WO2013080550A1 - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
WO2013080550A1
WO2013080550A1 PCT/JP2012/007666 JP2012007666W WO2013080550A1 WO 2013080550 A1 WO2013080550 A1 WO 2013080550A1 JP 2012007666 W JP2012007666 W JP 2012007666W WO 2013080550 A1 WO2013080550 A1 WO 2013080550A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
solar cell
cell module
front glass
layer
Prior art date
Application number
PCT/JP2012/007666
Other languages
English (en)
French (fr)
Inventor
篠原 亘
渡辺 裕之
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2013546999A priority Critical patent/JP6025123B2/ja
Publication of WO2013080550A1 publication Critical patent/WO2013080550A1/ja
Priority to US14/289,287 priority patent/US20140261684A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10293Edge features, e.g. inserts or holes
    • B32B17/10302Edge sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a solar cell module.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique for improving the reliability of a solar cell module.
  • a solar cell module includes a front glass plate disposed on the light receiving side, a back glass plate provided to face the front glass plate, and a front glass plate.
  • a photovoltaic device provided between the back glass plate and a filler filled between the front glass plate and the back glass plate.
  • the front glass plate and the back glass plate have a joint portion that is melt-joined at the peripheral portion.
  • a gap is formed between the outer peripheral portion of the filler and the joint portion.
  • the reliability of the solar cell module can be improved.
  • FIG. 2 is a cross-sectional view taken along line AA in the vicinity of the terminal box shown in FIG. It is a principal part enlarged view of the outer edge part of the solar cell module shown in FIG. It is a figure which shows the modification of the fusion
  • FIG. 1 is a plan view of the solar cell module according to the first embodiment viewed from the light receiving surface side. 2 is a cross-sectional view taken along the line AA in the vicinity of the terminal box shown in FIG.
  • the solar cell module 10 is provided between the front glass plate 12 disposed on the light receiving side, the back glass plate 14 provided so as to face the front glass plate 12, and the front glass plate 12 and the back glass plate 14.
  • a photovoltaic device 16 is provided between the front glass plate 12 disposed on the light receiving side, the back glass plate 14 provided so as to face the front glass plate 12, and the front glass plate 12 and the back glass plate 14.
  • the surface glass plate 12 is, for example, a glass plate having a 1 m square and a plate thickness of 4 mm.
  • the present invention is not limited to this, and any material that is suitable for forming the photovoltaic device 16 and that can mechanically support the solar cell module 10 may be used. Incident light to the solar cell module 10 is basically performed from the surface glass plate 12 side.
  • a photovoltaic device 16 is formed on the surface glass plate 12.
  • the photovoltaic device 16 is formed by laminating a transparent electrode, a photoelectric conversion unit, a back electrode, and the like.
  • the transparent electrode for example, tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. is doped with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc.
  • TCO transparent conductive oxides
  • a film in which at least one kind or a plurality of kinds is combined can be used.
  • the photoelectric conversion unit examples include an amorphous silicon photoelectric conversion unit (a-Si unit) and a microcrystalline silicon photoelectric conversion unit ( ⁇ c-Si unit).
  • the photoelectric conversion unit may have a structure in which a plurality of photoelectric conversion units are stacked such as a tandem type or a triple type.
  • the back electrode can be a transparent conductive oxide (TCO), a reflective metal, or a laminated structure thereof.
  • TCO transparent conductive oxide
  • SnO 2 tin oxide
  • ZnO zinc oxide
  • ITO indium tin oxide
  • silver (Ag), aluminum (Al ) Or the like is used.
  • the back glass plate 14 is provided so as to cover the photovoltaic device 16 formed on the front glass plate 12.
  • a glass plate having a thickness of 3.2 mm is applied to the back glass plate 14 having substantially the same size as the front glass plate 12.
  • it is not limited to this.
  • the front glass plate 12 and the back glass plate 14 are melt-bonded in the bonding region R1 of the outer peripheral region thereof.
  • the joining region R1 is provided on the peripheral edge R2 where the photovoltaic device 16 is not formed on the surface glass plate 12.
  • the peripheral portion R2 (region not hatched in FIG. 1) can be provided, for example, by removing the photovoltaic device 16 once formed on the surface glass plate 12 with a laser or the like.
  • melt-bonding can be understood as, for example, a state in which a part of the front glass plate 12 or the back glass plate 14 is bonded together. More preferably, at the interface between the front glass plate 12 and the back glass plate 14, the glass of the front glass plate 12 and the back glass plate 14 may be melted and mixed with each other.
  • a first current collecting wiring 22 and a second current collecting wiring 24 are formed in order to take out the electric power generated by the photovoltaic device 16.
  • the first current collecting wiring 22 is a wiring for collecting current from the photovoltaic devices 16 divided in parallel, and the second current collecting wiring 24 is connected from the first current collecting wiring 22 to the terminal box 26. Wiring.
  • the first current collecting wiring 22 is extended on the back electrode of the photovoltaic device 16.
  • the first current collector wiring 22 is formed to connect the positive electrodes and the negative electrodes of the photoelectric conversion layers divided in parallel near the end of the solar cell module 10. Therefore, the 1st current collection wiring 22 is extended along the direction orthogonal to the parallel division direction of a photoelectric conversion layer. In the present embodiment, as shown in FIG. 1, the first current collector wiring 22 extends along the vertical direction on the left and right edges. As a result, the positive electrodes and the negative electrodes of the photovoltaic devices 16 connected in series are connected in parallel.
  • an insulating coating material 28 is disposed in order to form electrical insulation between the second current collector wiring 24 and the back electrode of the photovoltaic device 16.
  • the insulating coating material 28 from the vicinity of the first current collector wiring 22 provided along the left and right edges of the solar cell module 10 to the arrangement position of the terminal box 26 in the center, It extends on the back electrode of the photovoltaic device 16.
  • the insulating covering material 28 extends in the left-right direction from the vicinity of the left and right first current collecting wires 22 toward the terminal box 26.
  • the insulating coating material 28 is preferably made of, for example, polyester (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyvinyl fluoride, or the like. Moreover, it is preferable to use the insulating coating material 28 in which an adhesive is applied to the back surface in a sealing manner.
  • the second current collecting wiring 24 is extended from the left and right first current collecting wirings 22 along the insulating coating material 28 toward the center of the solar cell module 10. Yes.
  • the insulation coating material 28 is sandwiched between the second current collecting wiring 24 and the back electrode of the photovoltaic device 16, so that electrical insulation between the second current collecting wiring 24 and the back electrode is maintained.
  • one end of the second current collecting wiring 24 extends to the first current collecting wiring 22 and is electrically connected to the first current collecting wiring 22.
  • the second current collecting wiring 24 is preferably electrically connected to the first current collecting wiring 22 by ultrasonic soldering or the like.
  • the other end of the 2nd current collection wiring 24 is connected to the electrode terminal in the terminal box 26 mentioned later.
  • a region where the front glass plate 12 and the back glass plate 14 are opposed is filled with a filler 30.
  • a filler 30 in addition to butyl rubber and ethylene vinyl acetate (EVA), materials used for coking such as silicone, filled resin materials such as polyvinyl butyral (PVB), ethylene resins such as ethylene ethyl acrylate copolymer (EEA), urethane, Acrylic or epoxy resin may be used.
  • EVA ethylene vinyl acetate
  • the back side of the solar cell module 10 is sealed by the back glass plate 14.
  • the end portion of the second current collector wiring 24 is pulled out through the through hole 20 provided in the vicinity of the attachment position of the terminal box 26 of the back glass plate 14.
  • the end of the second current collecting wiring 24 is electrically connected to the terminal electrode in the terminal box 26 by soldering or the like, and the space in the terminal box 26 is filled with an insulating resin 36 such as silicone and covered.
  • the terminal box 26 is preferably attached to the end of the second current collector wiring 24 in the vicinity of the lead-out through hole 20 by using silicone or the like.
  • the laser beam 34 is preferably a femtosecond laser beam. That is, the laser beam 34 preferably has a pulse width of 1 nanosecond or less. Further, the laser beam 34 is preferably set to a wavelength at which absorption occurs at least one of the front glass plate 12 and the back glass plate 14. For example, it is preferable that the laser beam 34 has a wavelength of 800 nm. Furthermore, it is preferable that the laser beam 34 is irradiated at an energy density and a scanning speed sufficient to melt the front glass plate 12 and the rear glass plate 14.
  • the laser beam 34 is preferably irradiated with a pulse energy of a wavelength of 800 nm, a pulse width of 150 fs, an oscillation repetition rate of 1 kHz, and 5 microjoules ( ⁇ J) per pulse.
  • the laser beam 34 is preferably scanned at a scanning speed of 60 mm / min.
  • the laser beam 34 may be irradiated from either the front glass plate 12 side or the back glass plate 14 side.
  • FIG. 3 is an enlarged view of a main part of the outer edge portion of the solar cell module 10 shown in FIG.
  • the front glass plate 12 and the back glass plate 14 have the bonding region R1 that is melt-bonded to the back glass plate 14 or the front glass plate 12 that is a member adjacent in the peripheral portion R2.
  • a gap 38 is formed between the outer peripheral portion 30a of the filler 30 and the bonding region R1.
  • the solar cell module 10 since at least a part of the peripheral edge portion R ⁇ b> 2 between the front glass plate 12 and the back glass plate 14 is melt-bonded, moisture from the outer edge portions of the front glass plate 12 and the back glass plate 14 that face each other. The sealing performance against the intrusion of is improved. As a result, the reliability of the solar cell module can be improved over a long period of time.
  • a gap 38 is formed between the outer peripheral portion 30a of the filler 30 and the joining region R1. Therefore, even if the filler 30 expands, the gap 38 functions as a buffer region, and the increase in stress due to the expansion of the filler 30 is alleviated.
  • the expanded portion is first deformed so as to fill the gap 38. Therefore, it becomes difficult for the filler 30 to reach the vicinity of the joining region R1, and a situation in which a stress in the peeling direction is generated in the joining region R1 is suppressed.
  • the filler 30 is prevented from being unnecessarily heated during the melt-joining, and the filler 30 is deteriorated. It is suppressed.
  • region R1 is formed over the perimeter of the outer edge of the surface glass plate 12 or the back surface glass plate 14. FIG. Thereby, external moisture passes between the front glass plate 12 and the back glass plate 14 and is further suppressed from entering the solar cell module 10.
  • At least one of the front glass plate 12 or the back glass plate 14 may be melt-bonded to an adjacent member in a bent state. Thus, even if at least one of the front glass plate 12 or the back glass plate 14 is bent, the generated stress is relieved by the formed gap 38.
  • the surface glass plate 12 provided with the photovoltaic device 16, the first current collecting wiring 22, the second current collecting wiring 24, the insulating coating material 28, and the like is prepared.
  • the filler 30 is disposed so as to cover the photovoltaic device 16.
  • the filler 30 is, for example, a sheet-like ethylene vinyl acetate (EVA)
  • EVA ethylene vinyl acetate
  • the size of the filler 30 is formed between the filler 30 and the joining region R1 when the solar cell module 10 is completed. Is set to about. In other words, in the case of the sheet-like filler 30, the four sides are smaller than the peripheral edge R ⁇ b> 2 of the front glass plate 12 or the back glass plate 14.
  • the back glass plate 14 is disposed on the filler 30, and the filler 30 is thermocompression bonded with the front glass plate 12 and the back glass plate 14 facing each other at the peripheral edge.
  • the peripheral part of the back surface glass plate 14 is bent, the peripheral part of the surface glass plate 12 and the back surface glass plate 14 is closely_contact
  • the beam 34 is irradiated to melt-bond the front glass plate 12 and the back glass plate 14.
  • the solar cell module 10 in which the air gap 38 is formed between the filler 30 and the joining region R1 is manufactured (see FIG. 2).
  • FIG. 6 is a cross-sectional view showing the structure of the solar cell module according to the second embodiment.
  • the solar cell module 500 includes a surface glass plate 50, a passivation layer 51, a base layer 52, a first conductivity type diffusion layer 53, an i-type layer 54, The second conductive type layer 55, the transparent electrode layer 60, the metal layer 57 (57p, 57n), the filler 58, and the back glass plate 59 are included.
  • the passivation layer 51, the base layer 52, the first conductivity type diffusion layer 53, the i-type layer 54, the second conductivity type layer 55, the transparent electrode layer 60, and the metal layer 57 constitute a photoelectric conversion element.
  • the photovoltaic device 510 includes a plurality of photoelectric conversion elements.
  • the photovoltaic device 510 is a back junction type photovoltaic device, and an electrode for taking out the electric power generated by the photovoltaic device to the outside is a main surface opposite to the light receiving surface (hereinafter referred to as a back surface). Only provided.
  • the application range of the present invention is not limited to this, and may be any photovoltaic device in which a plurality of photoelectric conversion elements are arranged on the surface glass plate 50.
  • the light receiving surface means a main surface on which light is mainly incident in the photovoltaic element, and specifically, is a surface on which most of the light incident on the photovoltaic element is incident.
  • the back surface means a surface opposite to the light receiving surface of the photovoltaic element.
  • the surface glass plate 50 mechanically supports the photovoltaic element and protects the semiconductor layer included in the photovoltaic element from the external environment. Further, since the surface glass plate 50 is disposed on the light receiving surface side of the photovoltaic element, it transmits light in a wavelength band used for power generation by the photovoltaic element, and mechanically connects each layer such as the base layer 52. It is a material (translucent member) that can be supported. As the surface glass plate 50, for example, a glass plate having translucency is used.
  • the passivation layer 51 is provided between the surface glass plate 50 and the base layer 52.
  • the passivation layer 51 plays a role of terminating dangling bonds (dangling bonds) on the surface of the base layer 52 and suppresses carrier recombination on the surface of the base layer 52.
  • dangling bonds dangling bonds
  • the passivation layer 51 may include, for example, a silicon nitride layer (SiN), and more preferably has a stacked structure of a silicon oxide layer (SiOx) and silicon nitride.
  • SiN silicon nitride layer
  • SiOx silicon oxide layer
  • silicon nitride a structure in which a silicon oxide layer and a silicon nitride layer are sequentially stacked with a thickness of 30 nm and 40 nm, respectively, may be used.
  • the surface glass plate 50 and the photoelectric conversion element are bonded via the passivation layer 51.
  • the base layer 52 is a crystalline semiconductor layer. Note that the crystalline includes not only a single crystal but also a polycrystal in which a large number of crystal grains are aggregated.
  • the base layer 52 becomes a power generation layer of the photovoltaic element.
  • the base layer 52 is an n-type crystalline silicon layer to which an n-type dopant is added.
  • the doping concentration of the base layer 52 may be about 10 16 / cm 3 .
  • the film thickness of the base layer 52 is a film thickness that can sufficiently generate carriers as a power generation layer, and is desirably 50 ⁇ m or less.
  • the base layer 52 and the first conductivity type diffusion layer 53 form a first conductivity type contact region in which the crystalline materials are homo-joined.
  • the first conductivity type diffusion layer 53 is an n-type crystalline silicon layer to which an n-type dopant is added.
  • the first conductivity type diffusion layer 53 is a layer bonded to the metal layer 57 (first electrode 57n), and has a higher doping concentration than the base layer 52.
  • the doping concentration of the first conductivity type diffusion layer 53 may be about 10 19 / cm 3 .
  • the film thickness of the first conductivity type diffusion layer 53 is preferably as thin as possible within a range where the contact resistance with the metal can be sufficiently lowered, and may be, for example, 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the i-type layer 54 and the second conductivity type layer 55 are amorphous semiconductor layers. Note that the amorphous system includes an amorphous phase or a microcrystalline phase in which minute crystal grains are precipitated in the amorphous phase.
  • the i-type layer 54 and the second conductivity type layer 55 are amorphous silicon containing hydrogen.
  • the i-type layer 54 is a substantially intrinsic amorphous silicon layer.
  • the second conductivity type layer 55 is an amorphous silicon layer to which a p-type dopant is added.
  • the second conductivity type layer 55 is a semiconductor layer having a higher doping concentration than the i-type layer 54.
  • the i-type layer 54 is not intentionally doped, and the doping concentration of the second conductivity type layer 55 may be about 10 18 / cm 3 .
  • the thickness of the i-type layer 54 is made thin so that light absorption can be suppressed as much as possible, while it is made thick enough that the surface of the base layer 52 is sufficiently passivated. Specifically, the thickness may be 1 nm or more and 50 nm or less, for example, 10 nm.
  • the film thickness of the second conductivity type layer 55 is made thin so that light absorption can be suppressed as much as possible, while it is made so thick that the open circuit voltage of the photovoltaic element becomes sufficiently high. For example, the thickness may be 1 nm or more and 50 nm or less, for example, 10 nm.
  • the transparent electrode layer 60 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO).
  • TCO transparent conductive oxides
  • ZnO zinc oxide
  • the film thickness of the transparent electrode layer 60 may be 10 nm or more and 500 nm or less, for example, 100 nm.
  • the base layer 52, the i-type layer 54, and the second conductivity type layer 55 form a second conductivity type contact region in which crystalline and amorphous are heterojunctioned.
  • the metal layer 57 is a layer serving as an electrode provided on the back side of the photovoltaic element.
  • the metal layer 57 is made of a conductive material such as metal, and is made of, for example, a material containing copper (Cu) or aluminum (Al).
  • the metal layer 57 includes a first electrode 57 n connected to the first conductivity type diffusion layer 53 and a second electrode 57 p connected to the second conductivity type layer 55.
  • the metal layer 57 may further include an electrolytic plating layer such as copper (Cu) or tin (Sn). However, it is not limited to this, It is good also as other metals, such as gold
  • a filler 58 is disposed on the back side of the photovoltaic element and sealed with a back glass plate 59.
  • the filler 58 can be a resin material such as EVA or polyimide.
  • the back glass plate 59 is applied with a glass plate that is substantially the same size as the front glass plate 50, thereby preventing moisture from entering the power generation layer of the photovoltaic device 510 in the solar cell module 500. it can.
  • the front glass plate 50 and the back glass plate 59 have the bonding region R1 that is melt-bonded to the back glass plate 59 or the front glass plate 50 that are adjacent members at the peripheral edge.
  • gap 38 is formed between the outer peripheral part 58a of the filler 58, and joining area
  • At least one of the front glass plate 50 or the back glass plate 59 may be melt-bonded to an adjacent member in a bent state. Thus, even if at least one of the front glass plate 50 or the back glass plate 59 is bent, the generated stress is relieved by the formed gap 38.
  • the present invention has been described with reference to the above-described embodiments.
  • the present invention is not limited to the above-described embodiments, and the configurations of the embodiments are appropriately combined or replaced. Those are also included in the present invention. Further, it is possible to appropriately change the combination and processing order in each embodiment based on the knowledge of those skilled in the art and to add various modifications such as various design changes to each embodiment. Embodiments to which is added can also be included in the scope of the present invention.
  • FIGS. 4 and 5 are diagrams showing a modification of the fusion bonding of the front glass plate 12 and the back glass plate 14.
  • the spacer 56 it is preferable to apply a material containing an element that can melt-bond the front glass plate 12 and the back glass plate 14, such as Si, SiO, SiO 2 , or SiO X.
  • the frame-shaped spacer 56 may be formed by applying glass frit to the outer edge of the back glass plate 14 by screen printing and baking.
  • the laser beam 34 can be irradiated from either the front glass plate 12 side or the back glass plate 14 side. Therefore, when the photovoltaic device 16 (including the silicon substrate) itself is thick like a crystalline silicon solar cell, the surface 56a of the spacer 56 and the surface glass plate 12 are melt-bonded as shown in FIG. The back surface 56b of the spacer 56 and the back glass plate 14 may be melt-bonded.
  • the solar cell module by the following combinations can also be included in the scope of the present invention.
  • Solar cell module A surface glass plate disposed on the light receiving side; A back glass plate provided to face the front glass plate, A photovoltaic device provided between the front glass plate and the back glass plate; A filler filled between the front glass plate and the back glass plate, The front glass plate and the back glass plate have a joint portion that is melt-bonded at a peripheral portion, A gap is formed between the outer periphery of the filler and the joint.
  • the void functions as a buffer region, and the increase in stress due to the expansion of the filler is alleviated.
  • the expanded portion first deforms so as to fill the gap. Therefore, it becomes difficult for the filler to reach the vicinity of the joining region, and a situation in which stress in the peeling direction is generated in the joining region is suppressed.
  • the solar cell module according to (1) or (2) may be formed by melting and bonding the spacer member. As a result, it is possible to perform melt bonding at the peripheral edge between the front glass plate and the back glass plate facing each other without bending both the front glass plate and the back glass plate. Situations that generate stress in the peeling direction are suppressed.
  • the present invention relates to a solar cell module.

Abstract

 太陽電池モジュール10は、受光側に配置された表面ガラス板12と、表面ガラス板12と対向するように設けられた裏面ガラス板14と、表面ガラス板12と裏面ガラス板14との間に設けられている光起電力装置16と、表面ガラス板12と裏面ガラス板14との間に充填されている充填材30と、を備える。表面ガラス板12および裏面ガラス板14は、周縁部R2において溶融接合された接合領域R1を有する。また、充填材30の外周部30aと接合領域R1との間に空隙38が形成されている。

Description

太陽電池モジュール
 本発明は、太陽電池モジュールに関する。
 従来、光エネルギーを電気エネルギーに変換する光電変換装置として、いわゆる太陽電池の開発が各方面で精力的に行われている。太陽電池は、クリーンで無尽蔵なエネルギー源である太陽からの光を直接電気に変換できることから、新しいエネルギー源として期待されている。
 太陽電池モジュールは屋外で使用されるため、モジュールとしてある程度の強度が必要となる。そこで、光電変換装置を太陽光受光側と裏面側の2枚のガラスで挟み込んだ太陽電池パネルが考案されている(例えば、特許文献1参照)。
特開平11-31834号公報
 ところで、太陽電池を普及させるためには、発電コストの低減が必要とされており、その達成のためには、光電変換装置の長寿命化が有効である。長寿命化を妨げる主な要因は、パネル内部への水分の浸入である。そこで、水分の浸入を防止するために、前述の太陽電池パネルは、周縁端部が封止材で封止されている。しかしながら、長期の使用によって、封止材は劣化し、水分が浸入しやすくなる。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、太陽電池モジュールの信頼性を向上させる技術を提供することにある。
 上記課題を解決するために、本発明のある態様の太陽電池モジュールは、受光側に配置された表面ガラス板と、表面ガラス板と対向するように設けられた裏面ガラス板と、表面ガラス板と裏面ガラス板との間に設けられている光起電力装置と、表面ガラス板と裏面ガラス板との間に充填されている充填材と、を備える。表面ガラス板および裏面ガラス板は、周縁部において溶融接合された接合部を有する。充填材の外周部と接合部との間に空隙が形成されている。
 本発明によれば、太陽電池モジュールの信頼性を向上させることができる。
第1の実施の形態に係る太陽電池モジュールを受光面側から見た平面図である。 図1に示す端子ボックス近傍のA-A断面図である。 図1に示す太陽電池モジュールの外縁部の要部拡大図である。 表面ガラス板と裏面ガラス板との溶融接合の変形例を示す図である。 表面ガラス板と裏面ガラス板との溶融接合の変形例を示す図である。 第2の実施の形態に係る太陽電池モジュールの構造を示す断面図である。
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。
 以下の各図に示す各層、各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。
 (第1の実施の形態)
 図1は、第1の実施の形態に係る太陽電池モジュールを受光面側から見た平面図である。図2は、図1に示す端子ボックス近傍のA-A断面図である。
 太陽電池モジュール10は、受光側に配置された表面ガラス板12と、表面ガラス板12と対向するように設けられた裏面ガラス板14と、表面ガラス板12と裏面ガラス板14との間に設けられている光起電力装置16と、を備える。
 表面ガラス板12は、例えば、1m角及び板厚4mmのガラス板が適用される。ただし、これに限定されるものではなく、光起電力装置16の形成に適しており、太陽電池モジュール10を機械的に支持できるものであればよい。太陽電池モジュール10への光の入射は基本的に表面ガラス板12側から行われる。
 表面ガラス板12上には光起電力装置16が形成される。光起電力装置16は、透明電極、光電変換ユニット、裏面電極等が積層されて形成される。透明電極は、例えば、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)のうち、少なくとも一種類または複数種を組み合わせた膜を用いることができる。
 また、光電変換ユニットは、例えば、アモルファスシリコン光電変換ユニット(a-Siユニット)や微結晶シリコン光電変換ユニット(μc-Siユニット)等が挙げられる。光電変換ユニットは、タンデム型やトリプル型のように複数の光電変換ユニットを積層した構造としてもよい。裏面電極は、透明導電性酸化物(TCO)や反射性金属、それらの積層構造とすることができる。透明導電性酸化物(TCO)としては、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等が用いられ、反射性金属としては、銀(Ag)、アルミニウム(Al)等の金属が用いられる。
 裏面ガラス板14は、表面ガラス板12上に形成された光起電力装置16を覆うように設けられる。裏面ガラス板14は、例えば、表面ガラス板12と略同じ大きさを有し、板厚3.2mmのガラス板が適用される。ただし、これに限定されるものではない。
 表面ガラス板12と裏面ガラス板14は、それらの外周縁領域の接合領域R1において溶融接合されている。接合領域R1は、表面ガラス板12において光起電力装置16が形成されていない周縁部R2に設けられる。周縁部R2(図1においてハッチングされていない領域)は、例えば、表面ガラス板12上にいったん形成した光起電力装置16をレーザ等で除去して設けることができる。表面ガラス板12と裏面ガラス板14とを溶融接合するために、図2に示すように、表面ガラス板12及び裏面ガラス板14の少なくとも一方の周辺部を撓ませた状態とすることが好適である。
 ここで、「溶融接合」とは、例えば、表面ガラス板12や裏面ガラス板14の一部が溶けた状態で互いに接合されている状態と捉えることができる。より好ましくは、表面ガラス板12と裏面ガラス板14との界面において、表面ガラス板12及び裏面ガラス板14のガラス同士が互いに溶融して混ざり合った状態であるとよい。
 次に、光起電力装置16で発電した電力の取り出し経路について説明する。図1、図2に示すように、光起電力装置16で発電された電力を取り出すために第1集電配線22及び第2集電配線24が形成されている。第1集電配線22は、並列に分割された光起電力装置16から集電を行うための配線であり、第2集電配線24は、第1集電配線22から端子ボックス26までを接続する配線である。
 第1集電配線22は、光起電力装置16の裏面電極上に延設されている。また、第1集電配線22は、太陽電池モジュール10の端辺付近において並列に分割された光電変換層の正電極同士及び負電極同士を接続するために形成されている。したがって、第1集電配線22は、光電変換層の並列分割方向に直交する方向に沿って延設されている。本実施の形態では、図1に示すように、第1集電配線22は左右の端辺に上下方向に沿って延設されている。これによって、直列接続された光起電力装置16の正電極同士及び負電極同士が並列に接続される。
 また、第2集電配線24と光起電力装置16の裏面電極との間の電気的な絶縁を形成するために絶縁被覆材28が配設されている。絶縁被覆材28は、図1及び図2に示すように、太陽電池モジュール10の左右の端辺に沿って設けられた第1集電配線22近傍から中央部の端子ボックス26の配置位置まで、光起電力装置16の裏面電極上に延設されている。また、絶縁被覆材28は、図1に示すように、左右の第1集電配線22の近傍から端子ボックス26に向けて左右方向に沿って延設されている。絶縁被覆材28は、例えば、ポリエステル(PE)、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、ポリフッ化ビニル等とすることが好適である。また、絶縁被覆材28は、裏面にシール状に接着剤が塗布されたものを用いることが好適である。
 第2集電配線24は、図1及び図2に示すように、左右の第1集電配線22上から絶縁被覆材28上に沿って太陽電池モジュール10の中央部へ向けて延設されている。第2集電配線24と光起電力装置16の裏面電極との間に絶縁被覆材28が挟み込まれることで、第2集電配線24と裏面電極との電気的な絶縁が保たれる。一方、第2集電配線24の一端は第1集電配線22上まで延設され、第1集電配線22に電気的に接続される。例えば、第2集電配線24は超音波はんだ等によって第1集電配線22に電気的に接続することが好適である。第2集電配線24の他端は、後述する端子ボックス26内の電極端子に接続されている。
 表面ガラス板12と裏面ガラス板14とが対向している領域には、充填材30が充填されている。充填材30としては、ブチルゴムやエチレン酢酸ビニル(EVA)の他、シリコーンなどのコーキングに用いる材料、ポリビニルブチラール(PVB)といった充填樹脂材料、エチレンエチルアクリレートコポリマー(EEA)等のエチレン系樹脂、ウレタン、アクリル、エポキシ樹脂などを用いてもよい。また、図2に示すように、充填材30の外周部と接合領域R1との間には、後述する空隙38が形成されている。
 太陽電池モジュール10は、裏面ガラス板14によって裏面側が封止される。このとき、裏面ガラス板14の端子ボックス26の取付位置付近に設けられた貫通孔20を通して第2集電配線24の端部を引き出す。そして、第2集電配線24の端部を端子ボックス26内の端子電極にはんだ付け等により電気的に接続し、端子ボックス26内の空間にシリコーン等の絶縁樹脂36を充填して蓋をする。端子ボックス26は、第2集電配線24の端部の引き出し用の貫通孔20の近傍にシリコーン等を用いて接着して取り付けることが好適である。
 <溶融接合方法>
 次に、表面ガラス板12と裏面ガラス板14とを溶融接合する方法について説明する。
 表面ガラス板12と裏面ガラス板14との溶融接合では、図2に示したように、表面ガラス板12及び裏面ガラス板14の少なくとも一方の周辺部を撓ませて、表面ガラス板12と裏面ガラス板14との周縁部R2を密着させた状態とする。そして、密着させた周縁部R2の接触面に焦点を合わせてレーザ装置32からレーザビーム34を照射し、表面ガラス板12及び裏面ガラス板14の外周4辺に沿って走査する
 レーザビーム34は、フェムト秒レーザビームとすることが好適である。すなわち、レーザビーム34は、1ナノ秒以下のパルス幅を有するものとすることが好適である。また、レーザビーム34は、表面ガラス板12及び裏面ガラス板14の少なくとも一方で吸収が生ずる波長とすることが好適である。例えば、レーザビーム34は、波長800nmとすることが好適である。さらに、レーザビーム34は、表面ガラス板12と裏面ガラス板14とが溶融するに足りるエネルギー密度及び走査速度で照射することが好適である。例えば、レーザビーム34は、波長800nm、パルス幅150fs、発振繰り返し1kHz、1パルス当たり5マイクロジュール(μJ)のパルスエネルギーで照射することが好適である。また、レーザビーム34は、60mm/分の走査速度で走査することが好適である。また、レーザビーム34は、表面ガラス板12側及び裏面ガラス板14側のいずれから照射してもよい。
 図3は、図1に示す太陽電池モジュール10の外縁部の要部拡大図である。上述のように、太陽電池モジュール10においては、表面ガラス板12及び裏面ガラス板14は、周縁部R2において隣接する部材である裏面ガラス板14または表面ガラス板12と溶融接合された接合領域R1を有する。そして、充填材30の外周部30aと接合領域R1との間に空隙38が形成されている。
 太陽電池モジュール10は、表面ガラス板12と裏面ガラス板14との周縁部R2の少なくとも一部が溶融接合されているため、対向する表面ガラス板12と裏面ガラス板14との外縁部からの水分の浸入に対する封止性能が向上する。その結果、長期にわたり太陽電池モジュールの信頼性を向上できる。
 また、光起電力装置16における発熱や、太陽光による加熱により充填材30が膨張しても、充填材30の外周部30aと接合領域R1との間に空隙38が形成されている。そのため、充填材30が膨張しても、空隙38が緩衝領域として機能し、充填材30の膨張による応力の増大が緩和される。
 また、充填材30が膨張した場合に、膨張した部分はまず空隙38を埋めるように変形する。そのため、充填材30は、接合領域R1近傍まで到達しにくくなり、接合領域R1にはく離方向の応力を発生させるような状況が抑制される。
 また、溶融接合される接合領域R1と充填材30とが空隙38を介して離間されているため、溶融接合時に充填材30が不必要に加熱されることが抑制され、充填材30の劣化が抑制される。
 また、仮に端子ボックス26(裏面ガラス板14の貫通孔20)から水分が浸入し、充填材30の内部を移動してきても、空隙38で水分の移動が妨げられるので、水分が接合領域R1に達しにくくなり、接合領域R1での封止性能の劣化が抑制され、接合信頼性が向上する。
 また、表面ガラス板12と裏面ガラス板14とを直接溶融接合することで、光起電力装置16への水分の浸入経路となりうる部分が最小限となり、太陽電池モジュール10の外縁部における封止性能が向上する。また、少ない部材でガラス板間の外周部の封止が行われるので、部品点数の低減や組立て工程の簡略化により太陽電池モジュール10の製造コストの低減が図られる。
 なお、接合領域R1は、表面ガラス板12または裏面ガラス板14の外縁の全周にわたって形成されていることが好ましい。これにより、外部の水分が表面ガラス板12と裏面ガラス板14との間を通過し、太陽電池モジュール10の内部に浸入することがより抑制される。
 表面ガラス板12または裏面ガラス板14の少なくとも一方が、撓んだ状態で隣接する部材と溶融接合されていてもよい。このように表面ガラス板12または裏面ガラス板14の少なくとも一方が撓んでいても、形成されている空隙38により、発生する応力が緩和される。
 (太陽電池モジュールの製造方法)
 はじめに、光起電力装置16、第1集電配線22、第2集電配線24および絶縁被覆材28などが設けられている表面ガラス板12を準備する。その状態で、光起電力装置16を覆うように充填材30を配置する。ここで、充填材30が例えばシート状のエチレン酢酸ビニル(EVA)の場合、その大きさは、太陽電池モジュール10の完成時に、充填材30と接合領域R1との間に空隙38が形成される程度に設定されている。換言すれば、シート状の充填材30の場合、表面ガラス板12または裏面ガラス板14の周縁部R2よりも4辺が小さい四角形である。
 次に、充填材30の上に裏面ガラス板14を配置し、表面ガラス板12と裏面ガラス板14とが周縁部で対向している状態で充填材30を加熱圧着する。そして、裏面ガラス板14の周辺部を撓ませて、表面ガラス板12と裏面ガラス板14との周縁部を密着させ、密着させた周縁部R2の接触面に焦点を合わせてレーザ装置32からレーザビーム34を照射し、表面ガラス板12と裏面ガラス板14とを溶融接合する。その結果、充填材30と接合領域R1との間に空隙38が形成された太陽電池モジュール10が製造される(図2参照)。
 (第2の実施の形態)
 図6は、第2の実施の形態に係る太陽電池モジュールの構造を示す断面図である。
 第2の実施の形態に係る太陽電池モジュール500は、図6の断面図に示すように、表面ガラス板50、パッシベーション層51、ベース層52、第1導電型拡散層53、i型層54、第2導電型層55、透明電極層60、金属層57(57p,57n)、充填材58、裏面ガラス板59を含んで構成される。パッシベーション層51、ベース層52、第1導電型拡散層53、i型層54、第2導電型層55、透明電極層60、金属層57は光電変換素子を構成する。
 本実施の形態では、光起電力装置510は、複数の光電変換素子を含んで構成される。また、光起電力装置510は、裏面接合型光起電力素子であり、光起電力素子で発電された電力を外部へ取り出す電極が受光面とは反対側の主面(以下、裏面という。)のみに設けられる。ただし、本発明の適用範囲は、これに限定されるものではなく、表面ガラス板50上に光電変換素子が複数配置されている光起電力装置であればよい。
 ここで、受光面とは、光起電力素子において主に光が入射される主面を意味し、具体的には、光起電力素子に入射される光の大部分が入射される面である。また、裏面とは、光起電力素子の受光面とは反対側の面を意味する。
 表面ガラス板50は、光起電力素子を機械的に支持すると共に、光起電力素子に含まれる半導体層を外部環境から保護する。また、表面ガラス板50は、光起電力素子の受光面側に配置されるので、光起電力素子で発電に利用される波長帯域の光を透過し、ベース層52等の各層を機械的に支持できる材料(透光性部材)とされる。表面ガラス板50は、例えば、透光性を有するガラス板が用いられる。
 パッシベーション層51は、表面ガラス板50とベース層52との間に設けられる。パッシベーション層51は、ベース層52の表面の未結合手(ダングリングボンド)を終端させる等の役割を果たし、ベース層52の表面におけるキャリアの再結合を抑制する。パッシベーション層51を設けることによって、光起電力素子の受光面側においてベース層52の表面でのキャリアの再結合による損失を抑制することができる。
 パッシベーション層51は、例えば、窒化シリコン層(SiN)を含むようにすればよく、酸化シリコン層(SiOx)と窒化シリコンとの積層構造とすることがより好ましい。例えば、酸化シリコン層及び窒化シリコン層をそれぞれ30nm及び40nmの膜厚で順に積層した構造とすればよい。後述するように、パッシベーション層51を介して表面ガラス板50と光電変換素子とが接合される。
 ベース層52は、結晶質の半導体層である。なお、結晶質とは、単結晶のみならず、多数の結晶粒が集合した多結晶も含むものとする。ベース層52は、光起電力素子の発電層となる。ここでは、ベース層52は、n型のドーパントが添加されたn型結晶質シリコン層とする。ベース層52のドーピング濃度は1016/cm程度とすればよい。
 ベース層52の膜厚は、発電層として十分にキャリアを発生できる膜厚であって且つ50μm以下が望ましい。
 ベース層52と第1導電型拡散層53とは結晶質同士がホモ接合された第1導電型コンタクト領域を形成する。第1導電型拡散層53は、n型のドーパントが添加されたn型結晶質シリコン層とする。第1導電型拡散層53は、金属層57(第1電極57n)と接合される層であり、ベース層52よりも高いドーピング濃度とされる。第1導電型拡散層53のドーピング濃度は1019/cm程度とすればよい。第1導電型拡散層53の膜厚は、金属との接触抵抗を十分に低くできる範囲でできるだけ薄くすることが好ましく、例えば0.1μm以上2μm以下とすればよい。
 i型層54及び第2導電型層55は、非晶質系の半導体層とされる。なお、非晶質系とは、アモルファス相又はアモルファス相内に微少な結晶粒が析出している微結晶相を含む。本実施の形態では、i型層54及び第2導電型層55は、水素を含有するアモルファスシリコンとする。i型層54は、実質的に真性のアモルファスシリコン層とされる。第2導電型層55は、p型のドーパントが添加されたアモルファスシリコン層とされる。第2導電型層55は、i型層54よりもドーピング濃度が高い半導体層とされる。例えば、i型層54には意図的にドーピングを行わず、第2導電型層55のドーピング濃度は1018/cm程度とすればよい。i型層54の膜厚は、光の吸収をできるだけ抑えられるように薄くし、一方でベース層52の表面が十分にパッシベーションされる程度に厚くする。具体的には、1nm以上50nm以下とすればよく、例えば10nmとする。また、第2導電型層55の膜厚は、光の吸収をできるだけ抑えられるように薄くし、一方で光起電力素子の開放電圧が十分に高くなるような程度に厚くする。例えば、1nm以上50nm以下とすればよく、例えば10nmとする。
 透明電極層60は、酸化錫(SnO)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)のうち少なくとも一種類又は複数種を組み合わせて用いることが好適である。特に、酸化亜鉛(ZnO)は、透光性が高く、抵抗率が低い等の利点を有している。透明電極層60の膜厚は、10nm以上500nm以下とすればよく、例えば100nmとする。
 ベース層52とi型層54及び第2導電型層55とは結晶質と非晶質とがヘテロ接合された第2導電型コンタクト領域を形成する。
 金属層57は、光起電力素子の裏面側に設けられる電極となる層である。金属層57は、金属等の導電性の材料から構成され、例えば、銅(Cu)やアルミニウム(Al)を含む材料とする。金属層57は、第1導電型拡散層53に接続される第1電極57nと第2導電型層55に接続される第2電極57pとを含む。金属層57は、さらに銅(Cu)や錫(Sn)等の電解メッキ層を含んでもよい。ただし、これに限定されるものでなく、金、銀等の他の金属、他の導電性材料、又はそれらの組合せとしてもよい。
 さらに、光起電力素子の裏面側に充填材58を配置し、裏面ガラス板59で封止する。充填材58は、EVA、ポリイミド等の樹脂材料とすることができる。また、裏面ガラス板59は、表面ガラス板50と略同じ大きさのガラス板が適用され、これによって、太陽電池モジュール500における光起電力装置510の発電層への水分の浸入等を防ぐことができる。
 上述のように、太陽電池モジュール500においては、表面ガラス板50及び裏面ガラス板59は、周縁部において隣接する部材である裏面ガラス板59または表面ガラス板50と溶融接合された接合領域R1を有する。そして、充填材58の外周部58aと接合領域R1との間に空隙38が形成されている。
 また、表面ガラス板50または裏面ガラス板59の少なくとも一方が、撓んだ状態で隣接する部材と溶融接合されていてもよい。このように表面ガラス板50または裏面ガラス板59の少なくとも一方が撓んでいても、形成されている空隙38により、発生する応力が緩和される。
 以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の各実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて各実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を各実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。
 上述の実施の形態では、表面ガラス板12と裏面ガラス板14との周縁部は直接溶融接合されている。しかしながら、太陽電池モジュール内部に配設される、光起電力装置16や配線等の厚みが大きく、表面ガラス板12と裏面ガラス板14とを周縁部において密着させることが困難な場合がある。図4、図5は、表面ガラス板12と裏面ガラス板14との溶融接合の変形例を示す図である。
 表面ガラス板12と裏面ガラス板14との周縁部の隙間が大きくなる場合には、図4の断面図に示すように、隙間にスペーサ56を形成し、上述のレーザ装置32によりスペーサ56を溶融させることで、表面ガラス板12と裏面ガラス板14とを溶融接合してもよい。
 スペーサ56としては、Si、SiO、SiO、SiO等の、表面ガラス板12と裏面ガラス板14とを溶融接合できる元素を含む材料を適用することが好適である。例えば、ガラスフリットを裏面ガラス板14の外縁部にスクリーン印刷で塗布し、焼成することで枠状のスペーサ56を形成してもよい。
 また、レーザビーム34は、表面ガラス板12側及び裏面ガラス板14側のどちらからも照射することが可能である。そこで、結晶系シリコン太陽電池のように光起電力装置16(シリコン基板を含む)自体が厚い場合等においては、図5に示すように、スペーサ56の表面56aと表面ガラス板12とを溶融接合させ、スペーサ56の裏面56bと裏面ガラス板14とを溶融接合させる構成としてもよい。
 これにより、表面ガラス板12及び裏面ガラス板14の両方を撓ませずに、対向する表面ガラス板12と裏面ガラス板14との周縁部における溶融接合が可能となり、撓んだガラス板の復元力による接合領域R1でのはく離方向の応力を発生させるような状況が抑制される。また、表面ガラス板12と裏面ガラス板14との間に配置される光起電力装置として、厚みが比較的大きな結晶系シリコン太陽電池を採用することが可能となる。
 なお、以下の組合せによる太陽電池モジュールについても本発明の範囲に含まれうる。
 (1)太陽電池モジュールは、
 受光側に配置された表面ガラス板と、
 前記表面ガラス板と対向するように設けられた裏面ガラス板と、
 前記表面ガラス板と前記裏面ガラス板との間に設けられている光起電力装置と、
 前記表面ガラス板と前記裏面ガラス板との間に充填されている充填材と、を備え、
 前記表面ガラス板および前記裏面ガラス板は、周縁部において溶融接合された接合部を有し、
 前記充填材の外周部と前記接合部との間に空隙が形成されている。
 これにより、充填材が膨張しても、空隙が緩衝領域として機能し、充填材の膨張による応力の増大が緩和される。また、充填材が膨張した場合に、膨張した部分はまず空隙を埋めるように変形する。そのため、充填材は、接合領域近傍まで到達しにくくなり、接合領域にはく離方向の応力を発生させるような状況が抑制される。
 (2)前記接合部は、前記表面ガラス板および裏面ガラス板の外縁の全周にわたって形成されている(1)に記載の太陽電池モジュールであってもよい。これにより、外部の水分が表面ガラス板と裏面ガラス板との間を通過し、太陽電池モジュールの内部に浸入することが抑制される。
 (3)前記接合部は、前記裏面ガラス板と前記表面ガラス板とが直接溶融接合されて形成されている(1)または(2)に記載の太陽電池モジュールであってもよい。これにより、光起電力装置への水分の浸入経路となりうる部分が最小限となり、太陽電池モジュールの外縁部における封止性能が向上する。また、少ない部材でガラス板間の外周部の封止が行われるので、部品点数の低減や組立て工程の簡略化により太陽電池モジュールの製造コストの低減が図られる。
 (4)前記表面ガラス板または前記裏面ガラス板の少なくとも一方は、撓んだ状態で前記接合部において溶融接合されている(1)乃至(3)のいずれか1項に記載の太陽電池モジュールであってもよい。これにより、表面ガラス板または裏面ガラス板の少なくとも一方が撓んでいても、形成されている空隙により、発生する応力が緩和される。
 (5)前記表面ガラス板の周縁部に、前記裏面ガラス板と対向するように配置されたスペーサ部材を更に備え、前記接合部は、前記表面ガラス板または前記裏面ガラス板の少なくとも一方の周縁部と前記スペーサ部材とが溶融接合されて形成されている(1)または(2)に記載の太陽電池モジュールであってもよい。これにより、表面ガラス板及び裏面ガラス板の両方を撓ませずに、対向する表面ガラス板と裏面ガラス板との周縁部における溶融接合が可能となり、撓んだガラス板の復元力による接合領域でのはく離方向の応力を発生させるような状況が抑制される。
 R1 接合領域、 R2 周縁部、 10 太陽電池モジュール、 12 表面ガラス板、 14 裏面ガラス板、 16 光起電力装置、 20 貫通孔、 22 第1集電配線、 24 第2集電配線、 26 端子ボックス、 30 充填材、 30a 外周部、 32 レーザ装置、 34 レーザビーム、 38 空隙、 56 スペーサ。
 本発明は、太陽電池モジュールに関する。

Claims (5)

  1.  受光側に配置された表面ガラス板と、
     前記表面ガラス板と対向するように設けられた裏面ガラス板と、
     前記表面ガラス板と前記裏面ガラス板との間に設けられている光起電力装置と、
     前記表面ガラス板と前記裏面ガラス板との間に充填されている充填材と、を備え、
     前記表面ガラス板および前記裏面ガラス板は、周縁部において溶融接合された接合部を有し、
     前記充填材の外周部と前記接合部との間に空隙が形成されている、
    ことを特徴とする太陽電池モジュール。
  2.  前記接合部は、前記表面ガラス板および裏面ガラス板の外縁の全周にわたって形成されていることを特徴とする請求項1に記載の太陽電池モジュール。
  3.  前記接合部は、前記裏面ガラス板と前記表面ガラス板とが直接溶融接合されて形成されていることを特徴とする請求項1または2に記載の太陽電池モジュール。
  4.  前記表面ガラス板または前記裏面ガラス板の少なくとも一方は、撓んだ状態で前記接合部において溶融接合されていることを特徴とする請求項1乃至3のいずれか1項に記載の太陽電池モジュール。
  5.  前記表面ガラス板の周縁部に、前記裏面ガラス板と対向するように配置されたスペーサ部材を更に備え、
     前記接合部は、前記表面ガラス板または前記裏面ガラス板の少なくとも一方の周縁部と前記スペーサ部材とが溶融接合されて形成されていることを特徴とする請求項1または2に記載の太陽電池モジュール。
PCT/JP2012/007666 2011-11-30 2012-11-29 太陽電池モジュール WO2013080550A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013546999A JP6025123B2 (ja) 2011-11-30 2012-11-29 太陽電池モジュール
US14/289,287 US20140261684A1 (en) 2011-11-30 2014-05-28 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-262359 2011-11-30
JP2011262359 2011-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/289,287 Continuation US20140261684A1 (en) 2011-11-30 2014-05-28 Solar cell module

Publications (1)

Publication Number Publication Date
WO2013080550A1 true WO2013080550A1 (ja) 2013-06-06

Family

ID=48535039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007666 WO2013080550A1 (ja) 2011-11-30 2012-11-29 太陽電池モジュール

Country Status (3)

Country Link
US (1) US20140261684A1 (ja)
JP (1) JP6025123B2 (ja)
WO (1) WO2013080550A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9205505B2 (en) * 2010-07-22 2015-12-08 Ferro Corporation Hermetically sealed electronic device using solder bonding
JP7311010B2 (ja) 2018-09-07 2023-07-19 株式会社プロテリアル フェライト磁心

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048674A (ja) * 2005-08-11 2007-02-22 Ngk Spark Plug Co Ltd 色素増感型太陽電池及びその封止方法
JP2010228998A (ja) * 2009-03-27 2010-10-14 Asahi Glass Co Ltd 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
JP2012084658A (ja) * 2010-10-08 2012-04-26 Asahi Glass Co Ltd 太陽電池モジュールの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4076742B2 (ja) * 2001-07-13 2008-04-16 シャープ株式会社 太陽電池モジュール
KR20110087265A (ko) * 2008-11-26 2011-08-02 아사히 가라스 가부시키가이샤 봉착 재료층 부착 유리 부재 및 그것을 사용한 전자 디바이스와 그 제조 방법
KR101097252B1 (ko) * 2009-11-17 2011-12-21 삼성에스디아이 주식회사 광전변환소자
US20130048055A1 (en) * 2011-08-25 2013-02-28 Primestar Solar, Inc. Sealing layer for thin film photovoltaic devices and their methods of manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048674A (ja) * 2005-08-11 2007-02-22 Ngk Spark Plug Co Ltd 色素増感型太陽電池及びその封止方法
JP2010228998A (ja) * 2009-03-27 2010-10-14 Asahi Glass Co Ltd 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
JP2012084658A (ja) * 2010-10-08 2012-04-26 Asahi Glass Co Ltd 太陽電池モジュールの製造方法

Also Published As

Publication number Publication date
US20140261684A1 (en) 2014-09-18
JP6025123B2 (ja) 2016-11-16
JPWO2013080550A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
US20150194552A1 (en) Solar cell module and method for manufacturing the solar cell module
JP4294048B2 (ja) 太陽電池モジュール
TWI413266B (zh) 太陽能電池模組
JP5410050B2 (ja) 太陽電池モジュール
JP5642355B2 (ja) 太陽電池モジュール
JP2013048272A (ja) 光電変換装置及びその製造方法
US20170373210A1 (en) Solar cell module
JP2008010857A (ja) 太陽電池モジュール
JPH07142756A (ja) 太陽電池モジュール及びその製造方法
WO2010150675A1 (ja) 太陽電池モジュールおよび太陽電池モジュールの製造方法
US20150059835A1 (en) Photoelectric Conversion Device
US20170194525A1 (en) High power solar cell module
JP5637089B2 (ja) 太陽電池モジュール
JP6025123B2 (ja) 太陽電池モジュール
WO2013014972A1 (ja) 光起電力モジュール
JPWO2020054130A1 (ja) 太陽電池モジュール
JP2006278695A (ja) 太陽電池モジュール
WO2013031199A1 (ja) 太陽電池モジュール
JP2010118705A (ja) 太陽電池モジュール
JP2010182851A (ja) 太陽電池モジュール
WO2012023260A1 (ja) 光電変換装置およびその製造方法
WO2011114781A1 (ja) 光電変換装置およびその製造方法
US20110017260A1 (en) Solar cell module
WO2013080549A1 (ja) 太陽電池モジュールおよびその製造方法
WO2022209585A1 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013546999

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853257

Country of ref document: EP

Kind code of ref document: A1