WO2013080786A1 - 電子機器、給電装置および給電システム - Google Patents

電子機器、給電装置および給電システム Download PDF

Info

Publication number
WO2013080786A1
WO2013080786A1 PCT/JP2012/079391 JP2012079391W WO2013080786A1 WO 2013080786 A1 WO2013080786 A1 WO 2013080786A1 JP 2012079391 W JP2012079391 W JP 2012079391W WO 2013080786 A1 WO2013080786 A1 WO 2013080786A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
power
unit
power supply
charging
Prior art date
Application number
PCT/JP2012/079391
Other languages
English (en)
French (fr)
Inventor
宏一 秋吉
浦本 洋一
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/352,777 priority Critical patent/US9577475B2/en
Priority to CN201280057512.0A priority patent/CN103947074B/zh
Publication of WO2013080786A1 publication Critical patent/WO2013080786A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H04B5/24
    • H04B5/79
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a power supply system that performs non-contact power supply (power transmission, power transmission) to a power supply target device such as an electronic device, and a power supply device and an electronic device that are applied to such a power supply system.
  • the electromagnetic induction method is well known as a method for supplying power without contact in this way. Recently, a non-contact power feeding system using a method called a magnetic field resonance method using an electromagnetic resonance phenomenon has attracted attention. Such a non-contact power supply system is disclosed in Patent Documents 1 to 6, for example.
  • JP 2001-102974 A WO00-27531 JP 2008-206233 A JP 2002-34169 A JP 2005-110399 A JP 2010-63245 A
  • means for notifying the device state to the outside in the power supply target device such as an electronic device for example, a method for notifying the device state according to the lighting state of the light emitting element.
  • a method for notifying the device state according to the lighting state of the light emitting element for example, a method for notifying the device state according to the lighting state of the light emitting element.
  • An electronic device includes a power receiving unit that receives power transmitted using a magnetic field or an electric field, and a state in which the device status is notified to the outside using the received power received by the power receiving unit And a notification unit. Even when an abnormal state is detected as the device state, the state notification unit notifies the abnormal state using the received power.
  • a power supply system performs power transmission using one or more electronic devices (power supply target devices) according to the embodiment of the present disclosure and the electronic devices using a magnetic field or an electric field. And a power feeding device.
  • the electronic device and the power supply system according to the embodiment of the present disclosure, even when an abnormal state is detected as the device state of the electronic device, the power (received power) transmitted using the magnetic field or the electric field is used. An abnormal state is notified to the outside. Thereby, for example, unlike the case where power transmission using a magnetic field or an electric field is stopped when an abnormal state is detected, stop of the notification operation due to lack of received power is avoided. Therefore, for example, the erroneous determination of the device state by the user due to the fact that the notification of the abnormal state and the notification of the other device state (for example, the charging completion state based on the received power) cannot be performed is prevented.
  • the power supply device includes a power transmission unit that performs power transmission using a magnetic field or an electric field to a power supply target device, and power generated by the power transmission unit even when an abnormal state is detected in the power supply target device And a control unit that continues the transmission.
  • power transmission using a magnetic field or an electric field by the power transmission unit is continued even when an abnormal state in the power supply target device is detected.
  • an operation caused by a lack of received power in the power supply target device for example, an external device state
  • Stop of the notification operation is avoided. Therefore, the user's convenience deterioration (such as a misjudgment of the device state by the user) due to such stoppage of the operation is prevented.
  • the electronic device and the power feeding system of the embodiment of the present disclosure even when an abnormal state is detected as the device state of the electronic device, the power (received power) transmitted using the magnetic field or the electric field is used. Since the abnormal state is notified to the outside, it is possible to prevent an erroneous determination of the device state by the user, for example, due to the fact that the notification of the abnormal state and the notification of other device states become indistinguishable. . Therefore, it is possible to improve user convenience when performing power transmission using a magnetic field or an electric field.
  • the power supply device of an embodiment of the present disclosure power transmission using a magnetic field or an electric field by the power transmission unit is continued even when an abnormal state is detected in the power supply target device.
  • the stoppage of the operation due to the lack of the received power can be avoided. Therefore, it is possible to improve user convenience when performing power transmission using a magnetic field or an electric field.
  • FIG. 3 is a circuit diagram illustrating a detailed configuration example of each block illustrated in FIG. 2. It is a timing waveform diagram showing an example of a control signal for an AC signal generation circuit. It is a timing diagram showing an example of a power feeding period and a communication period. It is a timing diagram showing the operation example in the electric power feeding system which concerns on a comparative example. It is a circuit diagram showing the operation example in the electric power feeding system which concerns on a comparative example.
  • FIG. 4 is a timing diagram illustrating an operation example (example) in the power supply system illustrated in FIG. 3. It is a block diagram showing the schematic structural example of the electric power feeding system which concerns on a modification. It is a schematic diagram showing the example of an electric field propagation mode in the electric power feeding system shown in FIG.
  • FIG. 1 illustrates an external configuration example of a power feeding system (power feeding system 4) according to an embodiment of the present disclosure
  • FIG. 2 illustrates a block configuration example of the power feeding system 4.
  • the power feeding system 4 is a system (non-contact type power feeding system) that performs power transmission (power supply, power feeding, power transmission) in a non-contact manner using a magnetic field (using magnetic resonance, electromagnetic induction, etc .; the same applies hereinafter). is there.
  • the power supply system 4 includes a power supply device 1 (primary device) and one or a plurality of electronic devices (here, two electronic devices 2A and 2B; secondary devices) as power supply target devices.
  • the electronic devices 2A and 2B are placed (or close to) on the power supply surface (power transmission surface) S1 of the power supply device 1, so that the power supply device 1 changes to the electronic device.
  • Power transmission is performed for 2A and 2B.
  • the power supply device 1 has an area of the power supply surface S1 that is the power supply target electronic device 2A,
  • the mat shape (tray shape) is larger than 2B.
  • the power feeding device 1 is a device (charging tray) that performs power transmission (power transmission) to the electronic devices 2A and 2B using a magnetic field.
  • the power supply device 1 includes a power transmission device 11 including a power transmission unit 110, an AC signal generation circuit (high-frequency power generation circuit) 111, and a control unit 112.
  • the power transmission unit 110 includes a power transmission coil (primary coil) L1 and capacitors C1p and C1s (resonance capacitors), which will be described later.
  • the power transmission unit 110 uses the power transmission coil L1 and the capacitors C1p and C1s to perform power transmission (power transmission) using an AC magnetic field to the electronic devices 2A and 2B (specifically, a power reception unit 210 described later). (See arrow P1 in FIG. 2).
  • the power transmission unit 110 has a function of radiating a magnetic field (magnetic flux) from the power feeding surface S1 toward the electronic devices 2A and 2B.
  • the power transmission unit 110 also has a function of mutually performing a predetermined communication operation with a power reception unit 210 described later (see arrow C1 in FIG. 2).
  • the AC signal generation circuit 111 is a circuit that generates a predetermined AC signal Sac (high-frequency power) for power transmission using, for example, power supplied from the external power supply 9 (parent power supply) of the power supply device 1.
  • Such an AC signal generation circuit 111 is configured using, for example, a switching amplifier described later.
  • Examples of the external power source 9 include a USB (Universal Serial Bus) 2.0 power source (power supply capability: 500 mA, power supply voltage: about 5 V) provided in a PC (Personal Computer) or the like.
  • the control unit 112 performs various control operations in the entire power supply apparatus 1 (the entire power supply system 4). Specifically, in addition to performing power transmission and communication control by the power transmission unit 110, for example, transmission power optimization control and a function for authenticating the secondary side device, the secondary side device is on the primary side device. A function for discriminating this, and a function for detecting the mixing of foreign metals.
  • the power transmission control described above is performed by controlling the operation of the AC signal generation circuit 111 using a predetermined control signal CTL (control signal for power transmission) described later.
  • the control unit 112 also has a function of performing modulation processing by pulse width modulation (PWM), which will be described later, using the control signal CTL.
  • PWM pulse width modulation
  • the electronic devices 2A and 2B are, for example, a stationary electronic device represented by a television receiver, a portable electronic device including a rechargeable battery (battery) represented by a mobile phone or a digital camera, and the like.
  • these electronic devices 2 ⁇ / b> A and 2 ⁇ / b> B perform a predetermined operation (operation to exert functions as an electronic device) based on the power receiving device 21 and the power supplied from the power receiving device 21. And a load 22 to be performed.
  • the power receiving device 21 includes a power receiving unit 210, a rectifier circuit 211, a voltage stabilization circuit 212, a charging circuit 213 (charging unit), a battery 214 (secondary battery), a state notification unit 215, and a control unit 216. .
  • the power receiving unit 210 includes a power receiving coil (secondary coil) L2 and capacitors C2p and C2s (resonance capacitors), which will be described later.
  • the power reception unit 210 has a function of receiving power transmitted (power transmission) from the power transmission unit 110 in the power supply apparatus 1 using the power reception coil L2, the capacitors C2p, C2s, and the like.
  • the power receiving unit 210 also has a function of mutually performing the predetermined communication operation described above with the power transmitting unit 110 (see arrow C1 in FIG. 2).
  • the rectifier circuit 211 is a circuit that rectifies the power (AC power) supplied from the power receiving unit 210 and generates DC power.
  • the voltage stabilization circuit 212 is a circuit that performs a predetermined voltage stabilization operation based on the DC power supplied from the rectifier circuit 211.
  • the charging circuit 213 is a circuit for charging the battery 214 based on the DC power after voltage stabilization supplied from the voltage stabilization circuit 212.
  • the battery 214 stores electric power in accordance with charging by the charging circuit 213, and is configured using a rechargeable battery (secondary battery) such as a lithium ion battery, for example.
  • a rechargeable battery secondary battery
  • lithium ion battery for example.
  • the state notification unit 215 notifies (notifies and presents) the device state of itself (here, the electronic device 2A or the electronic device 2B) to the outside (user or the like). Specifically, it has a function of notifying the outside of such a device state by using, for example, a lighting state (display state) of a light emitting element or the like described later, or sound output by a speaker or the like.
  • the state notification unit 215 is configured to separately notify each state of the state of the battery 214 being charged and after the charging by the charging circuit 213 and the abnormal state of the battery 214 as the device state. .
  • the detailed configuration of the state notification unit 215 will be described later (FIG. 3).
  • the control unit 216 performs various control operations in the entire electronic devices 2A and 2B (the entire power feeding system 4). Specifically, for example, it has a function of controlling power reception and communication by the power receiving unit 110 and controlling operations of the voltage stabilization circuit 212, the charging circuit 213, and the like.
  • FIG. 3 is a circuit diagram illustrating a detailed configuration example of each block in the power supply device 1 and the electronic devices 2A and 2B illustrated in FIG.
  • the power transmission unit 110 includes a power transmission coil L1 for performing power transmission (generating magnetic flux) using a magnetic field, and capacitors C1p and C1s for forming an LC resonance circuit together with the power transmission coil L1.
  • the capacitor C1s is electrically connected in series with the power transmission coil L1. That is, one end of the capacitor C1s and one end of the power transmission coil L1 are connected to each other. Further, the other end of the capacitor C1s and the other end of the power transmission coil L1 are connected in parallel to the capacitor C1p, and a connection end of the power transmission coil L1 and the capacitor C1p is grounded.
  • the LC resonance circuit composed of the power transmission coil L1 and the capacitors C1p and C1s and the LC resonance circuit composed of the power reception coil L2 and the capacitors C2p and C2s described later are magnetically coupled to each other. As a result, an LC resonance operation is performed at a resonance frequency substantially the same as the high-frequency power (AC signal Sac) generated by the AC signal generation circuit 111 described later.
  • the AC signal generation circuit 111 is configured using a switching amplifier (so-called class E amplifier) having one transistor (not shown) as a switching element.
  • the AC signal generation circuit 111 is supplied with a control signal CTL for power transmission from the control unit 112.
  • the control signal CTL is a pulse signal having a predetermined duty ratio as shown in FIG. For example, as shown in FIGS. 4A and 4B, the pulse width modulation described later is performed by controlling the duty ratio in the control signal CTL.
  • the above-described transistor performs an on / off operation (a switching operation having a predetermined frequency and duty ratio) in accordance with the control signal CTL for power transmission. That is, on / off operation of the transistor as the switching element is controlled using the control signal CTL supplied from the control unit 112.
  • an AC signal Sac AC power
  • AC power is generated based on the DC signal Sdc input from the external power supply 9 side, and is supplied to the power transmission unit 110.
  • the power receiving unit 210 includes a power receiving coil L2 for receiving power transmitted from the power transmitting unit 110 (from magnetic flux), and capacitors C2p and C2s for forming an LC resonance circuit together with the power receiving coil L2.
  • the capacitor C2p is electrically connected in parallel to the power receiving coil L2, and the capacitor C2s is electrically connected in series to the power receiving coil L2. That is, one end of the capacitor C2s is connected to one end of the capacitor C2p and one end of the power receiving coil L2.
  • the other end of the capacitor C2s is connected to one input terminal in the rectifier circuit 211, and the other end of the power receiving coil L2 and the other end of the capacitor C2p are each connected to the other input terminal in the rectifier circuit 211.
  • the LC resonance circuit including the power receiving coil L2 and the capacitors C2p and C2s and the LC resonance circuit including the power transmission coil L1 and the capacitors C1p and C1s are magnetically coupled to each other. As a result, LC resonance operation is performed at substantially the same resonance frequency as the high-frequency power (AC signal Sac) generated by the AC signal generation circuit 111.
  • the rectifier circuit 211 is configured using four rectifier elements (diodes) D1 to D4. Specifically, the anode of the rectifier element D1 and the cathode of the rectifier element D3 are connected to one input terminal of the rectifier circuit 211, and the cathode of the rectifier element D1 and the cathode of the rectifier element D2 are mutually output from the rectifier circuit 211. Connected to the terminal. The anode of the rectifier element D2 and the cathode of the rectifier element D4 are connected to the other input terminal of the rectifier circuit 211, and the anode of the rectifier element D3 and the anode of the rectifier element D4 are grounded. With such a configuration, the rectifier circuit 211 rectifies the AC power supplied from the power receiving unit 210 and supplies the received power P2 made of DC power to the voltage stabilizing circuit 212.
  • the charging circuit 213 charges the battery 214 based on the DC power (received power P2) after voltage stabilization.
  • the charging circuit 213 also includes a lighting control unit 215A in a state notification unit 215 described below. Note that the lighting control unit 215A includes, for example, a microcomputer.
  • the status notification unit 215 also notifies the above-described device status to the outside using the DC power (received power P2) after voltage stabilization.
  • the state notification unit 215 includes a light emitting element (lighting unit) 215L made of a light emitting diode (LED), the above-described lighting control unit 215A, and a temperature sensor 215B (state detection). Part).
  • the light emitting element 215L is an element that plays a role of notifying the device state (each state during charging, after completion of charging, and after abnormal state) according to the lighting state (for example, each state of lighting, extinguishing, and blinking). is there.
  • the anode is connected to the connection line between the charging circuit 213 and the load 22, and the cathode is connected to the terminal of the lighting control unit 215A, and the cathode potential is controlled by the lighting control unit 215A. It has come to be.
  • the temperature sensor 215B is an element for detecting an abnormal state of the battery 214 (for example, an abnormal state due to heat generation or the like) based on temperature.
  • the detection result by the temperature sensor 215B (the detection result of the presence or absence of an abnormal state in the battery 214 according to the temperature value) is supplied to the lighting control unit 215A.
  • the lighting control unit 215A controls the cathode potential of the light emitting element 215L based on the detection result such as presence / absence of an abnormal state in the battery 214 supplied from the temperature sensor 215B, thereby lighting the light emitting element 215L. Is controlled (lighting control is performed). Specifically, for example, by setting the cathode potential of the light emitting element 215L to the ground potential (ground potential), the current I2 shown in FIG. 3 flows to the light emitting element 215L and the light emitting element 215L is turned on. Further, by setting the cathode potential to a potential other than the ground potential, the light emitting element 215L is turned off so that the current I2 does not flow. The lighting control unit 215A also performs such an operation (lighting control) using the DC power (received power P2) after voltage stabilization.
  • the state notification unit 215 even when an abnormal state of the battery 214 is detected using the temperature sensor 215B, the received power P2 received from the power feeding device 1 is used as described later. The abnormal state is notified to the outside.
  • the electronic devices 2A and 2B as the power supply target devices are placed on (or in close proximity to) the upper surface (power supply surface S1) of the power supply device 1, the power transmission coil L1 and the electrons in the power supply device 1
  • the power receiving coils L2 in the devices 2A and 2B are close to each other in the vicinity of the power feeding surface S1.
  • the electromotive force is induced in the power receiving coil L2 by being induced by the magnetic flux generated from the power transmission coil L1.
  • a magnetic field is generated by interlinking with each of the power transmission coil L1 and the power reception coil L2 by electromagnetic induction or magnetic resonance.
  • power is transmitted from the power transmission coil L1 side (primary side, power feeding device 1 side, power transmission unit 110 side) to the power reception coil L2 side (secondary side, electronic equipment 2A, 2B side, power reception unit 210 side). (See arrow P1 in FIGS. 2 and 3).
  • the power transmission coil L1 on the power feeding device 1 side and the power reception coil L2 on the electronic device 2A, 2B side are magnetically coupled to each other by electromagnetic induction or the like, and LC resonance operation is performed in the LC resonance circuit described above.
  • the AC power received in the power receiving coil L2 is supplied to the rectifying circuit 211, the voltage stabilizing circuit 212, and the charging circuit 213, and the following charging operation is performed.
  • the AC power is converted into predetermined DC power by the rectifier circuit 211 and the voltage stabilizing circuit 212 to stabilize the voltage, and then the battery 214 is charged based on the DC power by the charging circuit 213. .
  • the charging operation based on the power received by the power receiving unit 210 is performed.
  • the power feeding period Tp (charging period for the battery 214) and the communication period Tc (non-charging period) are periodically divided in a time-sharing manner ( (Or aperiodically).
  • the control unit 112 and the control unit 216 perform control so that the power supply period Tp and the communication period Tc are set periodically (or aperiodically) in a time division manner.
  • the communication period Tc is a mutual communication operation using the power transmission coil L1 and the power reception coil L2 between the primary side device (power feeding device 1) and the secondary side device (electronic devices 2A and 2B).
  • this communication period Tc for example, a communication operation using pulse width modulation in the AC signal generation circuit 111 is performed. Specifically, communication by pulse width modulation is performed by setting the duty ratio of the control signal CTL in the communication period Tc based on predetermined modulation data. In addition, since it is theoretically difficult to perform frequency modulation during the resonance operation in the power transmission unit 110 and the power reception unit 210 described above, communication operation can be easily realized by using such pulse width modulation.
  • the notification is made. That is, for example, the lighting control unit 215A in the state notification unit 215 controls the light emitting element 215L to be turned on in the charging state, and controls the light emitting element 215L to be turned off in the state after the charging is completed.
  • the light emitting element 215L is controlled to blink.
  • such a state notification operation by the state notification unit 215 can notify the user or the like of the device state at that time, thereby improving convenience for the user or the like. It is done.
  • the state notification operation of the present embodiment will be described in detail in comparison with a comparative example.
  • FIG. 6 is a timing diagram illustrating an operation example of the power supply system (power supply system 104) according to the comparative example.
  • (A) shows the operating state of the power transmission device 11
  • (B) shows the operating state of the charging circuit 213
  • (C) shows the operating state of the light emitting element 215L.
  • the power supply system 104 of this comparative example includes the power supply apparatus 1 and electronic devices 102A and 102B according to the comparative example, as shown in FIG.
  • the operation of the charging circuit 213 and the lighting control unit 215A incorporated therein is stopped, and the state notification using the light emitting element 215L is performed.
  • the operation will also stop. That is, in the period from the timing t101 to t102, the light emitting element 215L is always in the off state.
  • the temperature sensor 215B detects that the battery 214 has been returned from the abnormal state to the normal state, so that the operation state is the same as the period up to the timing t101 described above. That is, as shown in FIGS. 6A to 6C, power transmission (power transmission) from the power transmission device 11 to the electronic devices 102A and 102B is resumed. As a result, the charging circuit 213 and the lighting control unit 215A Charging operation and lighting control are performed using the received power P2. Accordingly, the light emitting element 215L is also lit during the period from the timing t102 to the time t103, so that the outside is informed that the battery 214 is being charged.
  • the power transmission (power transmission) from the power transmission device 11 to the electronic devices 102A and 102B is stopped even during the abnormal state of the battery 214.
  • the state notification operation stops.
  • the light emitting element 215L is turned off in both the abnormal state period of the battery 214 and the period after the completion of charging. That is, for the user or the like, the notification of the abnormal state and the notification of the other device state (in this case, the state of completion of charging) cannot be discriminated.
  • the convenience for the user is reduced.
  • FIG. 8 is a timing diagram showing an operation example in the power feeding system 4 of the present embodiment. 8, (A) shows the operating state of the power transmitting device 11, (B) shows the operating state of the charging circuit 213, (C) shows the operating state of the light emitting element 215L, and (D) shows the power feeding device 1 and the electronic device. The states of communication operations between the devices 2A and 2B are shown.
  • the battery 214 is in a normal state by the temperature sensor 215B in the period up to timing t1 and in the period from timing t2 to t3. Something has been detected. Accordingly, power transmission (power transmission) is performed from the power transmission device 11 to the electronic devices 2A and 2B, and the charging operation and lighting control are performed using the received power P2 in the charging circuit 213 and the lighting control unit 215A. Therefore, the light emitting element 215L is turned on, and the outside is informed that the battery 214 is being charged.
  • the charging operation to the battery 214 is completed, and the power transmission (power transmission) operation from the power transmission device 11 to the electronic devices 102A and 102B is stopped. ing. Therefore, the light emitting element 215L is turned off, and it is notified to the outside that charging of the battery 214 is completed.
  • the operation is as shown by the solid arrow in FIG. That is, even if an abnormal state of the battery 214 is detected by the temperature sensor 215B, power transmission (power transmission) from the power transmission device 11 to the electronic devices 2A and 2B is continued, and the state notification unit 215 continues to receive power at that time.
  • the abnormal state is notified to the outside using P2. That is, unlike the comparative example described above, the lack of the received power P2 is avoided by continuing the power transmission, so that the state notification operation does not stop even during the period when the abnormal state of the battery 214 occurs (state) The stop of the notification operation is avoided).
  • a state notification operation based on the concept of reversal from the above comparative example is performed in which “the power supply is not stopped when an abnormal state occurs but rather the power transmission is continued”.
  • control for continuing the power transmission in this way uses, for example, the communication operation described above between the control unit 112 in the power feeding apparatus 1 and the control unit 216 in the electronic devices 2A and 2B. Done. That is, for example, the control unit 112 grasps the occurrence of an abnormal state in the battery 214 in the electronic devices 2A and 2B through communication between the power supply apparatus 1 and the electronic devices 2A and 2B, and such an abnormal state occurs. Even in such a case, the power transmission by the power transmission unit 110 is controlled to be continued. As described above, when an abnormal state of the battery 214 is detected in the electronic devices 2A and 2B, the fact that the abnormal state has been detected is notified to the power feeding apparatus 1 side using communication. .
  • the state of the battery 214 on the electronic devices 2A and 2B side (whether it is in a normal state) is simply determined on the power supply device 1 side. You may make it perform electric power transmission, without grasping
  • the lighting control by the lighting control unit 215A causes the light emitting element 215L to light in the charging state, and after the charging is completed.
  • the light emitting element 215L is turned off, and in the abnormal state, the light emitting element 215L blinks. Therefore, unlike the comparative example described above, it is possible to prevent misjudgment of the device state by the user due to the fact that the notification of the abnormal state and the notification of the other device state (here, the charging completion state) cannot be made. Is done.
  • the charging circuit 213 detects the battery 214. Stop charging. Further, when it is detected that the battery 214 has returned from the abnormal state to the normal state, the charging circuit 213 resumes charging the battery 214.
  • the communication operation (communication period Tc) is continuously set even after the charging of the battery 214 by the charging circuit 213 is completed. Thereby, even after the charging is completed, such communication operation is periodically performed, so that the operation state (device state of the power supply device 1 and the electronic devices 2A and 2B) in the power supply system 4 can be changed. , 2B can grasp each other and take appropriate measures accordingly.
  • the communication operation (communication period Tc) is set less frequently in the period after completion of charging than in the period during charging. Further, it is desirable that the communication operation (communication period Tc) is set more frequently in the abnormal state period than in the normal state period. For this reason, in this operation example, the communication operation is set to a medium frequency during the charging period, whereas the communication operation is set to a low frequency during the charging period, and the communication operation is performed during the abnormal state period. The operation is set to high frequency. This is because in the period after the completion of charging, it is not necessary to grasp each other's device status so frequently. It is necessary to grasp frequently.
  • the power feeding device 1 continues power transmission using the magnetic field by the power transmission unit 110 and the electronic device.
  • the abnormal state is notified to the outside using electric power (received electric power P2) transmitted using a magnetic field.
  • electric power P2 transmitted using a magnetic field.
  • each coil may be not only a wound coil made of a conductive wire, but also a conductive pattern coil made of a printed board, a flexible printed board, or the like.
  • the electronic device has been described as an example of the power supply target device.
  • the present invention is not limited thereto, and may be a power supply target device other than the electronic device (for example, a vehicle such as an electric vehicle). Good.
  • each component of the power feeding device and the electronic device has been specifically described. However, it is not necessary to include all the components, and other components may be further included. .
  • a communication function, some control function, a display function, a function for authenticating a secondary side device, a function for discriminating that a secondary side device is on the primary side device, a dissimilar metal A function for detecting contamination such as may be installed.
  • the present invention is not limited to this, and the power feeding system includes Only one electronic device may be provided.
  • a charging tray for a small electronic device such as a mobile phone
  • CE device small electronic device
  • a power feeding device such as a household charging tray is used. Is not limited, and can be applied as a charger for various electronic devices. Further, it is not necessarily a tray, and may be a stand for an electronic device such as a so-called cradle.
  • Example of a power feeding system that uses an electric field to transmit power in a contactless manner Example of a power feeding system that uses an electric field to transmit power in a contactless manner
  • the case of the electric power feeding system which performs non-contact electric power transmission (electric power feeding) using the magnetic field with respect to the electronic device as a secondary side apparatus from the electric power feeder as a primary side apparatus is made into an example.
  • the present disclosure may be applied to a power supply system that performs electric power transmission using an electric field (electric field coupling) from a power supply device as a primary device to an electronic device as a secondary device. It is possible to obtain the same effects as those of the above embodiment.
  • the power supply system illustrated in FIG. 9 includes one power supply device 81 (primary device) and one electronic device 82 (secondary device).
  • the power feeding device 81 mainly includes a power transmission unit 810 including a power transmission electrode E1 (primary side electrode), an AC signal source 811 (oscillator), and a ground electrode Eg1.
  • the electronic device 82 mainly includes a power receiving unit 820 including a power receiving electrode E2 (secondary side electrode), a rectifier circuit 821, a load 822, and a ground electrode Eg2. That is, this power feeding system includes two sets of electrodes, that is, a power transmission electrode E1 and a power reception electrode E2, and ground electrodes Eg1 and Eg2.
  • the power feeding device 81 (primary device) and the electronic device 82 (secondary device) each have an antenna having a pair of asymmetric electrode structures such as a monopole antenna inside the device. .
  • the above-described non-contact antennas are coupled to each other (electric field coupling is performed along the vertical direction of the electrodes). Then, an induction electric field is generated between them, and thereby electric power transmission using the electric field is performed (see electric power P8 shown in FIG. 9).
  • the generated electric field induction electric field Ei
  • the generated induced electric field Ei propagates toward the electrode Eg1 side. That is, a loop path of the generated induced electric field Ei is formed between the primary device and the secondary device. Even in a non-contact power supply system using such an electric field, it is possible to obtain the same effect by applying the same method as in the above embodiment.
  • this technique can also take the following structures.
  • a power receiving unit that receives electric power transmitted using a magnetic field or an electric field; Using a received power received by the power receiving unit, and a state notification unit for notifying the external device state, The said state alerting
  • a secondary battery A charging unit that charges the secondary battery based on the received power, and The electronic device according to (1), wherein the charging unit stops charging the secondary battery when the abnormal state is detected.
  • the state notification unit includes a state detection unit that detects an abnormal state in the secondary battery as the abnormal state.
  • the electronic device (4) The electronic device according to (3), wherein the state detection unit detects an abnormal state in the secondary battery based on a temperature of the secondary battery. (5) The electronic device according to any one of (2) to (4), wherein the charging unit resumes charging to the secondary battery when the device state returns from the abnormal state to a normal state. (6) The said state alerting
  • the lighting control unit In the charging state, the lighting unit is controlled to light up, In the state after the completion of charging, the lighting unit is controlled to turn off, The electronic device according to (7), wherein the lighting unit is controlled to blink in the abnormal state.
  • a power supply period in which power transmission using a magnetic field or an electric field is performed from the power supply apparatus and a communication period in which predetermined communication is performed with the power supply apparatus are set in a time-sharing manner (2) to (8) The electronic device in any one of.
  • the electronic device according to (9), wherein the communication period is continuously set even after the charging of the secondary battery by the charging unit is completed.
  • the electronic device according to (10), wherein the communication period is set less frequently in the period after completion of charging than in the period during charging of the secondary battery.
  • the electronic device according to (10) or (11), wherein the communication period is set more frequently in the abnormal state period than in the normal state period. (13) When the abnormal state is detected, the fact that the abnormal state has been detected is notified to the power supply apparatus side using the communication.
  • the electronic device according to any one of (9) to (12) machine.
  • a power transmission unit that performs power transmission using a magnetic field or an electric field to a power supply target device; and A power supply apparatus comprising: a control unit that continues power transmission by the power transmission unit even when an abnormal state in the power supply target device is detected.
  • the control unit grasps the occurrence of the abnormal state through communication with the power supply target device.

Abstract

 電子機器は、磁界または電界を用いて伝送された電力を受け取る受電部と、この受電部により受け取った受電電力を用いて、自身の機器状態を外部へ報知する状態報知部とを備え、この状態報知部は、機器状態として異常状態が検知された場合においても、受電電力を用いてその異常状態を報知する。給電装置は、給電対象機器に対して磁界または電界を用いた電力伝送を行う送電部と、給電対象機器における異常状態が検知された場合においても、送電部による電力伝送を継続させる制御部とを備えている。

Description

電子機器、給電装置および給電システム
 本開示は、電子機器等の給電対象機器に対して非接触に電力供給(送電,電力伝送)を行う給電システム、ならびにそのような給電システムに適用される給電装置および電子機器に関する。
 近年、例えば携帯電話機や携帯音楽プレーヤー等のCE機器(Consumer Electronics Device:民生用電子機器)に対し、非接触に電力供給(送電,電力伝送)を行う給電システム(非接触給電システム、ワイヤレス充電システム)が注目を集めている。これにより、ACアダプタのような電源装置のコネクタを機器に挿す(接続する)ことによって充電を開始するのはなく、電子機器(2次側機器)を充電トレー(1次側機器)上に置くだけで充電を開始することができる。すなわち、電子機器と充電トレーと間での端子接続が不要となる。
 このようにして非接触で電力供給を行う方式としては、電磁誘導方式が良く知られている。また、最近では、電磁共鳴現象を利用した磁界共鳴方式と呼ばれる方式を用いた非接触給電システムが注目されている。このような非接触による給電システムは、例えば特許文献1~6等に開示されている。
特開2001-102974号公報 WO00-27531号公報 特開2008-206233号公報 特開2002-34169号公報 特開2005-110399号公報 特開2010-63245号公報
 ところで、上記のような非接触による給電システムでは、電子機器等の給電対象機器内に、その機器状態を外部へ報知する手段(例えば発光素子の点灯状態に応じて機器状態を報知する手法等)が設けられている場合がある。そのような場合、ユーザに対してその時点での機器状態を確実に知らせて(ユーザによる機器状態の誤判断等を防止して)、ユーザの利便性を向上させることが求められる。
 したがって、磁界または電界を用いて電力伝送(送電)を行う際に、ユーザの利便性を向上させることが可能な電子機器、給電装置および給電システムを提供することが望ましい。
 本開示の一実施の形態の電子機器は、磁界または電界を用いて伝送された電力を受け取る受電部と、この受電部により受け取った受電電力を用いて、自身の機器状態を外部へ報知する状態報知部とを備えたものである。状態報知部は、機器状態として異常状態が検知された場合においても、受電電力を用いてその異常状態を報知する。
 本開示の一実施の形態の給電システムは、1または複数の上記本開示の一実施の形態の電子機器(給電対象機器)と、この電子機器に対して磁界または電界を用いた電力伝送を行う給電装置とを備えたものである。
 本開示の一実施の形態の電子機器および給電システムでは、電子機器の機器状態として異常状態が検知された場合においても、磁界または電界を用いて伝送された電力(受電電力)を用いて、その異常状態が外部へ報知される。これにより、例えば、異常状態が検知されたときには磁界または電界を用いた電力伝送が停止される場合とは異なり、受電電力の欠如に起因した報知動作の停止が回避される。したがって、例えば異常状態の報知と他の機器状態(例えば、受電電力に基づく充電の完了状態)の報知とが判別不能になること等に起因した、ユーザによる機器状態の誤判断が防止される。
 本開示の一実施の形態の給電装置は、給電対象機器に対して磁界または電界を用いた電力伝送を行う送電部と、給電対象機器における異常状態が検知された場合においても、送電部による電力伝送を継続させる制御部とを備えたものである。
 本開示の一実施の形態の給電装置では、給電対象機器における異常状態が検知された場合においても、送電部による磁界または電界を用いた電力伝送が継続される。これにより、例えば、異常状態が検知されたときには磁界または電界を用いた電力伝送が停止される場合とは異なり、給電対象機器内での受電電力の欠如に起因した動作(例えば、機器状態の外部への報知動作)の停止が回避される。したがって、そのような動作の停止に起因したユーザの利便性低下(ユーザによる機器状態の誤判断等)が防止される。
 本開示の一実施の形態の電子機器および給電システムによれば、電子機器の機器状態として異常状態が検知された場合においても、磁界または電界を用いて伝送された電力(受電電力)を用いてその異常状態を外部へ報知するようにしたので、例えば異常状態の報知と他の機器状態の報知とが判別不能になること等に起因した、ユーザによる機器状態の誤判断を防止することができる。よって、磁界または電界を用いて電力伝送を行う際に、ユーザの利便性を向上させることが可能となる。
 本開示の一実施の形態の給電装置によれば、給電対象機器における異常状態が検知された場合においても、送電部による磁界または電界を用いた電力伝送を継続するようにしたので、給電対象機器内での受電電力の欠如に起因した動作の停止を回避することができる。よって、磁界または電界を用いて電力伝送を行う際に、ユーザの利便性を向上させることが可能となる。
本開示の一実施の形態に係る給電システムの外観構成例を表す斜視図である。 図1に示した給電システムの詳細構成例を表すブロック図である。 図2に示した各ブロックの詳細構成例を表す回路図である。 交流信号発生回路に対する制御信号の一例を表すタイミング波形図である。 給電期間および通信期間の一例を表すタイミング図である。 比較例に係る給電システムにおける動作例を表すタイミング図である。 比較例に係る給電システムにおける動作例を表す回路図である。 図3に示した給電システムにおける動作例(実施例)を表すタイミング図である。 変形例に係る給電システムの概略構成例を表すブロック図である。 図9に示した給電システムにおける電界の伝播態様例を表す模式図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態(給電対象機器の異常状態でも受電電力に基づく外部への報知を行う例)
2.変形例(電界を用いて非接触に電力伝送を行う給電システムの例等)
<実施の形態>
[給電システム4の全体構成]
 図1は、本開示の一実施の形態に係る給電システム(給電システム4)の外観構成例を表したものであり、図2は、この給電システム4のブロック構成例を表したものである。給電システム4は、磁界を用いて(磁気共鳴や電磁誘導等を利用して;以下同様)、非接触に電力伝送(電力供給,給電,送電)を行うシステム(非接触型の給電システム)である。この給電システム4は、給電装置1(1次側機器)と、給電対象機器としての1または複数の電子機器(ここでは2つの電子機器2A,2B;2次側機器)とを備えている。
 この給電システム4では、例えば図1に示したように、給電装置1における給電面(送電面)S1上に電子機器2A,2Bが置かれる(または近接する)ことにより、給電装置1から電子機器2A,2Bに対して電力伝送が行われるようになっている。ここでは、複数の電子機器2A,2Bに対して同時もしくは時分割的(順次)に電力伝送を行う場合を考慮して、給電装置1は、給電面S1の面積が給電対象の電子機器2A,2B等よりも大きなマット形状(トレー状)となっている。
(給電装置1)
 給電装置1は、上記したように、磁界を用いて電子機器2A,2Bに対して電力伝送(送電)を行うもの(充電トレー)である。この給電装置1は、例えば図2に示したように、送電部110、交流信号発生回路(高周波電力発生回路)111および制御部112を有する送電装置11を備えている。
 送電部110は、後述する送電コイル(1次側コイル)L1およびコンデンサC1p,C1s(共振用のコンデンサ)等を含んで構成されている。送電部110は、これらの送電コイルL1およびコンデンサC1p,C1sを利用して、電子機器2A,2B(詳細には、後述する受電部210)に対して交流磁界を用いた電力伝送(送電)を行うものである(図2中の矢印P1参照)。具体的には、送電部110は、給電面S1から電子機器2A,2Bへ向けて磁界(磁束)を放射する機能を有している。この送電部110はまた、後述する受電部210との間で所定の通信動作を相互に行う機能を有している(図2中の矢印C1参照)。
 交流信号発生回路111は、例えば給電装置1の外部電源9(親電源)から供給される電力を用いて、送電を行うための所定の交流信号Sac(高周波電力)を発生する回路である。このような交流信号発生回路111は、例えば、後述するスイッチングアンプを用いて構成されている。なお、外部電源9としては、例えば、PC(Personal Computer)などに設けられているUSB(Universal Serial Bus)2.0の電源(電力供給能力:500mA,電源電圧:5V程度)等が挙げられる。
 制御部112は、給電装置1全体(給電システム4全体)における種々の制御動作を行うものである。具体的には、送電部110による送電や通信の制御を行うことの他、例えば、送電電力の最適化制御や2次側機器を認証する機能、2次側機器が1次側機器上にあることを判別する機能、異種金属などの混入を検知する機能などを有している。ここで、上記した送電制御の際には、後述する所定の制御信号CTL(送電用の制御信号)を用いて交流信号発生回路111の動作を制御することによって行うようになっている。また、この制御部112は、制御信号CTLを用いて、後述するパルス幅変調(PWM:Pulse Width Modulation)による変調処理を行う機能も有している。
(電子機器2A,2B)
 電子機器2A,2Bは、例えば、テレビ受像機に代表される据え置き型電子機器や、携帯電話やデジタルカメラに代表される、充電池(バッテリー)を含む携帯型の電子機器等からなる。これらの電子機器2A,2Bは、例えば図2に示したように、受電装置21と、この受電装置21から供給される電力に基づいて所定の動作(電子機器としての機能を発揮させる動作)を行う負荷22とを備えている。また、受電装置21は、受電部210、整流回路211、電圧安定化回路212、充電回路213(充電部)、バッテリー214(2次電池)、状態報知部215および制御部216を有している。
 受電部210は、後述する受電コイル(2次側コイル)L2およびコンデンサC2p,C2s(共振用のコンデンサ)等を含んで構成されている。受電部210は、これらの受電コイルL2およびコンデンサC2p,C2s等を利用して、給電装置1内の送電部110から伝送(送電)された電力を受け取る機能を有している。この受電部210はまた、送電部110との間で前述した所定の通信動作を相互に行う機能を有している(図2中の矢印C1参照)。
 整流回路211は、受電部210から供給された電力(交流電力)を整流し、直流電力を生成する回路である。
 電圧安定化回路212は、整流回路211から供給される直流電力に基づいて、所定の電圧安定化動作を行う回路である。
 充電回路213は、電圧安定化回路212から供給される電圧安定化後の直流電力に基づいて、バッテリー214への充電を行うための回路である。
 バッテリー214は、充電回路213による充電に応じて電力を貯蔵するものであり、例えばリチウムイオン電池等の充電池(2次電池)を用いて構成されている。
 状態報知部215は、自身(ここでは電子機器2Aまたは電子機器2B)の機器状態を外部(ユーザ等)へ報知(通知,呈示)するものである。具体的には、例えば後述する発光素子等の点灯状態(表示状態)や、あるいはスピーカ等による音声出力などを用いて、そのような機器状態を外部へ知らせる機能を有している。また、状態報知部215は、ここでは機器状態として、充電回路213によるバッテリー214への充電中および充電完了後の各状態、ならびにバッテリー214の異常状態をそれぞれ、区別して報知するようになっている。なお、この状態報知部215の詳細構成については、後述する(図3)。
 制御部216は、電子機器2A,2B全体(給電システム4全体)における種々の制御動作を行うものである。具体的には、例えば、受電部110による受電や通信の制御を行ったり、電圧安定化回路212や充電回路213等の動作を制御する機能も有している。
[給電装置1および電子機器2A,2Bの詳細構成]
 図3は、図2に示した給電装置1および電子機器2A,2B内の各ブロックの詳細構成例を回路図で表したものである。
(送電部110)
 送電部110は、磁界を用いて電力伝送を行う(磁束を発生させる)ための送電コイルL1と、この送電コイルL1とともにLC共振回路を形成するためのコンデンサC1p,C1sとを有している。コンデンサC1sは、送電コイルL1に対して電気的に直列接続されている。つまり、コンデンサC1sの一端と送電コイルL1の一端とが、互いに接続されている。また、このコンデンサC1sの他端と送電コイルL1の他端とがコンデンサC1pに並列接続され、送電コイルL1とコンデンサC1pとの接続端は接地されている。
 これらの送電コイルL1とコンデンサC1p,C1sとからなるLC共振回路と、後述する受電コイルL2とコンデンサC2p,C2sとからなるLC共振回路とは、互いに磁気結合する。これにより、後述する交流信号発生回路111により生成された高周波電力(交流信号Sac)と略同一の共振周波数によるLC共振動作がなされるようになっている。
(交流信号発生回路111)
 交流信号発生回路111は、スイッチング素子としての1つのトランジスタ(図示せず)を有するスイッチングアンプ(いわゆるE級アンプ)を用いて構成されている。この交流信号発生回路111には、制御部112から送電用の制御信号CTLが供給されるようになっている。この制御信号CTLは、図3中に示したように、所定のデューティ比を有するパルス信号からなる。また、例えば図4(A),(B)に示したように、この制御信号CTLにおけるデューティ比を制御することにより、後述するパルス幅変調がなされるようになっている。
 このような構成により交流信号発生回路111では、送電用の制御信号CTLに従って、上記したトランジスタがオン・オフ動作(所定の周波数およびデューティ比からなるスイッチング動作)を行う。すなわち、制御部112から供給される制御信号CTLを用いて、スイッチング素子としてのトランジスタのオン・オフ動作が制御される。これにより、例えば外部電源9側から入力する直流信号Sdcに基づいて交流信号Sac(交流電力)が生成され、送電部110へ供給されるようになっている。
(受電部210)
 受電部210は、送電部110から伝送された(磁束から)電力を受け取るための受電コイルL2と、この受電コイルL2とともにLC共振回路を形成するためのコンデンサC2p,C2sとを有している。コンデンサC2pは、受電コイルL2に対して電気的に並列接続され、コンデンサC2sは、受電コイルL2に対して電気的に直列接続されている。すなわち、コンデンサC2sの一端は、コンデンサC2pの一端および受電コイルL2の一端に接続されている。また、コンデンサC2sの他端は、整流回路211における一方の入力端子に接続され、受電コイルL2の他端およびコンデンサC2pの他端はそれぞれ、整流回路211における他方の入力端子に接続されている。
 これらの受電コイルL2とコンデンサC2p,C2sとからなるLC共振回路と、前述した送電コイルL1とコンデンサC1p,C1sとからなるLC共振回路とは、互いに磁気結合する。これにより、交流信号発生回路111により生成された高周波電力(交流信号Sac)と略同一の共振周波数によるLC共振動作がなされるようになっている。
(整流回路211)
 整流回路211は、ここでは4つの整流素子(ダイオード)D1~D4を用いて構成されている。具体的には、整流素子D1のアノードおよび整流素子D3のカソードは、互いに整流回路211における一方の入力端子に接続され、整流素子D1のカソードおよび整流素子D2のカソードは、互いに整流回路211における出力端子に接続されている。また、整流素子D2のアノードおよび整流素子D4のカソードは、互いに整流回路211における他方の入力端子に接続され、整流素子D3のアノードおよび整流素子D4のアノードは、互いに接地されている。このような構成により整流回路211では、受電部210から供給された交流電力を整流し、直流電力からなる受電電力P2を電圧安定化回路212へ供給するようになっている。
(充電回路213)
 充電回路213は、電圧安定化後の直流電力(受電電力P2)に基づいて、前述したように、バッテリー214への充電を行うようになっている。この充電回路213はまた、ここでは、以下説明する状態報知部215における点灯制御部215Aを内蔵している。なお、この点灯制御部215Aは、例えばマイクロコンピュータ等からなる。
(状態報知部215)
 状態報知部215もまた、電圧安定化後の直流電力(受電電力P2)を用いて、前述した機器状態を外部へ報知するようになっている。この状態報知部215は、図3に示したように、発光ダイオード(LED:Light Emitting Diode)等からなる発光素子(点灯部)215Lと、上記した点灯制御部215Aと、温度センサ215B(状態検知部)とを有している。
 発光素子215Lは、その点灯状態(例えば、点灯,消灯,点滅の各状態)に応じて、機器状態(前述した充電中,充電完了後,異常状態の各状態)を報知する役割を果たす素子である。この発光素子215Lでは、アノードが充電回路213と負荷22との間の接続ライン上に接続されるとともに、ここではカソードが点灯制御部215Aの端子に接続され、カソード電位が点灯制御部215Aによって制御されるようになっている。
 温度センサ215Bは、バッテリー214の異常状態(例えば発熱等による異常状態)を温度によって検知するための素子である。この温度センサ215Bによる検知結果(温度の値に応じた、バッテリー214における異常状態の有無等の検知結果)は、点灯制御部215Aへ供給されるようになっている。
 点灯制御部215Aは、温度センサ215Bから供給されるバッテリー214における異常状態の有無等の検知結果などに基づいて、ここでは発光素子215Lのカソード電位を制御することにより、この発光素子215Lの点灯状態を制御する(点灯制御を行う)ものである。具体的には、例えば発光素子215Lのカソード電位をグランド電位(接地電位)に設定することにより、図3中に示した電流I2が発光素子215Lに流れて発光素子215Lが点灯するようにする。また、このカソード電位をグランド電位以外の他の電位に設定することにより、電流I2が流れないようにして発光素子215Lが消灯するようにする。なお、この点灯制御部215Aもまた、電圧安定化後の直流電力(受電電力P2)を用いて、そのような動作(点灯制御)を行うようになっている。
 ここで、本実施の形態の状態報知部215では、温度センサ215Bを用いてバッテリー214の異常状態が検知された場合においても、後述するように、給電装置1から受け取った受電電力P2を用いてその異常状態を外部へ報知するようになっている。
[給電システム4の作用・効果]
(1.全体動作の概要)
 この給電システム4では、給電装置1内の交流信号発生回路111が、外部電源9から供給される電力に基づいて、送電部110内の送電コイルL1およびコンデンサC1p,C1s(LC共振回路)に対して、電力伝送を行うための所定の高周波電力(交流信号Sac)を供給する。これにより、送電部110内の送電コイルL1において磁界(磁束)が発生する。このとき、給電装置1の上面(給電面S1)に、給電対象機器(充電対象機器)としての電子機器2A,2Bが置かれる(または近接する)と、給電装置1内の送電コイルL1と電子機器2A,2B内の受電コイルL2とが、給電面S1付近にて近接する。
 このように、磁界(磁束)を発生している送電コイルL1に近接して受電コイルL2が配置されると、送電コイルL1から発生されている磁束に誘起されて、受電コイルL2に起電力が生じる。換言すると、電磁誘導または磁気共鳴により、送電コイルL1および受電コイルL2のそれぞれに鎖交して磁界が発生する。これにより、送電コイルL1側(1次側、給電装置1側、送電部110側)から受電コイルL2側(2次側、電子機器2A,2B側、受電部210側)に対して、電力伝送がなされる(図2,図3中の矢印P1参照)。このとき、給電装置1側の送電コイルL1と電子機器2A,2B側の受電コイルL2とが、電磁誘導等により互いに磁気結合し、前述したLC共振回路においてLC共振動作が行われる。
 すると、電子機器2A,2Bでは、受電コイルL2において受け取った交流電力が、整流回路211、電圧安定化回路212および充電回路213へ供給され、以下の充電動作がなされる。すなわち、この交流電力が整流回路211および電圧安定化回路212によって所定の直流電力に変換されて電圧安定化がなされた後、充電回路213によって、この直流電力に基づくバッテリー214への充電がなされる。このようにして、電子機器2A,2Bにおいて、受電部210において受け取った電力に基づく充電動作がなされる。
 すなわち、本実施の形態では、電子機器2A,2Bの充電に際し、例えばACアダプタ等への端子接続が不要であり、給電装置1の給電面S1上に置く(近接させる)だけで、容易に充電を開始させることができる(非接触給電がなされる)。これは、ユーザにおける負担軽減に繋がる。
 また、例えば図5に示したように、このような給電動作の際には、給電期間Tp(バッテリー214への充電期間)と通信期間Tc(非充電期間)とが、時分割で周期的(もしくは非周期的)になされる。換言すると、制御部112および制御部216は、このような給電期間Tpと通信期間Tcとが時分割で周期的(もしくは非周期的)に設定されるように制御する。ここで、この通信期間Tcとは、1次側機器(給電装置1)と2次側機器(電子機器2A,2B)との間で、送電コイルL1および受電コイルL2を用いた相互の通信動作(互いの機器間認証や給電効率制御等のための通信動作)を行う期間である(図2,図3中の矢印C1参照)。なお、このときの給電期間Tpと通信期間Tcとの時間の比率は、例えば、給電期間Tp:通信期間Tc=9:1程度である。
 ここで、この通信期間Tcでは、例えば交流信号発生回路111におけるパルス幅変調を用いた通信動作が行われる。具体的には、所定の変調データに基づいて、通信期間Tcにおける制御信号CTLのデューティ比が設定されることにより、パルス幅変調による通信がなされる。なお、前述した送電部110および受電部210における共振動作時に周波数変調を行うことは原理的に難しいため、このようなパルス幅変調を用いることで簡易に通信動作が実現される。
(2.状態報知動作)
 また、本実施の形態の給電システム4では、電子機器2A,2B内に、これらの電子機器2A,2Bの機器状態を外部へ報知する手段(状態報知部215)が設けられている。この状態報知部215は、給電装置1から受け取った受電電力P2を用いて、そのような機器状態を外部へ報知する。
 具体的には、充電回路213によるバッテリー214への充電中および充電完了後の各状態、ならびにバッテリー214の異常状態をそれぞれ、ここでは発光素子215Lの点灯状態(点灯,消灯,点滅の各状態)に応じて区別して報知する。すなわち、この状態報知部215内の点灯制御部215Aは、例えば、充電中の状態では発光素子215Lが点灯するように制御し、充電完了後の状態では発光素子215Lが消灯するように制御し、上記した異常状態では発光素子215Lが点滅するように制御する。
 電子機器2A,2Bでは、状態報知部215によるこのような状態報知動作が行われることにより、ユーザ等に対してその時点での機器状態を知らせることができ、ユーザ等における利便性の向上が図られる。以下、本実施の形態の状態報知動作に関して、比較例と比較しつつ詳細に説明する。
(2-1.比較例)
 図6は、比較例に係る給電システム(給電システム104)における動作例を、タイミング図で表したものである。この図6において、(A)は送電装置11における動作状態を、(B)は充電回路213における動作状態を、(C)は発光素子215Lにおける動作状態を、それぞれ示している。なお、この比較例の給電システム104は、図7に示したように、給電装置1と、比較例に係る電子機器102A,102Bとを備えている。
 この比較例では、図6(A)~(C)に示したように、まずタイミングt101までの期間では、給電装置1内の送電装置11から電子機器102A,102Bへの電力伝送(送電)がなされている。したがって、充電回路213ではこのとき受け取った充電電力P2を用いて、バッテリー214への充電動作が行われる。また、この充電回路213に内蔵する点灯制御部215Aも、この充電電力P2を用いて発光素子215Lが点灯状態となるように点灯制御を行うことにより、バッテリー214への充電中である旨が外部へ報知される。
 次いで、タイミングt101~t102の期間では、温度センサ215Bによってバッテリー214における発熱等による異常状態が検知されている。このため、図6中の破線の矢印で示したように、送電装置1から電子機器102A,102Bへの電力伝送(送電)が停止されている。このようにして電力伝送動作が停止されることにより、例えば図7中の「×」で示したように、受電電力P2が、電子機器102A,120B内の電圧安定化回路212、充電回路213、状態報知部215および制御部216等へ供給されなくなる。その結果、図6(B),(C)および図7に示したように、充電回路213およびこれに内蔵する点灯制御部215A等の動作が停止してしまい、発光素子215Lを用いた状態報知動作も停止してしまう。すなわち、このタイミングt101~t102の期間では、発光素子215Lが常に消灯状態となる。
 続いて、タイミングt102~t103の期間では、温度センサ215Bによって、バッテリー214が異常状態から正常状態に復帰されたことが検知されたため、上記したタイミングt101までの期間と同様の動作状態となる。すなわち、図6(A)~(C)に示したように、送電装置11から電子機器102A,102Bへの電力伝送(送電)が再開し、その結果、充電回路213および点灯制御部215Aでは、受電電力P2を用いて充電動作および点灯制御がなされる。したがって、このタイミングt102~t103の期間においても発光素子215Lが点灯状態となり、バッテリー214への充電中である旨が外部へ報知される。
 そののち、タイミングt103以降の期間では、図6(A)~(C)に示したように、バッテリー214への充電動作が完了となり、送電装置11から電子機器102A,102Bへの電力伝送(送電)動作も停止している。したがって、このタイミングt103以降の期間では、発光素子215Lが消灯状態となり、バッテリー214への充電完了後である旨が外部へ報知される。
 このようにして比較例の給電システム104では、バッテリー214の異常状態の期間においても、送電装置11から電子機器102A,102Bへの電力伝送(送電)が停止されるため、受電電力P2の欠如に起因して状態報知動作が停止してしまう。その結果、図6中の矢印P101で示したように、このバッテリー214の異常状態の期間と充電完了後の期間とのいずれにおいても、発光素子215Lが消灯状態となる。つまり、ユーザ等にとっては、異常状態の報知と他の機器状態(ここでは充電完了の状態)の報知とが判別不能になるため、ユーザ等による機器状態の誤判断が生じるおそれがある。このようにして、比較例の給電システム104では、ユーザの利便性が低下してしまうことになる。
 なお、このようにしてバッテリー214の異常状態が発生したときに、そのバッテリー214に対する充電動作を停止させるのは当然であるとしても、特に非接触による給電システムにおいては、有線式の給電システムとは異なり、以下のことが言える。すなわち、そのような異常状態のバッテリー214を内蔵する給電対象機器に対して、非接触による電力供給を行うことには抵抗感が生じる。これらのことから、非接触による給電システムでは、給電対象機器内のバッテリーに異常状態が発生したときには、この比較例のように非接触による電力伝送(送電)動作が停止される結果、機器状態の判別不能となってしまうことが十分に想定されると言える。
(2-2.本実施の形態)
 これに対して本実施の形態の給電システム4では、以下のようにして上記比較例における問題を解決している。
 図8は、本実施の形態の給電システム4における動作例を、タイミング図で表したものである。この図8において、(A)は送電装置11における動作状態を、(B)は充電回路213における動作状態を、(C)は発光素子215Lにおける動作状態を、(D)は給電装置1と電子機器2A,2Bとの間の通信動作の状態を、それぞれ示している。
 図8に示した動作例でも、上記した図6に示した動作例(比較例)と同様に、タイミングt1までの期間およびタイミングt2~t3の期間では、温度センサ215Bによってバッテリー214が正常状態であることが検知されている。したがって、送電装置11から電子機器2A,2Bへの電力伝送(送電)がなされ、充電回路213および点灯制御部215Aでは、受電電力P2を用いて充電動作および点灯制御が行われる。よって、発光素子215Lが点灯状態となり、バッテリー214への充電中である旨が外部へ報知される。
 また、タイミングt3以降の期間では、図6に示した動作例と同様に、バッテリー214への充電動作が完了となり、送電装置11から電子機器102A,102Bへの電力伝送(送電)動作が停止している。したがって、発光素子215Lが消灯状態となり、バッテリー214への充電完了後である旨が外部へ報知される。
 ただし、タイミングt1~t2の期間では、本実施の形態では上記比較例とは異なり、図8中の実線の矢印で示したような動作となる。すなわち、温度センサ215Bによって、バッテリー214の異常状態が検知されても、送電装置11から電子機器2A,2Bへの電力伝送(送電)が継続され、状態報知部215では、引き続きそのときの受電電力P2を用いて、その異常状態が外部へ報知される。つまり、上記比較例とは異なり、電力伝送が継続されることで受電電力P2の欠如が回避される結果、バッテリー214の異常状態が発生した期間においても状態報知動作が停止せずに済む(状態報知動作の停止が回避される)。このように本実施の形態では、「異常状態の発生時には電力供給を停止させるのではなく、むしろ電力伝送を継続させる」という、上記比較例とは逆転の発想による状態報知動作がなされる。
 なお、このようにして電力伝送が継続されるようにする制御は、例えば給電装置1内の制御部112と電子機器2A,2B内の制御部216との間で、前述した通信動作を利用して行われる。すなわち、例えば、制御部112は、給電装置1と電子機器2A,2Bとの間の通信により、電子機器2A,2B内のバッテリー214における異常状態の発生を把握し、そのような異常状態が発生した場合でも送電部110による電力伝送が継続されるように制御する。このように、電子機器2A,2B内でバッテリー214の異常状態が検知された場合には、その異常状態が検知された旨が、通信を利用して給電装置1側へ通知されるようにする。ただし、このような通信を利用して電力伝送を継続させる制御を行うのではなく、単に給電装置1側において、電子機器2A,2B側のバッテリー214の状態(正常状態であるのか否か)を把握せずに電力伝送を行うようにしてもよい。
 このようにして本実施の形態の状態報知動作では、例えば図8(C)に示したように、点灯制御部215Aによる点灯制御により、充電中の状態では発光素子215Lが点灯し、充電完了後の状態では発光素子215Lが消灯し、異常状態では発光素子215Lが点滅する。したがって、上記比較例とは異なり、異常状態の報知と他の機器状態(ここでは、充電の完了状態)の報知とが判別不能になること等に起因した、ユーザによる機器状態の誤判断が防止される。
 なお、このとき、本実施の形態においても上記比較例と同様に、図8(B)に示したように、充電回路213は、バッテリー214の異常状態が検知された場合には、そのバッテリー214への充電を停止する。また、充電回路213は、バッテリー214が異常状態から正常状態に復帰したことが検知された場合には、そのバッテリー214への充電を再開する。
(3.通信動作の設定について)
 また、本実施の形態では、例えば図8(D)に示したようにして、給電装置1と電子機器2A,2Bとの間の通信動作が設定されているのが望ましい。なお、このような通信動作の設定(制御)は、例えば給電装置1内の制御部112や電子機器2A,2B内の制御部216によって行われる。
 具体的には、まず、充電回路213によるバッテリー214への充電完了後においても、通信動作(通信期間Tc)が継続して設定されるようにするのが望ましい。これにより、充電完了後においてもそのような通信動作を定期的に行うことによって、給電システム4内の動作状態(給電装置1および電子機器2A,2Bの機器状態)を給電装置1および電子機器2A,2Bが相互に把握し、それに応じて適切な対応を取ることができるからである。
 また、このとき図8(D)に示したように、充電完了後の期間では充電中の期間と比べ、通信動作(通信期間Tc)が低頻度に設定されているのが望ましい。また、異常状態の期間では正常状態の期間と比べ、通信動作(通信期間Tc)が高頻度に設定されているのが望ましい。これらのことから、この動作例では、充電中の期間では通信動作が中頻度に設定されているのに対し、充電完了後の期間では通信動作が低頻度に設定され、異常状態の期間では通信動作が高頻度に設定されている。これは、充電完了後の期間では、互いの機器状態をそれほど頻繁に把握する必要性が高くないことによるとともに、異常状態の期間ではその対処のために、正常状態と比べて互いの機器状態を頻繁に把握する必要性があるからである。
 以上のように本実施の形態では、電子機器2A,2Bの機器状態として異常状態が検知された場合においても、給電装置1では送電部110による磁界を用いた電力伝送を継続すると共に、電子機器2A,2Bでは、磁界を用いて伝送された電力(受電電力P2)を用いてその異常状態を外部へ報知する。これにより、例えば異常状態の報知と他の機器状態の報知とが判別不能になること等に起因した、ユーザによる機器状態の誤判断を防止することができる。よって、磁界を用いて電力伝送を行う際に、ユーザの利便性を向上させることが可能となる。
<変形例>
 以上、実施の形態を挙げて本開示の技術を説明したが、本技術はこの実施の形態に限定されず、種々の変形が可能である。
 例えば、上記実施の形態では各種のコイル(送電コイル,受電コイル)を挙げて説明しているが、これらのコイルの構成(形状)としては種々のものを用いることが可能である。すなわち、例えばスパイラル形状やループ形状、磁性体を用いたバー形状、スパイラルコイルを2層で折り返すように配置するα巻き形状、更なる多層のスパイラル形状、厚み方向に巻線が巻回しているヘリカル形状などによって、各コイルを構成することが可能である。また、各コイルは、導電性を有する線材により構成された巻き線コイルだけではなく、プリント基板やフレキシブルプリント基板などにより構成された、導電性を有するパターンコイルであってもよい。
 また、上記実施の形態では、給電対象機器の一例として電子機器を挙げて説明したが、これには限られず、電子機器以外の給電対象機器(例えば、電気自動車等の車両など)であってもよい。
 更に、上記実施の形態では、給電装置および電子機器の各構成要素を具体的に挙げて説明したが、全ての構成要素を備える必要はなく、また、他の構成要素を更に備えていてもよい。例えば、給電装置や電子機器内に、通信機能や何かしらの制御機能、表示機能、2次側機器を認証する機能、2次側機器が1次側機器上にあることを判別する機能、異種金属などの混入を検知する機能などを搭載するようにしてもよい。
 加えて、上記実施の形態では、主に、給電システム内に複数(2つ)の電子機器が設けられている場合を例に挙げて説明したが、この場合には限られず、給電システム内に1つの電子機器のみが設けられているようにしてもよい。
 また、上記実施の形態では、給電装置の一例として、携帯電話機等の小型の電子機器(CE機器)向けの充電トレーを挙げて説明したが、給電装置としてはそのような家庭用の充電トレーには限定されず、様々な電子機器等の充電器として適用可能である。また、必ずしもトレーである必要はなく、例えば、いわゆるクレードル等の電子機器用のスタンドであってもよい。
(電界を用いて非接触に電力伝送を行う給電システムの例)
 また、上記実施の形態では、1次側機器としての給電装置から2次側機器としての電子機器に対して、磁界を用いて非接触に電力伝送(給電)を行う給電システムの場合を例に挙げて説明したが、これには限られない。すなわち、本開示内容は、1次側機器としての給電装置から2次側機器としての電子機器に対して、電界(電界結合)を用いて非接触に電力伝送を行う給電システムにおいても適用することが可能であり、上記実施の形態と同様の効果を得ることが可能である。
 具体的には、例えば図9に示した給電システムは、1つの給電装置81(1次側機器)と、1つの電子機器82(2次側機器)とを備えている。給電装置81は、主に、送電電極E1(1次側電極)を含む送電部810と、交流信号源811(発振器)と、接地電極Eg1とを有している。電子機器82は、主に、受電電極E2(2次側電極)を含む受電部820と、整流回路821と、負荷822と、接地電極Eg2とを有している。すなわち、この給電システムは、送電電極E1および受電電極E2と、接地電極Eg1,Eg2との2組の電極を備えている。換言すると、給電装置81(1次側機器)および電子機器82(2次側機器)はそれぞれ、モノポールアンテナのような非対称性の一対の電極構造からなるアンテナを、機器内部に有している。
 このような構成の給電システムでは、送電電極E1と受電電極E2とが互いに対向すると、上記した非接触性のアンテナ同士が、互いに結合する(電極の垂直方向に沿って互いに電界結合する)。すると、これらの間に誘導電界が発生し、これにより電界を用いた電力伝送が行われる(図9中に示した電力P8参照)。具体的には、例えば図10に模式的に示したように、送電電極E1側から受電電極E2側へと向かって、発生した電界(誘導電界Ei)が伝播すると共に、接地電極Eg2側から接地電極Eg1側へと向かって、発生した誘導電界Eiが伝播する。すなわち、1次側機器と2次側機器との間で、発生した誘導電界Eiのループ経路が形成されることになる。このような電界を用いた非接触による電力供給システムにおいても、上記実施の形態と同様の手法を適用することにより、同様の効果を得ることが可能である。
 なお、本技術は以下のような構成を取ることも可能である。
(1)
 磁界または電界を用いて伝送された電力を受け取る受電部と、
 前記受電部により受け取った受電電力を用いて、自身の機器状態を外部へ報知する状態報知部と
 を備え、
 前記状態報知部は、前記機器状態として異常状態が検知された場合においても、前記受電電力を用いてその異常状態を報知する
 電子機器。
(2)
 2次電池と、
 前記受電電力に基づいて前記2次電池への充電を行う充電部と
 を備え、
 前記充電部は、前記異常状態が検知された場合には、前記2次電池への充電を停止する
 上記(1)に記載の電子機器。
(3)
 前記状態報知部は、前記異常状態として、前記2次電池における異常状態を検知する状態検知部を有する
 上記(2)に記載の電子機器。
(4)
 前記状態検知部は、前記2次電池の温度によって前記2次電池における異常状態を検知する
 上記(3)に記載の電子機器。
(5)
 前記充電部は、前記機器状態が前記異常状態から正常状態に復帰した場合には、前記2次電池への充電を再開する
 上記(2)ないし(4)のいずれかに記載の電子機器。
(6)
 前記状態報知部は、前記機器状態としての、前記充電部による充電中および充電完了後の各状態ならびに前記異常状態をそれぞれ、区別して報知する
 上記(2)ないし(5)のいずれかに記載の電子機器。
(7)
 前記状態報知部は、前記機器状態を点灯状態に応じて報知する点灯部と、この点灯部の点灯状態を制御する点灯制御部とを有する
 上記(6)に記載の電子機器。
(8)
 前記点灯制御部は、
 前記充電中の状態では、前記点灯部が点灯するように制御し、
 前記充電完了後の状態では、前記点灯部が消灯するように制御し、
 前記異常状態では、前記点灯部が点滅するように制御する
 上記(7)に記載の電子機器。
(9)
 給電装置から磁界または電界を用いた電力伝送が行われる給電期間と、前記給電装置との間で所定の通信を行う通信期間とが、時分割に設定されている
 上記(2)ないし(8)のいずれかに記載の電子機器。
(10)
 前記充電部による前記2次電池への充電完了後においても、前記通信期間が継続して設定される
 上記(9)に記載の電子機器。
(11)
 前記充電完了後の期間では前記2次電池への充電中の期間と比べ、前記通信期間が低頻度に設定されている
 上記(10)に記載の電子機器。
(12)
 前記異常状態の期間では前記機器状態が正常状態の期間と比べ、前記通信期間が高頻度に設定されている
 上記(10)または(11)に記載の電子機器。
(13)
 前記異常状態が検知された場合には、その異常状態が検知された旨が、前記通信を利用して前記給電装置側へ通知される
 上記(9)ないし(12)のいずれかに記載の電子機器。
(14)
 1または複数の電子機器と、
 前記電子機器に対して磁界または電界を用いた電力伝送を行う給電装置と
 を備え、
 前記電子機器は、
 前記給電装置から伝送された電力を受け取る受電部と、
 前記受電部により受け取った受電電力を用いて、自身の機器状態を外部へ報知する状態報知部と
 を有し、
 前記状態報知部は、前記機器状態として異常状態が検知された場合においても、前記受電電力を用いてその異常状態を報知する
 給電システム。
(15)
 給電対象機器に対して磁界または電界を用いた電力伝送を行う送電部と、
 前記給電対象機器における異常状態が検知された場合においても、前記送電部による電力伝送を継続させる制御部と
 を備えた給電装置。
(16)
 前記制御部は、前記給電対象機器との間での通信により、前記異常状態の発生を把握する
 上記(15)に記載の給電装置。
 本出願は、日本国特許庁において2011年11月29日に出願された日本特許出願番号2011-260058号、および2012年4月18日に出願された日本特許出願番号2012-94335号を基礎として優先権を主張するものであり、これらの出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (16)

  1.  磁界または電界を用いて伝送された電力を受け取る受電部と、
     前記受電部により受け取った受電電力を用いて、自身の機器状態を外部へ報知する状態報知部と
     を備え、
     前記状態報知部は、前記機器状態として異常状態が検知された場合においても、前記受電電力を用いてその異常状態を報知する
     電子機器。
  2.  2次電池と、
     前記受電電力に基づいて前記2次電池への充電を行う充電部と
     を備え、
     前記充電部は、前記異常状態が検知された場合には、前記2次電池への充電を停止する
     請求項1に記載の電子機器。
  3.  前記状態報知部は、前記異常状態として、前記2次電池における異常状態を検知する状態検知部を有する
     請求項2に記載の電子機器。
  4.  前記状態検知部は、前記2次電池の温度によって前記2次電池における異常状態を検知する
     請求項3に記載の電子機器。
  5.  前記充電部は、前記機器状態が前記異常状態から正常状態に復帰した場合には、前記2次電池への充電を再開する
     請求項2に記載の電子機器。
  6.  前記状態報知部は、前記機器状態としての、前記充電部による充電中および充電完了後の各状態ならびに前記異常状態をそれぞれ、区別して報知する
     請求項2に記載の電子機器。
  7.  前記状態報知部は、前記機器状態を点灯状態に応じて報知する点灯部と、この点灯部の点灯状態を制御する点灯制御部とを有する
     請求項6に記載の電子機器。
  8.  前記点灯制御部は、
     前記充電中の状態では、前記点灯部が点灯するように制御し、
     前記充電完了後の状態では、前記点灯部が消灯するように制御し、
     前記異常状態では、前記点灯部が点滅するように制御する
     請求項7に記載の電子機器。
  9.  給電装置から磁界または電界を用いた電力伝送が行われる給電期間と、前記給電装置との間で所定の通信を行う通信期間とが、時分割に設定されている
     請求項2に記載の電子機器。
  10.  前記充電部による前記2次電池への充電完了後においても、前記通信期間が継続して設定される
     請求項9に記載の電子機器。
  11.  前記充電完了後の期間では前記2次電池への充電中の期間と比べ、前記通信期間が低頻度に設定されている
     請求項10に記載の電子機器。
  12.  前記異常状態の期間では前記機器状態が正常状態の期間と比べ、前記通信期間が高頻度に設定されている
     請求項10に記載の電子機器。
  13.  前記異常状態が検知された場合には、その異常状態が検知された旨が、前記通信を利用して前記給電装置側へ通知される
     請求項9に記載の電子機器。
  14.  1または複数の電子機器と、
     前記電子機器に対して磁界または電界を用いた電力伝送を行う給電装置と
     を備え、
     前記電子機器は、
     前記給電装置から伝送された電力を受け取る受電部と、
     前記受電部により受け取った受電電力を用いて、自身の機器状態を外部へ報知する状態報知部と
     を有し、
     前記状態報知部は、前記機器状態として異常状態が検知された場合においても、前記受電電力を用いてその異常状態を報知する
     給電システム。
  15.  給電対象機器に対して磁界または電界を用いた電力伝送を行う送電部と、
     前記給電対象機器における異常状態が検知された場合においても、前記送電部による電力伝送を継続させる制御部と
     を備えた給電装置。
  16.  前記制御部は、前記給電対象機器との間での通信により、前記異常状態の発生を把握する
     請求項15に記載の給電装置。
PCT/JP2012/079391 2011-11-29 2012-11-13 電子機器、給電装置および給電システム WO2013080786A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/352,777 US9577475B2 (en) 2011-11-29 2012-11-13 Electronic device, feed unit, and feed system for reliably informing user of electronic device state during wireless electric power transmission
CN201280057512.0A CN103947074B (zh) 2011-11-29 2012-11-13 电子设备、馈电装置和馈电系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011260058 2011-11-29
JP2011-260058 2011-11-29
JP2012094335A JP5919991B2 (ja) 2011-11-29 2012-04-18 電子機器、給電装置および給電システム
JP2012-094335 2012-04-18

Publications (1)

Publication Number Publication Date
WO2013080786A1 true WO2013080786A1 (ja) 2013-06-06

Family

ID=48535253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079391 WO2013080786A1 (ja) 2011-11-29 2012-11-13 電子機器、給電装置および給電システム

Country Status (4)

Country Link
US (1) US9577475B2 (ja)
JP (1) JP5919991B2 (ja)
CN (1) CN103947074B (ja)
WO (1) WO2013080786A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014241682A (ja) * 2013-06-11 2014-12-25 キヤノン株式会社 給電装置、給電方法、プログラム及び記録媒体

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6060516B2 (ja) * 2011-11-30 2017-01-18 ソニー株式会社 電子機器および給電システム
JP2015144160A (ja) * 2014-01-31 2015-08-06 デクセリアルズ株式会社 アンテナ装置、非接触電力伝送用アンテナユニット、電子機器
JP2015149405A (ja) * 2014-02-06 2015-08-20 デクセリアルズ株式会社 アンテナ装置、非接触電力伝送用アンテナユニット、及び電子機器
JP6405253B2 (ja) * 2015-01-28 2018-10-17 ローム株式会社 非接触給電システム
CN105934865B (zh) * 2015-09-22 2018-06-12 广东欧珀移动通信有限公司 控制充电的方法和装置以及电子设备
JP2016226291A (ja) * 2016-09-15 2016-12-28 トヨタ自動車株式会社 電力伝送システム
KR20200101225A (ko) * 2019-02-19 2020-08-27 삼성전자주식회사 무선 전력 공유에 따른 사용자 인터페이스 제공 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278273A (ja) * 2004-03-24 2005-10-06 Matsushita Electric Ind Co Ltd 非接触充電式情報端末装置
JP2011172299A (ja) * 2010-02-16 2011-09-01 Nec Tokin Corp 非接触電力伝送及び通信システム

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435317A3 (en) * 1989-12-28 1992-06-17 Kabushiki Kaisha Toshiba Personal computer for performing charge and switching control of different types of battery packs
US5998968A (en) * 1997-01-07 1999-12-07 Ion Control Solutions, Llc Method and apparatus for rapidly charging and reconditioning a battery
JP3826407B2 (ja) * 1998-03-24 2006-09-27 セイコーエプソン株式会社 電子機器、電子機器の制御方法、二次電池の容量推定方法および二次電池の充電制御方法
US6024308A (en) 1998-11-11 2000-02-15 J&L Fiber Services, Inc. Conically tapered disc-shaped comminution element for a disc refiner
JP3777908B2 (ja) 1999-09-30 2006-05-24 セイコーエプソン株式会社 電子機器および電子機器の制御方法
WO2001080396A1 (fr) * 2000-04-13 2001-10-25 Makita Corporation Adaptateur pour chargeur de batterie
JP3631112B2 (ja) 2000-07-14 2005-03-23 三洋電機株式会社 非接触型充電装置及び携帯電話機
WO2004036717A1 (en) * 2002-10-14 2004-04-29 Chungpa Emt Co., Ltd. Non-contact type battery pack charging apparatus
JP4036813B2 (ja) 2003-09-30 2008-01-23 シャープ株式会社 非接触電力供給システム
US7528579B2 (en) * 2003-10-23 2009-05-05 Schumacher Electric Corporation System and method for charging batteries
JP4251117B2 (ja) * 2004-07-02 2009-04-08 日本電気株式会社 携帯通信端末及びその発熱対策方法
US7626353B2 (en) * 2004-10-19 2009-12-01 Hitachi, Ltd. Mobile type information terminal and self diagnosis method and operation method thereof
JP2006211787A (ja) * 2005-01-26 2006-08-10 Brother Ind Ltd 電子機器
JP2006302733A (ja) * 2005-04-22 2006-11-02 Matsushita Electric Ind Co Ltd 電池パック及びその接続システム
JP4410722B2 (ja) * 2005-05-06 2010-02-03 株式会社日立製作所 電源装置
CN200973024Y (zh) * 2006-08-22 2007-11-07 夏新电子股份有限公司 采用Windows处理系统的手持设备的充电装置
JP4308858B2 (ja) 2007-02-16 2009-08-05 セイコーエプソン株式会社 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器
JP5556002B2 (ja) * 2008-01-09 2014-07-23 セイコーエプソン株式会社 送電制御装置、送電装置、無接点電力伝送システムおよび電子機器
KR100976161B1 (ko) * 2008-02-20 2010-08-16 정춘길 무접점충전시스템 및 그의 충전제어방법
JP2010016985A (ja) * 2008-07-03 2010-01-21 Sanyo Electric Co Ltd 電力搬送における情報伝送方法とこの情報伝送方法を使用する充電台と電池内蔵機器
JP4911148B2 (ja) 2008-09-02 2012-04-04 ソニー株式会社 非接触給電装置
US8648565B2 (en) * 2008-12-09 2014-02-11 Toyota Jidosha Kabushiki Kaisha Power supply system of vehicle
US8143862B2 (en) * 2009-03-12 2012-03-27 02Micro Inc. Circuits and methods for battery charging
CN101938149A (zh) * 2009-06-29 2011-01-05 鸿富锦精密工业(深圳)有限公司 无线充电装置
CN102130477A (zh) * 2010-01-14 2011-07-20 昆盈企业股份有限公司 无线充电装置及其充电方法
EP2580844A4 (en) * 2010-06-11 2016-05-25 Mojo Mobility Inc WIRELESS POWER TRANSFER SYSTEM SUPPORTING INTEROPERABILITY AND MULTIPOLAR MAGNETS FOR USE WITH THIS SYSTEM
JP2012049031A (ja) * 2010-08-27 2012-03-08 Denso Corp 電池管理装置
US8890475B1 (en) * 2010-09-28 2014-11-18 Gilbert Scott Becker Automobile charging and communications station
US9252463B2 (en) * 2010-10-21 2016-02-02 Chervon (Hk) Limited Battery charging system having multiple charging modes
US8484496B2 (en) * 2011-04-22 2013-07-09 Qualcomm Incorporated Method and system for thermal management of battery charging concurrencies in a portable computing device
JP5781392B2 (ja) * 2011-07-28 2015-09-24 三洋電機株式会社 電池パック及び電池駆動機器並びに電池パックの無接点充電方法
US9225185B2 (en) * 2011-10-21 2015-12-29 Samsung Electronics Co., Ltd. Method and apparatus for controlling charging in electronic device
JP6060515B2 (ja) * 2011-12-22 2017-01-18 ソニー株式会社 電子機器および給電システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278273A (ja) * 2004-03-24 2005-10-06 Matsushita Electric Ind Co Ltd 非接触充電式情報端末装置
JP2011172299A (ja) * 2010-02-16 2011-09-01 Nec Tokin Corp 非接触電力伝送及び通信システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014241682A (ja) * 2013-06-11 2014-12-25 キヤノン株式会社 給電装置、給電方法、プログラム及び記録媒体
KR20170092140A (ko) * 2013-06-11 2017-08-10 캐논 가부시끼가이샤 급전장치, 급전방법 및 기록 매체
US9829942B2 (en) 2013-06-11 2017-11-28 Canon Kabushiki Kaisha Method, apparatus and recording medium for detecting change of position of wirelessly chargeable electronic device
KR101865052B1 (ko) * 2013-06-11 2018-06-08 캐논 가부시끼가이샤 급전장치, 급전방법 및 기록 매체

Also Published As

Publication number Publication date
CN103947074B (zh) 2017-10-17
JP5919991B2 (ja) 2016-05-18
CN103947074A (zh) 2014-07-23
JP2013138590A (ja) 2013-07-11
US9577475B2 (en) 2017-02-21
US20140239893A1 (en) 2014-08-28

Similar Documents

Publication Publication Date Title
JP5919991B2 (ja) 電子機器、給電装置および給電システム
US20230178817A1 (en) Feed unit, feed system, and electronic device for increasing power supplied to a battery based on a device state and/or a control of a charging current
JP6003172B2 (ja) 給電装置および給電システム
JP6007561B2 (ja) 給電装置および給電システム
US10938238B2 (en) Electronic apparatus and feed system
US11088575B2 (en) Reliably informing user of electronic device state during charging
JP5857861B2 (ja) 給電装置、給電システムおよび電子機器
WO2013094469A1 (ja) 電子機器および給電システム
JP5975043B2 (ja) 電子機器および給電システム
JP2013102665A (ja) 給電装置および給電システム
JP2016054643A (ja) 電子機器および給電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853158

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14352777

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853158

Country of ref document: EP

Kind code of ref document: A1