WO2013082802A1 - 液压叉车自动控制系统 - Google Patents

液压叉车自动控制系统 Download PDF

Info

Publication number
WO2013082802A1
WO2013082802A1 PCT/CN2011/083748 CN2011083748W WO2013082802A1 WO 2013082802 A1 WO2013082802 A1 WO 2013082802A1 CN 2011083748 W CN2011083748 W CN 2011083748W WO 2013082802 A1 WO2013082802 A1 WO 2013082802A1
Authority
WO
WIPO (PCT)
Prior art keywords
throttle
forklift
speed
engine
control system
Prior art date
Application number
PCT/CN2011/083748
Other languages
English (en)
French (fr)
Inventor
张永升
高振昆
崔永春
王立平
Original Assignee
Zhang Yongsheng
Gao Zhenkun
Cui Yongchun
Wang Liping
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhang Yongsheng, Gao Zhenkun, Cui Yongchun, Wang Liping filed Critical Zhang Yongsheng
Priority to CN201180075308.7A priority Critical patent/CN104271491B/zh
Priority to PCT/CN2011/083748 priority patent/WO2013082802A1/zh
Publication of WO2013082802A1 publication Critical patent/WO2013082802A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/07568Steering arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • B66F17/003Safety devices, e.g. for limiting or indicating lifting force for fork-lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/106Detection of demand or actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position

Definitions

  • the invention relates to an automatic control system, in particular to an automatic hydraulic forklift control system, which belongs to the field of automatic control of hydraulic forklifts.
  • forklifts in the field of logistics operations is very common. It is a wheeled handling vehicle that can handle loading, unloading, stacking and short-distance transportation of bulk goods. It belongs to material handling machinery. It is widely used in stations, ports, airports, factories, warehouses, etc. It is an efficient equipment for mechanized loading, unloading, stacking and short-distance transportation.
  • the basic operation functions of the forklift are divided into horizontal handling, stacking/removing, loading/unloading, and picking. The superior performance of a high-quality forklift is often reflected in high efficiency, low cost, high reliability, ergonomic design and convenient service.
  • the high efficiency of the forklift does not only mean high speed (driving, lifting, descent speed), it also means that the operator takes a short time to complete a work cycle and can maintain this efficiency throughout the working time. Many factors can contribute to the efficiency of the forklift, including:
  • the multi-way valve operation on the domestic forklift cannot be linked with the engine, which results in the need to operate the engine throttle through the accelerator pedal simultaneously when operating the multi-way valve with the operating handle, so as to ensure that the engine can provide sufficient power to ensure the fork operation.
  • Strength and speed therefore, it is not possible to control the fork lift by the control handle, but it must be
  • the accelerator pedal must be depressed at the same time, resulting in lower efficiency of the whole vehicle.
  • the driver usually when lifting the cargo, the driver not only needs to control the operating handle by hand, but also needs to first step the accelerator pedal with the foot to increase the engine speed and power, thereby enabling the fork lifting and tilting mechanism to obtain greater hydraulic energy. This kind of operation requires hand and foot coordination, which increases the complexity of the operation.
  • the conventional forklift When the conventional forklift is running, it is impossible to detect the engine's rotating working state and the vehicle's running state, which wastes fuel and is prone to accidents. Specifically, the conventional forklift uses a gearbox or a torque converter, so that the throttle opening is controlled by the operator's pedal depth, and automatic speed control cannot be realized; although the relevant parameters can also be detected, the speed cannot be automatically realized. Control makes parameter detection no practical significance. Most of the working conditions of forklifts are prohibited from running at high speeds, especially when driving at high speeds during cornering, which is prone to safety. However, when designing a forklift, it is not possible to limit the displacement and power of the engine in advance, because the handling, stacking, loading and unloading of the forklift is driven by the engine. Therefore, it is difficult for the conventional forklift to achieve steering safety control.
  • the traditional forklift has no time-delay shutdown function, in which the cable pull mode is adopted, and the driver needs to pull the flame-out cable to turn off the engine. Therefore, after the door lock is closed, the engine throttle reset action cannot be automatically performed, and the shutdown cannot be delayed. The engine cannot be automatically turned off after the door lock is closed.
  • the present invention provides an automatic control system for a hydraulic forklift, comprising: a detecting device adapted to detect a displacement of an operating handle of the hydraulic forklift for controlling the lifting of the fork; And a throttle control device adapted to connect the throttle of the engine in the hydraulic forklift, the throttle control device controlling the throttle opening of the throttle according to the displacement information of the operating handle detected by the detecting device.
  • the detecting device includes a magnetic sensing component mounted on the operating handle, and a Hall sensor; the magnetic sensing component is adapted to sense a displacement of the operating handle and generate a corresponding a magnetic field, the Hall sensor being adapted to detect the magnetic field And generate the corresponding electrical signal.
  • the throttle control device includes a throttle throttle link mounted on an oil supply cable or a pull rod of the engine, a servo system for moving the toggle throttle link, and And controlling the first controller of the servo system.
  • the servo system includes a motor and a speed reducer, and the toggle throttle link is mounted on an output shaft of the speed reducer.
  • the magnetic sensing component comprises a magnetic steel.
  • the automatic control system further includes a steering safety control device adapted to automatically reduce the speed of the forklift when the forklift turns at a high speed.
  • the steering safety control device includes: a rotational speed sensor mounted on the engine and configured to detect a rotational speed of the engine; a steering angle sensor for detecting an angle of steering of the forklift body; and an accelerator opening displacement a sensor for detecting a displacement of a throttle opening stroke; and a second controller for determining an engine speed detected by the rotation speed sensor, an angle of a body steering detected by the steering angle sensor, and a throttle opening displacement sensor
  • the detected throttle opening displacement determines whether the forklift is in a high-speed turning state; when it is determined that the forklift is in a high-speed turning state, the second controller sends a throttle control signal to the throttle control device to reduce the throttle opening.
  • the forklift is in a high-speed corner.
  • the steering safety control device further includes an automatic flameout switch connected to the flameout handle on the engine; when the forklift detects a high speed turn, the automatic flameout switch pulls the flameout handle to leave the oil supply position.
  • the automatic control system further includes an automatic flameout switch connected to the flameout handle on the engine; wherein, when it is detected that the door lock of the forklift is closed, The second controller issues a flameout control command to control the automatic flameout switch to pull the flameout handle away from the oil supply position.
  • the second controller automatically cancels the flameout control command after detecting that the engine has stopped.
  • Figure 1 is a schematic view of the structure of a typical hydraulic forklift
  • Figure 2 is a block diagram showing the structure of a first embodiment of an automatic control system according to the present invention
  • Figure 3 is a circuit diagram of the first embodiment
  • Figure 4 is a block diagram showing the structure of a second embodiment of an automatic control system in accordance with the present invention.
  • Figures 5A-5D are circuit diagrams of an embodiment of an automatic control system in accordance with the present invention. detailed description
  • Figure 1 shows the structure of a typical hydraulic forklift.
  • the forklift includes: an overhead guard 1, a hydraulic transmission member 2, a drive member (including an engine), a wheel 4, a frame 5, a door frame 6, a rear view mirror 7, a fork frame 8, an accelerator pedal 9, and an operating handle 10. , fork 11 and so on.
  • the driver manipulates the operating handle 10 in the cab to control the fork 11 to move up and down to move the cargo.
  • the drive unit 3 drives the wheel 4 through the hydraulic transmission unit 2 and provides power for driving the fork 11.
  • Fig. 2 is a block diagram showing the structure of a first embodiment of the present invention for hydraulic forklift throttle control.
  • This embodiment provides a hydraulic forklift throttle control system that enables forklift lifting only by manipulating the handle.
  • the system includes a detection device and a throttle control device.
  • the detecting device comprises a magnetic sensitive component mounted on the operating handle and a Hall displacement sensor mounted on the base of the joystick, and the Hall effect is used to realize accurate conversion of the handle displacement information and the electrical signal, and the detecting device is low in cost.
  • the magnetic sensitive component can be mounted on a fixed bracket of the operating handle, and the Hall sensor can be fixed on the movable component of the operating handle, and the amount of operation of the handle is determined by the relative displacement between the fixed bracket and the movable component.
  • a capacitor resistance filter circuit can be connected in series between the sub-signal amplifying circuits for eliminating unstable signal interference.
  • the operating handle is connected to the multi-way valve through two connecting rods (ie, the front and rear tilting piston connecting rod and the lifting piston connecting rod), and the multi-way valve controls the tilting cylinder joint and the oil draining pipe, the lifting cylinder joint and the oil pipe, Control the front and rear tilt and lift of the fork.
  • Fig. 3 is a circuit diagram of the first embodiment.
  • the driver moves the operating handle 10 for manipulating the fork 11, which movement causes the magnetic sensitive component to produce a varying magnetic field.
  • a plurality of magnetic steels 12 can be used for the magnetically sensitive component.
  • the driver can shake the operating handle 10 first.
  • the movement of the handle 10 causes the magnetic steel 12 to generate a cutting magnetic field, and the Hall displacement sensor 13 detects the varying magnetic field generated by the magnetic sensitive component to generate a corresponding electrical signal.
  • the Hall displacement sensor 13 can also be connected in series with an error compensation circuit for compensating for the displacement detection error.
  • the first controller receives the electric signal output from the Hall displacement sensor 13, and issues an operation command for controlling the throttle opening of the throttle to the servo system of the engine throttle link based on the movement information of the handle contained therein.
  • the positions of the magnetic steel and the Hall sensor can be interchanged, and the effect is the same. As long as it is ensured that there is no interference between the magnetic components during installation, the smaller the gap distance between the magnetic steel and the Hall sensor, the better. Both the magnetic steel and the Hall sensor are flush mounted, with a part size of approximately 2-3 mm2. Simply open a small groove in the fixed position and glue the magnet and Hall sensor in the groove.
  • the number of magnetic steel and Hall sensors can be 2 magnets and 2 Hall sensors; there can be more, such as 4 magnets and 4 Hall sensors, 6 magnets and 6 Hall sensors.
  • the effect of sensing the stereoscopic displacement can be achieved.
  • magnetic sensors Compared with photoelectric sensors, magnetic sensors have the advantages of lower cost and simpler filter circuit. The disadvantage is that the sensitivity is easily affected by other magnetic components in the vehicle body.
  • An electronic amplification control component is disposed between the first controller and the servo system.
  • the electronic amplifying control component can be installed in a central control box below the instrument display screen on the right side of the steering wheel in the cab, and has a signal amplifying circuit 14 and a relay switch 15 therein.
  • the electronic amplifying control component passes the signal according to the command signal of the operating handle moving left and right and left and right.
  • the amplifying circuit is supplied to the servo system to provide power for the driving action of the servo system.
  • the body of the servo system includes a stepper motor and a speed reducer 16.
  • the relay switch 15 After receiving the signal amplified by the signal amplifying circuit 14, the relay switch 15 turns on the power of the stepping motor, drives the servo mechanism, the stepping motor drives the throttle cable 17 through the speed reducer, and the throttle cable 17 transmits the throttle link of the engine throttle. 18.
  • the movement of the throttle link 18 is formed.
  • the first controller When the driver controls the fork lift by operating the handle 10, the first controller generates a control signal to increase the throttle opening, causing the engine 19 to accelerate. This enables synchronized electronic control of the throttle opening and the operating handle, replacing the manual movement of the conventional forklift that requires the foot pedal.
  • the beneficial effects of this embodiment are: by installing a magnetic sensing component on the joystick and mounting a Hall displacement sensor on the handle base, converting the displacement information of the handle into an electrical signal, and then comprising an electronic amplification control component and a servo mechanism.
  • the circuit controls the engine, and it is not necessary to step on the accelerator pedal.
  • the joystick can automatically control the acceleration and deceleration of the engine according to the operation range of the multi-way valve associated with the operating handle, and ensure the normal operation of the hydraulic system. Control the purpose of the fork lift.
  • the control system according to this embodiment is capable of collecting the operating state of the multi-way valve, and automatically controls the engine power through the engine throttle control unit, eliminating the need to step on the accelerator pedal to accelerate the engine.
  • control system of the embodiment of the present invention it is possible to accelerate only the engine when the fork is operated, and the swash plate movement does not occur, so that the forklift does not advance. Therefore, the control system of this embodiment can be operated either alone or in conjunction with the forklift travel control system.
  • the first controller can issue a lock control signal, by controlling the throttle opening of the engine, so that only the engine is decelerated and no acceleration is allowed, even if the driver steps on the accelerator pedal, the acceleration will not be accelerated. Unless the fork is stopped.
  • Fig. 4 is a block diagram showing the construction of a second embodiment of the steering safety control for a hydraulic forklift of the present invention.
  • This embodiment provides a brake control device capable of detecting the running condition of the forklift, judging whether the forklift is in a high-speed turning state, and issuing an instruction according to the judgment conclusion, prohibiting the forklift from turning at a high speed.
  • the engine speed of the forklift and the steering angle of the forklift are detected, Considering the throttle opening degree to judge whether it is in the high-speed turning state, when the throttle opening degree is large, the rotation speed is high, and the steering angle is large, the throttle lever is appropriately adjusted by the controller, so that the traveling speed of the forklift is lowered, and the vehicle body is overturned.
  • the forklift steering safety control device of the present invention includes a steering angle sensor 21, an engine speed sensor 22, a throttle opening displacement sensor 23, and a second controller 24.
  • the engine speed sensor 22 is installed near the extension shaft of the engine main shaft, and the prior art photoelectric-air type speed counting sensor can be used for detecting the engine speed;
  • the steering angle sensor 21 can be installed in two positions, one of which is installed at The steering axle of the forklift is used to detect the steering angle of the steering axle and the body; the other is used to detect the rotation angle of the steering wheel on the steering wheel. The design idea of both is to obtain the angle value of the steering of the forklift body.
  • the throttle opening displacement sensor 23 is mounted on the engine throttle link and is used to detect the displacement of the throttle opening stroke. The detected values of the sensors can be converted by the analog-to-digital conversion circuit and sent to the second controller 24, and the second controller 24 controls the throttle opening according to the detected values.
  • the second controller 24 performs the following control according to the detected value of the above sensor:
  • the accelerator opening degree is considered to be small, and the accelerator opening degree is determined to be a hill climbing, the throttle The large degree of opening is judged as a high-speed turn; when it is determined that the vehicle is turning at a high speed, the second controller 24 issues a control signal for controlling the electromagnetic switch, and the throttle switch is moved by the electromagnetic switch to reduce the throttle opening, thereby reducing the traveling speed of the forklift.
  • a buzzer can be used to sound a beep that indicates that the forklift is in a high-speed corner.
  • the sensor When the vehicle speed is adjusted, the sensor continues to detect each detection value.
  • the second controller 24 sends a control signal to control the electromagnetic switch to reset, thereby driving the throttle Pull the lever to restore the throttle to the normal opening.
  • the steering angle sensor 21 and the displacement sensor 23 feed back the detected steering angle and the accelerator opening displacement to the second controller 24 for analysis, and the second controller 24 first determines the state of the forklift, and then performs the determination according to the determination result.
  • Whether to automatically decelerate If it is a high-speed turn, perform automatic deceleration on the engine throttle (both throttle and swashplate); if it is climbing, only limit the swashplate operation, and do not automatically decelerate the engine throttle (do not drop) Throttle, only minus the swashplate).
  • the basis for determining whether the forklift is turning at a high speed is to compare the information detected by the steering angle sensor and the displacement sensor with predetermined threshold data stored in the second controller 24. If the throttle opening is large and the rotation speed is high, it is a high-speed turn; if the throttle is open If the degree is high and the rotation speed is low, it belongs to the climbing course.
  • the forklift steering safety control device of the embodiment can realize automatic detection of the engine speed of the forklift, and can convert the measurement result into a digital mode and display it on the instrument panel and store it in the microcomputer; the control device can also detect the above sensor. Comprehensive analysis of information, proactively identify the dangerous situation of high-speed cornering, and cooperate with the mechanical actuator to achieve safe and automatic control of the forklift by deceleration or braking.
  • the engine speed sensor 22 can also be used to detect the engine speed, and the speed data is transmitted to the second controller 24 to monitor the engine speed and the driver's operation. Once an abnormal situation occurs, the second controller 23 The corresponding control signal can be issued, and the electronic amplification control component and the corresponding actuator connected thereto can be used to control the engine accordingly to prevent misoperation.
  • the second controller 24 A control signal can be issued to control the throttle opening to stop the acceleration of the engine, thereby gradually reducing the speed of the vehicle and ensuring the safety of the operation.
  • the above-described forklift steering safety control device can also be provided with an electromagnetic flameout switch.
  • the electromagnetic flameout switch is controlled by the second controller 24 and is coupled to a flameout shank on the engine.
  • a flameout signal may be issued to directly control the electromagnetic flameout switch to pull the flameout handle to leave
  • the oil supply position can realize the control of automatic flameout when the forklift turns at a high speed, avoiding the occurrence of danger and ensuring the safety of the forklift.
  • the second controller 24 can also be connected to an electric door lock for starting or shutting down the entire vehicle.
  • the second controller 24 actively sends a flameout control signal to the electromagnetic flameout switch, so that the engine fuel supply system stops working, the engine is stopped, and the shutdown purpose is achieved; meanwhile, the protection flameout system is not damaged. And the next start can be performed normally, and after the engine speed sensor detects that the engine has stopped, the flameout control command is automatically released.
  • the first controller and the second controller may be implemented by two independent controllers, or may be implemented by a single controller.
  • the first and second controllers can be programmed with a microcontroller or CPU chip.
  • a microcontroller or CPU chip For example, an AD0-7 series circuit can be used, and the chip substrate is an ATMEGA32 chip (U2), which is an 8-bit AVR microcontroller with 32KB of in-system programmable Flash, as shown in FIG.
  • RISC architecture high performance and low power 8-bit AVR® processor non-volatile program and data memory and "TAG interface, 8 10-bit ADC, 32 programmable I/O ports (PAO- 7, PBO-7, PCO-7, PD0-7) and programmable serial USART, etc., can realize the first and second controllers.
  • Pins PC0-7 of U2 chip are power self-locking (high level), forward signal (high level), back signal (high level), flameout output (high level), and buzzer output (high level).
  • PBO (TO) pin is the engine speed pulse input pin
  • PB1 pin is the throttle motor steering control (high-level forward, low-level reverse) signal pin
  • PB2 pin is the throttle motor pulse output pin
  • PB4 pin is the forklift electric door lock signal (high level) ) pin.
  • 5B shows a circuit for driving and controlling a servo system, which is used as an electronic amplification control component, which includes a two-phase stepping motor driving chip U3 and its peripheral circuits, and the chip integrates internal subdivision, current regulation, CMOS power amplifier and other circuits, with simple peripheral circuits, can achieve high-performance, multi-subdivision, high-current stepper motor drive
  • the road has a maximum of 128 subdivision decoding characteristics, and low vibration and small noise performance, which can achieve better low cost and high speed applications.
  • the pin CW/CCW of chip U3 is the forward/reverse signal input terminal, and the pins OUT1A-2A and OUT1B-2B are the A phase and B phase OUT output terminals, respectively.
  • the chip U3 is connected to the PB1 and PB2 pins of the chip U2 through a peripheral circuit to transmit the throttle motor steering control signal and the throttle motor pulse output signal.
  • Figure 5C shows the signal output circuit associated with controller chip U2 shown in Figure 5A.
  • Pins AD0-4 shown in Figures 5A and 5C output the forward signal, the back signal, the fork multi-way valve lift signal, and the fork multi-way valve tilt signal, respectively.
  • Fig. 5C also shows the related circuits of the power supply self-locking, the flameout signal output, the forward signal output, the reverse signal output, and the buzzer signal output.
  • the controller chip U2 outputs corresponding control signals through these circuits to control the power supply self-locking of the forklift control system, the output flameout control signal, the output of signals for controlling the forward and reverse of the forklift, and the buzzing prompt when an abnormal condition is detected. .
  • the PC3 pin is the input control point and is connected to the corresponding pin of the chip U2
  • the OFF pin is the control point output
  • the transistors Q4 and Q5 output the signal for controlling the flameout relay through the OFF pin, R218 And R219 pulls the circuit to a low potential.
  • Figure 5D shows the signal input circuit associated with controller chip U2 shown in Figure 5A, including associated circuitry for engine speed sensor input, engine speed input, brake signal input, and flameout signal input. These circuits are used to transfer the detected values of the corresponding sensors to the controller chip U2 for processing.
  • the label “1" on the right side of the figure is the input end, and the label “4" is the output end, which outputs the pulse signal to the PBO (TO) pin of the chip U2 of FIG. 5A;
  • the chip U201 It is a shaping circuit, and the resistor R211 acts as a current limiting device to prevent the circuit U201 from being burned out; the circuit changes the width of the input signal of the engine speed sensor, and the amplitude is relatively stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

一种用于液压叉车的自动控制系统,包括:检测装置,适于检测所述液压叉车中用于控制货叉升降的操作手柄的位移;油门控制装置,适于连接所述液压叉车中的发动机的油门,所述油门控制装置根据所述检测装置所检测的操作手柄的位移信息来控制所述油门的油门开度。利用该控制系统,仅通过操纵手柄就能够控制货叉升降,无需脚踩油门。该控制系统还包括转向安全控制装置,用于在叉车高速转弯时使叉车减速,以确保叉车安全。

Description

液压叉车自动控制系统
技术领域:
本发明涉及一种自动控制系统, 具体的说涉及一种液压叉车自动 控制系统, 属于液压叉车自动控制领域。 背景技术:
叉车在物流作业领域的运用非常普遍, 是一种能对成件货物进行 装卸、 堆垛和短距离运输作业的轮式搬运车辆, 属于物料搬运机械。 它广泛应用于车站、 港口、 机场、 工厂、 仓库等场所, 是机械化装卸、 堆垛和短距离运输的高效设备。 叉车的基本作业功能分为水平搬运、 堆垛 /取货、 装货 /卸货、 拣选。 一台高质量的叉车其优越的性能往往 体现在高效率、 低成本、 高可靠性、 人机工效设计好以及服务便利等 诸多方面。 叉车的高效率并不只意味着高速度 (行驶、 提升、 下降速 度), 它还意味着操作者完成一个工作循环所需的时间短, 并且能在 整个工作时间始终保持这种效率。 许多因素都可以促使叉车效率提 高, 包括:
①速度的高低, 如行驶速度、 提升和下降速度等; ② 人机工程 设计的应用, 减少操作动作的次数; ③ 操作的精确性; ④ 人机工程 设计的应用, 最大限度地减少疲劳; ⑤ 良好的视野。
目前国内生产的叉车存在的以下问题:
目前国内的叉车上的多路阀操作不能与发动机实现联动, 从而导 致在以操作手柄操作多路阀时, 需要同时通过油门踏板操作发动机油 门, 以保证发动机能够提供充足的动力来确保货叉运行的力量与速 度; 因此不能通过控制手柄来控制货叉升降, 而是在操纵手柄时还必 须同时踩下油门踏板, 导致整车操作效率较低。 另外, 通常在起升货 物时, 驾驶员不仅需要用手控制操作手柄, 还需要先用脚稍踏油门踏 板, 提高发动机的转速和功率, 由此使货叉升降倾斜机构获得更大的 液压能; 这样的操作需要手脚配合, 增加了操作复杂程度。
传统的叉车在行驶时, 无法检测发动机旋转工作状态和车辆行驶 状态, 既浪费燃油, 又容易发生事故。 具体而言, 传统的叉车因为使 用变速箱或液力变矩器, 致使油门开度受控于操作者的脚踏深度, 无 法实现自动转速控制; 虽然也可以检测相关参数, 但是不能实现转速 自动控制, 就使得参数检测已经没有实际意义。 叉车的工作环境大多 都禁止高速行驶, 尤其是在转弯时如果高速行驶, 很容易发生安全事 故。 但是, 在设计叉车时又不能提前限制发动机的排量和功率, 因为 叉车作业时的搬运、 堆垛、 装取货物等动作, 都是由发动机提供驱动 力。 因此, 传统的叉车难以实现转向安全控制。
传统的叉车没有延时关机功能, 其中采用拉线停机方式, 需要由 驾驶员拉动熄火拉线, 发动机才会熄火; 因此在电门锁关闭后, 无法 自动执行发动机油门复位动作, 不能延时关机, 即不能在电门锁关闭 后实现发动机自动熄火。 发明内容:
为解决现有技术中存在的上述问题, 本发明提供一种用于液压叉 车的自动控制系统, 包括: 检测装置, 适于检测所述液压叉车中用于 控制货叉升降的操作手柄的位移; 以及油门控制装置, 适于连接所述 液压叉车中的发动机的油门, 所述油门控制装置根据所述检测装置所 检测的操作手柄的位移信息来控制所述油门的油门开度。
根据本发明的实施例, 其中, 所述检测装置包括安装在所述操作 手柄上的磁敏组件、 以及霍尔传感器; 所述磁敏组件适于感测所述操 作手柄的位移并产生相应的磁场, 所述霍尔传感器适于检测所述磁场 并产生相应的电信号。
根据本发明的实施例, 其中, 所述油门控制装置包括安装在所述 发动机的供油拉线或拉杆上的拨动油门连杆、 用于移动所述拨动油门 连杆的伺服系统、 以及用于控制所述伺服系统的第一控制器。
根据本发明的实施例, 其中, 所述伺服系统包括电机和减速器, 所述拨动油门连杆安装在减速器的输出轴上。
根据本发明的实施例, 其中, 所述磁敏组件包括磁钢。
根据本发明的实施例, 所述自动控制系统还包括转向安全控制装 置, 所述转向安全控制装置适于在叉车高速转弯时, 自动降低叉车行 驶速度。
根据本发明的实施例,所述转向安全控制装置包括:转速传感器, 安装在所述发动机上并用于检测所述发动机的转速; 转向角度传感 器, 用于检测叉车车身转向的角度; 油门开度位移传感器, 用于检测 油门开度行程通过的位移; 以及第二控制器, 用于根据所述转速传感 器所检测的发动机转速、 转向角度传感器所检测的车身转向的角度、 以及油门开度位移传感器所检测的油门开度位移, 判断叉车是否为高 速转弯状态; 当判断叉车为高速转弯状态时, 所述第二控制器向所述 油门控制装置发出用于油门控制信号, 以减小油门开度。
根据本发明的实施例, 其中, 当所述转速传感器所检测的发动机 转速、 转向角度传感器所检测的车身转向的角度、 以及油门开度位移 传感器所检测的油门开度位移超出预定阈值时, 判断叉车处于高速转 弯状态。
根据本发明的实施例, 其中, 所述转向安全控制装置还包括与发 动机上的熄火柄连接的自动熄火开关; 当检测到叉车高速转弯时, 所 述自动熄火开关拉动所述熄火柄离开供油位置。
根据本发明的实施例, 所述自动控制系统还包括与发动机上的熄 火柄连接的自动熄火开关; 其中, 当检测到叉车的电门锁关闭时, 所 述第二控制器发出熄火控制指令, 以控制所述自动熄火开关拉动所述 熄火柄离开供油位置。
根据本发明的实施例, 其中, 当检测到所述发动机已经停转后, 所述第二控制器自动解除熄火控制指令。 附图说明
图 1是一种典型的液压叉车的结构示意图
图 2是根据本发明的自动控制系统的第一实施例的结构框图; 图 3是第一实施例的线路示意图;
图 4是根据本发明的自动控制系统的第二实施例的结构框图; 图 5A-5D是根据本发明的自动控制系统的实施例的电路图。 具体实施方式
图 1示出一种典型的液压叉车的结构。 该叉车包括: 护顶架 1、 液压传动部件 2、 驱动部件 (包括发动机) 3、 车轮 4、 车架 5、 门架 6、 后视镜 7、 货叉架 8、 油门踏板 9、 操作手柄 10、 货叉 11等。 驾 驶员在驾驶室里操纵操作手柄 10, 来控制货叉 11做上下左右运动以 搬运货物。 驱动部件 3通过液压传动部件 2来驱动车轮 4, 并提供驱 动货叉 11的动力。
图 2示出本发明的用于液压叉车油门控制的第一实施例的结构框 图。 该实施例提供一种仅通过操纵手柄就能够实现货叉升降的液压叉 车油门控制系统。 该系统包括检测装置和油门控制装置。 检测装置包 括安装在操作手柄上的磁敏组件和安装在操纵手柄底座上的霍尔位 移传感器, 利用霍尔效应实现手柄位移信息与电信号的精确转换, 并 且这种检测装置的成本低廉。 磁敏组件可以装配在操作手柄的固定支 架上, 霍尔传感器可以固定在操作手柄的活动部件上, 通过固定支架 与活动部件之间的相对位移来确定手柄的操作量。 在霍尔传感器和电 子信号放大电路之间可以串接有一个电容电阻滤波电路, 用于消除不稳 定信号干扰。 操作手柄通过两个连杆 (即, 前后倾斜活塞连杆和升降 活塞连杆)连接在多路阀上, 由多路阀来控制倾斜油缸接头及走油管、 举升油缸接头及走油管, 以控制货叉的前后倾斜和升降。
图 3是第一实施例的线路示意图。 在工作时, 驾驶员为操纵货叉 11而移动操作手柄 10, 这种移动将使磁敏组件产生变化的磁场。 磁 敏组件可以采用若干磁钢 12。 当需要升降货叉时, 驾驶员可以先晃动 操作手柄 10, 手柄 10的移动将使磁钢 12产生切割磁场, 霍尔位移传 感器 13检测到磁敏组件产生的变化磁场, 产生相应的电信号。 霍尔 位移传感器 13还可以串接有误差补偿电路, 用于补偿位移检测误差。 第一控制器接收到霍尔位移传感器 13 输出的电信号, 根据其中所包 含的手柄移动信息, 向发动机油门连杆的伺服系统发出控制油门的油 门开度的操作指令。
磁钢和霍尔传感器的位置可以互换, 实现的效果是同样的, 只要 在安装时确保它们中间无导磁件干扰即可, 所以磁钢和霍尔传感器的 间隙距离越小越好。 磁钢和霍尔传感器都是嵌入式安装, 零件大小大 约在 2-3平方毫米, 只需在被固定位置开小凹槽, 把磁钢和霍尔传感 器用胶粘固定在凹槽内。 磁钢和霍尔传感器的数量可以是 2块磁钢和 2个霍尔传感器; 也可以是更多, 如 4块磁钢和 4个霍尔传感器、 6 块磁钢和 6个霍尔传感器等, 从而能够达到感知立体位移的效果。 与 光电式传感器相比, 磁敏组件的优点是成本更低、 滤波电路更简洁; 缺点是灵敏度容易受到车体内其他导磁件影响。
在第一控制器与伺服系统之间设置有电子放大控制组件。 电子放 大控制组件可装在驾驶室内的方向盘右侧的仪表显示屏下方的中央 控制盒中, 内有信号放大电路 14和继电器开关 15, 电子放大控制组 件根据操作手柄前后左右移动的指令信号通过信号放大电路提供给 伺服系统, 为伺服系统的驱动动作提供电能。 伺服系统的主体包括由步进电机和减速器 16。在收到信号放大电 路 14放大处理的信号后, 继电器开关 15接通步进电机的电源, 驱动 伺服机构, 步进电机通过减速器驱动油门拉线 17, 油门拉线 17传动 于发动机油门的油门连杆 18, 形成了油门连杆 18的移动动作。 当驾 驶员通过操作手柄 10来控制货叉升降时, 第一控制器产生控制信号 以加大油门开度, 导致发动机 19加速。 由此可以实现油门开度与操 作手柄的同步电子控制, 取代了传统叉车的需要脚踩油门踏板的人为 动作。
该实施例的有益效果是: 通过在操纵手柄上安装磁敏组件及在手 柄底座上安装霍尔位移传感器, 把手柄的位移信息转化为电信号, 进 而通过由电子放大控制组件和伺服机构组成的电路对发动机进行控 制, 无需脚踩油门踏板, 仅通过操纵手柄就能够根据与操作手柄相关 联的多路阀的操作幅度的需要, 自动控制发动机的加减速, 保证液压 系统的正常操作, 并达到控制货叉升降的目的。 根据该实施例的控制 系统能够采集多路阀的操作状态, 通过发动机油门控制部件, 自动控 制发动机功率, 不需要再通过踩踏油门踏板来使发动机加速。
根据本发明的实施例的控制系统, 可以实现在操作货叉时只让发 动机加速, 不发生斜盘移动, 因此叉车不前进。 所以, 该实施例的控 制系统既可以单独工作, 也可以和叉车行走控制系统同时工作。
另外, 一旦检测到货叉正在工作, 第一控制器可以发出锁定控制 信号, 通过控制发动机的油门开度, 使得只许发动机减速动作, 不许 加速, 即使驾驶员再踩踏油门踏板也不会加速, 除非停止货叉工作。
图 4示出本发明的用于液压叉车转向安全控制的第二实施例的结 构框图。 该实施例提供一种能够检测叉车运行情况, 判断叉车是否处 于高速转弯状态并且根据判断结论发出指令, 禁止叉车高速转弯的制 动控制装置。
根据该实施例, 检测叉车的发动机转速和叉车的转向角度, 通过 综合考虑油门开度判断是否处于高速转弯状态, 当油门开度大、 转速 高、 转向角度大时, 由控制器适当调整油门拉杆, 使得叉车的行驶速 度下降, 避免车体倾覆。
如图 4所示, 本发明所述的叉车转向安全控制装置包括, 转向角 度传感器 21、 发动机转速传感器 22、 油门开度位移传感器 23、 第二 控制器 24。 发动机转速传感器 22安装在发动机主轴延伸轴的附近, 可采用已有技术的光电 -空气式转速计数传感器,用于检测发动机的转 速; 转向角度传感器 21 的安装位置可以有两种, 一种安装在叉车转 向桥的基座上, 用于检测转向桥与车身的转向偏角; 另一种按照在方 向盘上, 用于检测方向盘的旋转角度, 两者的设计思路都是获取叉车 车身转向的角度值。 油门开度位移传感器 23 安装在发动机油门连杆 上, 用于检测油门开度行程通过的位移。 各传感器的检测值可通过模 数转换电路转换后发送给第二控制器 24, 第二控制器 24根据这些检 测值对油门开度进行相应的控制。
上述传感器均能从现有技术中找到相应的实现方式。 为了将这些 传感器安装固定在叉车本体上, 也可以采用多种常规连接固定方式, 在此不再赘述。
第二控制器 24根据上述传感器的检测值进行以下控制: 当转向角度检测值超出预定阈值, 并且转速检测值超出预定阈值 时, 考虑油门开度情况, 油门开度小判断为爬坡行进, 油门开度大判 断为高速转弯; 当判断为高速转弯时, 第二控制器 24发出用于控制 电磁开关的控制信号, 通过电磁开关拨动油门连杆, 减小油门开度, 从而降低叉车行驶速度。 另外还可以采用蜂鸣器, 发出提示叉车已处 于高速转弯状态的蜂鸣声。 当对车速进行调整后, 上述传感器继续检 测各项检测值, 当转向角度检测值和转速检测值低于相应的预定阈值 时, 第二控制器 24发出控制信号以控制电磁开关复位, 进而带动油 门拨杆拉线, 将油门恢复到正常开度。 根据该实施例, 转向角度传感器 21、 位移传感器 23将检测到的 转向角度和油门开度位移反馈给第二控制器 24进行分析, 第二控制 器 24首先判断叉车的状态, 再根据判断结果执行是否自动减速: 如 果是高速转弯,则对发动机油门执行自动减速(既降油门,又减斜盘); 如果是爬坡行进, 则仅限制斜盘操作, 而不对发动机油门执行自动减 速 (不降油门, 只减斜盘)。 判断叉车是否高速转弯的依据是将转向 角度传感器、 位移传感器检测到的信息与第二控制器 24 内储存的预 定阈值数据比较, 如果油门开度大且转速高, 则属于高速转弯; 如果 油门开度大且转速低, 则属于爬坡行进。
利用该实施例的叉车转向安全控制装置可实现叉车发动机转速 的自动检测, 并能将测量结果转换成数字模式显示在仪表台上和存储 进微电脑中; 本控制装置还可以通过对上述传感器所检测信息的综合 分析,主动发现识别高速转弯的危险情况,并且与机械执行机构配合, 从而可通过减速或刹车实现叉车的安全自动控制。
另外, 根据该实施例, 还可以利用发动机转速传感器 22检测发 动机的转速, 将转速数据传输到第二控制器 24, 以监测发动机的转速 和驾驶员的操作, 一旦出现异常情况, 第二控制器 23 可以发出相应 的控制信号, 利用与之相连的电子放大控制组件和相应的执行机构, 对发动机进行相应的控制, 达到防止误操作的目的。 例如, 当检测到 发动机转速高时, 说明叉车为高速行驶时; 如果磁敏组件和霍尔传感 器的输出信号反映驾驶员同时正在利用操作手柄来控制货叉倾斜和 升降, 则第二控制器 24可以发出控制信号来控制油门开度, 以停止 给发动机加速, 从而逐渐降低整车的行驶速度, 确保操作的安全性。
根据本发明的第三实施例, 上述叉车转向安全控制装置还可以设 置电磁熄火开关。 该电磁熄火开关受第二控制器 24 的控制, 并且连 接发动机上的熄火柄。 当第二控制器 24判断叉车处于高速转弯状态 时, 可以发出熄火信号, 以直接控制电磁熄火开关来拉动熄火柄离开 供油位置, 由此可以实现当叉车高速转弯时执行自动熄火的控制, 避 免了危险的发生和确保叉车安全。
另外, 第二控制器 24还可以连接用于启动或关闭整车的电门锁。 当检测到叉车电锁关闭时, 第二控制器 24主动向电磁熄火开关发出 熄火控制信号, 使发动机供油系统停止工作, 使发动机停转, 达到停 机目的; 同时, 为保护熄火系统不被损坏及下次启动能够正常进行, 在通过发动机转速传感器检测到发动机已经停转后, 熄火控制指令自 动解除。
在上述实施例中, 第一控制器和第二控制器可以是以独立的两个 控制器来实现, 也可以是以单独一个控制器来实现。 第一和第二控制 器可以采用可编程的微控制器或 CPU芯片。 例如, 可以采用 AD0-7 系列电路, 芯片基板采用的是 ATMEGA32 芯片 (U2), 它是一种具有 32KB系统内可编程 Flash的 8位 AVR微控制器, 如图 5A所示; 该 芯片采用先进的 RISC结构, 具有高性能和低功耗的 8 位 AVR® 徵 处理器 非易失性程序和数据存储器和」TAG接口、 8路 10位 ADC、 32个 可编程的 I/O 口 ( PAO-7, PBO-7, PCO-7, PD0-7)和可编程的串行 USART 等, 能够实现第一和第二控制器。 U2芯片的引脚 PC0-7分别是电源自锁 (高电平)、 前进信号(高电平)、 后退信号(高电平)、 熄火输出 (高电 平)、 蜂鸣输出 (高电平, 1Hz脉冲)、 刹车信号输入(高电平)、 转向过 度输入 (高电平)、 熄火信号输入 (高电平) 的信号引脚; PBO(TO)引脚 是发动机转速脉冲输入的引脚; PB1 引脚是油门电机转向控制 (高电平 正转, 低电平反转) 信号引脚; PB2 引脚是油门电机脉冲输出的引脚; PB4引脚是叉车电门锁信号 (高电平) 的引脚。
图 5B示出一种用于驱动和控制伺服系统的电路, 用作电子放大控 制组件, 其中包括两相步进电机驱动芯片 U3 及其外围电路, 该芯 片的内部集成了细分、 电流调节、 CMOS功率放大等电路, 配合简 单的外围电路即可实现高性能、 多细分、 大电流的步进电机驱动电 路, 具有最大 128细分译码特性, 以及低振动、 小噪声良好性能, 可以实现较佳的低成本和高速度等应用效果。 芯片 U3 的引脚 CW/CCW是正 /反转信号输入端, 引脚 OUT1A-2A和 OUT1B-2B分别 是 A相和 B相 OUT输出端。 芯片 U3通过外围电路连接芯片 U2的 PB1和 PB2引脚, 以传输油门电机转向控制信号和油门电机脉冲输 出信号。
图 5C示出与图 5A所示的控制器芯片 U2相关联的信号输出端 电路。 图 5A和图 5C中所示的引脚 AD0-4分别输出前进信号、后退 信号、 货叉多路阀升降信号和货叉多路阀倾斜信号。 图 5C中还示 出电源自锁、 熄火信号输出、 前进信号输出、 倒车信号输出、 蜂鸣 信号输出的相关电路。 控制器芯片 U2通过这些电路输出相应的控 制信号, 以控制叉车控制系统的电源自锁、 输出熄火控制信号、 输 出用于控制叉车前进和倒车的信号、以及在检测到异常情况时实现 蜂鸣提示。
在熄火信号输出电路中, PC3引脚是输入控制点并连接到芯片 U2的对应引脚, OFF引脚是控制点输出,三极管 Q4和 Q5通过 OFF 引脚输出用于控制熄火继电器的信号, R218和 R219将电路拉到低 电位。
图 5D示出与图 5A所示的控制器芯片 U2相关联的信号输入端 电路, 包括用于发动机转速传感器输入、 发动机转速输入、 刹车信 号输入、 熄火信号输入的相关电路。 这些电路是用于将相应的传感 器的检测值传输到控制器芯片 U2中供处理。
在发动机转速传感器输入电路中, 图右边的标号 " 1 " 是输入 端, 标号 " 4"是输出端, 该输出端将脉冲信号输出到图 5A的芯片 U2的 PBO(TO)引脚; 芯片 U201是整形电路, 电阻 R211起到限流作 用, 防止电路 U201被烧坏; 该电路使得发动机转速传感器输入信 号的宽度发生变化, 幅值相对稳定。

Claims

^ 禾 ^ ^
1. 一种用于液压叉车的自动控制系统, 包括:
检测装置,适于检测所述液压叉车中用于控制货叉升降的操作手 柄的位移; 以及
油门控制装置, 适于连接所述液压叉车中的发动机的油门, 所述 油门控制装置根据所述检测装置所检测的操作手柄的位移信息来控 制所述油门的油门开度。
2. 根据权利要求 1 的自动控制系统, 其中, 所述检测装置包括 安装在所述操作手柄上的磁敏组件、 以及霍尔传感器; 所述磁敏组件 适于感测所述操作手柄的位移并产生相应的磁场,所述霍尔传感器适 于检测所述磁场并产生相应的电信号。
3. 根据权利要求 1 的自动控制系统, 其中, 所述油门控制装置 包括安装在所述发动机的供油拉线或拉杆上的拨动油门连杆、用于移 动所述拨动油门连杆的伺服系统、以及用于控制所述伺服系统的第一 控制器。
4. 根据权利要求 3 的自动控制系统, 其中, 所述伺服系统包括 电机和减速器, 所述拨动油门连杆安装在减速器的输出轴上。
5. 根据权利要求 2 的自动控制系统, 其中, 所述磁敏组件包括 磁钢。
6. 根据权利要求 1的自动控制系统, 还包括转向安全控制装置, 所述转向安全控制装置适于在叉车高速转弯时, 自动降低叉车行驶速
7. 根据权利要求 6 的自动控制系统, 所述转向安全控制装置包 括:
转速传感器, 安装在所述发动机上并用于检测所述发动机的转 速;
转向角度传感器, 用于检测叉车车身转向的角度;
油门开度位移传感器, 用于检测油门开度行程通过的位移; 第二控制器, 用于根据所述转速传感器所检测的发动机转速、转 向角度传感器所检测的车身转向的角度、以及油门开度位移传感器所 检测的油门开度位移, 判断叉车是否为高速转弯状态; 当判断叉车为 高速转弯状态时,所述第二控制器向所述油门控制装置发出用于油门 控制信号, 以减小油门开度。
8. 根据权利要求 7 的自动控制系统, 其中, 当所述转速传感器 所检测的发动机转速、转向角度传感器所检测的车身转向的角度、 以 及油门开度位移传感器所检测的油门开度位移超出预定阈值时,判断 叉车处于高速转弯状态。
9. 根据权利要求 6或 7的自动控制系统, 其中, 所述转向安全 控制装置还包括与发动机上的熄火柄连接的自动熄火开关;当检测到 叉车高速转弯时, 所述自动熄火开关拉动所述熄火柄离开供油位置。
10. 根据权利要求 1的自动控制系统, 还包括与发动机上的熄火 柄连接的自动熄火开关; 其中, 当检测到叉车的电门锁关闭时, 所述 第二控制器发出熄火控制指令,以控制所述自动熄火开关拉动所述熄 火柄离开供油位置。
PCT/CN2011/083748 2011-12-09 2011-12-09 液压叉车自动控制系统 WO2013082802A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180075308.7A CN104271491B (zh) 2011-12-09 2011-12-09 液压叉车自动控制系统
PCT/CN2011/083748 WO2013082802A1 (zh) 2011-12-09 2011-12-09 液压叉车自动控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/083748 WO2013082802A1 (zh) 2011-12-09 2011-12-09 液压叉车自动控制系统

Publications (1)

Publication Number Publication Date
WO2013082802A1 true WO2013082802A1 (zh) 2013-06-13

Family

ID=48573513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083748 WO2013082802A1 (zh) 2011-12-09 2011-12-09 液压叉车自动控制系统

Country Status (2)

Country Link
CN (1) CN104271491B (zh)
WO (1) WO2013082802A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109109988A (zh) * 2018-09-30 2019-01-01 青岛力克川液压机械有限公司 一种履带式工程车辆的车身稳定控制系统
CN109502518A (zh) * 2018-12-14 2019-03-22 安徽合力股份有限公司 一种电动叉车电磁阀控制系统
CN113683028A (zh) * 2020-05-19 2021-11-23 苏州先锋物流装备科技有限公司 叉车电动叉头控制系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107215829B (zh) * 2017-06-28 2023-05-02 安徽合力股份有限公司 一种电动叉车操作控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595343A (en) * 1969-01-15 1971-07-27 Clark Equipment Co Control system for lift trucks
JPH0446268A (ja) * 1990-06-06 1992-02-17 Kubota Corp 作業車
CN2720132Y (zh) * 2004-08-29 2005-08-24 杨向哲 液压挖掘机光感电子油门自动控制装置
CN201597457U (zh) * 2009-12-15 2010-10-06 徐州海伦哲专用车辆股份有限公司 油门的自动控制装置
CN201685816U (zh) * 2009-11-24 2010-12-29 天津鼎盛工程机械有限公司 工程机械发动机与工作泵功率匹配控制系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979907A (en) * 1973-09-10 1976-09-14 Parker-Hannifin Corporation Priority control valve
JP3757512B2 (ja) * 1997-01-20 2006-03-22 株式会社豊田自動織機 車両の荷役制御装置
JP4687236B2 (ja) * 2005-05-17 2011-05-25 日産自動車株式会社 産業車両の油圧制御装置
JP5065632B2 (ja) * 2006-07-13 2012-11-07 日産フォークリフト株式会社 産業車両の油圧制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595343A (en) * 1969-01-15 1971-07-27 Clark Equipment Co Control system for lift trucks
JPH0446268A (ja) * 1990-06-06 1992-02-17 Kubota Corp 作業車
CN2720132Y (zh) * 2004-08-29 2005-08-24 杨向哲 液压挖掘机光感电子油门自动控制装置
CN201685816U (zh) * 2009-11-24 2010-12-29 天津鼎盛工程机械有限公司 工程机械发动机与工作泵功率匹配控制系统
CN201597457U (zh) * 2009-12-15 2010-10-06 徐州海伦哲专用车辆股份有限公司 油门的自动控制装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109109988A (zh) * 2018-09-30 2019-01-01 青岛力克川液压机械有限公司 一种履带式工程车辆的车身稳定控制系统
CN109502518A (zh) * 2018-12-14 2019-03-22 安徽合力股份有限公司 一种电动叉车电磁阀控制系统
CN109502518B (zh) * 2018-12-14 2024-03-29 安徽合力股份有限公司 一种电动叉车电磁阀控制系统
CN113683028A (zh) * 2020-05-19 2021-11-23 苏州先锋物流装备科技有限公司 叉车电动叉头控制系统

Also Published As

Publication number Publication date
CN104271491B (zh) 2016-07-06
CN104271491A (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
CA2085199C (en) Service braking technique for material handling electric vehicles
EP2048104B1 (en) Elevator device
WO2013082802A1 (zh) 液压叉车自动控制系统
KR101317631B1 (ko) 선회구동제어장치 및 이것을 포함하는 건설기계
CN108516505B (zh) 叉车工作安全控制装置与控制方法
WO2006017539A3 (en) Variabole-speed load-dependent drive and hoist system
US10576971B2 (en) Push cart and method for controlling push cart
EP2865634B1 (en) Industrial vehicle
US20190002251A1 (en) Crane And Method For Controlling Same
WO2012099210A1 (ja) ホイール式作業機の油圧駆動装置
WO2008145022A1 (en) A control system for overhead traeling crane to stack carbon blocks and a control method for the same
CN104175882A (zh) 车辆速度控制系统及其控制方法
CN202669573U (zh) 一种重型液压平板运输车控制系统回路
CN207045160U (zh) 一种电动汽车减速器驻车控制器
KR101205112B1 (ko) 덤프트럭용 적재함 안전장치
EP2008961B1 (en) Control unit, method and computer program product for controlling a lift mechanism
EP2708490B1 (en) A forklift truck, a method and a computer program for controlling a forklift truck
CN214879833U (zh) 一种冗余制动器的控制装置
CN110026984A (zh) 一种基于大功率输出机器人的智能协作控制方法
CN201966868U (zh) 用于电动叉车的泵电机转速控制模式选择装置
CN102530789B (zh) 用于上下车切换的控制器、系统和方法及高空作业车
AU2017391885B2 (en) Diesel Locomotive Driver Controller with Loading Protection Function
CN2818422Y (zh) 电控比例液压推杆制动装置
JPS6136553Y2 (zh)
JPH0213438Y2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877009

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877009

Country of ref document: EP

Kind code of ref document: A1