WO2013082851A1 - 一种极紫外光刻投影物镜设计方法 - Google Patents

一种极紫外光刻投影物镜设计方法 Download PDF

Info

Publication number
WO2013082851A1
WO2013082851A1 PCT/CN2012/000254 CN2012000254W WO2013082851A1 WO 2013082851 A1 WO2013082851 A1 WO 2013082851A1 CN 2012000254 W CN2012000254 W CN 2012000254W WO 2013082851 A1 WO2013082851 A1 WO 2013082851A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
distance
ray
radius
height
Prior art date
Application number
PCT/CN2012/000254
Other languages
English (en)
French (fr)
Inventor
李艳秋
刘菲
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Priority to US14/363,334 priority Critical patent/US9323158B2/en
Publication of WO2013082851A1 publication Critical patent/WO2013082851A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0647Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors
    • G02B17/0657Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors off-axis or unobscured systems in which all of the mirrors share a common axis of rotational symmetry
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions

Definitions

  • the invention relates to a design method of an extreme ultraviolet lithography projection objective lens, and belongs to the technical field of optical design. Background technique
  • the current deep-UV lithography technology uses a laser source with a wavelength of 193, which assists with resolution enhancement techniques such as off-axis illumination, phase shift mask, and optical edge effect correction. It can realize the industrialization requirements of 45 brain technology nodes, but for 32 In the industrialization needs of higher or higher technology nodes, the semiconductor industry generally hopes for extreme ultraviolet lithography.
  • the extreme ultraviolet light source has a wavelength of about l l ⁇ 15 «m, which is the same as deep ultraviolet lithography, and the extreme ultraviolet lithography also uses a step-and-scan mode.
  • the EUV lithography system consists of a plasma source, a reflective illumination system, a reflective mask, a reflective projection objective, a silicon wafer coated with an EUV photoresist, and a synchronous workpiece stage. After the beam is emitted by the light source, it is shaped and homogenized by the illumination system and irradiated onto the reflective mask. After being reflected by the mask, the light is incident on the projection objective system and finally exposed to the image on the silicon wafer coated with the extreme ultraviolet photoresist.
  • a typical EUV projection objective is a coaxial optical system.
  • the object plane, image plane, and all mirrors are rotationally symmetric about the optical axis. This design facilitates adjustment and minimizes possible aberrations. Due to the optical path folding and occlusion in the reflection system, the projection objective should adopt a circular off-axis field of view design.
  • the EUV projection objective design also needs to meet the following requirements: 1.
  • the achievable pupil plane setting generally located on one of the 2nd to 5th reflecting surfaces; 2. Large enough The object side, the image working distance, to ensure the axial installation space of the mask and the silicon wafer; 3.
  • the non-blocking design a certain margin margin is left between the reflective area and the light passing area of each reflecting surface; 4.
  • Prior Art discloses an EUV lithography projection objective design method that uses paraxial structure parameters (mirror radius, optical plane spacing) for an EUVL projection objective including a six mirror Etc.) Perform an exhaustive search, constrain the conditions such as the magnification of the system, the conjugate relationship of the aperture, and program the optical path occlusion of the optical path, and analyze and select the unobstructed optical path to select the appropriate The initial structure, as the basis for further optimization and calculation.
  • the disadvantages of this method are: The amount of calculation is too large, and the available computer calculation speed, on average, can find a usable design in a week. Summary of the invention
  • the invention provides an EUV lithography projection objective lens design method, which can design an EUV lithography projection objective lens according to different parameter requirements, and the calculation amount is small, and the realization speed is fast.
  • Step 101 Determine an optical system parameter of the projection objective: an object-side numerical aperture NAO, a system magnification M, an image-side numerical aperture NAI, an object-side field height YOB, an image-side field height YIM, and an object-side numerical aperture NAO.
  • Step 102 Determine that the EUV lithography projection objective lens disposed between the mask and the silicon wafer comprises six mirrors and an aperture, wherein the positional relationship between the six mirrors and the aperture is: starting from the mask and following the direction of the optical path
  • the first mirror M1, the aperture, the second mirror M2, the third mirror M3, the fourth mirror M4, the fifth mirror M5, and the sixth mirror ⁇ 6, and the pupil is placed on the second mirror ⁇ 2
  • Step 103 Determine a proportional parameter of the height of the object field and the distance from the mask to the first mirror M1, a distance parameter of the distance between the second mirror M2 and the first mirror M1 and the distance from the mask to the first mirror M1, a space CLEAPE1 in which the light emitted from the first mirror M1 and the second mirror M2 does not block, a distance from the silicon wafer to the sixth mirror M6, and a distance from the silicon wafer to the sixth mirror M6 from the WDI and the fifth reflection a ratio o 3 of the pitch of the mirror M5 to the sixth mirror M6, a space where the incident light of the sixth mirror M6 and the fifth mirror M5 does not block, ⁇ 6, the light emitted by the sixth mirror ⁇ 6 and the fifth reflection Mirror ⁇ 5 does not block the space CLEAPE5;
  • Step 104 Set the distance of the mask to the first mirror M1 to be - /, then
  • Step 105 setting the radius of the first mirror M1 to r
  • r, K A j tan( ⁇ ⁇ ⁇ where the height of the intersection of the chief ray RAY1 with the first mirror M1, ⁇ is the axial point of the incident point of the chief ray RAY1 on the first mirror M1 and the apex of the first mirror M1 distance;
  • Step 106 setting the radius of the second mirror M2 to r 2 , then h b , ⁇ CLEAPE ⁇ -h c
  • J/. 2 is the angle between the upper ray RAY2 incident on the first mirror M1 and the optical axis
  • / ⁇ is the height of the intersection of the upper ray RAY2 and the second mirror M2, and is the height of the intersection of the lower ray RAY3 and the first mirror M1 ;
  • Step 107 setting the distance between the fifth mirror M5 and the sixth mirror M6 to be 4, then
  • WDI ⁇ radio;
  • Step 108 Setting a virtual surface D1 in the optical path, a spatial position of the virtual surface D1 and a fifth mirror
  • the set RAY1 principal ray incident on optical axis OA is parallel to the sixth mirror M6, a sixth mirror M6 is further set of radius r 6, the
  • h is the height of the lower light R Y3 and sixth mirror M 6 intersections
  • h hm is the height at the intersection RAY3 ray D1 and the virtual plane
  • the axial distance of the apex of M6, ⁇ / 6 is the angle between the ray 3 and the optical axis of the sixth mirror M6;
  • Step 109 setting a radius of the fifth mirror to be r 5 .
  • Step 110 Select a radius r 3 of the third mirror M3, according to the object conjugate relationship, the magnification relationship, the Pittsand condition, and the pupil conjugate relationship, and use the first mirror M1 and the second reflection determined above.
  • the radius of the mirror M2, the fifth mirror M5, and the sixth mirror M6 and the distance between each other, the radius r 4 of the fourth mirror M4, the third mirror M3, and the fourth mirror are acquired by the paraxial iterative algorithm.
  • the distance 4 between M4, the distance between the third mirror M3 and the second mirror, that is, the object distance / 3 of the third mirror M3, and the distance between the fourth mirror M4 and the fifth mirror, that is, the fourth reflection The image distance of mirror M4. ⁇
  • Step 111 Obtain an EUV lithography projection objective lens according to the radius of the six mirrors calculated according to the above steps and the corresponding positional relationship.
  • the ENP ⁇ i.e.
  • step 108 of the present invention is:
  • Step 202 Using " ⁇ 2 ( ⁇ ) and the selected r 3 , determining the structural parameter of the G2 system according to the object conjugate relationship, the magnification relationship, the Pittsand condition, and the pupil conjugate relationship ( 3 : ), / 4 ' (and ⁇ );
  • Steps 203, r 3 , dk , , / 3 ⁇ k) > / 4 » and r 4 (A) are input to the optical design software CODEC to obtain the actual magnification M of the second mirror group G2 and the actual exit distance EXP1.
  • the invention proposes a complete initial structural design scheme, which can design and search according to different parameter requirements, and avoids the blindness of the traditional optical design method to modify and trial and error on the existing structure.
  • a series of lens structures that meet the parameters are calculated in a targeted manner, which facilitates the selection of light according to the special requirements of optical processing detection, avoiding a large number of retrieval and judgment.
  • the invention performs group optical path search on the whole system, reduces the search range of parameters, reduces the calculation amount of structure search, greatly saves the search time, and can significantly shorten the search step size.
  • the present invention does not require any existing reflective optical system structure as a basis to obtain a complete EUVL six mirror initial structure.
  • the misunderstanding of the optical path occlusion caused by the difference between the paraxial optical path and the actual optical path is avoided.
  • Figure 1 is a schematic diagram of the grouping design of the EUVL six-reflection projection objective
  • Figure 2 is a schematic diagram of the optical path of the first mirror group G1;
  • Figure 4 is the case where the curvature M of Ml changes with the change of mdio 2 in different mdio;
  • Figure 5 shows the change of CLEAPE1 with mdio 2 when different radi 0l ;
  • FIG. 6 is a schematic diagram of optical path calculation of the first mirror M2
  • Figure 7 shows the variation of the curvature l/r 2 of M2 with the change of radio 2 when different CLEAPE2 is used
  • Figure 8 shows the history of the curvature l/r 2 of M2 changing with mdi 0l when different mdio is used;
  • Figure 9 is a schematic diagram of the reverse optical path of the third mirror group G3;
  • FIG. 10 is a schematic diagram of optical path calculation of the sixth mirror M6;
  • Fig. 11 is a case where the curvature l/r 6 of M6 changes with the change of radio; when different CLEAPE6;
  • Fig. 12 is a schematic diagram of the optical path calculation of the fifth mirror M5;
  • Figure 13 is a view showing the case where the curvature l/r 5 of M5 changes with the change of radio when different CLEAPE5 is used;
  • Figure 14 is a schematic view of the optical path of the second mirror group G2;
  • Figure 15 (a) shows the change of the second mirror parameter as the radius r 3 of M3 changes
  • Figure 15 (b) shows the second mirror parameter - / 3 - ENP 2 as a function of the radius r 3 of M3;
  • Figure 15 (c) is the second mirror parameter; varies with the radius r 3 of M3 Case;
  • Figure 15 (d) shows the change of the second mirror parameter ⁇ with the change of the radius r 3 of 3 ⁇ 4 ;
  • Figure 16 (a) shows the screening of the second mirror set parameter 4.
  • Figure 16 (b) shows the screening of the second mirror parameter - / 3 - ENP 2 ; 17 is a convergence diagram of the actual magnification M of the second mirror group as the number of iterations increases; FIG. 18(a) is an optical path diagram of the selected G1 mirror group according to an embodiment of the present invention.
  • Figure 18 (b) is an optical path diagram of a selected G3 lens group according to an embodiment of the present invention.
  • Figure 18 (c) is an optical path diagram of three G2 lens groups calculated according to the G1 lens group shown in Figure 18 (a) and the G3 lens group shown in Figure 18 (b) according to an embodiment of the present invention
  • Figure 18 (d) is a G1 lens group shown in Figure 18 (a) and the G3 lens group shown in Figure 18 (b) and the three 2-mirror groups shown in Figure 18 (b) according to an embodiment of the present invention.
  • Figure 19 (a) is a fourth EUVL six-reflection objective optical path diagram obtained by applying the design method of the present invention
  • Figure 19 (b) is a fifth EUVL six-reflection objective optical path diagram obtained by applying the design method of the present invention
  • Figure 19 (c) A sixth EUVL six-reflection objective optical path diagram obtained by applying the design method of the present invention
  • FIG. 20 is a schematic diagram of an EUVL projection lithography system.
  • the actual entrance pupil distance is the distance between the actual object plane and the entrance pupil plane; the actual exit pupil distance is the distance between the actual image plane and the actual exit pupil plane.
  • the actual entrance pupil plane here is determined by the intersection of the chief ray of the off-axis field of view and the optical axis 103.
  • the above parameters are called object points/image points, object height/image height, object/image surface, exit/input, etc. If the parameter is a paraxial parameter, Specially point out.
  • Step 101 Determine an optical system parameter of the projection objective: an object-side numerical aperture NAO, a system magnification M, an image-side numerical aperture NAI, an object-side field height YOB, an image-side field height YIM, and an object-side numerical aperture NAO
  • the object's chief ray is incident at an angle C4.
  • the specific relationship of each of the above parameters is:
  • NAO NAI - ⁇ M ⁇
  • YOB YIM/ ⁇ M ⁇
  • the incident angle CA of the principal ray is determined according to the numerical aperture NAO of the object side. Since the mask of the extreme ultraviolet lithography is a reflective mask, the optical path of the illumination system incident to the mask and the optical path incident from the mask to the projection objective cannot be blocked from each other. Therefore, the chief ray 104, the upper ray 105, and the lower ray 106 of the beam should be higher than the object field height YOB at the same time, or lower than the field height YOB (as shown in FIG. 1) to ensure that the optical path does not block.
  • the angle of incidence of the main ray of the object is
  • Step 102 Determine that the EUV lithography projection objective lens disposed between the mask 101 and the silicon wafer 102 includes six mirrors and an aperture 107, wherein a positional relationship between the six mirrors and the aperture 107 is: from the mask 101.
  • the first mirror M1, the aperture, the second mirror M2, the third mirror M3, the fourth mirror M4, the fifth mirror M5, and the sixth mirror M6 are sequentially arranged, and the pupil 107 is placed.
  • this ensures that the diaphragm 107 can be realized during processing. .
  • Step 103 a ratio parameter of the height of the object field of view to the distance from the mask 101 to the first mirror M1, a ratio of the distance between the second mirror M2 and the first mirror M1 and the distance from the mask 101 to the first mirror M1.
  • Mdio 2 the space where the light emitted from the first mirror M1 and the second mirror M2 does not block, the distance CLEAPEI, the distance from the silicon wafer to the sixth mirror M6, and the distance from the silicon wafer 102 to the sixth mirror M6 and the fifth reflection a ratio rndio of the mirror M5 to the sixth mirror M6, a space C ⁇ 4 E6 where the incident light of the sixth mirror M6 and the fifth mirror M5 does not block, a light emitted by the sixth mirror M6 and a fifth mirror M5 does not have a hidden space CLEAPE5.
  • ⁇ radio J YOB - radio 2 step 105 setting the radius of the first mirror M1 to r, ; according to the condition that the incident principal angle of incidence of the object ray CA and the pupil 107 are located in the second mirror M2, the corresponding corresponding to mdioi and radio 2 can be calculated.
  • the radius ⁇ of Ml, when ⁇ is determined, the optical path unobstructed space CLEAPE2 near the ⁇ 2 mirror can be calculated by the optical design software CODEC.
  • the principal ray 104 is incident from the mask 101 to the first mirror M1 and then reflected by M1 to the second mirror M2.
  • the aperture 107 of the EUVL reflective lithography objective lens is located on the second mirror M2, that is, the chief ray 104 passes through the center of M2.
  • r h. tan( : ⁇ ) where is the angle between the normal of the incident point of the chief ray RAY1 on M1 and the optical axis;
  • the height of the intersection of line RAY1 and M1; is the incident angle of the chief ray RAY1 incident on M1; the reflection angle of the chief ray RAY1 incident on M1; / ⁇ 2 is the chief ray RAY1 and the optical axis of the 3 ⁇ 411 Angle;
  • is the axial distance between the incident point of the main ray RAY1 on Ml and the apex of Ml.
  • Figure 4 shows the curvature of Ml as a function of ra when the mdio is different for different mdio.
  • Figure 5 shows the change with mdio 2 when different radios are used.
  • Step 106 Set the radius of the second mirror M2 to be r 2 . Based on the calculated first mirror M′ parameter, the radius r 2 of the second mirror M2 may be further calculated. Since the off-axis optical path of the EUV lithography objective lens is completely unobstructed in space, and a certain margin (ie, CLEAPE1) is left between the reflective area and the light-transmitting area of the mirror according to the component processing technology and level, The radius r 2 of the second mirror M2.
  • CLEAPE1 a certain margin
  • 2 is the angle between the normal of the incident point of the upper ray RAY 2 on M2 and the optical axis; 2 is glazing The height of the intersection of line RAY2 and M2; /3 ⁇ 4, the height of the intersection of the lower ray RAY3 and Ml; 2 is the upper ray incident angle on M2; /: 2 is the upper ray reflection angle on 2 ; 2 is the angle between the upper ray RAY2 incident on M1 and the optical axis; ⁇ /: 2 is 1 ⁇ 11 on the exit The angle between the ray ray2 and the optical axis.
  • Figure 7 shows the curvature l/r 2 of M2 as a function of mdio 2 for different CLEAPE.
  • Figure 8 shows the variation of the curvature l/r 2 of M2 with the change of radio 2 for different radios.
  • the actual image height YIM1 of the first mirror group G1, the actual exit pupil distance ENP1, and the actual exit pupil diameter TO1 can be calculated, wherein the calculation process is prior art, and thus This is not repeated.
  • the third lens group is located on the image side of the six anti-lithography objective lens (i.e., the silicon wafer 102).
  • the optical path of the G3 mirror is reversed. As shown in Figure 10, the G3 mirror optical path is opposite to the forward direction of the EUVL projection objective. In order to avoid confusion, the parameters in the G3 mirror are still represented in the forward path.
  • Step 108 Setting a virtual surface D1 in the optical path, the spatial position of the virtual surface D1 is the same as the spatial position of the fifth mirror M5, and setting the chief ray RAY1 incident on the M6 parallel to the optical axis OA, further setting the sixth reflection
  • the radius of the mirror M6 is r 6 ; In the reverse optical path, it is located between the silicon wafer WAFER 102 and the sixth mirror M6, in front of the sixth mirror M6.
  • the radius r 6 when M6 is at a different position can be calculated according to the condition of the image telecentricity and the condition that there is no occlusion between the incident light of the silicon wafer 102 and the fifth mirror, and r 6 determined by r i3 ⁇ 4 3 . As shown in Figure 10.
  • ⁇ 6 is the angle between the incident light and the normal line of the optical axis incident point RAY3 on M6; / 3 ⁇ 4 6 RAY3 light incident to the height of the intersection point M6 M6; D1 is at the intersection of the virtual plane light RAY3 height / A6 is the angle of incidence of the lower ray on M6; / 6 is the angle of reflection of the lower ray on M6; ⁇ ⁇ is the angle between the incident light and the optical axis at M6; ⁇ 6 is the angle between the ray and the optical axis ; is the axial distance between the principal ray incidence point and the ⁇ 6 apex on 3 ⁇ 4 16 .
  • Figure 1 1 shows the curvature l/r 6 of ⁇ 6 as a function of radio when the different CLEAPE5 is different.
  • Step 109 Set a radius of the fifth mirror.
  • a virtual plane D2 is disposed in the optical path, and the spatial position of the virtual plane D2 is the same as the spatial position of the sixth mirror M6, but in the reverse optical path, between the fifth mirror and the second mirror G2. , behind the fifth mirror M5.
  • the radius r 6 of the sixth mirror M6 according to the unobstructed space CLEAPE6 between the incident light of the fifth mirror and the sixth mirror, it can be calculated at the position M6 The radius r 5 of M5 at different positions.
  • Fig. 13 shows the case where the curvature l/r 5 of M5 changes with radic ⁇ when different CLEAPE6 is used.
  • the actual object height YOB3 of the third mirror group G3 can be calculated, and the actual entrance distance is ENP3, wherein the calculation process is prior art, and therefore no repetitive description is made here.
  • Step 110 Select a radius ⁇ of the third mirror M3, according to the object conjugate relationship, the magnification relationship, the Pittsand condition, and the pupil conjugate relationship, and use the first mirror M1 and the second mirror determined above.
  • the radius of the M2, the fifth mirror M5 and the sixth mirror M6 and the distance between each other, the radius r 4 of the fourth mirror M4, the third mirror M3 and the fourth mirror M4 are obtained by the paraxial iterative algorithm
  • the second mirror group is regarded as an independent optical system, and the parameters to be determined mainly include optical system parameters and optical structural parameters.
  • the optical system parameters have a second lens group entrance diameter END2, a second mirror group entrance pupil distance ENP2 (ie, the distance between the second mirror group actual object surface 1401 and the second mirror group entrance pupil 1402) and the second mirror group height YOB2.
  • the optical structural parameter includes a distance (/, ) of the second mirror group surface 1401 to the third mirror M3, a distance (4) from the third mirror M3 to the fourth mirror M4, and a fourth mirror M4 to the second
  • the distance between the mirror image plane IM2 (/), the radius of M3 (r 3 ), and the radius of M4 (r 4 ) are five parameters.
  • the exit pupil distance EXP1 of the first mirror group G1 is the entrance pupil distance ENP 2 of the second mirror group G2, that is, ENP 2 2 EXP1;
  • the entrance distance ENP3 of G3 is the exit distance EXP2 of the second mirror group G2 (ie, the second mirror group actual image plane 1403 to the second mirror group exit pupil 1404).
  • Distance), ie EXP2 ENP3;
  • the actual object height of G3 YOB3 is the actual image height YIM2 of the second mirror group G2, that is, YIM2 two YOB3; using the combination of the paraxial calculation and the iterative calculation, the structural parameters of G2 can be calculated from the above parameters.
  • the structure to be solved needs to satisfy four known conditions, namely, the object-like conjugate relationship, the magnification, the Pizwan sum, and the pupil conjugate relationship. If the radius r 3 of M3 is given, the paraxial solution corresponding to the corresponding condition can be obtained. Conjugated by object
  • Step 111 Obtain an extreme ultraviolet lithography projection objective lens according to the radius of the six mirrors calculated according to the above steps and the corresponding positional relationship.
  • the above r 3 is randomly selected according to experience, but since the input condition parameters are non-paraxial parameters, the parameters calculated by the above formula generally do not meet the requirements of non-paraxial parameters, but the variation trend of this paraxial parameter can be utilized.
  • ex Pl EXP3, 1500mm> ( - / 3 - enp 2)> 0 And 0>c/ 3 >1500 m as the constraint condition, based on the object conjugate relationship, magnification, Pizwan sum and the conjugate relationship of the pupil, determine the range of r 3 , and select a value from the obtained range as The radius of the third mirror M3.
  • system length control is required to be within a certain range.
  • the total physical length of the system is controlled within 2000mm, and M3 should be located behind M2, and M4 should be in front of M3, and the spacing should be slightly shorter than the total length of the system, so 150(1 ⁇ 2m > (-/, -enp 2 )>03-0> d > 1500mm.
  • the usable range of l/r 3 is about 0.0005 ⁇ 0.002. That is, the range of r 3 is 500mm ⁇ 2000mm.
  • the optical parameter of the system can not be calculated directly as a result of the calculation of the second set of parameters.
  • the G2 optical parameters are further optimized below.
  • the specific steps are as follows:
  • Step 202 Using ⁇ :), ex? 2 ( ), and the selected r 3 , determining the structural parameters of the G2 system according to the object conjugate relationship, the magnification relationship, the Pizwan and the condition, and the pupil conjugate relationship. ( ),
  • Steps 203, r 3 , d, (k) , l, (k), and r 4 ( ) are input to the optical design software CODEC to obtain the actual magnification M of the second mirror group G2 and the actual exit distance EXP2. k,; Step 204, judge
  • Fig. 18(a) shows a structure in which a group of G1 is arbitrarily selected, and the pupil of the structure is located on the second mirror.
  • the incident angle of the object's chief ray is set to 5°.
  • the components of the structure are arranged reasonably and the processing difficulty is relatively low.
  • Figure 18(b) shows the structure of a group of G3 arbitrarily selected.
  • M3 is located in front of the object surface (mask 101), which is not conducive to the work of stepping the workpiece stage.
  • the overall length of the system of Embodiment 1 is relatively short, but the largest component has a larger aperture.
  • the largest component of structure 3 is relatively small, but the total length of the system is relatively long.
  • the appropriate M3 radius can be selected according to the actual needs of the project.
  • the extreme ultraviolet light source emits laser light, and after being illuminated by the illumination system, is irradiated onto the mask, and after being reflected by the mask, sequentially passes through the first mirror M1, the second mirror M2, the third mirror M3, and the fourth reflection along the optical path direction.
  • the mirror M4 is composed of an intermediate image, and the intermediate image is formed on the silicon wafer via the fifth mirror M5 and the sixth mirror M6. While the invention has been described with respect to the embodiments of the present invention, it will be understood that The scope of protection.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

一种极紫外光刻投影物镜的设计方法,包括:确定光刻投影物镜的光学设计参数,并设定投影物镜包含六个镜片(M1〜M6)和一孔径光阑(107),按照光束传播的方向将六个镜片(M1〜M6)分成三组(G1〜G3);确定第一组镜片(G1)的半径(r 1r 2)和间距(-l 1,-d 1),确定第三组镜片(G3)的半径(r 5r 6)和间距(d 5,WDI);根据前面两组镜片的参数,确定第二组镜片(G2)的半径(r 3r 4)和间距(d 3l 3l' 4)。设计方法能根据不同的参数要求进行设计和搜索,避免了传统光学设计方法在现有结构上进行修改和试错的盲目性。有针对性的计算出一系列符合参数条件的镜头结构,便于根据光学加工检测的特殊要求对光线进行选择,避免了大量的检索和判断。

Description

一种极紫外光刻投影物镜设计方法
技术领域
本发明涉及一种极紫外光刻投影物镜设计方法, 属于光学设计技术领域。 背景技术
在超大规模集成电路的制造工艺中, 需要使用高精度投影物镜将掩模上的 图形精确倍缩到覆盖有光刻胶的硅片上。 当前深紫外光刻技术使用波长为 193画 的激光光源, 辅助以离轴照明、 相移掩模、 光学边缘效应校正等分辨率增强技 术, 可实现 45腦技术节点的产业化要求, 但是对于 32應或更高技术节点的产业 化需求, 半导体行业普遍寄希望于极紫外光刻技术。 极紫外光源波长约为 l l ~ 15«m , 与深紫外光刻技术相同, 极紫外光刻也采用步进 -扫描模式。
极紫外光刻系统由等离子光源, 反射式照明系统, 反射式掩模, 反射式投 影物镜, 涂覆有极紫外光刻胶的硅片以及同步工件台等部分组成。 光束由光源 出射后, 经照明系统整形和匀光, 照射到反射式掩模上。 经掩模反射后, 光线 入射至投影物镜系统, 最终在涂覆有极紫外光刻胶的硅片上曝光成像。
典型的 EUV 投影物镜为共轴光学系统,物面、像面及所有反射镜均关于光 轴旋转对称, 这一设计有利于装调并且尽量避免了可能的像差。 由于反射系统 中存在光路折叠和遮挡, 投影物镜应采用环形离轴视场设计。 一般来说, 除给 定的设计指标外, EUV 投影物镜设计还需要满足下列要求: 1.可实现的光阑面 设置, 一般位于第 2〜5个反射面的某一面上; 2.足够大的物方、 像方工作距, 保证掩模和硅片的轴向安装空间; 3.无遮拦设计, 每个反射面的反射区域和通光 区域之间都要留有一定的边缘余量; 4.能够配合反射式掩模使用, 光线以小角度 入射到掩模上; 5.高分辨率; 6.极小的畸变; 7.像方远心。 现有技术 (M.F.Bal, Next-Generation Extreme Ultraviolet Lithographic Projection Systems [D], Delft: Technique University Delft, 2003) 公开了极紫外光刻投影物镜设 计方法, 该方法通过对包括六反射镜的 EUVL投影物镜的近轴结构参数 (反射镜 半径、 各光学面间距等) 进行穷举式搜索, 将系统的放大倍率、 光阑共轭关系 等条件作为约束, 并编制程序对其光线光路进行光路遮挡判定, 将无遮挡的光 路进行分析拣选, 从而选出合适的初始结构, 作为进一步优化和计算的基础。 这一方法的缺点在于: 计算量过大, 以现有的计算机计算速度, 平均一星期才 能找到一个可用设计。 发明内容
本发明提供一种极紫外光刻投影物镜设计方法, 该方法可根据不同的参数 要求设计出极紫外光刻投影物镜, 其计算量小, 实现速度快。
实现本发明的技术方案如下:
一种极紫外光刻投影物镜设计方法, 具体步骤为:
步骤 101、 确定投影物镜的光学系统参数: 物方数值孔径 NAO , 系统放大 倍率 M , 像方数值孔径 NAI , 物方视场高度 YOB , 像方视场高度 YIM ; 并根 据物方数值孔径 NAO确定物方主光线入射角度 C4;
步骤 102、确定置于掩模和硅片之间的极紫外光刻投影物镜包含六枚反射镜 和光阑, 其中六枚反射镜和光阑之间的位置关系为: 从掩模开始沿光路方向依 次为第一反射镜 Ml、 光阑、 第二反射镜 M2、 第三反射镜 M3、 第四反射镜 M4、 第五反射镜 M5以及第六反射镜 Μ6, 且光阑放置于第二反射镜 Μ2上;
步骤 103、确定物方视场高度与掩模到第一反射镜 Ml距离的比例参数 , 第二反射镜 M2到第一反射镜 Ml距离与掩模到第一反射镜 Ml距离的比例参数 radio, ,第一反射镜 Ml与第二反射镜 M2出射的光线不发生遮挡的空间 CLEAPE1 , 硅片到第六反射镜 M6的距离画 , 硅片到第六反射镜 M6距离 WDI与第五反射 镜 M5到第六反射镜 M6间距的比 o3 , 第六反射镜 M6与第五反射镜 M5的入 射光线不发生遮挡的空间 ^^£6 , 第六反射镜 Μ6 出射的光线与第五反射镜 Μ5不发生遮拦的空间 CLEAPE5;
步骤 104、 设定掩模到第一反射镜 Ml 的距离为- /,, 则 |-/,| = ro /r^'0l; 设 定第一反射镜 Ml到第二反射镜 M2的距离—d、, 则卜 I = YOB/radio, -radio,;
步骤 105、 设定第一反射镜 Ml 的半径为 r, , 则
Figure imgf000005_0001
r, =KAj tan( ^ ~ ^ 其中, 为主光线 RAY1 与第一反射镜 Ml 交点的高度, ^为第一反射镜 Ml上 主光线 RAY1入射点与第一反射镜 Ml 顶点的轴向距离;
步骤 106、 设定第二反射镜 M2的半径为 r2 , 则 hb、 ~CLEAPE\-hc
arctan
U 。2 _d、
Figure imgf000005_0002
其中, J/。2为入射至第一反射镜 Ml上的上光线 RAY2与光轴的夹角, /^为 上光线 RAY2 与第二反射镜 M2 交点的高度, 为下光线 RAY3 与第一反射镜 Ml 交点的高度;
步骤 107、 设定第五反射镜 M5 到第六反射镜 M6 之间的间距为 4, 则 |<i5| = WDI · radio;
步骤 108、 在光路中设置虛拟面 D1, 虛拟面 D1 的空间位置与第五反射镜
M5的空间位置相同, 设定入射至第六反射镜 M6上的主光线 RAY1 与光轴 OA 平行, 进一步设定第六反射镜 M6的半径为 r6 , 则
_ I arctaH -a^PE5)) uk' r6 = b I tan( 2 + 其中, ^为下光线 R Y3与第六反射镜 M6交点的高度, hhm为下光线 RAY3 与虚拟面 D1 交点的高度, ¾为第六反射镜 M6上下光线 RAY3入射点与第六反 射镜 M6顶点的轴向距离, ί/ 6为第六反射镜 M6 出射下光线 RAY3与光轴的夹 角;
步骤 109、 设定第五反射镜的半径为 r5, 贝'卜
Figure imgf000006_0001
rs = tan - + ^~ 其中, 5为下光线 RAY3与第五反射镜 M5交点的高度, 6为下光线 RAY3 与第六反射镜 M6交点的高度,^为第五反射镜 M5出射下光线 RAY3与光轴的 夹角, z。6为第六反射镜 M6处上光线 RAY2入射点与第六反射镜 M6顶点的轴向 距离, 7 5为第五反射镜 M5出射下光线 RAY3与光轴的夹角;
步骤 110、 选取第三反射镜 M3的半径 r3, 根据物象共轭关系、 放大倍率关 系、 匹兹万和条件以及光瞳共轭关系, 并利用上述确定的第一反射镜 Ml、 第二 反射镜 M2、 第五反射镜 M5以及第六反射镜 M6的半径以及相互之间的距离, 利用近轴迭代算法获取第四反射镜 M4的半径 r4、 第三反射镜 M3.与第四反射镜 M4的间距 4、 第三反射镜 M3与第二反射镜之间的距离 即第三反射镜 M3的 物距 /3、 以及第四反射镜 M4和第五反射镜之间的距离 即第四反射镜 M4的像 距 /。 . ·
步骤 111、 根据上述步骤计算的 6枚反射镜的半径以及相应的位置关系, 获 取极紫外光刻投影物镜。
进一步地, 本发明将六枚反射投影物镜分为三个镜组, 第一反射镜组 G1 包 括第一反射镜 Ml和第二反射镜 M2 ;第二反射镜组 G2包括第三反射镜 M3和第 四反射镜 M4 ; 第三反射镜组 G3包括第五反射镜 M5和第六反射镜 M6, 所述选 取第三反射镜 M3的半径 r3的过程为: 将第二镜组 G2作为独立的光学系统, 将 G2系统的近轴放大倍率 ? = M、 第二镜组 G2的近轴入瞳距 等于 G1 的出瞳 距离 ENP\即 enp2 = ENP\、 第二镜组 G2 的出瞳距 ex 2等于 G3的入瞳距离 EXP3即 exp2 = EXP3、 \500mm > (-/3— e«/2) > 0以及 0 > d, >\500mm作为约束条件, 根据物象 共轭关系、 放大倍率关系、 匹兹万和条件以及光瞳共轭关系, 确定 ^的范围, 从 获取的范围中选取一值作为第三反射镜 M3的半径。
进一步地, 本发明所述步骤 108的具体过程为:
步骤 201、 选取第三反射镜 M3 的半径 r3 , 设定误差因子 ^和^ ^, 并令 β(\) = Μ , ^exp2(\) = EXP\ , 设定循环次数 4 = 1 ;
步骤 202、 利用 《φ2(Α)以及所选取的 r3 , 根据物象共轭关系、 放大倍 率关系、匹兹万和条件以及光瞳共轭关系,求出 G2系统的结构参数 /3(:)、 /4' ( 以及 ^);
步骤 203、 r3、 d k、、 /3 {k) > /4»以及 r4(A)输入到光学设计软件 CODEV 中, 获取第二反射镜组 G2的实际放大倍率 M 以及实际出瞳距离 EXPl (k); 步骤 204、 判断 |EAP2( - M|≤
Figure imgf000007_0001
是否成立, 若是则结束 优化, 将此时的 r3、 d,(k) , I k、、 以及 r4(A)作为第二反射镜組 G2 的结构 参数, 若否, 则进入步骤 205;
步骤 205、 - {k + ) = {k)-[M / M(k)J, exp2(k + \) = exp2 (k) - [EXP! I EXP2(k)J , 其中 σ≤1 , 令 k加 1, 返回步骤.202。
有益效果
本发明提出了一套完整的初始结构设计方案, 能够根据不同的参数要求进 行设计和搜索, 避免了传统光学设计方法在现有结构上进行修改和试错的盲目 性。 有针对性的计算出一系列符合参数条件的镜头结构, 便于根据光学加工检 测的特殊要求对光线进行选择, 避免了大量的检索和判断。 其次, 本发明对整个系统进行分組光路搜索, 缩减了参数的搜索范围, 降 低了结构搜索的计算量, 大大节省了搜索时间, 并可显著缩短搜索步长。 再次、 本发明不需要任何已有的反射式光学系统结构作为基础, 即可得到 完整的 EUVL 六反射镜初始结构。 同时基于实际光线追迹, 避免了近轴光路与 实际光路的差别导致的光路遮挡情况误判。 附图说明
图 1 为 EUVL六反射投影物镜分组设计示意图;
图 2 为第一镜組 G1 光路示意图;
图 3 为第一反射镜 Ml 的光路计算示意图;
图 4为不同 mdio时, Ml 的曲率 ψ随 mdio2改变而变化的情况;
图 5为不同 radi0l时, CLEAPE1随 mdio2改变而变化的情况;
图 6为第一反射镜 M2的光路计算示意图;
图 7 为不同 CLEAPE2时, M2的曲率 l/r2随 radio2改变而变化的情况; 图 8 为不同 mdio时, M2的曲率 l/r2随 mdi0l改变而史化的情况;
图 9为第三镜组 G3逆向光路示意图;
图 10为第六反射镜 M6的光路计算示意图;
图 1 1为不同 CLEAPE6时, M6的曲率 l/r6随 radio;改变而变化的情况; 图 12为第五反射镜 M5的光路计算示意图;
图 13为不同 CLEAPE5时, M5的曲率 l/r5随 radio 改变而变化的情况; 图 14为第二镜組 G2光路示意图;
图 15(a)为第二镜组参数 随 M3的半径 r3改变而变化的情况;
图 15(b)为第二镜组参数 - /3 - ENP2随 M3的半径 r3改变而变化的情况; 图 15(c)为第二镜組参数;随 M3的半径 r3改变而变化的情况;
图 15(d)为第二镜組参数 ^随¾ 的半径 r3改变而变化的情况;
图 16(a)为第二镜组参数 4的筛选情况;
图 16(b)为第二镜组参数 -/3 - ENP2的筛选情况; 图 17为第二镜組的实际放大倍率 M随迭代次数增加的收敛情况; 图 18(a)为本发明的一个实施范例所选定 G1镜組光路图;
图 18(b)为本发明的一个实施范例所选定 G3镜組光路图;
图 18(c)为本发明的一个实施范例根据图 18(a)所示的 G1镜组和图 18(b)所示 的 G3镜组计算得到的三种 G2镜組光路图;
图 18(d)为本发明的一个实施范例根据图 18(a) 所示的 G1镜组和图 18(b) 所 示的 G3镜组以及图 18(b) 所示的三种 2镜组衔接得到的三种 EUVL六反射物镜 光路图;
图 19(a)为应用本发明设计方法得到的第四种 EUVL六反射物镜光路图; 图 19(b)为应用本发明设计方法得到的第五种 EUVL六反射物镜光路图; 图 19(c)为应用本发明设计方法得到的第六种 EUVL六反射物镜光路图; 图 20为 EUVL投影光刻系统示意图。
其中, 101-掩模, 102-硅片, 103-光轴, 104-主光线, 105-上光线, 106-下光 线, 107-光阑; 具体实施方式 下面结合附图进一步对本发明进行详细说明。 首先对本发明使用的参数定义进行说明。 实际物点 /像点定义为两条边缘光线的交点, 实际像高 /物高定义为非近轴 像点 /物点的高度; 实际像面 /物面定义为过非近轴像点 /物点与光轴垂直的面。 实际入瞳距为实际物面与入瞳面的距离; 实际的出瞳距为实际像面与实际出瞳 面的距离。这里的实际入瞳面由离轴视场的主光线与光轴 103的交点确定。为了 方便起见, 以后的论述中, 上述参量就筒称为物点 /像点、 物高 /像高、 物面 /像 面、 出瞳 /入瞳等, 若该参量为近轴参量时, 会特别指出。 步骤 101、 确定投影物镜的光学系统参数: 物方数值孔径 NAO, 系统放大 倍率 M , 像方数值孔径 NAI , 物方视场高度 YOB, 像方视场高度 YIM; 并根 据物方数值孔径 NAO确定物方主光线入射角度 C4。 上述各参量的具体关系式为:
由几何光学原理可知:
NAO = NAI - \M\ , YOB = YIM/\M\
并根据物方数值孔径 NAO确定物方主光线入射角度 CA。 由于极紫外光刻 的掩模为反射式掩模, 照明系统入射至掩模的光路与自掩模入射至投影物镜的 光路不能相互遮挡。 所以, 光束的主光线 104, 上光线 105 , 下光线 106应该同 时高于物方视场高度 YOB , 或同时低于视场高度 YOB (如图 1 所示), 以保证 光路不发生遮挡, 此时物方主光线入射角度的范围为 | 4| > arcsin (NAO)。
步骤 102、 确定置于掩模 101和硅片 102之间的极紫外光刻投影物镜包含六 枚反射镜和光阑 107,其中六枚反射镜和光阑 107之间的位置关系为:从掩模 101 开始沿光路方向依次为第一反射镜 Ml、 光阑、 第二反射镜 M2、 第三反射镜 M3、 第四反射镜 M4、 第五反射镜 M5以及第六反射镜 M6 , 且光阑 107放置于第二反 射镜 M2上, 这样可以保证光阑 107在加工时可以实现。。
步骤 103、物方视场高度与掩模 101到第一反射镜 Ml距离的比例参数 , 第二反射镜 M2到第一反射镜 Ml距离与掩模 101 到第一反射镜 Ml距离的比例 参敫 mdio2 , 第一反射镜 Ml 与第二反射镜 M2 出射的光线不发生遮挡的空间 CLEAPEI,硅片到第六反射镜 M6的距离 ,硅片 102到第六反射镜 M6距离爾 与第五反射镜 M5到第六反射镜 M6间距的比 rndio ,第六反射镜 M6与第五反射 镜 M5的入射光线不发生遮挡的空间 C ^4 E6, 第六反射镜 M6出射的光线与第 五反射镜 M5不发生遮拦的空间 CLEAPE5。
将 EUVL六反射投影物镜系统 PO分为三个镜组, 第一反射镜组 G1 包括第 一反射镜 Ml和第二反射镜 M2 ;第二反射镜组 G2包括第三反射镜 M3和第四反 射镜 M4 ;第三反射镜組 G3包括第五反射镜 M5和第六反射镜 M6,如图 1所示。 步骤 104、 设定掩模 101到第一反射镜 Ml 的距离为 , 则 radio, =: ΚΟδ/卜 /,
Figure imgf000011_0001
设定第二反射镜 M2到第一反射镜 Ml 的距离为 -d、, 则 radio2 | · radio J YOB
Figure imgf000011_0002
- radio2 步骤 105、 设定第一反射镜 Ml 的半径为 r, ; 根据物方主光线入射角度 CA和光阑 107位于第二反射镜 M2的条件, 可以 计算出不同 mdioi和 radio2所对应的 Ml 的半径 η, 当 η确定后, 则可以利用光学设 计软件 CODEV计算出 Μ2反射镜附近的光路无遮挡空间 CLEAPE2。
如图 2所示, 主光线 104 自掩模 101 入射至第一反射镜 Ml , 再由 Ml反射 至第二反射镜 M2上的情况。 为了确保系统的光阑能够物理实现, 保证系统无杂 光, 通常 EUVL反射光刻物镜的光阑 107均位于第二反射镜 M2上, 即主光线 104通过 M2的中心。 利用这一条件, 计算出一定 rat/o,和 raa¾2时的 Ml半径 η。
如图 3所示, 根据实际光线追迹公式, 有
hz、 / η = tan ΘΛ
= tan(/,2-/;,)
(CA + I7l)
= tan(/,2- 2
= tan(-^-— )
2 2
arctan(/zzl / (-J, +zzl)) CA
= tan( ~ - ~~ ^ -—— )
2 2
于是有
I arctan ^, l(-d, +z )) CA、
r = h. tan( : ~ ) 其中, 为 Ml 上的主光线 RAY1 的入射点法线与光轴的夹角; 为主光 线 RAY1 与 Ml 交点的高度; ,为入射至 Ml上的主光线 RAY1 的入射角; 为 入射至 Ml上的主光线 RAY1 的反射角; /∑2为 ¾11上出射的主光线 RAY1 与光轴 的夹角; ^为 Ml上主光线 RAY1入射点与 Ml顶点的轴向距离。
图 4 为不同 mdio时, Ml 的曲率 \/r随 ra 改变而变化的情况。
图 5 为不同 radio时, 随 mdio2改变而变化的情况。
步骤 106、 设定第二反射镜 M2的半径为 r2 ; 在上面计算得到的第一反射镜 M〗 参数基础上, 可进一步计算第二反射镜 M2的半径 r2。 由于极紫外光刻物镜的离轴光路在空间中完全无遮挡, 并且要根 据元件加工工艺和水平给反射镜的反光区域和通光区域之间留出一定的余量 (即 CLEAPE1 ), 计算出第二反射镜 M2的半径 r2
根据实际光线追迹公式和几何关系, 有 = tan
=
Figure imgf000012_0001
tan ua2 u:
2 2
hhi - CLEAPE\ - hc
arctan
U
tan
于是有
hh] - CLEAPE\ - arctan
U.
r2 = tan
其中, 2为 M2上的上光线 RAY2的入射点法线与光轴的夹角; /?。2为上光 线 RAY2与 M2交点的高度; /¾,为下光线 RAY3与 Ml 交点的高度; /。2为 M2上 的上光线入射角; /:2为 2上的上光线反射角; 2为入射至 Ml上的上光线 RAY2 与光轴的夹角; ^/:2为 1\11 出射的上光线 RAY2与光轴的夹角。
图 7 为不同 CLEAPE 时, M2的曲率 l/r2随 mdio2改变而变化的情况。
图 8 为不同 radio、时, M2的曲率 l/r2随 radio2改变而变化的情况。
当确定 - /,、 一 d r,以及 r2后, 则可计算第一镜组 G1 的实际像高 YIM1, 实 际出瞳距 ENP1 , 实际出瞳直径 TO1 , 其中计算过程为现有技术, 因此在此不进 行累述。
步骤 107、 设定第五反射镜 Μ5 到第六反射镜 Μ6 之间的间距为 , 则 \ = WDI · radio^。
第三镜組位于六反光刻物镜的像面 (即硅片 102) —方。 在实际的设计中, G3镜組的光路采取反向设计方法。 如图 10所示, G3镜組光路与 EUVL投影物 镜的正向光路方向相反。 为了避免引起混淆, G3镜组中各参数仍然采用正向光 路中的表示方法。
确定像方数值孔径 NAI, 在确定系统参数时已知
Figure imgf000013_0001
确定像方视场高度 YIM, 在确定系统参数时已知
Figure imgf000013_0002
确定第五反射镜 M5第六反射镜 M5之间的间距 4为:
|i/5| = WDI . radios
步骤 108、 在光路中设置虚拟面 D1 , 虛拟面 D1 的空间位置与第五反射镜 M5的空间位置相同, 设定入射至 M6上的主光线 RAY1 与光轴 OA平行, 进一 步设定第六反射镜 M6的半径为 r6 ; 在逆向光路中, 其位于硅片 WAFER102与第六反射镜 M6之间, 在第六反 射镜 M6前方。根据像方远心的条件和硅片 102入射光线与第五枚反射镜之间无 遮挡的条件, 以及由 r i¾3确定的 r6, 可计算出 M6处于不同位置时的半径 r6。 如 图 10所示。
= tan 6
= tan ( tan(^6 - ^ ^)
U,
tan(
Figure imgf000014_0001
于是有
Figure imgf000014_0002
其中
6为入射至 M6上的下光线 RAY3入射点法线与光轴的夹角; /¾6为入射至 M6上的下光线 RAY3与 M6交点的高度; 为下光线 RAY3与虚拟面 D1 交点 的高度; /A6为 M6上的下光线入射角; / 6为 M6上的下光线反射角; ί ^为 M6 入射下光线与光轴的夹角; ^6为 Μ6出射下光线与光轴的夹角; 为 ¾ 16上主 光线入射点与 Μ6顶点的轴向距离。
图 1 1 为不同 CLEAPE5时, Μ6的曲率 l/r6随 radio 改变而变化的情况。
步骤 109、 设定第五反射镜的半径 。
如图 12所示, 在光路中设置虛拟面 D2, 虚拟面 D2的空间位置与第六反射 镜 M6的空间位置相同,但在逆向光路中,位于第五反射镜与第二镜组 G2之间, 在第五反射镜 M5后方。 在计算出第六反射镜 M6的半径 r6的基础上, 根据第五 反射镜入射光线和第六反射镜之间的无遮挡空间 CLEAPE6 , 可以计算处 M6处 于不同位置时 M5的半径 r5
hh5/r5 =tan0h5
= tan ( 5-/;)
= tan(^l +
2 2
arCtan((H ― CLEAPE6)) /{-d5- ζα6 )) 于是有
Figure imgf000015_0001
其中, 5为入射至 M5上的下光线 RAY3的入射点法线与光轴的夹角; 5为入 射至 M5上的下光线 RAY3与 M5交点的高度; 6为经 M5反射的下光线 RAY3 与第六反射镜 M6交点的高度; ^为!^上的下光线 RAY3的入射角; /5为 ¾15 上的下光线 RAY3的反射角; 5为 ^15入射下光线 RAY3与光轴的夹角; ^为 M5出射下光线 RAY3与光轴的夹角; zab为 M6处上光线 RAY2入射点与 M6顶 点的轴向距离;
图 13不同 CLEAPE6时, M5的曲率 l/r5随 radic^改变而变化的情况。
当确定 4、 r6、 r5、 WDI后, 则可计算第三镜组 G3的实际物高 YOB3,实际 入瞳距 ENP3, 其中计算过程为现有技术, 因此在此不进行累述。
步骤 110、 选取第三反射镜 M3的半径 ^, 根据物象共轭关系、 放大倍率关 系、 匹兹万和条件以及光瞳共轭关系, 并利用上述确定的第一反射镜 Ml、 第二 反射镜 M2、 第五反射镜 M5 以及第六反射镜 M6的半径以及相互之间的距离, 利用近轴迭代算法获取第四反射镜 M4的半径 r4、 第三反射镜 M3与第四反射镜 M4的间距 、 第三反射镜 M3与第二反射镜之间的距离 即第三反射镜 M3的 物距 /3、 以及第四反射镜 M4和第五反射镜之间的距离 即第四反射镜 M4的像 距 /。
本步骤的具体过程为:
如图 14所示, 将第二镜组作为独立的光学系统来看, 其待确定的参数主要 包含光学系统参数和光学结构参数。 光学系统参数有第二镜组入瞳直径 END2、 第二镜组入瞳距 ENP2(即第二镜组实际物面 1401到第二镜組入瞳 1402的距离) 和第二镜组物高 YOB2 ;光学结构参数包含第二镜組物面 1401到第三反射镜 M3 的距离 (/, ) , 第三反射镜 M3 到第四反射镜 M4 的距离 (4 ), 第四反射镜 M4 到第二镜组像面 IM2的距离 (/ ) , M3的半径 (r3 ) , M4的半径 (r4 ) 五个参数。
由于第一镜组 G1 的结构参数已经选定, G1 的出瞳直径 EXD1 即为 G2的 入瞳直径 END2, 即 END2= EXD1 ;
第一镜组 G1的实际像高 YIM1为第二镜組 G2的实际物高 YOB2 ,即 YOB2= YIM1 ;
第一镜組 G1的出瞳距 EXP1即为第二镜组 G2的入瞳距离 ENP2 ,即 ENP2二 EXP1;
由于第三镜組 G2的结构参数已经选定, G3的入瞳距离 ENP3即为第二镜 組 G2的出瞳距离 EXP2 (即第二镜组实际像面 1403到第二镜组出瞳 1404的距 离), 即 EXP2= ENP3 ;
G3的实际物高 YOB3即为第二镜组 G2的实际像高 YIM2 ,即 YIM2二 YOB3; 使用近轴计算和迭代计算结合的方式,由上述参数可以计算出 G2的结构参 数。
考虑 G2镜組的结构参数求解, 待求结构需要满足四个已知条件, 即物象共 轭关系, 放大倍率, 匹兹万和, 光瞳共轭关系四个已知条件。 若给出 M3的半径 r3, 即可求得符合相应条件的近轴解。 由物象共轭关系有
Figure imgf000017_0001
其中, /3为第三反射镜 M3 的物距; 为第三反射镜 M3 的像距; 为第三 反射镜 M3与第四反射镜 M4的间距; /4为第四反射镜 M4的物距; 为第四反射 镜 M4的像距;
由放大倍率关系有 (这里的倍率的),
ϋ Ι = β ?为 G2系统的近轴放大倍率, 令 β = Μ
由匹兹万和条件有 pizsum2 = -( + )
η r2 r5 rb
Figure imgf000017_0002
1 1
= pizsum2 由光阑共轭关系有
Figure imgf000017_0003
其中 , e"p2为第二镜組 G2 的近轴入瞳距, 即令 e /^为 G1 的出瞳距离; /;3为第二镜组 G2的入瞳经 M3成像的近轴像距 ; ^为第二镜組 G2的出瞳镜 M4成像的近轴物距; ex 2为第二镜组 G2 的出瞳距,即令 exp2为 G3的入瞳距离; 由物象共轭关系、 放大倍率关系, 匹兹万和条件以及光瞳共轭关系可以解 出
1 r3 . (2. enp2 . β . exp2 . pizsum 2 -exp2 + enp2 * β
4 β . enp . exp2 . (1 + pizs m2 . r3 )
1 2. enp2 . β . exp2 · pizsum2 · r3 - r3 · exp2 + r3 . enp2 ' β + 2 . enp2 . β . exp + 2 . enp2 . β . exp2 = ; = : . 一— ~ ^2
2 —e二x—p2 " + enp2 . β
, i (2 · enp2 · β · exp2 · pizsum2 · - r · exp2 + r3 · enp2 ' ?2 + 2 ' enp2 · exp2 + 2 · enp2 · β · exp2 ) · r3
3 4 、β * r pizsum2 + 1 + ?) · enp2 · exp2
, 1 (r3 · exP2 + 2 · enp2 ' β · exp2 - r4 · enp2 - β2 + 2β2 - exp2 · enp2 - - 2β2 - exp2 · enp2 ' pizsum2 ) · r
4 4 enp2 · β · exp2 · (1 + ? + 2 · r ' pizsum2 + pizsum2■ r3 + pizsum2 2 · r3 2 · ?)
1 r -exp2 ^- 2 - enp2 - β - r3 - enp2 - β + 2β - enp2 * exp2 - - 2 ^ β - r3 * enp2 - exp2 - pizsum2
I =—
2 enp2 · β2 - exp2 - exp2 · pizsum2 ' r + . β2 ' pizsum2 . enp2
, 1 (2.
Figure imgf000018_0001
' β ' exPi ' pizsum2 ' r3 - r3 . exp2 + r3 . exp2 · β2 + 2 · enp2 · β · exp2 + 2enp2 2 · β 2 ) p 4 {exp 2 · pizsum2 ' r3 + exp2 + enp2 · β、· enp2♦ β
1 (-2 · exp ' pizsum2 · r3 - r3 · exp2 - 2 · enp2 ' β . exp2 - 2 · exp2 2 + r ' enp2 ' β2 ) p 4 ( 2 · exp2■ pizsurrij - enp2 + pizsum2 2 - r3 2 · exp2 + enp2 . β + enp2 · β . pizsum2 ' r, + exp2 ) r4 = r3/(l + pizsum2 - r3 ) 则可计算出第四反射镜 M4的半径 r4、 第三反射镜 M3与第四反射镜 M4的 间距 4、 第三反射镜 M3的物距 /3以及第四反射镜 M4的像距 。 步骤 111、 根据上述步骤计算的 6枚反射镜的半径以及相应的位置关系, 获 取极紫外光刻投影物镜。 上述 r3是人为根据经验随机选取, 但是由于输入的条件参数均为非近轴参 数, 上式计算得到的参数一般不符合非近轴参数的要求, 但是可以借助这一近 轴参数的变化趋势, 判断 G1和 G3的组合条件下, 是否存在合理的 G2与之匹 配, 并依据这一变化趋势确定 ^的范围。 本发明将第二镜組 G2 作为独立的光学系统, 将 G2 系统的近轴放大倍率 β = Μ、 第二镜组 G2的近轴入瞳距 e" 2等于 G1 的出瞳距离即 e"/?2 = ENPl、 第二 镜組 G2 的出瞳距 exp2等于 G3的入瞳距离即 exPl = EXP3、 1500mm > (-/3 - enp2 ) > 0 以及 0>c/3 >1500 m作为约束条件, 才良据物象共轭关系、 放大倍率、 匹兹万和以 及光瞳共轭关系, 确定 r3的范围, 从获取的范围中选取一值作为第三反射镜 M3 的半径。
下面举例说明有 G2镜头组的近轴解选择 ^的范围。 输入参数的值如表 1所 示。
表 1
Figure imgf000019_0001
enp2 = ENP\
exp2 = EXP3
β = Μ
得到各参数随 l/r3的变化而变化的图表如图 15(a)〜图 15(d)所示。 对于可用的 EUVL 光刻投影系统, 要求系统长度控制在一定范围内。 这里将系统物理总长 控制在 2000mm以内, 且 M3应位于 M2后方, M4位于 M3前方, 且间距应比系 统总长稍短, 所以 150(½m > (-/, -enp2)>03-0> d > 1500mm。
为了方便起见, 我们将可用区间以外的物距和间距都设定为零, 图 15(a)和 图 15(b)即变为图 16(a)和图 16(b),得到的图表即可较为清晰地看到 r3的可用范围, 比较图 16(a)和图 16(b), 可知在这一组实际条件下, 是否存在可用的 G2解。
由上面图表可知, l/r3 的可用范围约为 0.0005〜0.002。 即 r3的范围为 500mm~2000mm。
由于给定 G2 系统的近轴放大倍率?与实际放大倍率 M不同, G2 系统的近 轴出瞳距离 β; 2与实际出瞳距离 E P2不同 ,上述计算得到的光学系统参数并不能 直接作为第二组参数计算的结果。
事实上, 对于任意两个球面反射镜组成的视场离轴光学系统, 上述两个参 量的近轴值与实际值都不可能相同。
但是对于任意一个两球面反射镜组成的视场离轴光学系统, 当其实际的参 数符合要求时, 必定存在一组相应的近轴参数值。 我们可以通过比较逼近的方 法求得。 具体方法如下:
下面进一步对 G2光学参数进行优化, 具体步骤为:
步骤 201、 选取第三反射镜 M3 的半径 r3, 设定误差因子 和^ ^, 并令
Figure imgf000020_0001
, 设定循环次数 A = l ;
步骤 202、 利用 ^:)、 ex?2( )以及所选取的 r3, 根据物象共轭关系、 放大倍 率关系、匹兹万和条件以及光瞳共轭关系,求出 G2系统的结构参数 4( )、
以及 r4(A) ;
步骤 203、 r3、 d,(k) , l,(k), 以及 r4( )输入到光学设计软件 CODEV 中, 获取第二反射镜組 G2的实际放大倍率 M 以及实际出瞳距离 EXP2、k、; 步骤 204、 判断 |E^T2( )_EY l|≤^P2 |M(^:)-M|≤ 是否成立, 若是则结束 优化, 将此时的 r3、 d,(k) , l,(k), 以及 r4(/t)作为第二反射镜组 G2 的结构 参数, 若否, 则进入步骤 205;
步 205、 令 + 1) =
Figure imgf000020_0002
I EXP2(k)J, 其中 σ≤1, 令 k加 1 , 返回步骤 202。 本发明 σ<ϋ,ΐ} , 这里我们称[ / ( )]<7和[£^1/ \ >2( )](7为逼近因子; 若此时的 G2解空间较小, 当 σ = 1时, [M/M(t)]'和 [EA 1/E^P2(A:)]'以这一对逼 近因子对近轴放大倍率和近轴出瞳距进行处理, 可能导致结果跳出合理的结构 参数范围, 或使得逼近结果不收敛。 所以可以选取 σ = , 即逼近因子为 [M/M(k)†2 和 [E P1/E P2(A)] , 或 σ = , 即逼近因 子为 [M/M(A:)]^ 和
[EXP\/EXP2(k)†4 , 第三组逼近因子搜索过程比较稳定, 但是其迭代次数较多, 第二种因子介于第一组因子和第三组因子之间, 应用范围比较广, 一般能够满 足计算的要求。
图 17为 σ = 1时, 第二镜组的实际放大倍率 Μ随迭代次数增加的收敛情况。 本发明的实施实例:
图 18(a)为任意选定了一組 G1 的结构, 该结构的光阑位于第二面反射镜上。 物方主光线入射角度定为 5° 。 该结构的元件排布合理, 加工难度比较低, G1 的光学系统参数和光学结构参数如表 2所示, 其中 pizsw^ =丄 -丄。 表 2
Figure imgf000021_0001
图 18(b)为任意选定了一组 G3的结构, G3的光学系统参数和光学结构参数 如表 3所示, 其中 pizsun^ = 。 表 3
Figure imgf000022_0001
根据上述 Gl和 G2的结构参数, 得到 G2计算所需的参数如表 4所示。
表 4
Figure imgf000022_0002
计算得到 r3半径为 500mm , 450mm , -500mm的 G2结构三种, 其光路图如 图 18(c)所示。
衔接上述三个镜組, 对于不同的 G2镜組, 得到的六反射投影物镜结构如图 18 (d) 所示。 比较图 18 (d) 中的几种结构, 表 7为下面表 5、 表 6和表 7中参 数确定的三个结构的系统总长和最大反射镜口径的比较, 其中 c,
Figure imgf000023_0001
, c3 = l/r3 , c4 = l/r4, c5 = l/r5 , c6 = \/rb, d。 d为掩模与第一反射镜 Ml 的间距, 口 d6 为第一至第五反射镜 M1 ~M5与相应后一反射镜的间距, 为第六反射镜 M6与 硅片的间距。 M3位于物面 (掩模 101 ) 的前方, 不利于步进工件台的工作。 结 构一 ( embodimentl ) 的系统总长比较短, 但最大元件口径较大。 结构三 (embodiment3) 的最大元件口径比较小, 但是系统总长相对较长。 可以根据工 程实际的需要选择适当的 M3半径。
表 5
Figure imgf000023_0002
表 6
Figure imgf000023_0003
c6 0.002787 d7 320.0000 表 7
curvature Thickness
d、 865.6667
-0.000862 2 -304.7500
c2 -0.000108 άλ 1049.8990
-0.002500 d -142.7610 c4 -0.003608 d5 269.1092
0.002433 -288.000
c6 0.002787 320.0000 表 8
Figure imgf000024_0001
其他几种通过分组择选的系统如图 19(a)、 图 19(b)、 图 19(c)所示。 其结构参 数如表 9、 表 10、 表 11所示。 其中某些结构可能并不利于工程实现, 此处仅作 为分組择选搜索法的实施示例。
表 9
Figure imgf000024_0002
c6 0.003442 d7 251.7581
表 10
curvature Thickness
d、 749.5141
c\ -0.0015411 d -224.8542
c2 -0.0038309 d、 11 19.093
c3 -0.0004762 -781.3919
C4 0.00033972 -222.1395
C5 0.00196793 1259.953
C6 0.00344177 d Ί 251.7581
表 1 1
Figure imgf000025_0001
图 20为典型的极紫外光刻系统示意图, 光束由光源 2001 出射后, 经照明系 统 2002整形和匀光, 照射到反射式掩模 101 上。 经掩模 101反射后, 光线入射 至投影物镜系统 2003, 最终在涂覆有极紫外光刻胶的硅片 102上曝光成像。 本 极端紫外光源发射激光, 经照明系统后, 照射到掩模上, 经掩模反射后, 沿光 路方向依次经第一反射镜 Ml、 第二反射镜 M2、 第三反射镜 M3、 第四反射镜 M4組成, 成中间像, 中间像经第五反射镜 M5、 第六反射镜 M6成像于硅片上。 虽然结合附图描述了本发明的具体实施方式, 但是对于本技术领域的技术 人员来说, 在不脱离本发明的前提下, 还可以做若干变形、 替换和改进, 这些 也视为属于本发明的保护范围。

Claims

1、 一种极紫外光刻投影物镜设计方法, 其特征在于, 具体步骤为: 步骤 101、 确定投影物镜的光学系统参数: 物方数值孔径 NAO , 系统放大 倍率 M , 像方数值孔径 NAI, 物方视场高度 YOB , 像方视场高度 YIM; 并根 据物方数值孔径 NAO确定物方主光线入射角度 C4;
步骤 102、确定置于掩模和硅片之间的极紫外光刻投影物镜包含六枚反射镜 和光阑, 其中六枚反射镜和光阑之间的位置关系为: 从掩模开始沿光路方向依 次为第一反射镜 Ml、 光阑、 第二反射镜 M2、 第三反射镜 M3、 第四反射镜 M4、 第五反射镜 M5以及第六反射镜 M6, 且光阑放置于第二反射镜 M2上;
步骤 103、确定物方视场高度与掩模到第一反射镜 Ml距离的比例参数 , 第二反射镜 M2到第一反射镜 Ml距离与掩模到第一反射镜 Ml距离的比例参数 ^'02,第一反射镜 Ml与第二反射镜 M2出射的光线不发生遮挡的空间 d PEl, 硅片到第六反射镜 M6 的距萬 WDI, 硅片到第六反射镜 M6距离 与第五反射 镜 M5到第六反射镜 M6间距的比 rai¾3 , 第六反射镜 M6与第五反射镜 M5的入 射光线不发生遮挡的空间 ^4PE6 , 第六反射镜 M6 出射的光线与第五反射镜 M5不发生遮拦的空间 CLEAPE5;
步骤 104、 设定掩模到第一反射镜 Ml 的距离为 -/,, 则 |-/,| = :KaB/ 0l; 设 定第一反射镜 Ml到第二反射镜 M2的距离 -d、 , 则卜 I = YOB/radio, - radio,;
步骤 105、 设定第一反射镜 Ml 的半径为 则
I arctan(/z,, / (-^ + z„)) CA、
r、 = 、 I tan( ^ ―) 其中, /^为主光线 RAY1与第一反射镜 Ml 交点的高度, ^为第一反射镜 Ml上 主光线 RAY1入射点与第一反射镜 Ml顶点的轴向距离;
步骤 106、 设定第二反射镜 M2的半径为 r2 , 则 r2
Figure imgf000028_0001
其中, ί/。2为入射至第一反射镜 Ml上的上光线 RAY2与光轴的夹角, /2。2为 上光线 RAY2 与第二反射镜 M2 交点的高度, /^为下光线 RAY3 与第一反射镜 Ml 交点的高度;
步骤 107、 设定第五反射镜 M5 到第六反射镜 M6 之间的间距为 , 则 = WDI · radio ;
步骤 108、 在光路中设置虚拟面 Dl, 虚拟面 D1 的空间位置与第五反射镜
M5的空间位置相同, 设定入射至第六反射镜 M6上的主光线 RAY1 与光轴 OA 平行, 进一步设定第六反射镜 M6的半径为 r6, 则
Figure imgf000028_0002
其中, /^为下光线 RAY3与第六反射镜 M6交点的高度, /^为下光线 RAY3 与虛拟面 D1 交点的高度, ¾为第六反射镜 M6上下光线 RAY3入射点与第六反 射镜 M6顶点的轴向距离, ί/ 6为第六反射镜 M6 出射下光线 RAY3与光轴的夹 角;
步骤 109、 设定第五反射镜的半径为 r5, 则
Figure imgf000028_0003
其中, /^为下光线 RAY3与第五反射镜 M5交点的高度, / ^为下光线 RAY3 与第六反射镜 M6交点的高度, 为第五反射镜 M5出射下光线 RAY3与光轴的 夹角, ^为第六反射镜 M6处上光线 RAY2入射点与第六反射镜 M6顶点的轴向 距离, ί/ 5为第五反射镜 M5出射下光线 RAY3与光轴的夹角; 步骤 110、 选取第三反射镜 M3的半径 r3 , 根据物象共轭关系、 放大倍率关 系、 匹兹万和条件以及光瞳共轭关系, 并利用上述确定的第一反射镜 Ml、 第二 反射镜 M2、 第五反射镜 M5以及第六反射镜 M6的半径以及相互之间的距离, 利用近轴迭代算法获取第四反射镜 M4的半径 r4、 第三反射镜 M3与第四反射镜 M4的间距 、 第三反射镜 Μ3与第二反射镜之间的距离 即第三反射镜 Μ3的 物距 /3、 以及第四反射镜 Μ4和第五反射镜之间的距离 即第四反射镜 Μ4的像 距 /。
步骤 111、 根据上述步骤获取的 6枚反射镜的半径以及相应的位置关系, 极 紫外光刻投影物镜。
2、 根据权利要求 1所述极紫外光刻投影物镜设计方法, 其特征在于, 将六 枚反射投影物镜分为三个镜组, 第一反射镜组 G1 包括第一反射镜 Ml和第二反 射镜 M2 ; 第二反射镜组 G2包括第三反射镜 M3和第四反射镜 M4 ; 第三反射镜 组 G3包括第五反射镜 M5和第六反射镜 M6 ,所述选取第三反射镜 M3的半径 r3 的过程为: 将第二镜组 G2作为独立的光学系统, 将 G2 系统的近轴放大倍率 β = Μ、 第二镜组 G2的近轴入瞳距 e"p2等于 G1的出瞳距离 ENP\即 enPl = ENP\、 第二镜组 G2 的出瞳距 exp2等于 G3 的入瞳距离 EXP2即 exp2 = EXP3 、 \ 500mm > (-l3 - enp2 ) > 0以及 0 > > 1500ww作为约束条件, 根据物象共轭关系、 放 大倍率关系、 匹兹万和条件以及光瞳共轭关系, 确定 r3的范围, 从获取的范围中 选取一值作为第三反射镜 M3的半径。
3、 根据权利要求 2所述极紫外光刻投影物镜设计方法, 其特征在于, 所述 步骤 108的具体过程为:
步骤 201、 选取第三反射镜 M3 的半径 r3, 设定误差因子 和 ft, 并令 β (\) = Μ , 令 ex 2 (1) = EXPl, 设定循环次数 A = 1; 步骤 202、 利用 β !ή、 exp2 (k)以及所选取的 r3, 根据物象共轭关系、 放大倍 率关系、匹兹万和条件以及光瞳共轭关系,求出 G2系统的结构参数 /3(A)、 /4'( )以及 r4(4) ;
步骤 203、 r3 d,(k) , l,(k) s 以及 r4(A)输入到光学设计软件 CODEV 中, 获取第二反射镜组 G2的实际放大倍率 M 以及实际出瞳距离 EXP1 (k); 步骤 204、 判断
Figure imgf000030_0001
是否成立, 若是则结束 优化, 将此时的 r3、 d3( ")、 l3(k), 以及 r4( 作为第二反射镜组 G2 的结构 参数, 若否, 则进入步骤 205;
步骤 205、 ^ {k + \) = (k)-[MIM(k) , exp2 (k + \) = exp2 (k) - [EXP\ I EXP2(k)J , 其中 σ≤1 , 令 k加 1 , 返回步骤 202
4、 根据权利要求 3所述极紫外光刻投影物镜设计方法, 其特征在于, 所述 σ为 1/4或 1/2或 1。
PCT/CN2012/000254 2011-12-07 2012-02-28 一种极紫外光刻投影物镜设计方法 WO2013082851A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/363,334 US9323158B2 (en) 2011-12-07 2012-02-28 Method of extreme ultraviolet lithography projection objective

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011104049297A CN102402135B (zh) 2011-12-07 2011-12-07 一种极紫外光刻投影物镜设计方法
CN201110404929.7 2011-12-07

Publications (1)

Publication Number Publication Date
WO2013082851A1 true WO2013082851A1 (zh) 2013-06-13

Family

ID=45884478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000254 WO2013082851A1 (zh) 2011-12-07 2012-02-28 一种极紫外光刻投影物镜设计方法

Country Status (3)

Country Link
US (1) US9323158B2 (zh)
CN (1) CN102402135B (zh)
WO (1) WO2013082851A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629082B (zh) * 2012-04-28 2013-11-06 北京理工大学 一种极紫外光刻复眼照明系统的设计方法
CN102768473B (zh) * 2012-07-13 2014-05-07 北京理工大学 一种极紫外光刻投影物镜的优化设计方法
CN103488061B (zh) * 2013-10-09 2015-01-21 北京理工大学 极紫外光刻机中匹配多个物镜的照明系统调整与设计方法
KR102281960B1 (ko) * 2014-01-31 2021-07-26 미츠비시 가스 가가쿠 가부시키가이샤 (메트)아크릴레이트 화합물, (메트)아크릴 공중합체 및 그것을 함유하는 감광성 수지 조성물
CN105652439B (zh) * 2016-03-25 2017-12-22 北京理工大学 一种组合放大倍率的成像物镜系统设计方法
CN110703564B (zh) * 2019-10-10 2021-01-05 中国科学院长春光学精密机械与物理研究所 一种光学系统薄膜分析方法、设备及存储介质
CN112286010B (zh) * 2020-10-23 2021-07-27 北京理工大学 超高数值孔径组合变倍率极紫外光刻物镜及优化方法
CN114217512B (zh) * 2022-01-07 2022-11-29 北京理工大学 极紫外光刻投影曝光光学系统
CN114815202B (zh) * 2022-04-11 2023-05-05 北京理工大学 一种大相对孔径离轴六反非轴向变焦成像光学系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071240A (en) * 1989-09-14 1991-12-10 Nikon Corporation Reflecting optical imaging apparatus using spherical reflectors and producing an intermediate image
US5815310A (en) * 1995-12-12 1998-09-29 Svg Lithography Systems, Inc. High numerical aperture ring field optical reduction system
US7224441B2 (en) * 2005-03-01 2007-05-29 Canon Kabushiki Kaisha Projection optical system, exposure apparatus, and device manufacturing method
CN101226272A (zh) * 2007-01-17 2008-07-23 卡尔蔡司Smt股份有限公司 成像光学系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240158B1 (en) * 1998-02-17 2001-05-29 Nikon Corporation X-ray projection exposure apparatus with a position detection optical system
JP2003015040A (ja) * 2001-07-04 2003-01-15 Nikon Corp 投影光学系および該投影光学系を備えた露光装置
CN1466001A (zh) * 2002-06-24 2004-01-07 中国科学院光电技术研究所 自适应全反射极紫外投影光刻物镜
JP3938040B2 (ja) * 2002-12-27 2007-06-27 キヤノン株式会社 反射型投影光学系、露光装置及びデバイス製造方法
JP2005189247A (ja) * 2003-12-24 2005-07-14 Nikon Corp 投影光学系および該投影光学系を備えた露光装置
DE102005042005A1 (de) * 2004-12-23 2006-07-06 Carl Zeiss Smt Ag Hochaperturiges Objektiv mit obskurierter Pupille
KR100962911B1 (ko) * 2005-09-13 2010-06-10 칼 짜이스 에스엠테 아게 마이크로리소그라피 투영 광학 시스템, 디바이스 제작 방법 및 광학 표면을 설계하기 위한 방법
DE102006014380A1 (de) * 2006-03-27 2007-10-11 Carl Zeiss Smt Ag Projektionsobjektiv und Projektionsbelichtungsanlage mit negativer Schnittweite der Eintrittspupille
EP1930771A1 (en) * 2006-12-04 2008-06-11 Carl Zeiss SMT AG Projection objectives having mirror elements with reflective coatings
CN101802717B (zh) * 2007-09-21 2014-01-29 卡尔蔡司Smt有限责任公司 用于微光刻的具有遮挡光瞳的投射物镜
EP2541324B1 (en) * 2008-03-20 2016-04-13 Carl Zeiss SMT GmbH Optical system
DE102009047179B8 (de) * 2009-11-26 2016-08-18 Carl Zeiss Smt Gmbh Projektionsobjektiv

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071240A (en) * 1989-09-14 1991-12-10 Nikon Corporation Reflecting optical imaging apparatus using spherical reflectors and producing an intermediate image
US5815310A (en) * 1995-12-12 1998-09-29 Svg Lithography Systems, Inc. High numerical aperture ring field optical reduction system
US7224441B2 (en) * 2005-03-01 2007-05-29 Canon Kabushiki Kaisha Projection optical system, exposure apparatus, and device manufacturing method
CN101226272A (zh) * 2007-01-17 2008-07-23 卡尔蔡司Smt股份有限公司 成像光学系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IU, FEI ET AL.: "Design of High Numerical Aperture Projection Objective for Industrial Extreme Ultraviolet", LITHOGRAPHY ACTA OPTICA SINICA, vol. 31, no. 2, February 2011 (2011-02-01), pages 0222003-1 - 0222003-6 *

Also Published As

Publication number Publication date
US9323158B2 (en) 2016-04-26
CN102402135A (zh) 2012-04-04
US20140368805A1 (en) 2014-12-18
CN102402135B (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
WO2013082851A1 (zh) 一种极紫外光刻投影物镜设计方法
CN111512188B (zh) 用于投射光刻系统的光瞳分面反射镜、光学系统和照明光学系统
JP2005258457A (ja) リソグラフィ装置、デバイス製造方法、およびそれにより製造されたデバイス
CN102640057B (zh) 包含偏转镜的折反射投射物镜以及投射曝光方法
US8310752B2 (en) Method of manufacturing a projection objective and projection objective
TWI314673B (en) Imaging system, in particular for a microlithographic projection exposure apparatus
CN102662307B (zh) 一种高分辨率投影光学系统
JP2006147809A (ja) 露光装置の投影光学系、露光装置およびデバイスの製造方法
JP5959021B2 (ja) 投影対物器械を製造する方法及びこの方法によって製造される投影対物器械
CN102768473B (zh) 一种极紫外光刻投影物镜的优化设计方法
US10976669B2 (en) Reflective image-forming optical system, exposure apparatus, and device manufacturing method
CN101221280B (zh) 全反射投影光学系统
KR20150064062A (ko) 마이크로리소그래피 장치의 작동 방법
CN102681357B (zh) 一种极紫外光刻投影物镜设计方法
CN114217512B (zh) 极紫外光刻投影曝光光学系统
CN112859543B (zh) 一种折反式深紫外光刻物镜系统设计方法
CN102033299A (zh) 折反射投射物镜
JP5567098B2 (ja) 瞳補正を有する反射屈折投影対物系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855507

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14363334

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855507

Country of ref document: EP

Kind code of ref document: A1