry state.
  • the porous material that can be used for preparing the hydrogen sulfide adsorbent include activated carbon and activated alumina.
  • activated carbon is suitably used as the porous material.
  • tertiary amine a tertiary alkanolamine is preferably used.
  • triethanolamine N-methyl-diethanolamine, N, N-dimethyl-monoethanolamine, triisopropanolamine, N-methyl-diisopropanol
  • examples thereof include amines and N, N-dimethyl-monoisopropanolamine, and among these, triethanolamine is preferably used.
  • triethanolamine is used as the tertiary amine.
  • the loading of the amine compound on the activated carbon can be obtained by putting the activated carbon into a triethanolamine aqueous solution prepared to a predetermined concentration, filtering and sufficiently drying.
  • the carbon dioxide adsorbent used in the present invention can be prepared by supporting an amine compound on a porous substance.
  • the porous substance that can be used for the preparation of the carbon dioxide adsorbent include activated carbon and activated alumina.
  • activated carbon is used as the porous material.
  • amine compounds include polyethyleneimine, monoethanolamine, diethanolamine, triethanolamine, tetraethylenepentamine, methyldiethanolamine, isopropanolamine, diisopropanolamine, dibutylamine, diethylenetriamine, triethylenetetramine, hexaethylenediamine, benzylamine, and morpholine. Is mentioned.
  • diethanolamine is used.
  • the loading of the amine compound on the activated carbon can be obtained by putting activated carbon into a diethanolamine aqueous solution adjusted to a predetermined concentration, filtering and drying.
  • the carbon dioxide absorption method usable in the present invention is not limited to the adsorption method using the carbon dioxide adsorbent described above, and may be a chemical absorption method using an amine absorption liquid or a physical absorption method using an alcohol solvent. good.
  • the concentration of carbon dioxide hardly changes from the start of the test, and shows almost the same value as the concentration of carbon dioxide set in the gas to be treated. Is not detected until about 2.5 hours have elapsed from the start of the test, and thereafter the concentration gradually increases to a value almost the same as the concentration of hydrogen sulfide set in the gas to be treated. This result indicates that the hydrogen sulfide adsorbent does not adsorb carbon dioxide at all, whereas hydrogen sulfide adsorbs almost completely until the adsorption amount reaches saturation.
  • FIG. 2 shows a schematic configuration of the hydrogen sulfide separation device 10 according to one embodiment of the present invention.
  • the hydrogen sulfide separation device 10 of the present embodiment includes two adsorbent packed columns 11 and 21 filled with hydrogen sulfide adsorbents for performing adsorption and desorption of hydrogen sulfide, respectively.
  • triethanolamine is supported on a porous material such as activated carbon and used as a hydrogen sulfide adsorbent.
  • a gas to be treated at about 40 ° C. containing carbon dioxide and hydrogen sulfide is supplied to the adsorbent packed columns 11 and 21 via a line 28.
  • As the gas to be treated for example, a mixed gas obtained by treating a synthesis gas generated in a hydrogen production process, or carbon dioxide containing hydrogen sulfide separated from the mixed gas is supplied.
  • a valve 12 that opens and closes the supply of the gas to be treated is provided between the line 28 and one of the adsorbent packed towers 11, and the upper part of the adsorbent packed tower 11 has hydrogen sulfide when adsorbing hydrogen sulfide.
  • a valve 13 is provided for exhausting the gas to be processed after the adsorption of the gas.
  • a valve 15 for recovering the hydrogen sulfide desorbed when desorbing hydrogen sulfide is provided at the upper part of the adsorbent packed column 11.
  • valve 22 for turning on and off the supply of the gas to be processed is provided between the other adsorbent packed tower 21 and the line 28, and hydrogen sulfide is adsorbed on the upper part of the adsorbent packed tower 21.
  • a valve 23 for exhausting the gas to be processed after the adsorption of hydrogen sulfide is provided.
  • a valve 25 for recovering the hydrogen sulfide desorbed when desorbing hydrogen sulfide is provided at the upper portion of the adsorbent packed tower 21.
  • valves 14 and 24 for supplying a heated air flow to the adsorbent packed towers 11 and 21 at the time of desorption of hydrogen sulfide are provided.
  • valve 12 and the valve 13 arranged above and below one adsorbent packed column 11 are open and the valves 14 and 15 are closed, hydrogen sulfide from the gas to be treated in the adsorbent packed column 11 is shown. Will be adsorbed. Further, since the valves 22 and 23 arranged above and below the other adsorbent packed tower 21 are closed and the valves 24 and 25 are opened, the desorption of hydrogen sulfide is performed in the adsorbent packed tower 21. become.
  • valve 12 and the valve 13 are closed, Valve 23 is opened, valves 14 and 15 are opened, and valves 24 and 25 are closed.
  • the adsorption of hydrogen sulfide from the gas to be processed is performed in a dry state while the hydrogen sulfide adsorbent and the gas to be processed are in contact with each other.
  • the hydrogen sulfide is adsorbed by the hydrogen sulfide adsorbent among the carbon dioxide and hydrogen sulfide contained in the gas to be treated, and the carbon dioxide is discharged from the adsorbent packed tower without being adsorbed.
  • a heated air flow eg, water vapor, oxygen-free gas, a mixed fluid thereof, or a later-described gas flow at 150 ° C. or lower (eg, 100 to 140 ° C.) Gas obtained by combustion of combustible off-gas after separating hydrogen in a hydrogen purifier.
  • the energy consumed for desorption of hydrogen sulfide is lower than the conventional one, and is 1.1 MJ / t_CO 2 in terms of the carbon dioxide recovery unit. This is an energy consumption of about 2/3 compared with the conventional Selexol method that requires a process for separating and recovering carbon dioxide and hydrogen sulfide.
  • the hydrogen sulfide separation device including the two adsorbent packed columns 11 and 21 has been described.
  • the present invention is not limited to this, and the hydrogen sulfide separation device including three or more adsorbent packed columns is provided.
  • the gas to be treated is supplied to a part of the plurality of adsorbent packed towers to selectively adsorb hydrogen sulfide in a dry state, and a heated air stream is supplied to some of the other adsorbent packed towers.
  • hydrogen sulfide can be continuously separated by desorption of hydrogen sulfide.
  • FIG. 3 shows a schematic configuration of the hydrogen production system 30 according to an embodiment of the present invention.
  • the hydrogen production system 30 of this embodiment is an apparatus for producing high-purity hydrogen gas from a raw material gas. Specifically, the hydrogen production system 30 further reacted the synthesis gas obtained by gasifying fuel such as coal in the gasification furnace 7 with the shift reactor 8 and then cooled it with the gas cooler 9.
  • This is an apparatus for separating a hydrogen gas from the raw material gas at a high concentration using a later mixed gas as a raw material gas.
  • the source gas (mixed gas) contains flammable gas in addition to hydrogen, carbon dioxide, hydrogen sulfide, and the gas cooler 9 condenses and removes most of the water vapor, and is about 1.0-4. It is in a high pressure state of 0 MPaA.
  • the hydrogen production system 30 of this embodiment includes a gas purification unit 31 that purifies the raw material gas, and a hydrogen purification device 33 that separates high-concentration hydrogen from the gas from which hydrogen sulfide and carbon dioxide have been removed by the gas purification unit 31.
  • the gas refining unit 31 includes a hydrogen sulfide separator 10 that separates hydrogen sulfide from a raw material gas at room temperature and high pressure (1.0 to 4.0 MPaA), and a gas after separation of hydrogen sulfide at room temperature and high pressure ( And a carbon dioxide separator 32 for separating carbon dioxide at 1.0 to 4.0 MPaA). That is, the hydrogen sulfide separator 10 and the carbon dioxide separator 32 are arranged on a high-pressure gas processing line.
  • the dehumidifier 34 which removes a water
  • the hydrogen production system 30 includes a waste heat recovery boiler 37 that supplies regenerated steam to the hydrogen sulfide separator 10 and the carbon dioxide separator 32.
  • the steam generated in the waste heat recovery boiler 37 is used for desorption of hydrogen sulfide in the hydrogen sulfide separator 10.
  • the carbon dioxide separator 32 is a type using a carbon dioxide adsorbent in which an amine compound is supported on a porous material as will be described later
  • the steam generated in the waste heat recovery boiler 37 is carbon dioxide. Also used for desorption.
  • the apparatus shown in FIG. 2 is used as the hydrogen sulfide separation apparatus 10 in the gas purification unit 31.
  • the hydrogen sulfide separation device 10 is supplied with a high-pressure raw material gas (mixed gas) of about 1.0 to 4.0 MPa near normal temperature.
  • the mixed gas from the gas cooler 9 is supplied to one of the adsorbent packed columns 11 and 21 to adsorb hydrogen sulfide, and the waste heat recovery boiler 37 is used for the other.
  • the regenerated steam from is supplied to desorb hydrogen sulfide.
  • the gas after the hydrogen sulfide is separated by the hydrogen sulfide separation device 10 is transferred to the carbon dioxide separation device 32.
  • a carbon dioxide adsorbent filled with a carbon dioxide adsorbent can be used as the carbon dioxide separator 32.
  • the carbon dioxide adsorbent in that case, for example, activated carbon or alumina is used as a porous substance, and a carbon dioxide adsorbent in which monoethanolamine or diethanolamine suitable for carbon dioxide adsorption is supported as an amine compound. Can be used.
  • the gas after separating hydrogen sulfide from the hydrogen sulfide separator 10 is placed in one adsorbent packed tower of the carbon dioxide separator. Is supplied, carbon dioxide is adsorbed, and the regenerated steam from the waste heat recovery boiler 37 is supplied to the other adsorbent packed tower of the carbon dioxide separator, so that carbon dioxide is desorbed.
  • the hydrogen sulfide is already removed from the mixed gas in the hydrogen sulfide separation device 10 prior to the separation of carbon dioxide in the carbon dioxide separation device 32, the carbon dioxide having an extremely low hydrogen sulfide content is recovered. be able to.
  • the load on the carbon dioxide separation device 32 is compared with the case where carbon dioxide is first separated as in the hydrogen production system 40 of FIG. 4 described later. Has been reduced.
  • the gas after the separation of carbon dioxide in the carbon dioxide separator 32 is transferred to the hydrogen purifier 33 using the PSA method, where hydrogen is separated to obtain high-concentration hydrogen and combustible.
  • Off-gas is recovered.
  • the hydrogen purification apparatus 33 not only the PSA method but also a conventionally known hydrogen absorption apparatus using an alkali absorption method or a cryogenic separation method can be used.
  • the recovered combustible off-gas is used for combustion in the waste heat recovery boiler 37 as described above, and the steam used for desorption of hydrogen sulfide in the hydrogen sulfide separator 10 and carbon dioxide in the carbon dioxide separator 32 is used. Used as a heat source.
  • the carbon dioxide separated from the carbon dioxide adsorbent in the carbon dioxide desorption process in the carbon dioxide separator 32 is dehydrated by the dehumidifier 34 and compressed by the carbon dioxide compressor 35, and is stored in the carbon dioxide storage tank 36. Stored.
  • the hydrogen sulfide separation device 10 that separates hydrogen sulfide in a dry state using a carbon dioxide adsorbent in which an amine compound is supported on a porous material is used as a front stage of the carbon dioxide separation device 32.
  • hydrogen sulfide can be selectively separated while preventing adsorption of carbon dioxide.
  • carbon dioxide having an extremely low hydrogen sulfide concentration can be recovered.
  • FIG. 4 shows a schematic configuration of a hydrogen production system 40 according to another embodiment of the present invention.
  • the hydrogen production system 40 of this embodiment is the same as the hydrogen production system 30 shown in FIG. 3 except that the arrangement of the hydrogen sulfide separation device 10 and the carbon dioxide separation device 32 in the gas purification unit 31 is different. It has a configuration. Therefore, in FIG. 4, the same reference numerals are given to the components corresponding to FIG. 3.
  • the raw material gas (mixed gas) after being cooled by the gas cooler 9 is first transferred to the carbon dioxide separator 32 of the gas purification unit 31.
  • a carbon dioxide separator using a carbon dioxide adsorbent in which an amine compound is supported on a porous substance is used as the carbon dioxide separator 32.
  • the raw material gas containing both hydrogen sulfide and carbon dioxide is directly supplied to the carbon dioxide separator 32, not only carbon dioxide contained in the raw material gas but also hydrogen sulfide includes the carbon dioxide of the carbon dioxide separator 32.
  • the carbon adsorbent When desorbing carbon dioxide, not only carbon dioxide but also hydrogen sulfide is desorbed.
  • the adsorption of hydrogen sulfide and carbon dioxide is performed at normal temperature and high pressure (1.0 to 4.0 MPaA), as in the embodiment of FIG. That is, the carbon dioxide separator 32 is arranged on a high-pressure gas processing line. Since the amount of adsorption of hydrogen sulfide increases as the pressure increases, the amount of adsorption of hydrogen sulfide per unit weight of the adsorbent also increases in this embodiment as compared with the case of normal pressure. The content of hydrogen sulfide contained in the gas discharged from is extremely low.
  • the gas discharged from the carbon dioxide separator 32 is transferred to the hydrogen purifier 33, where high-concentration hydrogen gas is separated and flammable off-gas is recovered.
  • the recovered combustible off-gas is used for combustion in the waste heat recovery boiler 37, and is used as a heat source for regenerated steam used for desorption of hydrogen sulfide in the hydrogen sulfide separation device 10 and desorption of carbon dioxide in the carbon dioxide separation device 32. Is done.
  • the waste gas desorbed by the regeneration process of the carbon dioxide separator 32 contains carbon dioxide and hydrogen sulfide as described above, and this gas is then transferred to the hydrogen sulfide separator 10. That is, the hydrogen sulfide separation device 10 is disposed on a normal pressure gas processing line independent of the high pressure gas processing line. Also in this embodiment, the hydrogen sulfide separator shown in FIG. 2 is used as the hydrogen sulfide separator 10.
  • the contact between the waste gas and the hydrogen sulfide adsorbent in which the tertiary amine is supported on the porous material is performed in a dry state, so that adsorption and desorption of only hydrogen sulfide is selective.
  • the carbon dioxide passes without being adsorbed by the hydrogen sulfide adsorbent.
  • the amount of the hydrogen sulfide adsorbent necessary for the adsorption of hydrogen sulfide is the same as the hydrogen production shown in FIG. More than system 30.
  • the carbon dioxide that has passed through the hydrogen sulfide adsorbent in the hydrogen sulfide separator 10 is dehydrated in the dehumidifier 34 as in the case of the hydrogen production system 30 in FIG. Compressed and stored in the carbon dioxide storage tank 36. Further, the hydrogen sulfide separated by the hydrogen sulfide separation device 10 is transferred out of the hydrogen production system 40.
  • the hydrogen sulfide separation device 10 separates hydrogen sulfide under normal temperature and normal pressure, it is not necessary to design the hydrogen sulfide separation device to a high pressure specification, thereby reducing the system cost and compactness. There is an advantage that can be achieved.
  • FIG. 5 is a diagram showing a schematic configuration of a hydrogen production system 50 according to still another embodiment of the present invention.
  • the hydrogen production system 50 of this embodiment is the same as the hydrogen production system 40 shown in FIG. 4 except that the dehumidifier 34 is not provided and the heat exchanger 38 is provided in the gas purification unit 31. It has the same configuration. Therefore, in FIG. 5, the same reference numerals are given to the components corresponding to FIG.
  • the raw material gas (mixed gas) after being cooled by the gas cooler 9 is transferred to the carbon dioxide separator 32 of the gas purification unit 31.
  • the carbon dioxide separator 32 as in the hydrogen production system 40 of FIG. 4, carbon dioxide and hydrogen sulfide contained in the raw material gas are adsorbed by the carbon dioxide adsorbent, and the gas discharged from the carbon dioxide separator 32 is hydrogen. It is transferred to the purification device 33.
  • the hydrogen purifier 33 the high-concentration hydrogen gas is separated from the gas from the carbon dioxide separator 32, and the combustible off-gas is recovered.
  • the carbon dioxide and hydrogen sulfide adsorbed on the carbon dioxide adsorbent in the carbon dioxide separator 32 are desorbed from the carbon dioxide adsorbent by the regenerated steam supplied from the waste heat recovery boiler 37 and transferred to the hydrogen sulfide separator 10. .
  • hydrogen sulfide is adsorbed to the hydrogen sulfide adsorbent during the adsorption process in the hydrogen sulfide separator 10, but the hydrogen sulfide desorption is different from the embodiment of FIG.
  • a heated off gas of 100 ° C. or higher obtained by heating the combustible off gas recovered by the hydrogen purifier 33 is used.
  • This heated off gas is prepared by heating the combustible off gas recovered by the hydrogen purifier 33 in the heat exchanger 38.
  • the water contained in the hydrogen sulfide adsorbent is discharged together with hydrogen sulfide to the outside of the hydrogen production system 50 and discharged from the hydrogen sulfide separator 10. Contains almost no moisture. Therefore, in the present embodiment, the dehumidifier 34 in FIG. 4 is not provided, and the carbon dioxide discharged from the hydrogen sulfide separator 10 is directly compressed by the carbon dioxide compressor 35, and then the carbon dioxide storage tank 36. Will be stored.
  • a dehumidifier 34 is provided because a heated off gas of 100 ° C. or higher obtained by heating the combustible off gas discharged from the hydrogen purifier 33 is used for desorption of hydrogen sulfide.
  • the hydrogen sulfide separation method and apparatus and the hydrogen production system using the same can separate hydrogen sulfide without being affected by carbon dioxide, the energy industry, environmental conservation field, CCS (carbon dioxide separation and recovery) Storage) and EOR (enhanced recovery of crude oil).
  • Gasification furnace 8 Shift reactor 9: Gas cooler 10: Hydrogen sulfide separator 11, 21: Adsorbent packed tower 12, 13, 14, 15: Valves 22, 23, 24, 25: Valve 28: Line 30, 40, 50: Hydrogen production system 31: Gas purification unit 32: Carbon dioxide separation device 33: Hydrogen purification device 34: Dehumidifier 35: Carbon dioxide compressor 36: Carbon dioxide storage tank 37: Waste heat recovery boiler 38: Heat Exchanger

Abstract

 本発明は、COおよびHSを含む被処理気体からHSのみを選択的に分離し得るHS分離方法および装置の提供と、このHS分離装置を用いた水素製造システムの提供を目的とする。 本発明の水素製造システムでは、トリエタノールアミンを活性炭に担持させたHS吸着材を充填した吸着材充填塔11、21を設け、ライン28を介してCO及びHSを含む約40℃の合成ガス由来の混合ガスを供給する。バルブ12、13を開、バルブ22、23を閉、バルブ14、15を閉、バルブ24、25を開として、吸着材充填塔11において乾燥状態で被処理気体からのHSの吸着を行い、吸着材充填塔21においてHSの脱着を行う。吸着材充填塔21において被処理気体のHSの吸着を、吸着材充填塔11において脱着を行う場合は、バルブ12、13、24、25を閉、バルブ22、23、14、15を開とする。

Description

硫化水素分離方法および装置並びにこれを用いた水素製造システム
 本発明は、硫化水素分離方法および装置並びにこれを用いた水素製造システムに関し、更に詳細には、硫化水素および二酸化炭素を含有する被処理気体から硫化水素を選択的に分離し得る硫化水素分離方法および装置と、この硫化水素分離装置を用いた水素製造システムに関する。
 99.9%以上の高純度水素を製造する水素製造システムでは、原料である石炭等を高温ガス化炉で部分燃焼して得られる合成ガスを製造し、この合成ガスから水素の分離が行われる。この合成ガスには、主成分である水素(H)、一酸化炭素(CO)、二酸化炭素(CO)、水(HO)の他に、硫化水素(HS)が含まれている。水素製造だけを目的とするプロセスでは、化学吸収法(例えばアミンを用いる吸収法)又は物理吸収法(例えば高分子溶液を用いる吸収法)によって、酸性ガスである二酸化炭素とともに硫化水素が分離されている。
 しかし、昨今ニーズが高まっているCCS(二酸化炭素分離回収貯留)又はEOR(原油増進回収)では、分離された二酸化炭素に含まれる硫化水素が、導管を腐食させるという問題が指摘されている。この問題を避けるため、硫化水素を分離して、例えば10ppm以下の低レベルまで二酸化炭素中の濃度を低減することが求められている。
 二酸化炭素中に含まれる硫化水素を分離するために、トリエタノールアミン水溶液を使用して硫化水素を選択的に分離する技術の開発が行われている(特許文献1)。しかし、この技術では、供給される二酸化炭素の多くが硫化水素とともにトリエタノールアミン水溶液に吸収されるため、二酸化炭素回収量の低下および硫化水素分離熱量の増加の点で不十分である。
 また、立体障害アミンの水溶液を使用して硫化水素を選択的に分離する技術の開発も行われている(特許文献2)。この技術は、二酸化炭素と硫化水素との濃度差が大きいために硫化水素の吸収量が低減してしまうことを改善するためになされた発明であり、硫化水素を選択的に吸収し得ることが示されている。しかし、この技術においても、二酸化炭素が硫化水素とともに同時に吸収されることに変わりはない。従って、回収された二酸化炭素中への硫化水素の混入、硫化水素分離熱量の増加、および二酸化炭素回収量の低下の点で不十分である。
 更に、二酸化炭素と硫化水素とを含有するバイオガスを、触媒反応抑制剤としての水分をあらかじめ吸着させたゼオライトに接触させることにより、硫化水素を除去する試みがなされている(特許文献3)。しかし、この技術には、ゼオライトに含まれる水の量を0.2~3.3重量%に維持しなければならず、また、硫化水素を脱着する際の条件として200℃以上の高温が必要である等、水分の制御面での困難さおよび再生エネルギー消費量が大きい点で課題が残る。
特開平01-304026号公報(請求項1) 特許第2966719号明細書(請求項1) 特開2009-22874号公報(請求項1、2)
 合成ガス中の二酸化炭素の濃度が30%以上と高いのに対して、硫化水素の濃度は1000ppm以下と低く、その濃度差はかなり大きい。従来の方法(比較的低圧条件で使用される化学吸収法又は比較的高圧条件で使用される物理吸収法)では、二酸化炭素と硫化水素は濃度差(分圧)に比例して吸収されるため、低濃度の硫化水素を選択的に吸収分離することは困難である。また、高分子溶液を用いる物理吸収法では、圧力を変化させて段階的に硫化水素を除去する多段吸収等によって硫化水素を高効率で分離することも可能であるが、二酸化炭素の単独分離に比べて分離に要するエネルギーが大きくなる。また、多段吸収によっても、回収される二酸化炭素中の硫化水素の濃度を許容限界以下にすることは事実上不可能である。
 本発明は、硫化水素分離装置および水素製造システムにおける上記従来技術の問題点を解決するものであり、本発明の目的は、二酸化炭素および硫化水素を含む被処理気体から硫化水素のみを選択的に分離することができる硫化水素分離方法および装置を提供することであり、また、このような硫化水素分離方法および装置を用いた水素製造システムを提供することである。
 本発明の硫化水素分離方法は、多孔性物質にアミン化合物を担持させた硫化水素吸着材に、硫化水素と二酸化炭素とを含有する被処理気体を接触させて硫化水素を選択的に吸着させる吸着過程と、該吸着後の硫化水素吸着材を加熱することにより硫化水素を脱着させる脱着過程とを包含する硫化水素分離方法であって、前記アミン化合物は第三級アミンであり、前記吸着過程における前記硫化水素吸着材と前記被処理気体との接触が乾燥状態で行われることにより、硫化水素のみを選択的に分離することを特徴とする。
 二酸化炭素は、水が存在する場合には、以下に示すように、硫化水素吸着材の多孔性物質に担持された第三級アミンとアルキルアンモニウムイオンを形成して吸着されると考えられる。
  RN + HO + CO  → RHN・HCO      …(1)
 一方、硫化水素は、硫化水素吸着材の多孔性物質に担持された第三級アミンとは、以下に示すように、水が存在するか否かに関わらず、アルキルアンモニウムイオンを形成することができると考えられる。
  RN + HS → RHN・HS              …(2)
ここで、上記(1)および(2)式におけるRは置換基を表している。
 本発明においては、硫化水素吸着材と被処理気体との接触が乾燥状態で行われるので、上記(1)の反応が起こらず、(2)の反応によって硫化水素のみが選択的に硫化水素吸着材に吸着されるものと考えられる。特に第三級アミンの硫化水素に対する選択性が高い理由は明らかではないが、第三級アミンは3つの置換基を有しているため立体障害が大きく、水素イオンが窒素原子に接近し難くなっているため、多孔性物質の表面の吸着水等微量の水分が存在する場合であっても、(1)の反応が十分に抑制されるからであると考えられる。
 本発明における第三級アミンとしては、第三級アルカノールアミンが好ましい。第三級アルカノールアミンは蒸気圧が低いので実質的に無臭であり、また、水溶性であるために多孔性物質に担持させる場合の取り扱いが容易だからである。
 本発明の硫化水素分離装置は、多孔性物質にアミン化合物を担持させた硫化水素吸着材を用い、硫化水素と二酸化炭素とを含有する被処理気体から硫化水素を選択的に分離する硫化水素分離装置であって、前記硫化水素吸着材を充填した吸着材充填塔と、該吸着材充填塔に前記被処理気体を供給することにより前記硫化水素吸着材と前記被処理気体とを接触させる給気手段と、硫化水素を吸着した後の前記硫化水素吸着材から硫化水素を脱着させるための加熱気流を前記吸着材充填塔に供給する加熱気流供給手段とを備え、前記アミン化合物は第三級アミンであり、前記吸着材充填塔における前記硫化水素吸着材と前記被処理気体との接触が乾燥状態で行われることを特徴とする。
 本発明の硫化水素分離装置においても、上記(1)の反応が抑制され、(2)の反応によって硫化水素のみが選択的に硫化水素吸着材に吸着されるものと考えられる。
 本発明の他の実施形態に係る硫化水素分離装置は、多孔性物質にアミン化合物を担持させた硫化水素吸着材を用い、硫化水素と二酸化炭素とを含有する被処理気体から硫化水素を選択的に分離する硫化水素分離装置であって、前記硫化水素吸着材を充填した複数の吸着材充填塔と、該複数の吸着材充填塔に前記被処理気体をそれぞれ供給することにより前記硫化水素吸着材と前記被処理気体とを接触させる複数の給気手段と、硫化水素を吸着した後の前記硫化水素吸着材から硫化水素を脱着させるための加熱気流を前記吸着材充填塔のそれぞれに供給する複数の加熱気流供給手段とを備え、前記アミン化合物は第三級アミンであり、前記吸着材充填塔のそれぞれにおける前記硫化水素吸着材と前記被処理気体との接触が乾燥状態で行われ、前記複数の吸着材充填塔のうちの一部に前記給気手段から前記被処理気体をそれぞれ供給して硫化水素の選択的吸着を行うとともに、前記複数の吸着材充填塔のうちの他の一部に前記加熱気流供給手段から加熱気流をそれぞれ供給して硫化水素の脱着を行うことを特徴とする。
 この硫化水素分離装置では、硫化水素の選択的吸着を行う吸着材充填塔と、硫化水素の脱着を行う吸着材充填塔とが同時に動作し得るため、連続して硫化水素の分離を行うことが可能となっている。
 上記の何れの硫化水素分離装置においても、取り扱いが容易であるという理由から、第三級アミンとしては、第三級アルカノールアミンが好ましい。
 本発明の水素製造システムは、硫化水素と二酸化炭素と水素とを含有する原料気体を被処理気体とし、該原料気体から水素を製造するための水素製造システムであって、前記原料気体から硫化水素を選択的に分離する請求項3乃至5の何れかに記載の硫化水素分離装置と、該硫化水素分離装置の後流に設けられ硫化水素が除去された気体から二酸化炭素を分離する二酸化炭素分離装置と、二酸化炭素分離装置の後流に設けられ硫化水素および二酸化炭素が除去された気体から水素を分離する水素精製装置とを備えたことを特徴とする。
 この水素製造システムでは、上記の硫化水素分離装置が使用されているため、原料気体が高濃度の二酸化炭素を含有する場合でも、原料気体から硫化水素を選択的に分離することができる。
 上記水素製造システムにおいては、硫化水素分離装置と二酸化炭素分離装置が高圧のガス処理ライン上に配置されていることが好ましい。硫化水素の吸着が高圧下で行われるため、硫化水素吸着材の単位重量当たりの硫化水素の回収量が常圧の場合と比べて多くなり、硫化水素吸着材の量を少なくすることが可能となるためである。
 本発明の他の実施形態に係る水素製造システムは、硫化水素と二酸化炭素と水素とを含有する原料気体を被処理気体とし、該原料気体から水素を製造するための水素製造システムであって、前記原料気体から硫化水素および二酸化炭素を分離する二酸化炭素分離装置と、二酸化炭素分離装置の後流に設けられ硫化水素および二酸化炭素が除去された気体から水素を分離する水素精製装置と、二酸化炭素分離装置の後流に設けられ前記二酸化炭素分離装置において分離された硫化水素および二酸化炭素を含む気体から硫化水素を選択的に分離する請求項3乃至5の何れかに記載の硫化水素分離装置とを備えたことを特徴とする。
 本発明では、まず、原料気体から硫化水素および二酸化炭素が分離され、硫化水素および二酸化炭素が分離された気体から更に水素が分離されるとともに、硫化水素および二酸化炭素を含む気体から硫化水素が選択的に分離される。この水素製造システムにおいても上記の硫化水素分離装置が使用されているため、高濃度の二酸化炭素を含有する混合廃ガスから硫化水素を分離することができる。
 上記水素製造システムにおいては、二酸化炭素分離装置が高圧のガス処理ライン上に配置され、硫化水素分離装置が常圧のガス処理ライン上に配置されていることが好ましい。硫化水素分離装置は常温常圧下で硫化水素の分離を行うため、硫化水素分離装置を高圧仕様に設計する必要がなくなり、システムの低コスト化およびコンパクト化が図れるためである。
 上記水素製造システムにおいては、多孔性物質にアミン化合物を担持させた二酸化炭素吸着材を用いて二酸化炭素の分離を行う二酸化炭素分離装置を使用することができる。
 また、前記水素精製装置において水素を分離した後の可燃性オフガスを用いて、前記硫化水素分離装置における前記硫化水素吸着材から硫化水素を脱着させるための加熱気流を生成するように構成することが可能である。
 また、前記水素精製装置において水素を分離した後の可燃性オフガスを用いて、前記二酸化炭素分離装置における二酸化炭素吸着材から二酸化炭素を脱着させるための加熱気流を生成するように構成することも可能である。
 更に、最終的に分離された二酸化炭素を回収するための二酸化炭素回収装置を備えていてもよい。
 本発明の上記目的、他の目的、特徴および利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明の硫化水素分離方法および装置では、硫化水素吸着材と被処理気体との接触が乾燥状態で行われるので、被処理気体中に含まれる二酸化炭素は硫化水素吸着材の第三級アミンとは反応せず、硫化水素のみが第三級アミンと反応して硫化水素吸着材に吸着される。その結果、二酸化炭素が高濃度で存在するにもかかわらず、硫化水素のみが選択的に硫化水素吸着材に吸着されることになる。
 また、本発明の水素製造システムは、上記の硫化水素分離装置を備えているので、硫化水素のみを選択的に分離することができ、硫化水素含有量が極めて低い水素および二酸化炭素が得られる。
図1は、本発明の硫化水素分離方法により、硫化水素を選択的に分離し得ることを示す吸着特性データを表す図である。 図2は、本発明の一実施形態に係る硫化水素分離装置の概念図である。 図3は、本発明の一実施形態に係る水素製造システムの概念図である。 図4は、本発明の他の実施形態に係る水素製造システムの概念図である。 図5は、本発明の更なる他の実施形態に係る水素製造システムの概念図である。
 本発明の実施形態について、図面を参照しながら以下に説明するが、本発明は以下の記載に限定されない。
 本発明において使用される硫化水素吸着材は、多孔性物質に硫化水素吸着材と前記被処理気体との接触が乾燥状態で行われる第三級アミンを担持させることにより調製し得る。硫化水素吸着材の調製に使用し得る多孔性物質としては、活性炭および活性アルミナを例示することができる。本実施形態では、多孔性物質として活性炭が好適に用いられている。第三級アミンとしては、第三級アルカノールアミンが好適に使用され、例えば、トリエタノールアミン、N-メチル-ジエタノールアミン、N,N-ジメチル-モノエタノールアミン、トリイソプロパノールアミン、N-メチル-ジイソプロパノールアミン、およびN,N-ジメチル-モノイソプロパノールアミンを例示することができ、これらのうちでトリエタノールアミンが好適に用いられる。本実施形態では、第三級アミンとしてトリエタノールアミンを使用している。アミン化合物の活性炭への担持は、所定の濃度に調製したトリエタノールアミン水溶液に活性炭を投入し、濾過して十分に乾燥させることにより得ることができる。
 また、本発明において使用される二酸化炭素吸着材は、多孔性物質にアミン化合物を担持させることにより調製し得る。二酸化炭素吸着材の調製に使用し得る多孔性物質としては、活性炭、活性アルミナ等を例示することができる。本実施形態では活性炭を多孔性物質として用いている。アミン化合物としては、ポリエチレンイミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、テトラエチレンペンタミン、メチルジエタノールアミン、イソプロパノールアミン、ジイソプロパノールアミン、ジブチルアミン、ジエチレントリアミン、トリエチレンテトラミン、ヘキサエチレンジアミン、ベンジルアミン、およびモルホリンが挙げられる。本実施形態では、ジエタノールアミンを使用している。アミン化合物の活性炭への担持は、所定の濃度に調整したジエタノールアミン水溶液に活性炭を投入し、濾過して乾燥させることにより得ることができる。
 本発明で使用可能な二酸化炭素吸収方法は、上記の二酸化炭素吸着材を用いた吸着法に限定されず、アミン吸収液を用いた化学吸収法又はアルコール溶剤を用いた物理吸収法であっても良い。
 本発明の硫化水素分離方法による効果を確認するために実験を行い、図1にその結果を表した。この実験では、活性炭にトリエタノールアミンを担持させた硫化水素吸着材333gを直径54.9cmのカラムに充填し(硫化水素吸着材の長さ300mm)、このカラムに、窒素ガスに二酸化炭素(濃度47.6%)と硫化水素(濃度240ppm)とを混合した被処理気体を常温・常圧で0.12m/秒の流速で流して、カラムの出口で二酸化炭素および硫化水素の各濃度を測定した。その結果、図1に示されるように、二酸化炭素の濃度は、試験開始から殆ど変化せず、被処理気体において設定した上記二酸化炭素の濃度とほぼ同じ値を示しているのに対し、硫化水素は、試験開始から約2.5時間を経過するまで検出されず、その後、次第に被処理気体において設定した上記硫化水素の濃度とほぼ同じ値にまで濃度が上昇している。この結果から、硫化水素吸着材は、二酸化炭素を全く吸着しないのに対して、硫化水素は、その吸着量が飽和に達するまでは、ほぼ完全に吸着していることを表している。
 図2は、本発明の一実施形態に係る硫化水素分離装置10の概略構成を示している。本実施形態の硫化水素分離装置10は、硫化水素の吸着および脱着を行うための硫化水素吸着材をそれぞれ充填した2つの吸着材充填塔11および21を備えている。本実施形態においては、トリエタノールアミンを活性炭のような多孔性物質に担持させ、硫化水素吸着材として用いている。吸着材充填塔11および21には、ライン28を介して二酸化炭素および硫化水素を含む約40℃の被処理気体が供給される。被処理気体として、例えば、水素製造プロセスで生成する合成ガスを処理した混合ガス、又は混合ガスから分離された硫化水素を含む二酸化炭素が供給される。
 ライン28と一方の吸着材充填塔11との間には、被処理気体の供給を開閉するバルブ12が設けられ、吸着材充填塔11の上部には、硫化水素の吸着を行う際に硫化水素の吸着を終えた被処理気体を排気するためのバルブ13が設けられている。また、吸着材充填塔11の上部には、硫化水素の脱着を行う際に脱着した硫化水素を回収するためのバルブ15が設けられている。同様に、もう一方の吸着材充填塔21とライン28との間には、被処理気体の供給をオンオフするバルブ22が設けられ、吸着材充填塔21の上部には、硫化水素の吸着を行う際に、硫化水素の吸着を終えた被処理気体を排気するためのバルブ23が設けられている。また、吸着材充填塔21の上部には、硫化水素の脱着を行う際に脱着した硫化水素を回収するためのバルブ25が設けられている。更に、本実施形態では、硫化水素の脱着に際して吸着材充填塔11および21に加熱気流を供給するバルブ14および24が設けられている。
 図2では、 一方の吸着材充填塔11の上下に配されたバルブ12およびバルブ13が開、バルブ14および15が閉となっているので、吸着材充填塔11において被処理気体からの硫化水素の吸着が行われることになる。また、もう一方の吸着材充填塔21の上下に配されたバルブ22およびバルブ23が閉、バルブ24および25が開となっているので、吸着材充填塔21において硫化水素の脱着が行われることになる。これとは逆に、吸着材充填塔21において被処理気体の硫化水素の吸着を行い、吸着材充填塔11において硫化水素の脱着を行う場合には、バルブ12およびバルブ13が閉、バルブ22およびバルブ23が開、バルブ14および15が開、バルブ24および25が閉となる。
 本実施形態の硫化水素分離装置10における吸着材充填塔11および21では、被処理気体からの硫化水素の吸着は、硫化水素吸着材と被処理気体との接触は乾燥状態で行われる。これにより、被処理気体に含まれる二酸化炭素および硫化水素のうち、硫化水素のみが硫化水素吸着材に吸着され、二酸化炭素は吸着されることなく吸着材充填塔から排出される。また、高圧で硫化水素の吸着を行えば、硫化水素吸着材の単位重量当りの硫化水素の吸着量が大きくなるため、常圧で硫化水素の吸着を行う場合と比べて、硫化水素吸着材の使用量を低減することができる。
 吸着材充填塔11および21において硫化水素の脱着を行う場合には、150℃以下(例えば100~140℃)の加熱気流(例えば、水蒸気、酸素を含まないガス、それらの混合流体、又は、後述する水素精製装置において水素を分離した後の可燃性オフガスの燃焼により得られるガス)を使用することができる。本実施形態では、硫化水素の脱着に消費するエネルギーは従来に比べて低くなっており、二酸化炭素回収量原単位で1.1MJ/t_COである。これは、二酸化炭素と硫化水素とを分離回収するプロセスを必要とする従来のSelexol法と比べて、約2/3のエネルギー消費量である。
 上記実施形態では、2つの吸着材充填塔11および21を備えた硫化水素分離装置について説明したが、本発明はこれに限定されず、3つ以上の吸着材充填塔を備えた硫化水素分離装置についても適用することができる。その場合、複数の吸着材充填塔のうちの一部に被処理気体を供給して乾燥状態で硫化水素の選択的吸着を行うとともに、他の一部の吸着材充填塔に加熱気流を供給して硫化水素の脱着を行うことにより、連続的に硫化水素の分離を行うことができる。
 図3は、本発明の一実施形態に係る水素製造システム30の概略構成を示している。本実施形態の水素製造システム30は、原料ガスから高純度の水素ガスを製造するための装置である。水素製造システム30は、具体的には、石炭等の燃料をガス化炉7でガス化することにより得られる合成ガスを、更にシフト反応器8で反応させた後、ガス冷却器9で冷却した後の混合ガスを原料気体とし、この原料気体から水素を高濃度で分離するための装置である。原料気体(混合ガス)は、水素、二酸化炭素、硫化水素の他、可燃性ガスを含んでおり、ガス冷却器9では水蒸気の大部分が凝縮除去され、常温近傍の約1.0~4.0MPaAの高圧状態となっている。
 本実施形態の水素製造システム30は、上記原料ガスの精製を行うガス精製部31と、ガス精製部31で硫化水素および二酸化炭素を除去した気体から高濃度の水素を分離する水素精製装置33とを有している。ガス精製部31は、原料気体から常温・高圧下(1.0~4.0MPaA)で硫化水素の分離を行う硫化水素分離装置10と、硫化水素を分離した後の気体から常温・高圧下(1.0~4.0MPaA)で二酸化炭素の分離を行う二酸化炭素分離装置32とを備えている。つまり、硫化水素分離装置10と二酸化炭素分離装置32は高圧のガス処理ライン上に配置されている。
 更に本実施形態では、二酸化炭素分離装置32で分離された二酸化炭素から水分を除去する除湿器34と、除湿後の二酸化炭素を圧縮するための二酸化炭素圧縮機35と、圧縮後の二酸化炭素を貯留する二酸化炭素貯留タンク36とを備えている。
 更に、水素製造システム30は、再生蒸気を硫化水素分離装置10および二酸化炭素分離装置32に供給する廃熱回収ボイラ37を備えている。廃熱回収ボイラ37において生成される蒸気は、硫化水素分離装置10における硫化水素の脱着に使用される。また、二酸化炭素分離装置32が、後述するように多孔性物質にアミン化合物を担持させた二酸化炭素吸着材を用いたタイプである場合には、廃熱回収ボイラ37において生成した蒸気は、二酸化炭素の脱着にも使用される。
 本実施形態においては、ガス精製部31における硫化水素分離装置10として、図2に示される装置が使用されている。この硫化水素分離装置10には、上述のように、約1.0~4.0MPaの常温近傍の高圧の原料気体(混合ガス)が供給されている。図2の硫化水素分離装置10においては、吸着材充填塔11および21の何れか一方にガス冷却器9からの混合ガスが供給されて硫化水素の吸着が行われ、他方に廃熱回収ボイラ37からの再生蒸気が供給されて硫化水素の脱着が行われる。
 本実施形態では硫化水素の吸着は乾燥状態で行われるため、混合ガス中に含まれる硫化水素のみが硫化水素吸着材に吸着され、水素、可燃性ガスはもちろんのこと、二酸化炭素も硫化水素吸着材には吸着されることなく通過する。また、本実施形態では硫化水素の吸着は高圧下で行われるため、吸着材の単位重量当たりの硫化水素の回収量が常圧の場合と比べて多くなり、吸着材充填塔11および21における硫化水素吸着材の量を少なくすることが可能となっている。
 次に、硫化水素分離装置10で硫化水素が分離された後の気体は、二酸化炭素分離装置32に移送される。本実施形態では、図2に示した硫化水素分離装置10における硫化水素吸着材に代えて、二酸化炭素吸着材を充填したものを二酸化炭素分離装置32として使用することができる。その場合の二酸化炭素吸着材としては、例えば、多孔質物質として活性炭又はアルミナを使用し、これに、アミン化合物として、二酸化炭素の吸着に適したモノエタノールアミン又はジエタノールアミンを担持させた二酸化炭素吸着材を使用することができる。
 アミン化合物を担持させた二酸化炭素吸着材を用いた二酸化炭素分離装置を用いる場合には、二酸化炭素分離装置の一方の吸着材充填塔に、硫化水素分離装置10から硫化水素を分離した後の気体が供給されて二酸化炭素の吸着が行われ、二酸化炭素分離装置のもう一方の吸着材充填塔に廃熱回収ボイラ37からの再生蒸気が供給されて二酸化炭素の脱着が行われることになる。本実施形態では、二酸化炭素分離装置32での二酸化炭素の分離に先だって既に硫化水素分離装置10において混合ガスから硫化水素が除去されているため、硫化水素の含有量が極めて低い二酸化炭素を回収することができる。また、硫化水素の二酸化炭素吸着材への吸着が起こらないため、後述する図4の水素製造システム40のように先に二酸化炭素の分離を行う場合に比較して、二酸化炭素分離装置32に対する負荷が軽減されている。
 本実施形態では、二酸化炭素分離装置32において二酸化炭素の分離を終えた気体はPSA法を用いた水素精製装置33に移送され、ここで水素が分離されて高濃度水素が得られるとともに、可燃性オフガスが回収される。水素精製装置33としては、PSA法だけでなく従来から公知のアルカリ吸収法又は深冷分離法による水素精製装置を使用することができる。回収された可燃性オフガスは、前述のように廃熱回収ボイラ37で燃焼に供され、硫化水素分離装置10における硫化水素の脱着および二酸化炭素分離装置32における二酸化炭素の脱着に使用される蒸気の熱源として利用される。
 一方、二酸化炭素分離装置32における二酸化炭素の脱着過程で二酸化炭素吸着材から分離された二酸化炭素は、除湿器34において水分が除去され、二酸化炭素圧縮機35で圧縮され、二酸化炭素貯留タンク36に貯留される。
 本実施形態の水素製造システム30では、多孔性物質にアミン化合物を担持させた二酸化炭素吸着材を用いて、乾燥状態で硫化水素の分離を行う硫化水素分離装置10を二酸化炭素分離装置32の前段に設けたことにより、二酸化炭素の吸着を防止しつつ、硫化水素を選択的に分離することが可能となっている。その結果、硫化水素濃度の極めて低い二酸化炭素を回収することができる。
 図4は、本発明の他の実施形態に係る水素製造システム40の概略構成を示している。本実施形態の水素製造システム40は、ガス精製部31における硫化水素分離装置10と二酸化炭素分離装置32との配置が異なっている点を除いて、図3に示した水素製造システム30と同様の構成を有している。従って、図4においては、図3に対応する構成要素には同じ符号が付されている。
 本実施形態の水素製造システム40では、ガス冷却器9で冷却された後の原料気体(混合ガス)は、まず、ガス精製部31の二酸化炭素分離装置32に移送される。本実施形態においても、二酸化炭素分離装置32として多孔性物質にアミン化合物を担持させた二酸化炭素吸着材を用いた二酸化炭素分離装置が使用されている。本実施形態では、硫化水素および二酸化炭素の両方を含む原料気体が二酸化炭素分離装置32に直接供給されるため、原料気体に含まれる二酸化炭素のみならず硫化水素も、二酸化炭素分離装置32の二酸化炭素吸着材に吸着されることになる、
 また、二酸化炭素の脱着に際しては、二酸化炭素のみならず硫化水素も脱離することになる。この硫化水素および二酸化炭素の吸着は、図3の実施形態と同様に、常温・高圧下(1.0~4.0MPaA)で行われる。つまり、二酸化炭素分離装置32は高圧のガス処理ライン上に配置されている。硫化水素の吸着量は圧力が高いほど大きくなるため、本実施形態においても吸着材の単位重量当たりの硫化水素の吸着量は、常圧の場合と比べて多くなっており、二酸化炭素分離装置32から排出される気体に含まれる硫化水素の含有量は非常に少なくなっている。
 二酸化炭素分離装置32から排出される気体は水素精製装置33に移送され、ここで高濃度水素ガスが分離されるとともに、可燃性オフガスが回収される。回収された可燃性オフガスは、廃熱回収ボイラ37で燃焼に供され、硫化水素分離装置10における硫化水素の脱着および二酸化炭素分離装置32における二酸化炭素の脱着に使用される再生蒸気の熱源として利用される。
 一方、二酸化炭素分離装置32の再生処理により脱着される廃棄気体は、前述のように二酸化炭素および硫化水素を含んでおり、この気体は、次に硫化水素分離装置10に移送される。つまり、硫化水素分離装置10は高圧のガス処理ラインから独立した常圧のガス処理ライン上に配置されている。本実施形態にいても、硫化水素分離装置10として、図2に示される硫化水素分離装置が使用されている。従って、硫化水素分離装置10においても、廃棄気体と多孔性物質に第三級アミンを担持させた硫化水素吸着材との接触が乾燥状態で行われるため、硫化水素のみの吸着および脱着が選択的に行われ、二酸化炭素は硫化水素吸着材に吸着されることなく通過することになる。なお、本実施形態においては、硫化水素分離装置10における硫化水素の分離は、常温常圧下で行われるので、硫化水素の吸着に必要な硫化水素吸着材の量は、前述の図3の水素製造システム30よりは多くなる。
 本実施形態では、硫化水素分離装置10において硫化水素吸着材を通過した二酸化炭素は、図3の水素製造システム30の場合と同様に、除湿器34において水分が除去され、二酸化炭素圧縮機35で圧縮され、二酸化炭素貯留タンク36に貯留される。また、硫化水素分離装置10で分離された硫化水素は、水素製造システム40の系外に移送される。
 本実施形態の水素製造システム40においては、硫化水素分離装置10は常温常圧下で硫化水素の分離を行うため、硫化水素分離装置を高圧仕様に設計する必要がなくなり、システムの低コスト化およびコンパクト化が図れるという利点がある。
 図5は、本発明の更なる他の実施形態に係る水素製造システム50の概略構成を示す図である。本実施形態の水素製造システム50は、除湿器34が設けられていない点と、ガス精製部31に熱交換器38が設けられている点を除いて、図4に示した水素製造システム40と同様の構成を有している。従って、図5においては、図4に対応する構成要素には同じ符号が付されている。
 本実施形態の水素製造システム50においても、ガス冷却器9で冷却した後の原料気体(混合ガス)はガス精製部31の二酸化炭素分離装置32に移送される。二酸化炭素分離装置32では、図4の水素製造システム40と同様に、原料気体に含まれる二酸化炭素と硫化水素とが二酸化炭素吸着材に吸着され、二酸化炭素分離装置32から排出される気体は水素精製装置33に移送される。水素精製装置33では、二酸化炭素分離装置32からの気体から高濃度水素ガスが分離されるとともに、可燃性オフガスが回収される。二酸化炭素分離装置32において二酸化炭素吸着材に吸着された二酸化炭素および硫化水素は、廃熱回収ボイラ37から供給される再生蒸気により二酸化炭素吸着材から脱着され、硫化水素分離装置10に移送される。
 本実施形態では、図4の実施形態と同様に、硫化水素は硫化水素分離装置10における吸着過程で硫化水素吸着材に吸着されるが、硫化水素の脱着に際しては、図4の実施形態とは異なり、水素精製装置33で回収される可燃性オフガスを加熱することにより得られる100℃以上の加熱オフガスが使用される。この加熱オフガスは、水素精製装置33によって回収された可燃性オフガスを熱交換器38において加熱することにより調製される。100℃以上の加熱オフガスを使用することにより、本実施形態では、硫化水素吸着材に含まれる水分は硫化水素とともに水素製造システム50の外部に排出され、硫化水素分離装置10から排出される二酸化炭素には殆ど水分が含まれていない。従って、本実施形態では、図4における除湿器34は設けられておらず、硫化水素分離装置10から排出される二酸化炭素は、直接二酸化炭素圧縮機35で圧縮された後、二酸化炭素貯留タンク36に貯留されることになる。
 本実施形態の水素製造システム50では、水素精製装置33から排出される可燃性オフガスを加熱することにより得られる100℃以上の加熱オフガスが硫化水素の脱着に使用されるため、除湿器34を設ける必要がなくなり、システムの低コスト化が図れるという利点がある。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施の形態が明らかである。従って、上記説明は例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/又は機能の詳細を実質的に変更できる。
 本発明の硫化水素分離方法および装置並びにこれを用いた水素製造システムは、二酸化炭素の影響を受けることなく硫化水素を分離することができるので、エネルギー産業、環境保全分野、CCS(二酸化炭素分離回収貯留)、EOR(原油増進回収)等、広汎な分野で利用可能である。
          7:ガス化炉
          8:シフト反応器
          9:ガス冷却器
         10:硫化水素分離装置
      11,21:吸着材充填塔
12,13,14,15:バルブ
22,23,24,25:バルブ
         28:ライン
   30,40,50:水素製造システム
         31:ガス精製部
         32:二酸化炭素分離装置
         33:水素精製装置
         34:除湿器
         35:二酸化炭素圧縮機
         36:二酸化炭素貯留タンク
         37:廃熱回収ボイラ
         38:熱交換器

Claims (22)

  1.  多孔性物質にアミン化合物を担持させた硫化水素吸着材に、硫化水素と二酸化炭素とを含有する被処理気体を接触させて硫化水素を選択的に吸着させる吸着過程と、
     該吸着後の硫化水素吸着材を加熱することにより硫化水素を脱着させる脱着過程と
    を包含する硫化水素分離方法であって、
     前記アミン化合物は第三級アミンであり、前記吸着過程における前記硫化水素吸着材と前記被処理気体との接触が乾燥状態で行われることにより、硫化水素のみを選択的に分離することを特徴とする硫化水素分離方法。
  2.  前記第三級アミンは、第三級アルカノールアミンであることを特徴とする請求項1に記載の硫化水素分離方法。
  3.  多孔性物質にアミン化合物を担持させた硫化水素吸着材を用い、硫化水素と二酸化炭素とを含有する被処理気体から硫化水素を選択的に分離する硫化水素分離装置であって、
     前記硫化水素吸着材を充填した吸着材充填塔と、
     該吸着材充填塔に前記被処理気体を供給することにより前記硫化水素吸着材と前記被処理気体とを接触させる給気手段と、
     硫化水素を吸着した後の前記硫化水素吸着材から硫化水素を脱着させるための加熱気流を前記吸着材充填塔に供給する加熱気流供給手段と
     を備え、
     前記アミン化合物は第三級アミンであり、前記吸着材充填塔における前記硫化水素吸着材と前記被処理気体との接触が乾燥状態で行われることを特徴とする硫化水素分離装置。
  4.  多孔性物質にアミン化合物を担持させた硫化水素吸着材を用い、硫化水素と二酸化炭素とを含有する被処理気体から硫化水素を選択的に分離する硫化水素分離装置であって、
     前記硫化水素吸着材を充填した複数の吸着材充填塔と、
     該複数の吸着材充填塔に前記被処理気体をそれぞれ供給することにより前記硫化水素吸着材と前記被処理気体とを接触させる複数の給気手段と、
     硫化水素を吸着した後の前記硫化水素吸着材から硫化水素を脱着させるための加熱気流を前記吸着材充填塔のそれぞれに供給する複数の加熱気流供給手段と
     を備え、
     前記アミン化合物は第三級アミンであり、前記吸着材充填塔のそれぞれにおける前記硫化水素吸着材と前記被処理気体との接触が乾燥状態で行われ、
     前記複数の吸着材充填塔のうちの一部に前記給気手段から前記被処理気体をそれぞれ供給して硫化水素の選択的吸着を行うとともに、前記複数の吸着材充填塔のうちの他の一部に前記加熱気流供給手段から加熱気流をそれぞれ供給して硫化水素の脱着を行うことを特徴とする硫化水素分離装置。
  5.  前記第三級アミンは、第三級アルカノールアミンであることを特徴とする請求項3に記載の硫化水素分離装置。
  6.  前記第三級アミンは、第三級アルカノールアミンであることを特徴とする請求項4に記載の硫化水素分離装置。
  7.  硫化水素と二酸化炭素と水素とを含有する原料気体を被処理気体とし、該原料気体から水素を製造するための水素製造システムであって、
     前記原料気体から硫化水素を選択的に分離する請求項3に記載の硫化水素分離装置と、
     該硫化水素分離装置の後流に設けられ硫化水素が除去された気体から二酸化炭素を分離する二酸化炭素分離装置と、
     二酸化炭素分離装置の後流に設けられ硫化水素および二酸化炭素が除去された気体から水素を分離する水素精製装置と
     を備えたことを特徴とする水素製造システム。
  8.  硫化水素と二酸化炭素と水素とを含有する原料気体を被処理気体とし、該原料気体から水素を製造するための水素製造システムであって、
     前記原料気体から硫化水素を選択的に分離する請求項4に記載の硫化水素分離装置と、
     該硫化水素分離装置の後流に設けられ硫化水素が除去された気体から二酸化炭素を分離する二酸化炭素分離装置と、
     二酸化炭素分離装置の後流に設けられ硫化水素および二酸化炭素が除去された気体から水素を分離する水素精製装置と
     を備えたことを特徴とする水素製造システム。
  9.  前記硫化水素分離装置と前記二酸化炭素分離装置が高圧のガス処理ライン上に配置されていることを特徴とする請求項7に記載の水素製造システム。
  10.  前記硫化水素分離装置と前記二酸化炭素分離装置が高圧のガス処理ライン上に配置されていることを特徴とする請求項8に記載の水素製造システム。
  11.  硫化水素と二酸化炭素と水素とを含有する原料気体を被処理気体とし、該原料気体から水素を製造するための水素製造システムであって、
     前記原料気体から硫化水素および二酸化炭素を分離する二酸化炭素分離装置と、
     二酸化炭素分離装置の後流に設けられ硫化水素および二酸化炭素が除去された気体から水素を分離する水素精製装置と、
     二酸化炭素分離装置の後流に設けられ前記二酸化炭素分離装置において分離された硫化水素および二酸化炭素を含む気体から硫化水素を選択的に分離する請求項3に記載の硫化水素分離装置と
     を備えたことを特徴とする水素製造システム。
  12.  硫化水素と二酸化炭素と水素とを含有する原料気体を被処理気体とし、該原料気体から水素を製造するための水素製造システムであって、
     前記原料気体から硫化水素および二酸化炭素を分離する二酸化炭素分離装置と、
     二酸化炭素分離装置の後流に設けられ硫化水素および二酸化炭素が除去された気体から水素を分離する水素精製装置と、
     二酸化炭素分離装置の後流に設けられ前記二酸化炭素分離装置において分離された硫化水素および二酸化炭素を含む気体から硫化水素を選択的に分離する請求項4に記載の硫化水素分離装置と
     を備えたことを特徴とする水素製造システム。
  13.  前記二酸化炭素分離装置が高圧のガス処理ライン上に配置され、前記硫化水素分離装置が常圧のガス処理ライン上に配置されていることを特徴とする請求項11に記載の水素製造システム。
  14.  前記二酸化炭素分離装置が高圧のガス処理ライン上に配置され、前記硫化水素分離装置が常圧のガス処理ライン上に配置されていることを特徴とする請求項12に記載の水素製造システム。
  15.  前記二酸化炭素分離装置は、多孔性物質にアミン化合物を担持させた二酸化炭素吸着材を用いて二酸化炭素の分離を行うことを特徴とする請求項7に記載の水素製造システム。
  16.  前記二酸化炭素分離装置は、多孔性物質にアミン化合物を担持させた二酸化炭素吸着材を用いて二酸化炭素の分離を行うことを特徴とする請求項8に記載の水素製造システム。
  17.  前記水素精製装置において水素を分離した後の可燃性オフガスを用いて、前記硫化水素分離装置における前記硫化水素吸着材から硫化水素を脱着させるための加熱気流を生成することを特徴とする請求項7に記載の水素製造システム。
  18.  前記水素精製装置において水素を分離した後の可燃性オフガスを用いて、前記硫化水素分離装置における前記硫化水素吸着材から硫化水素を脱着させるための加熱気流を生成することを特徴とする請求項8に記載の水素製造システム。
  19.  前記水素精製装置において水素を分離した後の可燃性オフガスを用いて、前記二酸化炭素分離装置における二酸化炭素吸着材から二酸化炭素を脱着させるための加熱気流を生成することを特徴とする請求項15に記載の水素製造システム。
  20.  前記水素精製装置において水素を分離した後の可燃性オフガスを用いて、前記二酸化炭素分離装置における二酸化炭素吸着材から二酸化炭素を脱着させるための加熱気流を生成することを特徴とする請求項16に記載の水素製造システム。
  21.  最終的に分離された二酸化炭素を回収するための二酸化炭素回収装置を備えたことを特徴とする請求項7に記載の水素製造システム。
  22.  最終的に分離された二酸化炭素を回収するための二酸化炭素回収装置を備えたことを特徴とする請求項8に記載の水素製造システム。
PCT/JP2012/006928 2011-12-08 2012-10-29 硫化水素分離方法および装置並びにこれを用いた水素製造システム WO2013084402A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280058498.6A CN103958029B (zh) 2011-12-08 2012-10-29 硫化氢分离方法及装置以及使用该装置的氢制造系统
AU2012347153A AU2012347153B2 (en) 2011-12-08 2012-10-29 Method and device for separating hydrogen sulfide and hydrogen production system using the same
US14/363,423 US9365423B2 (en) 2011-12-08 2012-10-29 Method and device for separating hydrogen sulfide and hydrogen production system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-268825 2011-12-08
JP2011268825A JP5906074B2 (ja) 2011-12-08 2011-12-08 水素製造システム

Publications (1)

Publication Number Publication Date
WO2013084402A1 true WO2013084402A1 (ja) 2013-06-13

Family

ID=48573796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006928 WO2013084402A1 (ja) 2011-12-08 2012-10-29 硫化水素分離方法および装置並びにこれを用いた水素製造システム

Country Status (5)

Country Link
US (1) US9365423B2 (ja)
JP (1) JP5906074B2 (ja)
CN (1) CN103958029B (ja)
AU (1) AU2012347153B2 (ja)
WO (1) WO2013084402A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3209408A4 (en) * 2014-10-24 2018-07-04 Research Triangle Institute, International Integrated system and method for removing acid gas from a gas stream
WO2016137925A1 (en) * 2015-02-27 2016-09-01 Dow Global Technologies Llc Method to selectively remove hydrogen sulfide from a gas stream using a functionalized cross-linked macroporous polymer
CN108537475A (zh) * 2017-03-03 2018-09-14 顺丰科技有限公司 快件揽收订单匹配方法及装置
CN107628619A (zh) * 2017-09-15 2018-01-26 深圳市水务(集团)有限公司 一种掺杂食物下脚料的富氮污泥活性炭的制备方法
WO2019131474A1 (ja) * 2017-12-25 2019-07-04 住友化学株式会社 硫化水素の製造方法及び硫黄の回収方法
EP4178711A1 (en) * 2020-07-07 2023-05-17 ExxonMobil Technology and Engineering Company Acid gas scrubbing methods featuring amine phase separation for hydrogen sulfide capture
CN113231036A (zh) * 2021-05-21 2021-08-10 南京工业大学 一种用于脱除超低浓度硫化氢的负载型吸附剂及其制备方法
CN113231037A (zh) * 2021-05-21 2021-08-10 南京工业大学 一种用于脱除微量硫化氢的固体胺吸附剂及其制备方法
CN114777421A (zh) * 2022-03-31 2022-07-22 中科瑞奥能源科技股份有限公司 从氯乙酸或氯乙酰氯合成尾气中提纯氯化氢的系统和方法
US11959637B2 (en) * 2022-04-06 2024-04-16 Next Carbon Solutions, Llc Devices, systems, facilities and processes for CO2 post combustion capture incorporated at a data center
CN115254022A (zh) * 2022-08-11 2022-11-01 湖南宇洁活性炭环保科技有限公司 一种高效净化硫化氢气体的改性活性炭及其制备方法
CN117268879B (zh) * 2023-11-22 2024-02-02 天津朔程科技有限公司 一种采气井口的气体采集分析方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456114A (en) * 1987-08-26 1989-03-03 Sumitomo Heavy Industries Adsorption reactor for gaseous carbon dioxide
JPH07256096A (ja) * 1994-01-06 1995-10-09 Akzo Nobel Nv ガス混合物からガス状不純物を除去するための物質
JPH07258664A (ja) * 1994-03-18 1995-10-09 Kansai Electric Power Co Inc:The ガス中の硫化水素を選択的に除去する方法
WO2001028916A1 (fr) * 1999-10-21 2001-04-26 Ebara Corporation Procede de production d'hydrogene par gazeification de combustibles et production d'energie electrique a l'aide d'une pile a combustible
WO2010106133A1 (de) * 2009-03-20 2010-09-23 Basf Se Verfahren zum abtrennen saurer gase mit hilfe von mit aminen imprägnierten metallorganischen gerüstmaterialien
WO2011108212A1 (ja) * 2010-03-02 2011-09-09 独立行政法人石油天然ガス・金属鉱物資源機構 合成ガスの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2818323A (en) * 1953-10-07 1957-12-31 Universal Oil Prod Co Purification of gases with an amine impregnated solid absorbent
US3594983A (en) * 1969-06-17 1971-07-27 Process Services Inc Gas-treating process and system
EP0322924A1 (en) 1987-12-31 1989-07-05 Union Carbide Corporation Selective H2S removal from fluid mixtures using high purity triethanolamine
US6355094B1 (en) * 1994-01-06 2002-03-12 Akzo Nobel N.V. Material for the removal of gaseous impurities from a gas mixture
EP0672446B1 (en) 1994-03-18 2002-11-13 The Kansai Electric Power Co., Inc. Method for the removal of hydrogen sulfide present in gases
US5876488A (en) * 1996-10-22 1999-03-02 United Technologies Corporation Regenerable solid amine sorbent
JP2004284875A (ja) * 2003-03-20 2004-10-14 Nippon Oil Corp 水素製造システムおよび燃料電池システム
JP2004292240A (ja) * 2003-03-27 2004-10-21 Mitsubishi Kakoki Kaisha Ltd 水素製造装置における二酸化炭素排出量の低減方法
BRPI0511594A (pt) * 2004-05-28 2008-01-02 Hyradix Inc processo para a geração de hidrogênio, e, gerador de hidrogênio
US7288136B1 (en) * 2005-01-13 2007-10-30 United States Of America Department Of Energy High capacity immobilized amine sorbents
WO2006094411A1 (en) * 2005-03-11 2006-09-14 University Of Ottawa Functionalized adsorbent for removal of acid gases and use thereof
CN101024139A (zh) * 2006-12-31 2007-08-29 武汉旭日华科技发展有限公司 活性炭纤维吸附回收有机挥发性气体的方法及装置
JP4792013B2 (ja) 2007-07-19 2011-10-12 大陽日酸株式会社 硫化水素除去方法およびガス精製装置
US7909913B2 (en) 2008-07-17 2011-03-22 Air Products And Chemicals, Inc. Gas purification by adsorption of hydrogen sulfide
CN102068967B (zh) * 2010-12-14 2012-12-19 浙江大学 一种负载化聚丙烯亚胺材料及其制备方法和用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456114A (en) * 1987-08-26 1989-03-03 Sumitomo Heavy Industries Adsorption reactor for gaseous carbon dioxide
JPH07256096A (ja) * 1994-01-06 1995-10-09 Akzo Nobel Nv ガス混合物からガス状不純物を除去するための物質
JPH07258664A (ja) * 1994-03-18 1995-10-09 Kansai Electric Power Co Inc:The ガス中の硫化水素を選択的に除去する方法
WO2001028916A1 (fr) * 1999-10-21 2001-04-26 Ebara Corporation Procede de production d'hydrogene par gazeification de combustibles et production d'energie electrique a l'aide d'une pile a combustible
WO2010106133A1 (de) * 2009-03-20 2010-09-23 Basf Se Verfahren zum abtrennen saurer gase mit hilfe von mit aminen imprägnierten metallorganischen gerüstmaterialien
WO2011108212A1 (ja) * 2010-03-02 2011-09-09 独立行政法人石油天然ガス・金属鉱物資源機構 合成ガスの製造方法

Also Published As

Publication number Publication date
AU2012347153A1 (en) 2014-07-10
US20140360368A1 (en) 2014-12-11
CN103958029A (zh) 2014-07-30
US9365423B2 (en) 2016-06-14
JP2013119503A (ja) 2013-06-17
CN103958029B (zh) 2016-01-20
JP5906074B2 (ja) 2016-04-20
AU2012347153B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5906074B2 (ja) 水素製造システム
CA2745359C (en) A method and apparatus for producing power and hydrogen
CA2727057C (en) Acid gas absorption medium comprising oligoamine and piperazine
KR101312914B1 (ko) 이산화 탄소 회수방법
TWI521056B (zh) Methane recovery method and methane recovery unit
RU2349371C2 (ru) Способ разделения отходящего газа или дыма, образующегося при окислении топлива, и выделения из него диоксида углерода
JP6575050B2 (ja) 二酸化炭素の回収方法及び回収装置
US8728201B2 (en) Apparatus and method for removing carbon dioxide (CO2) from the flue gas of a furnace after the energy conversion
EP2253915B1 (en) Method and apparatus for separating blast furnace gas
US8746009B2 (en) Production of hydrogen from a reforming gas and simultaneous capture of CO2 co-product
US20110268618A1 (en) Hybrid carbon dioxide separation process and system
US20120312163A1 (en) Temperature Swing Adsorption Process for the Separation of Target Species from a Gas Mixture
JP5319140B2 (ja) 高炉ガスの分離方法、および高炉ガスの分離システム
JP7106275B2 (ja) 粗バイオガスを精製する方法及びバイオガス精製システム
US8187365B2 (en) Process for removal of metal carbonyls from a synthesis gas stream
JP2010069371A (ja) 火力発電プラントにおける石炭ボイラ排ガス中の二酸化炭素回収装置、及び二酸化炭素回収方法
JP6659717B2 (ja) 水素回収法
JP2009226258A (ja) 高炉ガスの分離方法、および高炉ガスの分離装置
JP4792013B2 (ja) 硫化水素除去方法およびガス精製装置
ES2952977T3 (es) Proceso para la separación de un componente de gas pesado de una mezcla gaseosa
CN103212271B (zh) 一种气体分离系统以及使用该系统分离气体的方法
JP2009249571A (ja) バイオガス中の硫化水素の除去方法
JP2005177716A (ja) 水素psa精製装置から排出されるオフガスの処理方法
KR100733323B1 (ko) 보르텍스 튜브를 이용한 co2 흡수제거 방법
Zhou et al. Experiments of Removing Trace Hydrogen Sulfide from Natural Gas with Two Column Pressure Swing Operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855204

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14363423

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012347153

Country of ref document: AU

Date of ref document: 20121029

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12855204

Country of ref document: EP

Kind code of ref document: A1