WO2013080489A1 - 情報記録媒体及びその製造方法 - Google Patents

情報記録媒体及びその製造方法 Download PDF

Info

Publication number
WO2013080489A1
WO2013080489A1 PCT/JP2012/007455 JP2012007455W WO2013080489A1 WO 2013080489 A1 WO2013080489 A1 WO 2013080489A1 JP 2012007455 W JP2012007455 W JP 2012007455W WO 2013080489 A1 WO2013080489 A1 WO 2013080489A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
film
phase change
crystallization
crystallization promoting
Prior art date
Application number
PCT/JP2012/007455
Other languages
English (en)
French (fr)
Inventor
西原 孝史
理恵 児島
尚士 三原
紀仁 藤ノ木
晶夫 槌野
照弘 塩野
山田 昇
尾留川 正博
克巳 河原
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013080489A1 publication Critical patent/WO2013080489A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24065Layers assisting in recording or reproduction below the optical diffraction limit, e.g. non-linear optical layers or structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits

Definitions

  • the present invention relates to an information recording medium for recording and / or reproducing information and a method for manufacturing the same, and more particularly to an information recording medium for recording and / or reproducing information with high density using near-field light and a method for manufacturing the same.
  • optical discs such as CDs, DVDs, Blu-ray discs, etc. are widely used.
  • the recording capacity has been increased by increasing the number of information layers (for example, 3 layers-100 gigabytes (GB), 4 layers-128 GB Blu-ray disc).
  • GB gigabytes
  • an optical memory with higher density than before has been demanded.
  • the shortest mark length it is necessary to make the shortest mark length smaller than before, but with the current optical recording method, the diffraction limit of light (to the wavelength of light used for recording / reproducing information) Therefore, it is becoming difficult to make the shortest mark length smaller than that.
  • Near-field light is light that is localized and generated in the vicinity of an aperture or nanoparticle (particle having a size of 100 nm or less) having a wavelength less than the wavelength of light. .
  • the spot diameter formed by this near-field light is determined by the size of the opening and the nanoparticles to which the light is irradiated, regardless of the wavelength of the irradiated light. Therefore, an extremely high density optical memory can be realized by making the openings and nanoparticles as small as possible.
  • an optical disk having a large capacity of about 700 GB per layer can be realized with an optical disk size of 120 mm. Further increase in capacity can be realized by using smaller nanoparticles.
  • a near-field light generating element using metal surface plasmon resonance has been proposed (see, for example, Patent Document 1).
  • a minute metal film is irradiated with light of an appropriate wavelength to induce surface plasmon resonance, and near-field light is generated in the vicinity of the metal film to perform recording / reproduction.
  • a technique for performing stable recording and reproduction by forming a pattern on a substrate in advance or by forming a pattern by dry etching a film of a phase change material has been proposed ( For example, see Patent Document 2 and Patent Document 3).
  • phase change materials are widely used as recording films for recording information (see, for example, Patent Document 4).
  • phase change material by changing the phase state of the phase change material by changing the phase state of the phase change material by making the phase change material amorphous by heating / rapid cooling with a laser light spot or by crystallization by heating / slow cooling. Record / erase. Further, information can be reproduced by reading the reflectance change caused by the difference in phase state of the phase change material with laser light.
  • the current density limit of optical recording media is determined by the light diffraction limit, not by the physical properties of the phase change material.
  • Phase change materials are also promising as optical recording materials for high-density recording by miniaturizing marks to be recorded by forming small light spots with near-field light or forming patterns on the substrate. It is thought that it is a new material.
  • the melting point may be lowered (for example, see Non-Patent Document 1). Therefore, it is important to develop an optical memory that assumes even the change in physical properties of the phase change material.
  • an object of the present invention is to provide an information recording medium capable of stable and high-density recording / reproduction even when a recording mark is miniaturized.
  • the information recording medium of the present invention is A substrate, A plurality of nano-recording regions including a recording material arranged in isolation on the substrate; A crystallization promoting material portion including a crystallization promoting material that promotes crystallization of the recording material, disposed at least in part on the surface of the nano recording region, in contact with the surface of the nano recording region; Is provided.
  • the information recording medium of the present invention stable rewriting can be realized in high-density recording / reproduction. That is, according to the present invention, it is possible to provide an information recording medium capable of recording and reproducing at a stable and high density.
  • FIG. 2A to 2D are enlarged cross-sectional views of main parts showing examples of the information recording medium according to Embodiment 1 of the present invention.
  • FIG. 3A to FIG. 3D are enlarged cross-sectional views of relevant parts showing another example of the information recording medium in Embodiment 1 of the present invention.
  • 4A to 4D are enlarged cross-sectional views of main parts showing other examples of the information recording medium in Embodiment 1 of the present invention, respectively.
  • It is a principal part expansion perspective view which shows an example of the method of recording / reproducing to the information recording medium in Embodiment 1 of this invention.
  • FIG. 7A is an enlarged perspective view of an essential part showing an example of a substrate having a cylindrical pillar formed on the surface thereof in the information recording medium in Embodiment 2 of the present invention
  • FIG. 7B is an embodiment of the present invention.
  • 2 is an enlarged cross-sectional view of a main part showing an example of an information recording medium in FIG. 8A to 8D are enlarged cross-sectional views showing main steps in the example of the method for manufacturing the information recording medium according to Embodiment 3 of the present invention.
  • the phase-change material conventionally used as a recording material for information recording media can be used as an optical recording material for high-density recording by miniaturizing recording marks. Promising. However, the present inventors have found that the following problems occur when recording marks are miniaturized using a phase change material.
  • the area in which information is recorded becomes smaller, so the volume of the phase change material forming the recording mark decreases, and an interface between the phase change material and the surrounding material surrounding the phase change material is formed.
  • the area ratio increases.
  • the phase change material is isolated in a form surrounded by surrounding materials.
  • the amount of heat released from the interface is larger than in the case of a thin film. Therefore, after the temperature of the phase change material is raised by the light spot, the phase change material is rapidly cooled, and it is difficult to maintain the phase change material at a temperature higher than the crystallization temperature for a time required for crystallization. Arise.
  • the present inventors have studied the above problems, and have found a technique for promoting crystallization of a phase change material existing in an isolated state, and information recording capable of recording / reproducing at high density. It came to provide a medium and its manufacturing method.
  • the first aspect of the present invention is: A substrate, A plurality of nano-recording regions including a recording material arranged in isolation on the substrate; A crystallization promoting material portion including a crystallization promoting material that promotes crystallization of the recording material, disposed at least in part on the surface of the nano recording region, in contact with the surface of the nano recording region;
  • An information recording medium comprising:
  • the information recording medium of the first aspect crystallization of an isolated recording material, that is, a nano recording region can be promoted, and stable rewriting can be realized particularly in high-density recording / reproduction. That is, according to the first aspect, it is possible to provide an information recording medium capable of recording and reproducing at a stable and high density.
  • a second aspect of the present invention provides an information recording medium according to the first aspect, wherein the crystallization promoting material includes at least one selected from Ge, Sn, Sb, Te, and Bi.
  • the crystallization of the nano-recording region can be promoted more effectively, so that more stable recording and reproduction at a high density are possible.
  • the crystallization promoting material is selected from SnTe, GeTe—Bi 2 Te 3 , Bi 2 Te 3 , Bi—Te, Bi, Sb, and Bi—Sb.
  • An information recording medium including at least one of them is provided.
  • a fourth aspect of the present invention provides an information recording medium according to any one of the first to third aspects, wherein the crystallization promoting material mainly contains W.
  • crystallization of the nano-recording region can be promoted more effectively, so that more stable recording / reproduction with high density is possible.
  • an information recording medium according to any one of the first to fourth aspects, wherein the recording material contains Ge—Te and contains 50 atomic% or more of Te. .
  • the information recording medium of the fifth aspect it is possible to use materials having a crystal structure similar to each other for the recording material and the crystallization promoting material, so that the crystallization promoting material exerts on the recording material.
  • the effect of promoting crystallization can be further enhanced.
  • the recording material includes any one material selected from Sb—Ge and Sb—Te, and Sb is included.
  • An information recording medium containing 70 atomic% or more is provided.
  • the crystallization promoting material exerts on the recording material.
  • the effect of promoting crystallization can be further enhanced.
  • the information recording medium according to any one of the first to sixth aspects, wherein the length of the nano-recording region along the information recording direction is 3 nm or more and 100 nm or less. provide.
  • the length of the nano-recording area along the information recording direction is 100 nm or less, higher density recording is possible. Moreover, in the information recording medium according to the seventh aspect, since the length of the nano recording area along the information recording direction is 3 nm or more, the thermal fluctuation caused by the melting point of the nano recording area becomes too low. Generation
  • production can be suppressed and the information recorded on the nano recording area
  • An eighth aspect of the present invention is an information recording method according to any one of the first to seventh aspects, wherein information is recorded on and / or reproduced from the nano-recording region using near-field light. Provide media.
  • recording / reproduction can be performed at a high density exceeding the diffraction limit of light.
  • the information recording medium according to any one of the first to eighth aspects, wherein the crystallization promoting material portion is disposed on an upper surface of the nano recording region. provide.
  • the information recording medium of the ninth aspect since crystallization of the nano-recording region can be more effectively promoted, recording / reproduction at a more stable and high density is possible.
  • the tenth aspect of the present invention provides A substrate, a plurality of nano-recording regions including a recording material arranged in an isolated state on the substrate, and at least a part of the surface of the nano-recording region, arranged in contact with the surface of the nano-recording region And a method for producing an information recording medium comprising a crystallization promoting material portion including a crystallization promoting material for promoting crystallization of the recording material, (I) forming a plurality of isolated pillars arranged on the substrate and having a length of 3 nm to 100 nm along the information recording direction; (II) forming the nano-recording region and the crystallization promoting material portion on the pillar by depositing the recording material and the crystallization promoting material on the substrate on which the pillar is formed.
  • a method for manufacturing an information recording medium is provided.
  • an information recording medium that can promote crystallization of an isolated recording material, that is, a nano-recording region, and can realize stable rewriting especially in high-density recording / reproduction is manufactured. can do.
  • the eleventh aspect of the present invention is A substrate, a plurality of nano-recording regions including a recording material arranged in an isolated state on the substrate, and at least a part of the surface of the nano-recording region, arranged in contact with the surface of the nano-recording region And a method for producing an information recording medium comprising a crystallization promoting material portion including a crystallization promoting material for promoting crystallization of the recording material, (I) forming a multilayer film including a film containing the recording material and a film containing the crystallization promoting material on the substrate; (II) disposing a mask having a pattern whose length along the information recording direction is 3 nm or more and 100 nm or less on the multilayer film; (III) etching the multilayer film from above the mask; (IV) removing the mask and forming, on the substrate, the nano-recording region whose length along the information recording direction is 3 nm or more and 100 nm or less, and the crystallization
  • an information recording medium that can promote crystallization of an isolated recording material, that is, a nano-recording region, and can realize stable rewriting particularly in high-density recording / reproduction is manufactured. can do.
  • the twelfth aspect of the present invention provides A substrate, a plurality of nano-recording regions including a recording material arranged in an isolated state on the substrate, and at least a part of the surface of the nano-recording region, arranged in contact with the surface of the nano-recording region And a method for producing an information recording medium comprising a crystallization promoting material portion including a crystallization promoting material for promoting crystallization of the recording material, (I) forming a base layer on the substrate; (II) placing a mask having a predetermined pattern on the underlayer; (III) forming the pattern of the foundation layer by etching the foundation layer from above the mask; (IV) forming a multilayer film including a film including the recording material and a film including the crystallization promoting material on the substrate on which the pattern of the base layer is formed; (V) The nano-recording region having a length along the information recording direction of 3 nm to 100 nm on the substrate by removing the base layer together with
  • an information recording medium that can promote crystallization of an isolated recording material, that is, a nano-recording region, and can realize stable rewriting especially in high-density recording / reproduction is manufactured. can do.
  • FIG. 1 shows a configuration example of the information recording medium 100 according to the present embodiment.
  • the information recording medium 100 includes a glass substrate 102 and a plurality of phase change nanoparticles (nano recording regions) 101 arranged on the substrate 102 in an isolated state.
  • the information recording medium 100 includes a crystallization promoting material disposed on at least a part of the surface of the phase change nanoparticle 101 and in contact with the surface of the phase change nanoparticle 101.
  • a unit 103 (see, for example, FIGS. 2A to 2D) is further provided.
  • the substrate 102 has a disk shape.
  • the material constituting the substrate 102 is preferably a material having high flatness and high stability when the information recording medium 100 is rotated for recording and reproduction.
  • glass having excellent flatness is used.
  • the present invention is not limited to this, and a metal such as aluminum or a plastic material such as polycarbonate may be used.
  • phase change nanoparticles 101 respectively show phase change nanoparticles 101 arranged in an isolated state on substrate 102, and at least part of the surface of phase change nanoparticles 101 in contact with the surface of phase change nanoparticles.
  • a configuration example in which the arranged crystallization promoting material portions 103 are formed is shown.
  • the phase change nanoparticles 101 include a recording material that causes a phase change between a crystalline phase and an amorphous phase.
  • crystallization promoting material portion 103 is disposed in contact with at least one surface of the upper portion, the lower portion, and the side wall portion of phase change nanoparticle 101.
  • the crystallization promoting material part 103 forms an interface with at least one of the upper part, the lower part, and the side wall part of the phase change nanoparticles 101.
  • the crystallization promoting material part 103 is disposed on the upper surface of the phase change nanoparticle 101.
  • the crystallization promoting material part 103 covers the upper surface of the phase change nanoparticles 101 (desirably, in addition to the upper surface, also covers the side wall part surface). More preferably, it is disposed on the phase change nanoparticles 101.
  • the crystallization promoting material part 103 is provided to promote crystallization of the phase change nanoparticles 101. Therefore, the crystallization promoting material portion 103 includes a crystallization promoting material that promotes crystallization of the recording material contained in the phase change nanoparticles 101.
  • phase change nanoparticles 101 include materials that cause a phase change between a crystalline phase and an amorphous phase.
  • the phase change nanoparticles 101 have a high crystallization speed.
  • a material containing Ge—Te and containing 50 atomic% or more of Te may be used as the material of the phase change nanoparticles 101.
  • a material containing any one material selected from Sb—Ge and Sb—Te and containing 70 atomic% or more of Sb may be used.
  • (Sb—Te) —Ga, Sb—Ge, (Sb—Te) —Ge, (Sb—Te) —In, Sb—Mn—Ge, Sb—Sn—Ge, Sb—Mn—Sn—Ge , And (Sb—Te) —Ag—In can be used.
  • the material of the phase change nanoparticles 101 is the wavelength of the light for reproducing information, the sign of the real part of the dielectric constant of the material of the phase change nanoparticles 101 in the amorphous state, and the real number of the dielectric constant in the crystalline state. Materials having different part codes are more preferable.
  • a material containing at least one selected from Ge, Sn, Sb, Te, and Bi can be used. Among them, it is particularly preferable to use a material containing at least one selected from SnTe, GeTe—Bi 2 Te 3 , Bi 2 Te 3 , Bi—Te, Bi, Sb, and Bi—Sb.
  • a material containing Ge—Te and containing 50 atomic% or more is used as the material of the phase change nanoparticles 101, it is more preferable to use SnTe and / or GeTe—Bi 2 Te 3 as the crystallization promoting material. preferable.
  • the material of the phase change nanoparticle 101 includes any one material selected from Sb—Ge and Sb—Te and uses a material containing 70 atomic% or more of Sb
  • Sb is used as the crystallization promoting material. It is more preferable to use Sb-Bi.
  • the crystallization promoting material desirably includes the specified material, and may include, for example, 90 mol% or more, and may include the material.
  • a material mainly containing W can be used as a crystallization promoting material included in the crystallization promoting material portion 103.
  • the material mainly containing W is particularly preferable when the material of the phase change nanoparticle 101 contains any one material selected from Sb—Ge and Sb—Te and contains 70% or more of Sb. .
  • the material mainly containing W is a material containing 90 atomic% or more of W.
  • the crystallization promoting material may be made of W.
  • FIGS. 3A to 3D show another configuration example of the information recording medium 100.
  • the information recording medium 100 includes a lower protective film 104 (substrate side) and / or an upper protective film 105 (opposite to the substrate) that protect the phase change nanoparticles 101 and the crystallization promoting material part 103. Side).
  • a lower protective film 104 substrate side
  • an upper protective film 105 opposite to the substrate
  • a dielectric material As a material of the lower protective film 104 and / or the upper protective film 105, it is preferable to use a dielectric material.
  • a dielectric material TiO 2, ZrO 2, HfO 2, ZnO, Nb 2 O 5, Ta 2 O 5, SiO 2, SnO 2, Al 2 O 3, Bi 2 O 3, Cr 2 O 3, Ga 2 O 3, In One selected from 2 O 3 , Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , Dy 2 O 3 , Yb 2 O 3 , CaO, MgO, CeO 2 , TeO 2 and the like Alternatively, a plurality of types of oxides can be used.
  • CN Ti-N, Zr-N, Nb-N, Ta-N, Si-N, Ge-N, Cr-N, Al-N, Ge-Si-N, and Ge-Cr-N
  • nitrides selected from the above may be used.
  • sulfides such as ZnS, carbides such as SiC, fluorides such as LaF 3 and CeF 3 , and C can also be used.
  • the lower protective film 104 and / or the upper protective film 105 can be formed using a mixture of one or more materials selected from the above materials.
  • the thickness of the lower protective film 104 and / or the upper protective film 105 is preferably 20 nm or less, and more preferably 10 nm or less. By setting the thickness of the lower protective film 104 and / or the upper protective film 105 to 10 nm or less, near-field light described later can be easily concentrated on the phase change nanoparticles 101, and stable recording can be performed.
  • FIG. 4A to 4D show still another configuration example of the information recording medium 100.
  • the information recording medium 100 has the lower reflective film 106 (substrate side) and / or so that the recording material of the phase change nanoparticles 101 can efficiently absorb light.
  • the upper reflective film 107 (on the side opposite to the substrate) may be further included. As described above, by further disposing the lower reflection film 106 and / or the upper reflection film 107, near-field light described later is easily concentrated on the phase change nanoparticles 101, and stable recording can be performed.
  • the material of the lower reflective film 106 and / or the upper reflective film 107 it is preferable to use a metal material.
  • a metal material For example, one or more metals selected from Ag, Au, Cu, Pt, Pd, Al, Cr, Fe, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, etc. Can be used.
  • an alloy such as Ag—In—Sn or Cu—Si can also be used.
  • an Ag alloy containing 50 atomic% or more of Ag is preferable as a material for the lower reflective film 106 and / or the upper reflective film 107 because it tends to concentrate near-field light described later on the phase change nanoparticles 101.
  • the thickness of the lower reflective film 106 is preferably 10 nm or more, and more preferably 20 nm or more. By setting the thickness of the lower reflective film 106 to 20 nm or more, the near-field light transmitted through the phase-change nanoparticles 101 is reflected and returned to the phase-change nanoparticles 101 again. The particles 101 can be absorbed. Further, the thickness of the upper reflective film 107 is preferably 10 nm or less, and more preferably 5 nm or less. By setting the thickness of the upper reflective film 107 to 5 nm or less, the near-field light with sufficient intensity reaches the phase-change nanoparticles 101, and the near-field light is efficiently concentrated on the phase-change nanoparticles 101, thereby being stable. Recording can be performed.
  • FIG. 5 shows an example of a method for recording information on the information recording medium 100 according to the present embodiment.
  • FIG. 5 shows a state in which only the phase change nanoparticles 101 are arranged on the substrate 102, but the information recording medium 100 is actually shown in FIGS. 2A to 2D and FIGS. 3A to 3D.
  • the configuration shown in FIGS. 4A to 4D is provided.
  • phase change nanoparticles 101 are heated by the enhanced near-field light, and information is recorded in the phase change nanoparticles 101.
  • the recording material contained in the phase change nanoparticles 101 is made amorphous by heating the phase change nanoparticles 101 to a melting point or higher and then rapidly cooling them.
  • the recording material contained in the phase change nanoparticles 101 is crystallized by gradually cooling after heating to the melting point or higher. In this manner, information can be recorded by utilizing the fact that the phase change nanoparticles 101 have different physical properties when in an amorphous state and when in a crystalline state.
  • Au is used as the material of the antenna 201.
  • the present invention is not limited to this, and it is preferable to select a material that causes plasmon resonance with the wavelength of the laser to be used.
  • phase change thin film 205 when information is recorded on isolated phase change nanoparticles 101 as shown in FIG. 5 according to the present embodiment and information is recorded on continuous phase change thin film 205 as shown in FIG. Compare with the case. As shown in FIG. 5, when information was recorded on the phase change nanoparticles 101 arranged on the substrate 102 in an isolated manner, good recording with the size as the minimum unit could be performed. On the other hand, when information is recorded on the continuous phase change thin film 205 as shown in FIG. 6, when the phase change thin film 205 is heated by near-field light when the phase change thin film 205 is crystallized, the phase change thin film 205. Heat diffuses inside. For this reason, even if the near-field light spot was 30 nm or less, only a large recording mark of 30 nm or more could be recorded.
  • the thickness is 30 nm or less. Accordingly, when information is recorded in a minute region of 30 nm or less (a region in which the length along the information recording direction is 30 nm or less), each phase is isolated and the length along the information recording direction is 30 nm or less. It would be preferable to use the modified nanoparticles 101. Even when information is recorded in a minute region having a length in the information recording direction of 30 nm or more and 100 nm or less, each information is isolated in order to suppress thermal interference between a plurality of recording marks due to thermal diffusion. It is preferable to use phase change nanoparticles 101 having a length along the recording direction of 100 nm or less.
  • the melting point of the material used for the phase change nanoparticle 101 is lowered by making the phase change nanoparticle 101 as small as 30 nm or less along the information recording direction (for example, non-patented). If the phase change nanoparticles 101 are reduced to about 3 nm, the number of atoms contained in the phase change nanoparticles 101 decreases, and the melting point becomes too low. As a result, it becomes difficult to stably hold information recorded in the phase change nanoparticles 101 due to thermal fluctuation.
  • the length of the phase change nanoparticles 101 along the information recording direction is preferably 3 nm or more.
  • the information recording direction is a tracking direction for recording information on the information recording medium 100.
  • the thickness of the phase change nanoparticles 101 is preferably 1 ⁇ 2 or more and 2 times or less of the length of the phase change nanoparticles 101 along the information recording direction. When the thickness of the phase change nanoparticles 101 is within this range, it is possible to efficiently concentrate near-field light on the phase change nanoparticles 101 and perform stable recording.
  • the thickness of the crystallization promoting material portion 103 is preferably 1/5 or less of the thickness of the phase change nanoparticle 101.
  • the thickness of the crystallization promoting material portion 103 is within this range, it is possible to achieve both the effect of promoting the crystallization of the recording material of the phase change nanoparticles and the stability of the amorphous phase of the recording material. .
  • the shape of the phase change nanoparticles 101 is not particularly limited, and may be a cylinder, a triangular prism, a quadrangular prism, a sphere, a cone, a triangular pyramid, a quadrangular pyramid, an inverted triangular pyramid, or a similar shape.
  • the information recording medium 100 according to the present embodiment can be manufactured by the method described below.
  • a substrate 102 for example, a thickness of 0.6 mm and a diameter ( ⁇ ) of 2.5 inches
  • a lower reflective film 106 is formed on the substrate 102 as necessary.
  • a target made of a metal or an alloy constituting the lower reflective film 106 is selected from a rare gas (eg, Ar gas) atmosphere or a rare gas and a reactive gas (eg, O 2 gas and N 2 gas).
  • DC direct current
  • RF radio frequency
  • the lower protective film 104 is a target made of a dielectric that constitutes the lower protective film 104, in a rare gas atmosphere, or a rare gas and a reactive gas (for example, at least one gas selected from O 2 gas and N 2 gas). It can be formed by sputtering using an RF power source in a mixed gas atmosphere. In order to increase the deposition rate, a small amount of a conductive material is added to the material forming the lower protective film 104 to add conductivity to the target, and sputtering can be performed using a DC power source or a pulsed DC power source. .
  • the lower protective film 104 reactively sputtering a target made of metal constituting the lower protective film 104 using a DC power source, a pulse DC power source, or an RF power source in a mixed gas atmosphere of a rare gas and a reactive gas. Can also be formed.
  • the lower protective film 104 can be formed by simultaneously sputtering each target of a single dielectric using a plurality of power supplies.
  • the lower protective film 104 can be formed by simultaneously sputtering a binary target, a ternary target, or the like in which two or more kinds of dielectrics are combined using a plurality of power supplies. Even when these targets are used, sputtering is performed in a rare gas atmosphere or a mixed gas atmosphere of a rare gas and a reactive gas (for example, at least one gas selected from O 2 gas and N 2 gas). be able to.
  • a crystallization promoting material portion 103 is formed on the substrate 102, the lower reflective film 106, or the lower protective film 104 as necessary.
  • the crystallization promoting material portion 103 is made of a metal or an alloy (a material containing at least one selected from Ge, Sn, Sb, Te and Bi, particularly SnTe, GeTe—Bi 2 Te, constituting the crystallization promoting material portion 103. 3 , a target composed of Bi 2 Te 3 , Bi—Te, Bi, Sb and Bi—Sb, or a material containing mainly W, in a rare gas (eg, Ar gas) atmosphere.
  • a rare gas eg, Ar gas
  • a direct current (DC) power source, a pulsed DC power source, or a radio frequency (RF) power source is used in a mixed gas atmosphere of a rare gas and a reactive gas (for example, at least one gas selected from O 2 gas and N 2 gas).
  • a reactive gas for example, at least one gas selected from O 2 gas and N 2 gas.
  • the crystallization promoting material portion 103 is formed of a metal or an alloy, it is preferable to perform sputtering using a DC power source or a pulsed DC power source that can increase the deposition rate.
  • the crystallization promoting material portion 103 includes, for example, a Ge-containing target, a Sn-containing target, a Sb-containing target, a Te-containing target, a Bi-containing target, a Sn-Te-containing target, a Ge-Te-containing target, It is also possible to form by sputtering at least two kinds of targets selected from targets including Bi 2 Te 3 at the same time using two or more power supplies. In that case, the composition of the resulting recording layer will be determined according to the type and number of targets used, the output of the power source, etc., so that they can be appropriately selected to crystallize the desired composition. It is preferable to configure the crystallization promoting material so that the promoting material portion 103 is obtained. The use of two or more targets in this way is useful, for example, when it is difficult to form a mixture target.
  • a film containing a recording material for forming the phase change nanoparticles 101 is formed on the substrate 102, the lower reflective film 106, the lower protective film 104, or the crystallization promoting material portion 103.
  • the film containing the recording material is made of a metal or an alloy constituting the recording material (for example, a material containing Ge—Te and containing 50 atomic% or more, or any one material selected from Sb—Ge and Sb—Te). It can be formed by a method similar to that of the crystallization promoting material portion 103 using a target made of a material containing 70 at% or more of Sb.
  • the film containing the recording material can be formed by simultaneously sputtering at least two kinds of targets using two or more power supplies.
  • the film containing the recording material may be formed by laminating two or more kinds of films.
  • a target containing Te, a target containing Ge, a target containing Sb, a target containing Ge—Te, and Sb— It is also possible to form by sputtering at least two kinds of targets selected from a target containing Ge, a target containing Sb—Te, etc. sequentially and / or simultaneously using two or more power supplies. That is, in order to form a film containing a recording material, sputtering may be performed twice or more using two or more targets, or two or more targets may be sputtered simultaneously.
  • a crystallization promoting material is formed on the film containing the recording material as necessary using the above-described method.
  • the crystallization promoting material can be efficiently deposited on the side wall of the phase change nanoparticles 101.
  • the center of the substrate 102 and the center of the sputtering target on which the crystallization promoting material is formed are intentionally decentered so that particles sputtered from the target are incident obliquely from the substrate 102.
  • an upper protective film 105 is formed on the film containing the recording material (or the phase change nanoparticles 101) or on the crystallization promoting material part 103 as necessary.
  • the upper protective film 105 can be formed by the same method as the lower protective film 104.
  • an upper reflective film 107 is formed on the film containing the recording material (or the phase change nanoparticles 101), the crystallization promoting material portion 103, or the upper protective film 105 as necessary.
  • the upper reflection film 107 can be formed by the same method as the lower reflection 106.
  • an interface film (not shown) may be formed as needed.
  • the interface film can be formed using a material containing at least one selected from an oxide, a nitride, a carbide, a sulfide, and a fluoride, like the lower protective film 104.
  • the film containing the recording material is isolated to form the phase change nanoparticles 101.
  • a resist is applied onto the recording material film, the crystallization promoting material film, or the upper protective film 105 by using, for example, a spin coating method, and the resist is irradiated with an electron beam by an electron beam drawing apparatus. Then, the resist is developed to remove the portion irradiated with the electron beam (positive type), or the portion not irradiated (negative type) to form a mask having a desired pattern on the resist.
  • a material used as a resist for example, a resist made of an inorganic material such as an oxide of Te, ZnS, or an oxide of a transition metal, or a general organic material for an electron beam (for example, trade name ZEP520 manufactured by Nippon Zeon Co., Ltd.).
  • the trade name TEBN-1) manufactured by Tokuyama Corporation can be used.
  • the resist material is preferably selected in consideration of the etching rate ratio with the recording material, the upper protective film 105, and the like. Thereafter, the film made of the recording material, the film made of the crystallization promoting material, and the upper protective film 105 are dry-etched to isolate the recording material in a desired pattern, thereby forming the phase change nanoparticles 101. .
  • fluorine gas CF 4 , SF 6 , CHF 3 or the like
  • Ar gas Ar gas
  • O 2 gas or the like
  • the material of the upper protective film 105 has a low boiling point of fluoride of an element constituting the upper protective film 105 so that an etching rate by dry etching with a fluorine-based gas can be secured.
  • the surface may be planarized without unevenness.
  • methods such as chemical mechanical polishing (CMP) and ion milling can be used.
  • a protective film may be formed on the phase change nanoparticles 101, the crystallization promoting material part 103, the upper protective film 105, or the upper reflective film 107 as necessary.
  • a protective film for example, a DLC (Diamond-Like Carbon) film can be used.
  • a lubricant film (not shown) is formed on the phase change nanoparticles 101, the crystallization promoting material portion 103, the upper protective film 105, the upper reflective film 107, or the protective film as necessary. Also good.
  • a lubricating film for example, a monomolecular film of a fluorine-based solvent can be used.
  • an initialization process for crystallizing the recording material may be performed as necessary. Crystallization of the recording material can be performed, for example, by irradiation with a laser beam.
  • the information recording medium 100 can be manufactured as described above. Note that although a sputtering method is used as a method for forming each layer in this embodiment mode, the present invention is not limited to this, and a vacuum evaporation method, an ion plating method, a CVD method, an MBE method, or the like can also be used. .
  • the information recording medium 100 of the present embodiment is, for example, (I) forming a multilayer film including a film containing a recording material and a film containing a crystallization promoting material on the substrate 102; (II) disposing a mask having a pattern whose length along the information recording direction is 3 nm or more and 100 nm or less on the multilayer film; (III) etching the multilayer film from above the mask; (IV) The mask is removed, and the nano-recording region (phase change nanoparticles 101) having a length along the information recording direction of 3 nm to 100 nm on the substrate 102, the crystallization promoting material portion 103, Forming a step; It can manufacture by the method containing.
  • the nano-recording region is formed by arranging the phase change nanoparticles 101 on the substrate 1 in an isolated state.
  • a pillar 301 is formed on a substrate 102 in advance, and a film containing a phase change recording material (hereinafter referred to as a phase change film) is formed on the pillar 301.
  • a phase change film a film containing a phase change recording material
  • the information recording medium 200 of the present embodiment a plurality of isolated pillars 301 arranged on the substrate 102 and having a length along the information recording direction of, for example, 3 nm to 100 nm.
  • the nano-recording region is formed by a phase change film 302 provided on the pillar 301.
  • the part that functions as the nano recording region is a part (film 302) provided on the pillar 301 of the film containing the recording material, and the other part. (For example, a film formed in a portion other than the pillar 301 on the substrate 102) does not correspond to the recording area of the present invention.
  • the recording material used in the present embodiment is the same as the recording material described in the first embodiment.
  • the information recording medium 200 includes a crystallization promoting material portion disposed on at least a part of the surface of the phase change film 302 and in contact with the surface of the phase change film 302. Is further provided.
  • each pillar 301 is formed in an isolated state so that adjacent pillars 301 do not contact each other.
  • a film containing a recording material, a film containing a crystallization promoting material, a protective film, a reflective film, and the like are formed as necessary.
  • a film containing a recording material as shown in FIG. 7B can be formed on the substrate 1, and the phase change film 302 formed on the pillar 301 becomes an isolated nano-recording region.
  • the pillar 301 prepares a master (mold) having a pattern (concave shape) opposite to a desired pattern on the substrate in advance by electron beam drawing, and the mold is made of glass on a thermosetting resin. It can be formed by using a nano-imprint technique in which pressing is performed at a temperature higher than the transition temperature and the fine structure of the mold is transferred to a resin.
  • the method for forming the pillar 301 is not limited to this, and the pillar 301 may be formed by another method.
  • the substrate 102 can be formed by etching based on a pattern produced by electron beam drawing.
  • the shape of the pillar 301 formed on the substrate 102 is not limited to the cylindrical shape as illustrated in FIGS. 7A and 7B, and is a triangular prism, a quadrangular prism, a sphere, a cone, a triangular pyramid, a quadrangular pyramid, an inverted triangular pyramid, or A shape similar to that may be used.
  • the phase change film 302 that is formed on the pillar 301 and serves as the nano-recording region needs to be in an isolated state.
  • the phase change film 302 that is formed on the pillar 301 and becomes a nano recording region is as small as possible, is in an isolated state, and is as close as possible to each other.
  • the recording material when forming the recording material, it is preferable that the recording material is not formed on the side surface of the pillar 301 so that the phase change film 302 is isolated.
  • a film forming method having directivity in the film forming direction is applied using a long throw sputtering apparatus or the like having a long distance between the substrate and the target so that the recording material is easily formed on the upper surface of the pillar 301. It is preferable to make it difficult to form a recording material on the side surface 301. This makes it possible to easily isolate the phase change films 302 serving as nano recording regions.
  • the portion (film 302) provided on the pillar 301 of the film containing the recording material functions as the nano-recording region.
  • the nano-recording region is in an isolated state.
  • the interval between the pillars 301 is narrow. However, if the interval between the pillars 301 is too narrow, the phase change films 302 formed on the upper surfaces of the pillars 301 may come into contact with each other, and the isolated state may not be secured. Therefore, it is desirable to design the interval between the pillars 301 in consideration of these points.
  • the linearity as the sputtered particles and the film (phase) formed on the pillar 301 are formed. It is desirable to appropriately design the interval between the pillars 301 according to the thickness (sputter thickness) of the change film 302 and the multilayer film including the crystallization promoting material portion. Specifically, the interval between the pillars 301 is preferably greater than about 30% of the sputtering thickness.
  • the method of forming the phase change film 302, the crystallization promoting material portion, and the like is not limited to the above sputtering, and for example, vapor deposition may be used.
  • the information recording medium 200 of the present embodiment is, for example, (I) a step of forming a plurality of isolated pillars 301 having a length in the information recording direction of 3 nm to 100 nm arranged on the substrate 102 (see FIG. 7A); (II) By forming a recording material and a crystallization promoting material on the substrate 102 on which the pillar 301 is formed, a film 302 that becomes a nano recording region and a crystallization promoting material portion (not shown) are formed on the pillar 301. (See FIG. 7B), It can manufacture by the method containing.
  • the phase change nanoparticles 101 are arranged in an isolated state on the substrate 102 as nano-recording regions, as in the first embodiment. ing. That is, the information recording medium 300 of the present embodiment does not use the pillar 301 as in the second embodiment, and the phase change nanoparticles 101 are directly formed on the flat substrate 102 as in the first embodiment. Manufactured by forming. Note that the recording material, the crystallization promoting material, and the like used in the present embodiment are the same as those described in the first embodiment.
  • FIG. 8A first, a base layer 401 made of a material that can be easily etched (for example, acrylic resin) is uniformly formed on a flat substrate 102. Then, a mask having a desired pattern 402 is formed on the base layer 401. Specifically, the mask can be formed by uniformly forming a material of the pattern 402 (mask) on the base layer 401, drawing a pattern with an electron beam on the base layer 401, and developing the pattern.
  • a material that can be easily etched for example, acrylic resin
  • the base layer 401 is etched with oxygen or the like using the pattern 402 as a mask. Thereafter, by removing the mask, the base layer 401 having a desired pattern is formed.
  • a material for the mask for example, an inorganic substance such as an oxide of Te, ZnS, or an oxide of a transition metal, or a resist made of a general organic material for an electron beam can be used.
  • the base layer 401 any material that has a large etching rate difference from the mask pattern 402 and is easily etched can be selected. This etching process can be easily performed.
  • a film 403 containing a recording material is formed on the substrate 102 on which the pattern of the base layer 401 is formed by sputtering, vapor deposition, or the like.
  • a film further containing a crystallization promoting material is formed in order to form the crystallization promoting material part.
  • the base layer 401 is removed together with the film (such as the film 403 and a film containing a crystallization promoting material) formed on the base layer 401, so that an isolated pattern having a desired pattern is obtained.
  • the medium 300 in which the phase change nanoparticles 101 are arranged can be produced.
  • the thus formed film 403 containing the recording material in an isolated state becomes the phase change nanoparticles 101 for recording information.
  • the substrate 102 in the state of FIG. 8C may be infiltrated with a solvent (such as an organic solvent) that selectively dissolves only the base layer 401.
  • a solvent such as an organic solvent
  • the film thickness (height) of the base layer 401 is larger than the film thickness of the film 403 containing the recording material.
  • the phase change nanoparticles 101 can be formed in an isolated state on the substrate 102 by the above-described information recording medium manufacturing method.
  • the shape of the phase change nanoparticles 101 may be a cylinder, a triangular prism, a quadrangular prism, a sphere, a cone, a triangular pyramid, a quadrangular pyramid, an inverted triangular pyramid, or a similar shape.
  • the information recording medium 300 of the present embodiment is, for example, (I) a step of forming a base layer 401 on the substrate 102 (see FIG. 8A); (II) placing a mask having a predetermined pattern 402 on the base layer 401 (see FIG. 8A); (III) forming a pattern of the underlayer 401 by etching the underlayer 401 from above the mask (see FIG. 8B); (IV) forming a multilayer film including the film 403 containing the recording material and the film (not shown) containing the crystallization promoting material on the substrate 102 on which the pattern of the base layer 401 is formed (see FIG. 8C).
  • Example 1 In Example 1, the information recording medium 100 of FIG. 1 was produced, and the relationship between the material of the crystallization promoting material portion 103 and the crystallization ability of the phase change nanoparticles 101 was examined. Specifically, samples 1-1 to 1-11 of the information recording medium 100 including phase change nanoparticles 101 having different materials for the crystallization promoting material part 103 were produced, and the phase change nanoparticles 101 were irradiated with a pulse laser. The number of pulses required for crystallization at the time was measured, and the ease of crystallization (crystallization ability) of the phase change nanoparticles 101 was confirmed.
  • the sample was manufactured as follows. First, a glass substrate having a thickness of 0.6 mm and a diameter of 2.5 inches was prepared as the substrate 102. On the glass substrate, an Ag—Pd—Cu film (thickness: 20 nm) as the lower reflective film 106 and an (SiO 2 ) 25 (Cr 2 O 3 ) 50 (ZrO 2 ) 25 film (thickness: 10 nm) as the lower protective film 104.
  • a crystallization promoting material part 103 (thickness: 2 nm), a Ge 10 Bi 2 Te 13 film (thickness: 20 nm) as a film containing a recording material for forming the phase change nanoparticles 101, and a crystallization promoting material part 103 (thickness: 2 nm), and an Si—N film (thickness: 10 nm) as the upper protective film 105 were sequentially laminated by a sputtering method.
  • the distance between the substrate and the sputtering target was 100 mm, and the eccentricity between the center of the substrate and the center of the sputtering target was 50 mm. Further, the film thickness was made as uniform as possible by forming the film while rotating the substrate.
  • the film forming apparatus for sputtering each film described above forms an Ag—Pd—Cu alloy sputtering target for forming the lower reflective film 106 and a lower protective film 104 (SiO 2 ) 25 (Cr 2 O 3 ). 50 (ZrO 2 ) 25 sputtering target, alloy sputtering target for forming the crystallization promoting material part 103, Ge—Bi—Te alloy sputtering target for forming a film containing a recording material for forming the phase change nanoparticles 101, upper part An Si—N sputtering target for forming the protective film 105 was provided. In addition, as for the shape of sputtering target, all were (PHI) 100mm and thickness 6mm.
  • the lower reflective film 106 was formed in an Ar gas atmosphere with a pressure of 0.2 Pa and a direct current (DC) power supply with an input power of 200 W.
  • the lower protective film 104 was formed in an Ar gas atmosphere with a pressure of 0.13 Pa and a high frequency (RF) power source with an input power of 200 W.
  • the crystallization promoting material part 103 was formed in an Ar gas atmosphere with a pressure of 0.13 Pa and a DC power source with an input power of 50 W.
  • the film containing the recording material for forming the phase change nanoparticles 101 was formed in an Ar gas atmosphere at a pressure of 0.13 Pa and using a DC power source with an input power of 100 W.
  • the upper protective film 105 was formed in an Ar gas atmosphere at a pressure of 0.13 Pa and using an RF power source with an input power of 200 W.
  • a resist for electron beam drawing (negative type resist: TEBN-1 manufactured by Tokuyama Co., Ltd.) is applied on the upper protective film 105, and after irradiating the resist with an electron beam with an electron beam drawing apparatus, the resist is developed. The part not irradiated with the electron beam was removed. Note that isopropyl alcohol was used as the developer. As a result, a pattern having a diameter of 20 nm and a pitch of 40 nm was formed on the resist. Thereafter, dry etching is performed using CF 4 gas to isolate the upper protective film 105, the crystallization promoting material part 103, the film containing the recording material for forming the phase change nanoparticles 101, and the crystallization promoting material part 103. It was.
  • a crystallization promoting material portion 103 (thickness: 2 nm) was deposited on the side wall portion of the film containing the recording material for forming the isolated phase change nanoparticles 101 (phase change nanoparticles 101).
  • the center of the substrate and the center of the sputtering target have an eccentricity of 150 mm, and film formation is performed while rotating the substrate, so that the sputtered particles are incident on the substrate obliquely and crystallization is efficiently promoted on the side wall.
  • the material part 103 was formed into a film. Thereafter, a Si—N film (thickness: 10 nm) was formed by sputtering as an upper protective film 105 for preventing the phase change nanoparticles 101 and the crystallization promoting material part 103 from being oxidized.
  • phase change nanoparticles 101 were amorphized (recorded) by irradiating a pulse laser once with an energy of 15 picojoules (pJ). Thereafter, the crystallization ability of the phase-change nanoparticles 101 was evaluated by counting the number of times that the laser can be irradiated with a pulse laser at a power of 5 pJ and crystallized (erased). Whether the phase change nanoparticles 101 are an amorphous phase or a crystalline phase was determined by confirming a change in reflectance in the laser irradiation region with an optical microscope.
  • Table 1 shows the relationship between the material of the crystallization promoting material part 103 and the number of picosecond laser pulses necessary to crystallize the phase change nanoparticles 101 for each sample.
  • Example 2 the information recording medium 100 of FIG. 1 was produced as in Example 1, and the relationship between the material of the crystallization promoting material part 103 and the crystallization ability of the phase change nanoparticles 101 was examined. Specifically, samples 2-1 to 2-12 of the information recording medium 100 including phase change nanoparticles 101 having different materials for the crystallization promoting material part 103 were produced, and the phase change nanoparticles 101 were irradiated with a pulse laser. The number of pulses required for crystallization was measured, and the crystallization ability of the phase change nanoparticles 101 was confirmed.
  • Samples 2-1 to 2-12 were produced in the same manner as in Example 1. These samples differed from Example 1 in that a Ge 10 Sb 90 film (thickness: 20 nm) was formed as a film containing a recording material for forming phase change nanoparticles 101. When this film was formed, a Ge—Sb alloy sputtering target was used.
  • Example 3 In Example 3, the information recording medium 200 of FIG. 7B was manufactured, and the relationship between the material of the crystallization promoting material portion and the crystallization ability of the phase change film 302 formed as a nano recording region on the pillar 301 was examined. . Specifically, samples 3-1 to 3-7 of the information recording medium 200 having different materials for the crystallization promoting material part are prepared, and the number of pulses required for crystallization when the phase change film 302 is irradiated with a pulse laser is calculated. The crystallization ability of the phase change film 302 was confirmed by measurement.
  • the sample was manufactured as follows. First, a glass substrate having a thickness of 0.6 mm and a diameter of 2.5 inches was prepared as the substrate 102. A pillar 301 having a diameter of 20 nm, a pitch of 40 nm, and a height of 30 nm was formed on the glass substrate by transferring the pattern to the thermosetting resin by the nano-imprint described in the second embodiment.
  • an Ag—Pd—Cu film (thickness: 10 nm) as the lower reflective film 106 and a (SiO 2 ) 25 (Cr 2 O 3 ) 50 (ZrO 2 ) 25 film (thickness :) as the lower protective film 104 on the pillar 301.
  • crystallization promoting material part 103 (thickness: 1 nm), Ge 8 Bi 1.8 In 0.2 Te 11 film (thickness: 10 nm) as phase change film 302, crystallization promoting material part 103 (thickness: 1 nm)
  • the (SiO 2 ) 25 (Cr 2 O 3 ) 50 (ZrO 2 ) 25 film was sequentially laminated as the upper protective film 105 by the sputtering method.
  • the distance between the substrate and the sputtering target was 300 mm, and the eccentricity between the center of the substrate and the center of the sputtering target was 0 mm, so that the film was not attached to the side wall of the pillar 301 as much as possible.
  • the same sputtering target as in Example 1 except for the phase change film 302 was used as a sputtering target for forming each film.
  • a Ge—Bi—In—Te alloy target capable of obtaining a desired film composition was used as the sputtering target for the phase change film 302.
  • the gas, pressure, and input power used during film formation were also the same as those of the film containing the recording material for forming the phase change nanoparticles 101 in Example 1.
  • the number of pulses necessary to crystallize the phase change film 302 was 1000, whereas the crystallization promoting material part 103 was In the formed samples 3-2 to 3-7, the number of pulses necessary to crystallize the phase change film 302 is 1/20 or less that in the case of the sample 3-1, and it is easy to crystallize. I understood it.
  • Example 4 the information recording medium 200 of FIG. 7B was produced in the same manner as in Example 3, and the relationship between the material of the crystallization promoting material part 103 and the crystallization ability of the phase change film 302 was examined. Specifically, samples 4-1 to 4-8 of the information recording medium 100 including the phase change film 302 made of different materials for the crystallization promoting material portion 104 are manufactured, and the phase change film 302 is irradiated with a pulse laser. The number of pulses required for crystallization was measured, and the crystallization ability of the phase change film 302 was confirmed.
  • Samples 4-1 to 4-8 were produced in the same manner as in Example 3. These samples differed from Example 3 in that a Ge 8 Sb 87 Te 5 film (thickness: 10 nm) was formed as the phase change film 302.
  • a Ge—Sb—Te alloy sputtering target capable of obtaining a desired film composition was used.
  • the number of pulses necessary for crystallization of the phase change film 302 was 2000, whereas the crystallization promoting material part 103 was In the deposited samples 4-2 to 4-8, the number of pulses required to crystallize the phase change film 302 is 1/40 or less that in the case of the sample 4-1, and it is easy to crystallize. I understood it.
  • Example 5 the information recording medium 300 of FIG. 8D was produced, and the relationship between the material of the crystallization promoting material portion 103 and the crystallization ability of the phase change nanoparticles 101 was examined. Specifically, samples 5-1 to 5-5 of the information recording medium 100 having different materials for the crystallization promoting material portion 103 are prepared, and pulses required for crystallization when the phase change nanoparticles 101 are irradiated with a pulse laser. The number was measured and the crystallization ability of the phase change nanoparticles 101 was confirmed.
  • the sample was manufactured as follows. First, a glass substrate having a thickness of 0.6 mm and a diameter of 2.5 inches was prepared as the substrate 102. On the glass substrate, an acrylic resin having a thickness of 500 nm was applied as the base layer 401. Next, a desired pattern 402 was transferred onto the base layer 401 by the method described in Embodiment Mode 3.
  • an Ag—Pd—Cu film (thickness: 20 nm) as the lower reflective film 106 and (SiO 2 ) 25 (Cr 2 O 3 ) 50 (ZrO) as the lower protective film 104 on the base layer 401 to which the pattern 402 has been transferred.
  • the distance between the substrate and the sputtering target was 300 mm
  • the eccentricity between the center of the substrate and the center of the sputtering target was 0 mm
  • the conditions were such that the film did not adhere to the side wall portion of the base layer 401 as much as possible.
  • the same sputtering targets as those used in Example 1 except for the film 403 were used as the sputtering targets for forming the respective films.
  • a Ge—Sn—Sb—Te alloy target that can obtain a desired film composition was used.
  • the gas, pressure, and input power used in the film formation were the same as those of the film containing the recording material for forming the phase change nanoparticles 101 in Example 1.
  • the acrylic resin of the base layer 401 is dissolved by immersing the sample in an organic solvent, and the entire thin film formed on the base layer 401 is removed to be isolated with a desired pattern ( ⁇ 30 nm, pitch 60 nm).
  • a desired pattern ⁇ 30 nm, pitch 60 nm.
  • an upper protective film 105 for preventing the oxidation of the phase change nanoparticles 101 and the crystallization promoting material part 103 a (SiO 2 ) 25 (Cr 2 O 3 ) 50 (ZrO 2 ) 25 film (thickness: 10 nm) was formed by sputtering.
  • the number of pulses necessary to crystallize the phase change nanoparticles 101 is 2000, whereas the crystallization promoting material part 103 In Samples 5-2 to 5-5 in which the film was formed, the number of pulses required for crystallization was 1/20 or less that in Sample 5-1, and it was found that crystallization was easy. .
  • Example 6 In Example 6, as in Example 7, the information recording medium 300 of FIG. 8D was produced, and the relationship between the material of the crystallization promoting material part 103 and the crystallization ability of the phase change nanoparticles 101 was examined. Specifically, samples 6-1 to 6-5 of the information recording medium 300 having different materials for the crystallization promoting material portion 103 are produced, and pulses required for crystallization when the phase change nanoparticles 101 are irradiated with a pulse laser. The number was measured and the crystallization ability of the phase change nanoparticles 101 was confirmed.
  • Samples 6-1 to 6-6 were produced in the same manner as in Example 5. These samples differed from Example 5 in that an Sb 90 Te 10 film (thickness: 20 nm) was formed as a film 403 containing a recording material for forming phase change nanoparticles 101. When the film 403 was formed, an Sb—Te alloy sputtering target with a desired film composition was used.
  • Example 7 the information recording medium 100 of FIG. 1 was produced, and the relationship between the thickness of the crystallization promoting material portion 103 and the crystallization ability of the phase change nanoparticles 101 was examined. Specifically, samples 7-1 to 7-6 of the information recording medium 100 having different thicknesses of the crystallization promoting material portion 103 are manufactured, and pulses required for crystallization when the phase change nanoparticles 101 are irradiated with a pulse laser. The number was measured and the crystallization ability of the phase change nanoparticles 101 was confirmed. Further, the stability of the amorphous phase change nanoparticles 101 was also confirmed.
  • Samples 7-1 to 7-6 were produced in the same manner as in Example 1.
  • the material of the crystallization promoting material portion 103 is Ge 14.3 Bi 28.6 Te 57.1
  • a film is formed using a Ge—Bi—Te alloy target capable of obtaining a desired film composition. Samples were prepared that were varied from 5 to 5 nm.
  • a sample having the amorphized recorded phase change nanoparticles 101 is held in a constant temperature and humidity chamber at a temperature of 80 ° C. and a relative humidity of 80% for 100 hours. Evaluation was made based on whether or not the amorphous mark remained. When the amorphous mark remained, the stability was judged as “good”, and when it remained, the stability was judged as “poor”.
  • the thickness of the crystallization promoting material portion 103 increases, the number of pulses necessary to crystallize the phase change nanoparticles 101 decreases, and the phase change nanoparticles 101 are easily crystallized. It was. However, it was found that in the case of Sample 7-6 in which the thickness of the crystallization promoting material portion 103 is larger than 1/5 of the thickness of the phase change nanoparticle 101, the stability of the amorphous mark is x, which is not preferable. From the above results, it was found that the thickness of the crystallization promoting material portion 103 is preferably 1/5 or less of the thickness of the phase change nanoparticle 101.
  • Example 8 the information recording medium 200 of FIG. 7B was produced in the same manner as in Example 3, and the relationship between the arrangement position of the crystallization promoting material portion 103 and the crystallization ability of the phase change film 302 was examined. Specifically, samples 8-1 to 8-4 of the information recording medium 100 having different arrangement positions of the crystallization promoting material part 103 with respect to the phase change film 302 are produced, and the phase change film 302 is irradiated with a pulse laser. The number of pulses required for crystallization was measured, and the crystallization ability of the phase change film 302 was confirmed.
  • Samples 8-1 to 8-4 were produced in the same manner as in Example 3. These samples are different from Example 3 in that a Ge 10 Sb 90 film (thickness: 40 nm) is formed as the phase change film 302 and an Sb film (thickness: 3 nm) is formed as the crystallization promoting material portion 103. That is, the arrangement position of the crystallization promoting material portion 103 with respect to the phase change film 302 was changed. With respect to the arrangement position of the crystallization promoting material part 103 with respect to the phase change film 302, in Sample 8-2, the crystallization promoting material part 103 was formed only before the phase change film 302 was formed.
  • the crystallization promoting material portion 103 was formed only after the phase change film 302 was formed. In Sample 8-4, the crystallization promoting material portion 103 was formed both before and after the phase change film 302 was formed. In Sample 8-1, the crystallization promoting material portion 103 was not formed.
  • a sputtering target of Sb—Te alloy capable of obtaining a desired film composition was used.
  • the number of pulses necessary for crystallization of the phase change film 302 was 2000, whereas the crystallization promoting material part 103 was In the formed samples 8-2 to 8-4, the number of pulses required to crystallize the phase change film 302 is smaller than in the case of the sample 8-1, and among them, the film formation of the phase change film 302 is particularly preferable.
  • the number of pulses required to crystallize the phase change film 302 in Samples 8-3 and 8-4, in which the crystallization promoting material portion 103 is formed later, is reduced to 1/100 or less, which facilitates crystallization. I found out. That is, by adopting a configuration in which the crystallization promoting material part is arranged on the upper surface of the nano recording region, the crystallization promoting effect of the nano recording region by the crystallization promoting material part can be more effectively exhibited. .
  • the information recording medium according to the present invention has an excellent crystallization accelerating material that promotes crystallization of a miniaturized phase change material, and is useful as a rewritable optical information recording medium having a greatly improved recording density. is there.
  • it can be applied to uses such as a nonvolatile semiconductor memory (Phase change Random Access Memory, PRAM) using a rewritable phase change material.
  • PRAM Phase change Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

 本発明の情報記録媒体(100)は、基板(102)と、基板(102)上に孤立した状態で配列された、記録材料を含む複数のナノ記録領域(例えば相変化ナノ粒子101)と、ナノ記録領域の表面上の少なくとも一部に、当該ナノ記録領域の表面に接して配置された、前記記録材料の結晶化を促進する結晶化促進材料を含む結晶化促進材料部(103)と、を備える。

Description

情報記録媒体及びその製造方法
 本発明は、情報を記録及び/又は再生する情報記録媒体とその製造方法に関し、特に近接場光を用いて高密度に情報を記録及び/又は再生する情報記録媒体とその製造方法に関する。
 従来の光学的な情報記録装置として、CD、DVD、Blu-rayディスク等の光ディスクが広く用いられている。情報記録分野の更なる発展によって、1枚の光ディスクの記録容量をさらに増やすことが望まれている。そこで、情報層の多層化(例えば、3層-100ギガバイト(GB)、4層-128GBのBlu-rayディスク)による記録容量の増大が行われている。しかし、さらなる大容量化のため、これまでよりさらに高密度の光メモリが求められている。光メモリのさらなる高密度化のためには、最短マーク長をこれまで以上に小さくする必要があるが、現行の光記録方式では、光の回折限界(情報の記録・再生に用いる光の波長程度までしか光を絞ることができないこと)から、これ以上最短マーク長を小さくすることは困難になりつつある。
 この光の回折限界を打破する技術として、近接場光を用いた光記録方式が提案されている。近接場光とは、光の波長以下の大きさの開口やナノ粒子(100nm以下の大きさの粒子)等に光を照射したとき、そのごく近傍に局在化して発生する光のことである。この近接場光で形成されるスポット径は、照射される光の波長によらず、光が照射される開口やナノ粒子の大きさで決まる。そのため、その開口やナノ粒子を極限まで小さく作ることによって、極めて高密度の光メモリを実現することが可能となる。例えば、Φ20nmのナノ粒子をピッチ40nmで並べた場合、Φ120mmの光ディスクサイズで1層あたり約700GBの大容量の光ディスクを実現することができる。さらに小さなナノ粒子を用いることにより、さらなる大容量化を実現できる。
 近接場光を発生させる技術として、金属の表面プラズモン共鳴を利用した近接場光発生素子が提案されている(例えば、特許文献1参照)。この技術は、微小な金属膜に適当な波長の光を照射して表面プラズモン共鳴を誘起し、金属膜近傍に近接場光を発生させて記録再生を行うものである。また、記録密度を向上させるため、予め基板にパターンを形成したり、相変化材料の膜をドライエッチングしてパターンを形成したりすることにより、安定した記録再生を行う技術も提案されている(例えば、特許文献2及び特許文献3参照)。これらの技術を利用して微小な記録マークを形成することで、光メモリのさらなる高密度化、大容量化が実現できる。
 書換形のDVD、及びBlu-rayディスクでは、情報を記録する記録膜として相変化材料が広く用いられている(例えば、特許文献4参照)。この場合、相変化材料をレーザの光スポットによって昇温・急冷することによりアモルファス化、あるいは昇温・徐冷することにより結晶化することによって、相変化材料の相状態を変化させて、情報を記録・消去する。また、相変化材料の相状態の違いに起因する反射率変化をレーザ光により読み取ることで、情報を再生することができる。
 現在の光記録媒体での高密度化の限界は、光の回折限界で決まっており、相変化材料の物性によるものではない。近接場光により小さな光スポットを形成したり、基板にパターンを形成したりすることにより、記録するマークの微小化を行うことで、相変化材料は高密度記録に対応する光記録材料としても有望な材料であると考えられる。しかし、記録マークの微小化のためにΦ30nm以下のナノ粒子を用いる場合には、融点の低下がおこる可能性がある(例えば、非特許文献1参照)。したがって、相変化材料の物性変化までを想定した光メモリの開発が重要である。
特許第4032689号公報 特許第2584122号公報 国際公開第2010/116707号 特許第2574325号公報
J. Phys. D: Appl. Phys., 33 (2000) 2653-2656.
 記録マークの微小化に伴い情報が記録される領域が小さくなるため、記録マークを形成する記録材料の体積が減少し、安定した記録再生が困難になる場合がある。そこで、本発明は、記録マークの微小化された場合でも、安定した高密度での記録・再生が可能な情報記録媒体を提供することを目的とする。
 本発明の情報記録媒体は、
 基板と、
 前記基板上に孤立した状態で配列された、記録材料を含む複数のナノ記録領域と、
 前記ナノ記録領域の表面上の少なくとも一部に、当該ナノ記録領域の表面に接して配置された、前記記録材料の結晶化を促進する結晶化促進材料を含む結晶化促進材料部と、
を備える。
 本発明の情報記録媒体によれば、高密度な記録・再生において安定した書き換えを実現することができる。すなわち、本発明によれば、安定した高密度での記録・再生が可能な情報記録媒体を提供できる。
本発明の実施の形態1における情報記録媒体の一例を示す要部拡大斜視図である。 図2Aから図2Dは、それぞれ、本発明の実施の形態1における情報記録媒体の例を示す要部拡大断面図である。 図3Aから図3Dは、それぞれ、本発明の実施の形態1における情報記録媒体の他の例を示す要部拡大断面図である。 図4Aから図4Dは、それぞれ、本発明の実施の形態1における情報記録媒体の他の例を示す要部拡大断面図である。 本発明の実施の形態1における情報記録媒体への記録再生の方法の一例を示す要部拡大斜視図である。 従来の、連続的な相変化薄膜を備えた情報記録媒体への記録再生の方法の一例を示す要部拡大斜視図である。 図7Aは、本発明の実施の形態2における情報記録媒体において、表面に円筒形のピラーが形成された基板の一例を示す要部拡大斜視図であり、図7Bは、本発明の実施の形態2における情報記録媒体の一例を示す要部拡大断面図である。 図8Aから図8Dは、本発明の実施の形態3における情報記録媒体の製造方法の一例において、各工程を示す要部拡大断面図である。
 [背景技術]の欄において記載したように、情報記録媒体の記録材料として従来用いられていた相変化材料は、記録マークの微小化を行うことで、高密度記録に対応する光記録材料としても有望であると考えられる。しかし、本発明者らは、相変化材料を利用して記録マークの微小化を行う場合に、以下のような問題が生じることを見出した。
 記録マークの微小化に伴い情報が記録される領域が小さくなるため、記録マークを形成する相変化材料の体積が減少し、相変化材料と当該相変化材料を取り囲む周辺材料との界面を形成する領域の割合が増大する。特に、予め基板に相変化材料のパターンを形成したり、相変化材料の膜をドライエッチングしてパターンを形成したりする場合、相変化材料が周辺材料に囲まれた形で孤立化されるため、薄膜の場合に比べ界面からの放熱量が多くなる。したがって、相変化材料が光スポットにより昇温された後、急激に冷却されることになり、相変化材料を結晶化に必要な時間だけ結晶化温度以上で保持することが困難になるという問題が生じる。
 そこで、本発明者らは、上記問題について検討を重ねた末、孤立化された状態で存在する相変化材料の結晶化を促進する技術を見出し、高密度での記録・再生が可能な情報記録媒体とその製造方法とを提供するに至った。
 本発明の第1の態様は、
 基板と、
 前記基板上に孤立した状態で配列された、記録材料を含む複数のナノ記録領域と、
 前記ナノ記録領域の表面上の少なくとも一部に、当該ナノ記録領域の表面に接して配置された、前記記録材料の結晶化を促進する結晶化促進材料を含む結晶化促進材料部と、
を備えた情報記録媒体を提供する。
 第1の態様に係る情報記録媒体によれば、孤立した記録材料、すなわちナノ記録領域の結晶化を促進することができ、特に高密度な記録・再生において安定した書き換えを実現することができる。すなわち、第1の態様によれば、安定した高密度での記録・再生が可能な情報記録媒体を提供できる。
 本発明の第2の態様は、第1の態様において、前記結晶化促進材料が、Ge、Sn、Sb、Te及びBiから選ばれる少なくともいずれか一つを含む、情報記録媒体を提供する。
 第2の態様に係る情報記録媒体によれば、ナノ記録領域の結晶化をより効果的に促進することができるので、より安定した高密度での記録・再生が可能となる。
 本発明の第3の態様は、第2の態様において、前記結晶化促進材料が、SnTe、GeTe-BiTe、BiTe、Bi-Te、Bi、Sb及びBi-Sbから選ばれる少なくともいずれか一つを含む、情報記録媒体を提供する。
 第3の態様に係る情報記録媒体によれば、ナノ記録領域の結晶化をより効果的に促進することができるので、より安定した高密度での記録・再生が可能となる。
 本発明の第4の態様は、第1から第3の態様のいずれか一つの態様において、前記結晶化促進材料がWを主として含む、情報記録媒体を提供する。
 第4の態様に係る情報記録媒体によれば、ナノ記録領域の結晶化をより効果的に促進することができるので、より安定した高密度での記録・再生が可能となる。
 本発明の第5の態様は、第1から第4の態様のいずれか一つの態様において、前記記録材料が、Ge-Teを含み、且つTeを50原子%以上含む、情報記録媒体を提供する。
 第5の態様に係る情報記録媒体によれば、記録材料と結晶化促進材料とに、互いに類似する結晶構造を有する材料を用いることが可能となるので、結晶化促進材料が記録材料に及ぼす結晶化促進効果をさらに高めることができる。
 本発明の第6の態様は、第1から第4の態様のいずれか一つの態様において、前記記録材料が、Sb-Ge及びSb-Teから選ばれるいずれか一つの材料を含み、且つSbを70原子%以上含む、情報記録媒体を提供する。
 第6の態様に係る情報記録媒体によれば、記録材料と結晶化促進材料とに、互いに類似する結晶構造を有する材料を用いることが可能となるので、結晶化促進材料が記録材料に及ぼす結晶化促進効果をさらに高めることができる。
 本発明の第7の態様は、第1から第6の態様のいずれか一つの態様において、前記ナノ記録領域の情報記録方向に沿った長さが、3nm以上100nm以下である、情報記録媒体を提供する。
 第7の態様に係る情報記録媒体では、ナノ記録領域の情報記録方向に沿った長さが100nm以下であるので、さらなる高密度記録が可能となる。また、第7の態様に係る情報記録媒体では、ナノ記録領域の情報記録方向に沿った長さが3nm以上であるので、ナノ記録領域の融点が低くなりすぎることに起因する熱的な揺らぎの発生を抑制して、ナノ記録領域に記録された情報を安定的に保持することができる。さらに、ナノ記録領域の体積が小さくなりすぎないので、記録材料の結晶化が困難となることも抑制できる。
 本発明の第8の態様は、第1から第7の態様のいずれか一つの態様において、近接場光を用いて、前記ナノ記録領域に対して情報が記録及び/又は再生される、情報記録媒体を提供する。
 第8の態様に係る情報記録媒体によれば、光の回折限界を超えた高密度での記録・再生が可能となる。
 本発明の第9の態様は、第1から第8の態様のいずれか一つの態様において、前記結晶化促進材料部が、前記ナノ記録領域の上部表面上に配置されている、情報記録媒体を提供する。
 第9の態様に係る情報記録媒体によれば、ナノ記録領域の結晶化をより効果的に促進することができるので、より安定した高密度での記録・再生が可能となる。
 本発明の第10の態様は、
 基板と、前記基板上に孤立した状態で配列された、記録材料を含む複数のナノ記録領域と、前記ナノ記録領域の表面上の少なくとも一部に、当該ナノ記録領域の表面に接して配置された、前記記録材料の結晶化を促進する結晶化促進材料を含む結晶化促進材料部と、を備えた情報記録媒体を製造する方法であって、
(I)前記基板上に配列された、情報記録方向に沿った長さが3nm以上100nm以下である複数の孤立したピラーを形成する工程と、
(II)前記ピラーが形成された前記基板上に、前記記録材料及び前記結晶化促進材料を成膜することによって、前記ピラー上に前記ナノ記録領域と前記結晶化促進材料部とを形成する工程と、
を含む、情報記録媒体の製造方法を提供する。
 第10の態様に係る製造方法によれば、孤立した記録材料、すなわちナノ記録領域の結晶化を促進することができ、特に高密度な記録・再生において安定した書き換えを実現できる情報記録媒体を製造することができる。
 本発明の第11の態様は、
 基板と、前記基板上に孤立した状態で配列された、記録材料を含む複数のナノ記録領域と、前記ナノ記録領域の表面上の少なくとも一部に、当該ナノ記録領域の表面に接して配置された、前記記録材料の結晶化を促進する結晶化促進材料を含む結晶化促進材料部と、を備えた情報記録媒体を製造する方法であって、
(I)前記基板上に、前記記録材料を含む膜及び前記結晶化促進材料を含む膜を含む多層膜を形成する工程と、
(II)前記多層膜の上に、情報記録方向に沿った長さが3nm以上100nm以下となるパターンを有するマスクを配置する工程と、
(III)前記マスクの上から前記多層膜をエッチングする工程と、
(IV)前記マスクを除去して、前記基板上に、情報記録方向に沿った長さが3nm以上100nm以下である前記ナノ記録領域と、前記結晶化促進材料部とを形成する工程と、
を含む、情報記録媒体の製造方法を提供する。
 第11の態様に係る製造方法によれば、孤立した記録材料、すなわちナノ記録領域の結晶化を促進することができ、特に高密度な記録・再生において安定した書き換えを実現できる情報記録媒体を製造することができる。
 本発明の第12の態様は、
 基板と、前記基板上に孤立した状態で配列された、記録材料を含む複数のナノ記録領域と、前記ナノ記録領域の表面上の少なくとも一部に、当該ナノ記録領域の表面に接して配置された、前記記録材料の結晶化を促進する結晶化促進材料を含む結晶化促進材料部と、を備えた情報記録媒体を製造する方法であって、
(I)前記基板上に、下地層を形成する工程と、
(II)前記下地層の上に、所定のパターンを有するマスクを配置する工程と、
(III)前記マスクの上から前記下地層をエッチングすることによって、前記下地層のパターンを形成する工程と、
(IV)前記下地層のパターンが形成された前記基板上に、前記記録材料を含む膜及び前記結晶化促進材料を含む膜を含む多層膜を形成する工程と、
(V)前記下地層を、前記下地層の上に形成された前記多層膜と共に除去することにより、前記基板上に、情報記録方向に沿った長さが3nm以上100nm以下である前記ナノ記録領域と、前記結晶化促進材料部とを形成する工程と、
を含む、情報記録媒体の製造方法を提供する。
 第12の態様に係る製造方法によれば、孤立した記録材料、すなわちナノ記録領域の結晶化を促進することができ、特に高密度な記録・再生において安定した書き換えを実現できる情報記録媒体を製造することができる。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、説明の便宜上、図面はすべて情報記録媒体の一部を拡大して示している。
 (実施の形態1)
 図1は、本実施の形態に係る情報記録媒体100の一構成例を示している。図1に示すように、情報記録媒体100は、ガラスからなる基板102と、基板102上にそれぞれ孤立した状態で配列された複数の相変化ナノ粒子(ナノ記録領域)101とを備えている。なお、便宜上図1には示されていないが、情報記録媒体100は、相変化ナノ粒子101の表面上の少なくとも一部に、相変化ナノ粒子101の表面に接して配置された結晶化促進材料部103(例えば図2Aから図2D参照)をさらに備えている。
 基板102は円盤形状を有している。基板102を構成する材料としては、平坦性が高く、記録再生のために情報記録媒体100を回転させたときの安定性が高いものが好ましい。本実施の形態では、平坦性に優れたガラスを用いたが、これに限定されるものではなく、アルミ等の金属や、ポリカーボネート等のプラスチック材料を用いてもよい。
 図2Aから図2Dは、それぞれ、基板102上に孤立した状態で配列された相変化ナノ粒子101と、相変化ナノ粒子101の表面上の少なくとも一部に、相変化ナノ粒子の表面に接して配置された結晶化促進材料部103と、が形成された構成例を示している。相変化ナノ粒子101は、結晶相と非晶質相との間で相変化を起こす記録材料を含んでいる。図2Aから図2Dに示すように、本実施の形態では、結晶化促進材料部103は、相変化ナノ粒子101の上部、下部及び側壁部のうち少なくとも一つの表面に接して配置されている。すなわち、結晶化促進材料部103は、相変化ナノ粒子101の上部、下部及び側壁部のうち少なくとも一つとの間で界面を形成している。結晶化促進材料部103による相変化ナノ粒子101の結晶化促進効果をより効果的に発揮させるために、結晶化促進材料部103は相変化ナノ粒子101の上部表面上に配置されることが望ましい。結晶化促進効果をより一層効果的に発揮させるために、結晶化促進材料部103は、相変化ナノ粒子101の上部表面を覆うように(望ましくは、上部表面に加えて側壁部表面も覆うように)、相変化ナノ粒子101上に配置されることがより望ましい。すなわち、例えば図2A、図2C及び図2Dに示された構成が望ましい。ここで、結晶化促進材料部103は、相変化ナノ粒子101の結晶化を促進するために設けられるものである。したがって、結晶化促進材料部103は、相変化ナノ粒子101に含まれる記録材料の結晶化を促進する結晶化促進材料を含んでいる。
 相変化ナノ粒子101に含まれる記録材料(以下、「相変化ナノ粒子101の材料」と記載することがある。)としては、結晶相と非晶質相との間で相変化を起こす材料からなり、且つ情報記録媒体100の書き込み速度を高めるために、相変化ナノ粒子101の結晶化速度が速いものが好ましい。特に、相変化ナノ粒子101の材料としては、Ge-Teを含み、且つTeを50原子%以上含む材料を用いてもよい。この場合、相変化ナノ粒子101の材料として、GeTe、(Ge-Sn)Te、GeTe-SbTe、(Ge-Sn)Te-SbTe、GeTe-BiTe、(Ge-Sn)Te-BiTe、GeTe-(Sb-Bi)Te、(Ge-Sn)Te-(Sb-Bi)Te、GeTe-(Bi-In)Te、及び(Ge-Sn)Te-(Bi-In)Teのいずれかを含む材料を用いることができる。また、相変化ナノ粒子101の材料として、Sb-Ge及びSb-Teから選ばれるいずれか一つの材料を含み、且つSbを70原子%以上含む材料を用いてもよい。この場合、(Sb-Te)-Ga、Sb-Ge、(Sb-Te)-Ge、(Sb-Te)-In、Sb-Mn-Ge、Sb-Sn-Ge、Sb-Mn-Sn-Ge、及び(Sb-Te)-Ag-Inのいずれかを含む材料を用いることができる。なお、相変化ナノ粒子101の材料としては、情報を再生する光の波長で、相変化ナノ粒子101の材料のアモルファス状態での誘電率の実数部の符号と、結晶状態での誘電率の実数部の符号とが互いに異なる材料が、より好ましい。
 また、結晶化促進材料部103に含まれる結晶化促進材料としては、Ge、Sn、Sb、Te及びBiから選ばれる少なくともいずれか一つを含む材料を用いることができる。その中でも特に、SnTe、GeTe-BiTe、BiTe、Bi-Te、Bi、Sb及びBi-Sbから選ばれる少なくともいずれか一つを含む材料を用いることが好ましい。相変化ナノ粒子101の材料に、Ge-Teを含み、且つTeを50原子%以上含む材料を用いる場合には、結晶化促進材料にSnTe及び/又はGeTe-BiTeを用いることがより好ましい。また、相変化ナノ粒子101の材料に、Sb-Ge及びSb-Teから選ばれるいずれか一つの材料を含み、且つSbを70原子%以上含む材料を用いる場合には、結晶化促進材料にSb及び/又はSb-Biを用いることがより好ましい。記録材料と結晶化促進材料に結晶構造が類似した材料を用いることにより、結晶化促進材料が記録材料に及ぼす結晶化促進効果をさらに高めることができる。結晶化促進材料は、特定された上記材料を含むことが望ましく、例えば90mol%以上含んでいてもよく、上記材料からなっていてもよい。
 また、結晶化促進材料部103に含まれる結晶化促進材料として、Wを主として含む材料を用いることもできる。このWを主として含む材料は、相変化ナノ粒子101の材料に、Sb-Ge及びSb-Teから選ばれるいずれか一つの材料を含み、且つSbを70原子%以上含む材料を用いる場合に特に好ましい。なお、Wを主として含む材料とは、Wを90原子%以上含む材料のことである。例えば、結晶化促進材料がWからなっていてもよい。
 図3Aから図3Dは、情報記録媒体100の別の構成例を示している。図3Aから図3Dに示すように、情報記録媒体100は、相変化ナノ粒子101及び結晶化促進材料部103を保護する下部保護膜104(基板側)及び/又は上部保護膜105(基板と反対側)をさらに有していてもよい。このように、下部保護膜104及び/又は上部保護膜105で相変化ナノ粒子101を保護することにより、相変化ナノ粒子101に安定して情報を記録、又は書き換えることが可能となる。
 下部保護膜104及び/又は上部保護膜105の材料としては、誘電体材料を用いることが好ましい。例えば、TiO、ZrO、HfO、ZnO、Nb、Ta、SiO、SnO、Al、Bi、Cr、Ga、In、Sc、Y、La、Gd、Dy、Yb、CaO、MgO、CeO、及びTeO等から選ばれる1種又は複数種の酸化物を用いることができる。また、C-N、Ti-N、Zr-N、Nb-N、Ta-N、Si-N、Ge-N、Cr-N、Al-N、Ge-Si-N、及びGe-Cr-N等から選ばれる1種又は複数種の窒化物を用いることもできる。また、ZnS等の硫化物やSiC等の炭化物、LaF及びCeF等の弗化物、及びCを用いることもできる。また、上記材料から選ばれる1種又は複数種の材料の混合物を用いて、下部保護膜104及び/又は上部保護膜105を形成することもできる。
 下部保護膜104及び/又は上部保護膜105の厚みは、20nm以下であることが好ましく、10nm以下であることがさらに好ましい。下部保護膜104及び/又は上部保護膜105の厚みを10nm以下にすることで、後述の近接場光が相変化ナノ粒子101に集中しやすくなり、安定した記録を行うことが可能となる。
 図4Aから図4Dは、情報記録媒体100のさらに別の構成例を示している。図4Aから図4Dに示すように、情報記録媒体100は、相変化ナノ粒子101の記録材料に効率的に光を吸収させることが可能となるように、下部反射膜106(基板側)及び/又は上部反射膜107(基板と反対側)をさらに有していてもよい。このように、下部反射膜106及び/又は上部反射膜107をさらに配置することにより、後述の近接場光が相変化ナノ粒子101に集中しやすくなり、安定した記録を行うことが可能となる。
 下部反射膜106及び/又は上部反射膜107の材料としては、金属材料を用いることが好ましい。例えばAg、Au、Cu、Pt、Pd、Al、Cr、Fe、Co、Ni、Nb、Mo、Ru、Rh、Ta、W、Re、Os及びIr等から選ばれる1種又は複数種の金属を用いることができる。また、Al-Cr、Al-Ti、Al-Ni、Al-Cu、Au-Pd、Au-Cr、Ag-Cu、Ag-Pd、Ag-Pd-Cu、Ag-Pd-Ti、Ag-Ru-Au、Ag-Cu-Ni、Ag-Zn-Al、Ag-Nd-Au、Ag-Nd-Cu、Ag-Bi、Ag-Ga、Ag-Ga-In、Ag-Ga-Cu、Ag-In、Ag-In-Sn又はCu-Siといった合金を用いることもできる。特に、Agを50原子%以上含むAg合金は後述の近接場光を相変化ナノ粒子101に集中させやすく、下部反射膜106及び/又は上部反射膜107の材料として好ましい。
 下部反射膜106の厚みは、10nm以上であることが好ましく、20nm以上であることがより好ましい。下部反射膜106の厚みを20nm以上とすることで、相変化ナノ粒子101を透過した近接場光を反射して再び相変化ナノ粒子101に戻すことにより、近接場光を効率的に相変化ナノ粒子101に吸収させることが可能となる。また、上部反射膜107の厚みは、10nm以下であることが好ましく、5nm以下であることがより好ましい。上部反射膜107の厚みを5nm以下とすることで、十分な強度の近接場光を相変化ナノ粒子101まで到達させるとともに、近接場光を効率的に相変化ナノ粒子101に集中させ、安定した記録を行うことが可能となる。
 図5は、本実施の形態に係る情報記録媒体100に情報を記録する方法の一例を示している。なお、便宜上、図5には基板102上に相変化ナノ粒子101のみが配置された様子が示されているが、情報記録媒体100は、実際には図2Aから図2D、図3Aから図3D、又は、図4Aから図4Dに示された構成を有している。
 図5に示すように、Auからなるアンテナ201に、偏光方向204を持つ光202を照射する。これにより、プラズモン増強によって偏光方向にあるアンテナ201の頂点203に強い近接場光が発生する。そして、この増強した近接場光によって相変化ナノ粒子101が昇温され、相変化ナノ粒子101に情報が記録される。具体的には、相変化ナノ粒子101を融点以上に加熱した後に急冷することで、相変化ナノ粒子101に含まれる記録材料をアモルファス化する。一方、融点以上に加熱した後に徐冷することにより、相変化ナノ粒子101に含まれる記録材料を結晶化する。このように、相変化ナノ粒子101がアモルファス状態のときと結晶状態のときで異なる物性を有することを利用して、情報を記録することができる。
 なお、本実施の形態では、アンテナ201の材料としてAuを用いたが、これに限定されず、使用するレーザの波長に合わせてそれとプラズモン共鳴するような材料を選ぶことが好ましい。
 ここで、本実施の形態に係る図5に示すような孤立した相変化ナノ粒子101へ情報を記録した場合と、図6のような孤立していない連続的な相変化薄膜205へ情報を記録した場合とを比較する。図5に示すように、基板102上にそれぞれ孤立して配列された相変化ナノ粒子101に情報を記録した場合、その大きさを最小単位とした良好な記録を行うことができた。一方、図6のような連続的な相変化薄膜205に情報を記録した場合、相変化薄膜205を結晶化する際に、近接場光により相変化薄膜205が加熱されると、相変化薄膜205中に熱が拡散する。このため、近接場光のスポットが30nm以下であっても、30nm以上の大きな記録マークしか記録できなかった。
 ここで、熱拡散に起因して、連続的な相変化薄膜205(図6)と相変化ナノ粒子101(図5)とで、記録マークの大きさに差が出始めるのは、記録マークが30nm以下となる場合である。従って、情報を30nm以下の微小領域(情報記録方向に沿った長さが30nm以下である領域)に記録する場合には、それぞれが孤立した、情報記録方向に沿った長さが30nm以下の相変化ナノ粒子101を用いることが好ましいことになる。なお、情報を、情報記録方向に沿った長さが30nm以上100nm以下の微小領域に記録する場合にも、熱拡散による複数の記録マーク間の熱干渉を抑制するため、それぞれが孤立した、情報記録方向に沿った長さが100nm以下の相変化ナノ粒子101を用いることが好ましい。
 さらに、情報記録方向に沿った長さが30nm以下のような小さな相変化ナノ粒子101にすることで、相変化ナノ粒子101に用いる材料の融点が下がることが知られており(例えば、非特許文献1参照)、相変化ナノ粒子101が3nm程度まで小さくなると、相変化ナノ粒子101に含まれる原子数が少なくなり、融点が低くなりすぎてしまう。この結果、熱的な揺らぎによって、相変化ナノ粒子101に記録された情報を安定的に保持することが困難になる。さらに、相変化ナノ粒子101の体積が小さくなると、記録材料及び結晶化促進材料を取り囲む周辺材料との界面を形成する領域の割合が増大し、薄膜の場合に比べ界面からの放熱量が多くなる。したがって、相変化ナノ粒子101が近接場光により昇温された後、急激に冷却されることになり、記録材料を結晶化に必要な時間だけ結晶化温度以上で保持することが困難になり、結晶化促進材料部103を配置した状態でも記録材料の結晶化が困難となってしまう場合がある。従って、相変化ナノ粒子101の情報記録方向に沿った長さは、3nm以上であることが好ましい。ここで、情報記録方向とは、情報記録媒体100に情報を記録するためのトラッキング方向である。
 なお、相変化ナノ粒子101の厚みは、相変化ナノ粒子101の情報記録方向に沿った長さの1/2以上、2倍以下であることが好ましい。相変化ナノ粒子101の厚みがこの範囲にあることにより、近接場光を効率的に相変化ナノ粒子101に集中させ、安定した記録を行うことが可能となる。
 また、結晶化促進材料部103の厚みは、相変化ナノ粒子101の厚みの1/5以下であることが好ましい。結晶化促進材料部103の厚みがこの範囲にあることにより、相変化ナノ粒子の記録材料の結晶化を促進する効果と、当該記録材料のアモルファス相の安定性とを両立することが可能となる。
 なお、相変化ナノ粒子101の形状は、特に限定されず、円柱、三角柱、四角柱、球、円錐、三角錐、四角錐、逆三角錐、又はそれに類似した形状等であっても構わない。
 本実施の形態に係る情報記録媒体100は、以下に説明する方法によって製造できる。
 まず、基板102(例えば、厚み0.6mm、直径(Φ)2.5インチ)を準備して、成膜装置内に配置する。その後、必要に応じて、基板102上に下部反射膜106を成膜する。下部反射膜106は、下部反射膜106を構成する金属又は合金からなるターゲットを、希ガス(例えば、Arガス)雰囲気中、又は希ガスと反応ガス(例えば、Oガス及びNガスから選ばれる少なくとも一つのガス)との混合ガス雰囲気中で直流(DC)電源、パルスDC電源、又は高周波(RF)電源を用いてスパッタリングすることによって形成できる。下部反射膜106は金属又は合金であるため、成膜速度を高められるDC電源、又はパルスDC電源を用いてスパッタリングすることが好ましい。
 続いて、基板102上、又は、下部反射膜106上に、必要に応じて下部保護膜104を成膜する。下部保護膜104は、下部保護膜104を構成する誘電体からなるターゲットを、希ガス雰囲気中、又は希ガスと反応ガス(例えば、Oガス及びNガスから選ばれる少なくとも一つのガス)との混合ガス雰囲気中でRF電源を用いてスパッタリングすることによって形成できる。なお、成膜速度を高めるため、下部保護膜104を構成する材料に導電性の材料を微量添加してターゲットに導電性を付加し、DC電源、又はパルスDC電源を用いてスパッタリングすることもできる。また、下部保護膜104は、下部保護膜104を構成する金属からなるターゲットを、希ガスと反応ガスとの混合ガス雰囲気中でDC電源、パルスDC電源、又はRF電源を用いて反応性スパッタリングすることによっても形成できる。
 あるいは、下部保護膜104は、単独の誘電体の各々のターゲットを複数の電源を用いて同時にスパッタリングすることによって形成することもできる。また、下部保護膜104は、2種以上の誘電体を組み合わせた2元系ターゲットや3元系ターゲット等を、複数の電源を用いて同時にスパッタリングすることによって形成することもできる。これらのターゲットを使用する場合でも、スパッタリングは、希ガス雰囲気中、又は希ガスと反応ガス(例えば、Oガス及びNガスから選ばれる少なくとも一つのガス)との混合ガス雰囲気中で実施することができる。
 続いて、基板102上、下部反射膜106上、又は、下部保護膜104上に、必要に応じて結晶化促進材料部103を成膜する。結晶化促進材料部103は、結晶化促進材料部103を構成する金属又は合金(Ge、Sn、Sb、Te及びBiから選ばれる少なくとも一つを含む材料、その中でも特にSnTe、GeTe-BiTe、BiTe、Bi-Te、Bi、Sb及びBi-Sbから選ばれる少なくとも一つを含む材料、或いはWを主として含む材料)からなるターゲットを、希ガス(例えば、Arガス)雰囲気中、又は希ガスと反応ガス(例えば、Oガス及びNガスから選ばれる少なくとも一つのガス)との混合ガス雰囲気中で直流(DC)電源、パルスDC電源、又は高周波(RF)電源を用いてスパッタリングすることによって形成できる。結晶化促進材料部103は金属又は合金で形成されるため、成膜速度を高められるDC電源、又はパルスDC電源を用いてスパッタリングすることが好ましい。
 また、結晶化促進材料部103は、例えばGeを含むターゲット、Snを含むターゲット、Sbを含むターゲット、Teを含むターゲット、Biを含むターゲット、Sn-Teを含むターゲット、Ge-Teを含むターゲット、BiTeを含むターゲット・・・等から選ばれる少なくとも2種以上のターゲットを、2個以上の電源を用いて同時にスパッタリングすることによって形成することもできる。その場合には、使用するターゲットの種類及び数、ならびに電源の出力等に応じて、得られる記録層の組成が決定されることとなるので、それらを適宜選択して、所望の組成の結晶化促進材料部103が得られるように結晶化促進材料を構成することが好ましい。このように2種以上のターゲットを使用することは、例えば、混合物のターゲットを形成することが困難である場合に有用である。
 続いて、基板102上、下部反射膜106上、下部保護膜104上、又は、結晶化促進材料部103上に、相変化ナノ粒子101を形成するための記録材料を含む膜を成膜する。この記録材料を含む膜は、記録材料を構成する金属又は合金(例えば、Ge-Teを含みTeを50原子%以上含む材料、あるいはSb-Ge及びSb-Teから選ばれるいずれか一つの材料を含みSbを70原子%以上含む材料)からなるターゲットを用いて、結晶化促進材料部103と同様の方法で形成できる。また、この記録材料を含む膜は、結晶化促進材料部103と同様に、少なくとも2種以上のターゲットを、2個以上の電源を用いて同時にスパッタリングすることによって形成することもできる。また、この記録材料を含む膜は、2種以上の膜を積層して形成されてもよく、例えばTeを含むターゲット、Geを含むターゲット、Sbを含むターゲット、Ge-Teを含むターゲット、Sb-Geを含むターゲット、Sb-Teを含むターゲット、・・・等から選ばれる少なくとも2種以上のターゲットを、2個以上の電源を用いて順次及び/又は同時にスパッタリングすることによって形成することもできる。即ち、記録材料を含む膜を形成するために、2種以上のターゲットを使用してスパッタリングを2回以上実施してもよく、又は2種以上のターゲットを同時にスパッタリングしてもよい。
 続いて、この記録材料を含む膜上に、必要に応じて結晶化促進材料を前述の方法を用いて成膜する。なお、後述の方法により記録材料を含む膜を用いて孤立化した相変化ナノ粒子101が形成されている場合には、相変化ナノ粒子101の側壁部に効率よく結晶化促進材料を堆積できるように、基板102の中心と結晶化促進材料を成膜するスパッタリングターゲットの中心を意図的に偏心させ、ターゲットからスパッタされた粒子が基板102の斜めから入射するようにすることが好ましい。
 続いて、記録材料を含む膜(又は、相変化ナノ粒子101)上、又は、結晶化促進材料部103上に、必要に応じて上部保護膜105を成膜する。上部保護膜105は、下部保護膜104と同様の方法で成膜できる。
 続いて、記録材料を含む膜(又は、相変化ナノ粒子101)上、結晶化促進材料部103上、又は、上部保護膜105上に、必要に応じて上部反射膜107を成膜する。上部反射膜107は、下部反射106と同様の方法で成膜できる。
 なお、下部反射膜106と下部保護膜104との間、下部保護膜104と結晶化促進材料部103との間、下部保護膜105と記録材料を含む膜(又は相変化ナノ粒子101)との間、記録材料を含む膜(又は相変化ナノ粒子101)と上部保護膜106との間、結晶化促進材料部103と上部保護膜105との間、及び上部保護膜105と上部反射膜107との間に、必要に応じて界面膜(図示せず)を成膜してもよい。なお、界面膜は、下部保護膜104と同様、酸化物、窒化物、炭化物、硫化物、及び弗化物より選ばれる少なくとも一つを含む材料を用いて形成することができる。
 ここで、記録材料を成膜した後、結晶化促進材料を成膜した後、又は、上部保護膜105を成膜した後に、記録材料を含む膜を孤立化させて相変化ナノ粒子101を形成するために、レジストを記録材料の膜上、結晶化促進材料の膜上、又は、上部保護膜105上に例えばスピンコート法を用いて塗布し、電子線描画装置で電子線をレジストに照射後、レジストを現像して電子線を照射した部分を除去(ポジ型)、あるいは照射していない部分を除去(ネガ型)することにより、レジストに所望のパターンを有するマスクを形成する。なお、レジストとなる材料としては、例えばTeの酸化物やZnS、遷移金属の酸化物等の無機物や、一般的な電子線用の有機材料からなるレジスト(例えば、日本ゼオン社製の商品名ZEP520、トクヤマ社製の商品名TEBN-1)を用いることができる。なお、レジストの材料は、記録材料や上部保護膜105等とのエッチングレート比を考慮して選択することが好ましい。その後、記録材料からなる膜、結晶化促進材料からなる膜、上部保護膜105をドライエッチングすることにより、所望のパターンで記録材料を孤立化させて、相変化ナノ粒子101を形成することができる。なお、ドライエッチングには、フッ素系ガス(CF、SF、CHF等)やArガス、及びOガス等を用いることができる。なお、上部保護膜105の材料には、フッ素系ガスでのドライエッチングによるエッチングレートが確保できるよう、上部保護膜105を構成する元素のフッ化物の沸点が低いことがより好ましい。
 また、上部保護膜105を形成したのち、表面の凹凸を無くして平坦化してもよい。平坦化には、化学機械研磨(Chemical Mechanical Polishing、CMP)やイオンミリング等の方法を用いることができる。
 なお、相変化ナノ粒子101上、結晶化促進材料部103上、上部保護膜105上、あるいは上部反射膜107上に、必要に応じて保護膜(図示せず)を形成してもよい。保護膜には、例えばDLC(Diamond-Like Carbon)膜を用いることができる。
 また、相変化ナノ粒子101上、結晶化促進材料部103上、上部保護膜105上、上部反射膜107上、あるいは保護膜上に、必要に応じて潤滑膜(図示せず)を形成してもよい。潤滑膜には、例えばフッ素系溶剤の単分子膜を用いることができる。
 最後に、記録材料を成膜した後、結晶化促進材料を成膜した後、上部保護膜105を成膜した後、上部反射膜107を成膜した後、保護膜を形成した後、あるいは潤滑膜を形成した後、必要に応じて、記録材料を結晶化させる初期化工程を行ってもよい。記録材料の結晶化は、例えばレーザビームを照射することによって行うことができる。
 以上のようにして、情報記録媒体100を製造できる。なお、本実施の形態においては、各層の成膜方法としてスパッタリング法を用いたが、これに限定されず真空蒸着法、イオンプレーティング法、CVD法、又はMBE法等を用いることも可能である。
 本実施の形態の情報記録媒体100は、例えば、
(I)基板102上に、記録材料を含む膜及び結晶化促進材料を含む膜を含む多層膜を形成する工程と、
(II)前記多層膜の上に、情報記録方向に沿った長さが3nm以上100nm以下となるパターンを有するマスクを配置する工程と、
(III)前記マスクの上から前記多層膜をエッチングする工程と、
(IV)前記マスクを除去して、基板102上に、情報記録方向に沿った長さが3nm以上100nm以下である前記ナノ記録領域(相変化ナノ粒子101)と、結晶化促進材料部103とを形成する工程と、
を含む方法によって製造できる。
 以上、本発明の実施の形態について例を挙げて説明したが、本発明は、上記実施の形態に限定されず、本発明の技術的思想に基づき他の実施の形態に適用することができる。
 (実施の形態2)
 本発明に係る他の実施の形態について、図面を参照して説明する。なお、実施の形態1と同様な構成要素については同一の部材番号を付し、その説明を適宜省略する。
 実施の形態1では、基板1の上に相変化ナノ粒子101を孤立した状態で配列させることによって、ナノ記録領域が形成された。本実施の形態では、図7A及び図7Bに示すように予め基板102上にピラー301を形成しておき、そのピラー301上に、相変化型の記録材料を含む膜(以下、相変化膜)302を形成することによって、孤立したナノ記録領域が形成された情報記録媒体200の一例について説明する。すなわち、図7Bに示すように、本実施の形態の情報記録媒体200では、基板102上に配列された、情報記録方向に沿った長さが例えば3nm以上100nm以下である複数の孤立したピラー301が設けられており、ナノ記録領域がピラー301上に設けられた相変化膜302によって形成されている。なお、本実施の形態の情報記録媒体200の構成において、ナノ記録領域として機能するのは、記録材料を含む膜のうちピラー301上に設けられた部分(膜302)であり、それ以外の部分(例えば、基板102上のピラー301以外の部分に形成された膜)については、本発明の記録領域には該当しない。また、本実施の形態で用いられる記録材料は、実施の形態1で説明された記録材料と同じである。また、便宜上図7Bには示されていないが、情報記録媒体200は、相変化膜302の表面上の少なくとも一部に、当該相変化膜302の表面に接して配置された結晶化促進材料部をさらに備えている。
 情報記録媒体200の製造方法の一例について具体的に説明する。まず、図7Aに示すように、基板102上に円筒形のピラー301を複数形成する。ここで、各ピラー301の大きさは、例えば幅:略20nm、高さ:略20nmとできる。このとき、互いに隣接するピラー301同士が接しないように、各ピラー301は孤立した状態で形成される。このような複数のピラー301が形成された基板102上に、記録材料を含む膜及び結晶化促進材料を含む膜と、さらに必要に応じて保護膜及び反射膜等が成膜される。これにより、図7Bに示すような、記録材料を含む膜を基板1上に形成することができ、ピラー301上に形成された相変化膜302が孤立したナノ記録領域となる。
 本実施の形態では、ピラー301は、例えば、電子線描画によってあらかじめ基板に所望のパターンとは逆のパターン(凹形状)を有する原盤(モールド)を準備し、このモールドを熱硬化性樹脂にガラス転移温度以上でプレスし、モールドの微細構造を樹脂に転写するナノ・インプリント技術を用いて形成することができる。但し、ピラー301の形成方法はこれに限定されるものではなく、他の方法でピラー301を形成しても構わない。例えば、電子線描画によって作製したパターンに基づき、基板102をエッチングすることで形成することもできる。
 また、基板102上に形成するピラー301の形状についても、図7A及び図7Bに示すような円柱に限定されず、三角柱、四角柱、球、円錐、三角錐、四角錐、逆三角錐、又はそれに類似した形状等であっても構わない。
 上述したように、ピラー301上に成膜される、ナノ記録領域となる相変化膜302は、孤立した状態になることが必要である。また、ピラー301上に成膜される、ナノ記録領域となる相変化膜302は、できるだけ微小化し、孤立した状態であって、且つできるだけ互いに近接することが、記録密度を向上させる上で好ましい。
 また、記録材料を成膜するに際し、相変化膜302が孤立するように、ピラー301の側面には記録材料が成膜されないことが好ましい。例えば、基板とターゲットの間の距離が長いロングスロースパッタ装置等を用いて成膜方向に指向性を有する成膜方法を適用し、ピラー301の上面には記録材料が成膜され易くし、ピラー301の側面には記録材料が成膜され難くすることが好ましい。これにより、ナノ記録領域となる相変化膜302同士を容易に孤立させることができる。なお、上述のとおり、ナノ記録領域として機能するのは、記録材料を含む膜のうちピラー301上に設けられた部分(膜302)である。したがって、製造工程上、やむを得ずピラー301の側面に記録材料が成膜されてしまい、さらにその膜の一部が隣のピラー301上に形成された膜と連続してしまった場合であっても、ナノ記録領域は孤立した状態であるといえる。
 上述のように、記録密度を高めるためには、孤立した状態の相変化膜302同士をできるだけ近接して設けることが望ましい。よって、記録密度を高めるためには、ピラー301同士の間隔が狭い方が好ましい。ただし、ピラー301同士の間隔が狭すぎると、各ピラー301の上面に形成された相変化膜302同士が接触し、孤立状態が担保できなくなる可能性がある。よって、これらの点を考慮して、ピラー301同士の間隔を設計することが望ましい。
 例えば、スパッタリングによって、基板102に形成されたピラー301の上面に相変化膜302及び結晶化促進材料部等を成膜する場合、スパッタ粒子としての直線性及びピラー301上に形成される膜(相変化膜302及び結晶化促進材料部等を含む多層膜)の厚み(スパッタ厚み)に応じて、ピラー301同士の間隔を適切に設計することが望ましい。具体的には、ピラー301同士の間隔は、スパッタ厚みの約30%よりも大きくすることが好ましい。
 なお、相変化膜302及び結晶化促進材料部等を成膜する方法としては、上記のスパッタリングに限定されるものではなく、例えば蒸着を用いることも可能である。
 本実施の形態の情報記録媒体200は、例えば、
(I)基板102上に配列された、情報記録方向に沿った長さが3nm以上100nm以下である複数の孤立したピラー301を形成する工程と(図7A参照)、
(II)ピラー301が形成された基板102上に、記録材料及び結晶化促進材料を成膜することによって、ピラー301上にナノ記録領域となる膜302と結晶化促進材料部(図示せず)とを形成する工程と(図7B参照)、
を含む方法によって製造できる。
 以上、本発明の実施の形態について例を挙げて説明したが、本発明は、上記実施の形態に限定されず、本発明の技術的思想に基づき他の実施の形態に適用することができる。
 (実施の形態3)
 本発明に係るさらに他の実施の形態について、図面を参照して説明する。なお、実施の形態1と同様な構成要素については同一の部材番号を付し、その説明を適宜省略する。
 図8Dに示すように、本実施の形態の情報記録媒体300でも、前述の実施の形態1と同様に、基板102上に、ナノ記録領域として相変化ナノ粒子101がそれぞれ孤立した状態で配列している。すなわち、本実施の形態の情報記録媒体300は、実施の形態2のようにピラー301を用いることなく、実施の形態1と同様に、平坦な基板102上に、直接、相変化ナノ粒子101を形成することによって製造される。なお、本実施の形態で用いられる記録材料及び結晶化促進材料等は、実施の形態1で説明されたものと同じである。
 本実施の形態の製造方法の一例を、図8Aから図8Dを参照しながら説明する。図8Aに示すように、まず、平坦な基板102上に、エッチングし易い材料(例えば、アクリル樹脂等)からなる下地層401を一様に成膜する。そして、下地層401の上に、所望のパターン402を有するマスクを形成する。具体的には、パターン402(マスク)の材料を下地層401上に一様に形成し、そこに電子線でパターン描画して現像することによって、マスクが形成できる。
 その後、図8Bに示すように、パターン402をマスクとして下地層401を酸素等でエッチングする。その後にマスクを除去することによって、所望のパターンを持った下地層401が形成される。マスクとなる材料としては、例えばTeの酸化物やZnS、遷移金属の酸化物等の無機物や、一般的な電子ビーム用の有機材料からなるレジストを用いることができる。下地層401としては、マスクのパターン402とのエッチングレート差が大きなエッチングし易い任意の材料を選択することができる。このエッチング処理は、容易に行えるものである。
 その後、図8Cに示すように、下地層401のパターンが形成された基板102上に、記録材料を含む膜403をスパッタリングや蒸着等により成膜する。なお、図示しないが、結晶化促進材料部を形成するために、さらに結晶化促進材料を含む膜が成膜される。
 その後、図8Dに示すように、下地層401を下地層401の上部に形成された膜(膜403及び結晶化促進材料を含む膜等)ごと除去することによって、所望のパターンを持った、孤立した相変化ナノ粒子101が配列された媒体300を作製することができる。このようにして形成された、それぞれ孤立した状態の記録材料を含む膜403が、情報を記録する相変化ナノ粒子101となる。具体的には、図8Cの状態の基板102を、下地層401のみ選択的に溶解する溶剤(有機溶剤等)に浸潤すればよい。例えば、下地層401としてアクリル樹脂を用いた場合、アクリル樹脂は有機溶剤に容易に溶解し、下地層401を基板102から除去することができる。
 なお、図8Cの状態において、下地層401の膜厚(高さ)が記録材料を含む膜403の膜厚よりも大きくなるようにすることが望ましい。こうすることにより、下地層401が膜403で覆いつくされることがないので、基板102を溶剤に浸漬したときに当該溶剤が下地層401に接触して難なく下地層401を除去できるからである。
 上記の情報記録媒体の製造方法により、基板102上に、相変化ナノ粒子101を孤立させた状態で形成することができる。なお、相変化ナノ粒子101の形状については、円柱、三角柱、四角柱、球、円錐、三角錐、四角錐、逆三角錐、又はそれに類似した形状等であっても構わない。
 本実施の形態の情報記録媒体300は、例えば、
(I)基板102上に、下地層401を形成する工程と(図8A参照)、
(II)下地層401の上に、所定のパターン402を有するマスクを配置する工程と(図8A参照)、
(III)前記マスクの上から下地層401をエッチングすることによって、下地層401のパターンを形成する工程と(図8B参照)、
(IV)下地層401のパターンが形成された基板102上に、前記記録材料を含む膜403及び結晶化促進材料を含む膜(図示せず)を含む多層膜を形成する工程と(図8C参照)、
(V)下地層401を、下地層401の上に形成された前記多層膜と共に除去することにより、基板102上に、情報記録方向に沿った長さが3nm以上100nm以下であるナノ記録領域となる相変化ナノ粒子403(101)と、結晶化促進材料部(図示せず)とを形成する工程と(図8D参照)、
を含む方法によって製造できる。
 以上、本発明の実施の形態について例を挙げて説明したが、本発明は、上記実施の形態に限定されず、本発明の技術的思想に基づき他の実施の形態に適用することができる。
 なお、発明を実施するための形態の項においてなされた具体的な実施の形態又は実施例は、あくまでも本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と特許請求事項との範囲内で、種々変更して実施することができるものである。
 本発明について、実施例を用いてさらに詳細に説明する。
 (実施例1)
 実施例1では、図1の情報記録媒体100を作製し、結晶化促進材料部103の材料と、相変化ナノ粒子101の結晶化能との関係を調べた。具体的には、結晶化促進材料部103の材料が異なる相変化ナノ粒子101を含む情報記録媒体100のサンプル1-1から1-11を作製し、相変化ナノ粒子101にパルスレーザを照射した際の結晶化に要するパルス数を測定し、相変化ナノ粒子101の結晶化しやすさ(結晶化能)を確認した。
 サンプルは以下のようにして製造した。まず、基板102として、厚み0.6mm、Φ2.5インチのガラス基板を準備した。そのガラス基板上に、下部反射膜106としてAg-Pd-Cu膜(厚み:20nm)、下部保護膜104として(SiO25(Cr50(ZrO25膜(厚み:10nm)、結晶化促進材料部103(厚み:2nm)、相変化ナノ粒子101形成用の記録材料を含む膜としてGe10BiTe13膜(厚み:20nm)、結晶化促進材料部103(厚み:2nm)、上部保護膜105としてSi-N膜(厚み:10nm)を、順次スパッタリング法によって積層した。なお、基板とスパッタリングターゲットとの距離は100mmとし、基板の中心とスパッタリングターゲットの中心の偏心は50mmとした。また、基板を回転させつつ成膜することで、膜厚ができるだけ均一となるようにした。
 上記の各膜をスパッタリングする成膜装置は、それぞれ、下部反射膜106を成膜するAg-Pd-Cu合金スパッタリングターゲット、下部保護膜104を成膜する(SiO25(Cr50(ZrO25スパッタリングターゲット、結晶化促進材料部103を成膜する合金スパッタリングターゲット、相変化ナノ粒子101形成用の記録材料を含む膜を成膜するGe-Bi-Te合金スパッタリングターゲット、上部保護膜105を成膜するSi-Nスパッタリングターゲットを備えていた。なお、スパッタリングターゲットの形状は、いずれもΦ100mm、厚さ6mmであった。
 下部反射膜106の成膜は、Arガス雰囲気で、圧力を0.2Paとして、直流(DC)電源を用いて、投入パワー200Wで行った。下部保護膜104の成膜は、Arガス雰囲気で、圧力を0.13Paとして、高周波(RF)電源を用いて、投入パワー200Wで行った。結晶化促進材料部103の成膜は、Arガス雰囲気で、圧力を0.13Paとして、DC電源を用いて、投入パワー50Wで行った。相変化ナノ粒子101形成用の記録材料を含む膜の成膜は、Arガス雰囲気で、圧力を0.13Paとして、DC電源を用いて、投入パワー100Wで行った。上部保護膜105の成膜は、Arガス雰囲気で、圧力を0.13Paとして、RF電源を用いて、投入パワー200Wで行った。
 次に、上部保護膜105上に電子線描画用のレジスト(トクヤマ社製ネガ型レジスト:TEBN-1)を塗布し、電子線描画装置で電子線をレジストに照射後、レジストを現像して、電子線を照射していない部分を除去した。なお、現像液にはイソプロピルアルコールを用いた。これにより、レジストにΦ20nm、ピッチ40nmのパターンが形成された。その後、CFガスを用いてドライエッチングを行い、上部保護膜105、結晶化促進材料部103、相変化ナノ粒子101形成用の記録材料を含む膜及び結晶化促進材料部103の孤立化を行った。
 続いて、孤立化した相変化ナノ粒子101形成用の記録材料を含む膜(相変化ナノ粒子101)の側壁部に、結晶化促進材料部103(厚み:2nm)を堆積させた。具体的には、基板の中心とスパッタリングターゲットの中心に150mmの偏心を持たせ、基板を回転させつつ成膜することにより、スパッタ粒子を斜めから基板に入射させ、効率よく側壁部に結晶化促進材料部103を成膜した。その後、相変化ナノ粒子101及び結晶化促進材料部103の酸化を防止するための上部保護膜105として、Si-N膜(厚み:10nm)をスパッタリング法によって成膜した。
 最後に、相変化ナノ粒子101をレーザビームで結晶化させる初期化工程を行った。
 以上のようにして、結晶化促進材料部103の材料が異なる複数のサンプルを製造した。
 このようにして得られたサンプルについて、波長532nm、スポット径1μm、パルス幅50ピコ秒(ps)のパルスレーザを相変化ナノ粒子101に照射することにより、記録・消去実験を行った。まず、15ピコジュール(pJ)のエネルギーでパルスレーザを1回照射することにより相変化ナノ粒子101をアモルファス化(記録)させた。その後、5pJのエネルギーでパルスレーザを複数回照射して、結晶化(消去)させることができる回数をカウントすることで、相変化ナノ粒子101の結晶化能を評価した。なお、相変化ナノ粒子101がアモルファス相か結晶相かの判断は、光学顕微鏡でレーザ照射領域の反射率変化を確認することによって行った。
 各サンプルについて、結晶化促進材料部103の材料と相変化ナノ粒子101を結晶化させるために必要なピコ秒レーザのパルス数との関係を、(表1)に示す。
Figure JPOXMLDOC01-appb-T000001
 この結果、結晶化促進材料部103が無いサンプル1-1の場合には、相変化ナノ粒子101を結晶化するのに必要なパルス数が1000であったのに対し、結晶化促進材料部103を成膜したサンプル1-2から1-11では、相変化ナノ粒子101を結晶化するのに必要なパルス数がサンプル1-1の場合の1/20以下となっており、結晶化しやすくなっていることがわかった。また、この中でも特に、相変化ナノ粒子101を構成する記録材料の結晶構造と類似した立方晶の結晶構造を有する材料を結晶化促進材料として用いたサンプル1-2から1-6は、より結晶化しやすくなっていることがわかった。
 (実施例2)
 実施例2では、実施例1と同様に図1の情報記録媒体100を作製し、結晶化促進材料部103の材料と、相変化ナノ粒子101の結晶化能との関係を調べた。具体的には、結晶化促進材料部103の材料が異なる相変化ナノ粒子101を含む情報記録媒体100のサンプル2-1から2-12を作製し、相変化ナノ粒子101にパルスレーザを照射した際の結晶化に要するパルス数を測定し、相変化ナノ粒子101の結晶化能を確認した。
 サンプル2-1から2-12は、実施例1と同様の方法で作製した。これらのサンプルが実施例1と異なるのは、相変化ナノ粒子101形成用の記録材料を含む膜としてGe10Sb90膜(厚み:20nm)を成膜したことであった。この膜を成膜する際には、Ge-Sb合金のスパッタリングターゲットを用いた。
 得られた各サンプルについて、結晶化促進材料部103の材料と、実施例1と同様の方法で評価した相変化ナノ粒子101を結晶化させるために必要なパルス数との関係を、(表2)に示す。
Figure JPOXMLDOC01-appb-T000002
 この結果、結晶化促進材料部103が無いサンプル2-1の場合には、相変化ナノ粒子101を結晶化するのに必要なパルス数が10000であったのに対し、結晶化促進材料部103を成膜したサンプル2-2から2-12では、相変化ナノ粒子101を結晶化するのに必要なパルス数がサンプル2-1の場合の1/20以下となっており、結晶化しやすくなっていることがわかった。また、この中でも特に、相変化ナノ粒子101を構成する記録材料の結晶構造と類似した菱面体構造の結晶構造を有する材料を結晶化促進材料として用いたサンプル2-6から2-11は、より結晶化しやすくなっていることがわかった。また、結晶化促進材料部103がWであるサンプル2-12についても、相変化ナノ粒子101が結晶化しやすくなっていることが確認できた。
 (実施例3)
 実施例3では、図7Bの情報記録媒体200を作製し、結晶化促進材料部の材料と、ピラー301上にナノ記録領域として形成された相変化膜302の結晶化能との関係を調べた。具体的には、結晶化促進材料部の材料が異なる情報記録媒体200のサンプル3-1から3-7を作製し、相変化膜302にパルスレーザを照射した際の結晶化に要するパルス数を測定し、相変化膜302の結晶化能を確認した。
 サンプルは以下のようにして製造した。まず、基板102として厚み0.6mm、Φ2.5インチのガラス基板を準備した。そのガラス基板上に、実施の形態2で説明したナノ・インプリントにより、熱硬化性樹脂にパターンを転写してΦ20nm、ピッチ40nm、高さ30nmのピラー301を形成した。
 その後、ピラー301上に、下部反射膜106としてAg-Pd-Cu膜(厚み:10nm)、下部保護膜104として(SiO25(Cr50(ZrO25膜(厚み:10nm)、結晶化促進材料部103(厚み:1nm)、相変化膜302としてGeBi1.8In0.2Te11膜(厚み:10nm)、結晶化促進材料部103(厚み:1nm)、上部保護膜105として(SiO25(Cr50(ZrO25膜(厚み:10nm)を、順次スパッタリング法によって積層した。なお、基板とスパッタリングターゲットとの距離は300mmとし、基板の中心とスパッタリングターゲットの中心の偏心は0mmとして、できる限りピラー301の側壁部に膜が付着しないような条件とした。また、それぞれの膜を成膜するためのスパッタリングターゲットは、相変化膜302以外は、実施例1と同じものを用いた。相変化膜302のスパッタリングターゲットは、所望の膜組成が得られるGe-Bi-In-Te合金のターゲットを用いた。また、成膜時に用いるガス、圧力、投入パワーについても、実施例1の相変化ナノ粒子101形成用の記録材料を含む膜と同様の条件で行った。
 最後に、相変化膜302をレーザビームで結晶化させる初期化工程を行った。
 以上のようにして、結晶化促進材料部103の材料が異なる複数のサンプルを製造した。
 このようにして得られたサンプルについて、結晶化促進材料部103の材料と、実施例1と同様の方法で評価した相変化膜302を結晶化させるために必要なパルス数の関係を、(表3)に示す。
Figure JPOXMLDOC01-appb-T000003
 この結果、結晶化促進材料部103が無いサンプル3-1の場合には、相変化膜302を結晶化するのに必要なパルス数が1000であったのに対し、結晶化促進材料部103を成膜したサンプル3-2から3-7では、相変化膜302を結晶化するのに必要なパルス数がサンプル3-1の場合の1/20以下となっており、結晶化しやすくなっていることがわかった。
 (実施例4)
 実施例4では、実施例3と同様に図7Bの情報記録媒体200を作製し、結晶化促進材料部103の材料と、相変化膜302の結晶化能との関係を調べた。具体的には、結晶化促進材料部104の材料が異なる相変化膜302を含む情報記録媒体100のサンプル4-1から4-8を作製し、相変化膜302にパルスレーザを照射した際の結晶化に要するパルス数を測定し、相変化膜302の結晶化能を確認した。
 サンプル4-1から4-8は、実施例3と同様の方法で作製した。これらのサンプルが実施例3と異なるのは、相変化膜302としてGeSb87Te膜(厚み:10nm)を成膜したことであった。相変化膜302を成膜する際には、所望の膜組成が得られるGe-Sb-Te合金のスパッタリングターゲットを用いた。
 得られた各サンプルについて、結晶化促進材料部103の材料と、実施例1と同様の方法で評価した相変化膜302を結晶化させるために必要なパルス数の関係とを、(表4)に示す。
Figure JPOXMLDOC01-appb-T000004
 この結果、結晶化促進材料部103が無いサンプル4-1の場合には、相変化膜302を結晶化するのに必要なパルス数が2000であったのに対し、結晶化促進材料部103を成膜したサンプル4-2から4-8では、相変化膜302を結晶化するのに必要なパルス数がサンプル4-1の場合の1/40以下となっており、結晶化しやすくなっていることがわかった。
 (実施例5)
 実施例5では、図8Dの情報記録媒体300を作製し、結晶化促進材料部103の材料と、相変化ナノ粒子101の結晶化能との関係を調べた。具体的には、結晶化促進材料部103の材料が異なる情報記録媒体100のサンプル5-1から5-5を作製し、相変化ナノ粒子101にパルスレーザを照射した際の結晶化に要するパルス数を測定し、相変化ナノ粒子101の結晶化能を確認した。
 サンプルは以下のようにして製造した。まず、基板102として、厚み0.6mm、Φ2.5インチのガラス基板を準備した。そのガラス基板上に、下地層401として厚み500nmのアクリル樹脂を塗布した。次に、実施の形態3で説明した方法により、下地層401上に所望のパターン402を転写した。
 その後、パターン402が転写された下地層401上に、下部反射膜106としてAg-Pd-Cu膜(厚み:20nm)、下部保護膜104として(SiO25(Cr50(ZrO25膜(厚み:10nm)、結晶化促進材料部103(厚み:2nm)、相変化ナノ粒子101形成用の記録材料を含む膜403としてGeSnSbTe膜(厚み:20nm)、結晶化促進材料部103(厚み:2nm)、上部保護膜105として(SiO25(Cr50(ZrO25膜(厚み:10nm)を、順次スパッタリング法によって積層した。なお、基板とスパッタリングターゲットとの距離は300mmとし、基板の中心とスパッタリングターゲットの中心の偏心は0mmとして、できる限り下地層401の側壁部に膜が付着しないような条件とした。また、それぞれの膜を成膜するためのスパッタリングターゲットは、膜403以外は実施例1と同じものを用いた。膜403のスパッタリングターゲットは、所望の膜組成が得られるGe-Sn-Sb-Te合金のターゲットを用いた。なお、成膜時に用いるガス、圧力、投入パワーについては、実施例1の相変化ナノ粒子101形成用の記録材料を含む膜と同様の条件で行った。
 その後、サンプルを有機溶媒に浸漬することによって、下地層401のアクリル樹脂が溶解し、下地層401の上部に形成された薄膜ごと除去して、所望のパターン(Φ30nm、ピッチ60nm)で孤立化された相変化ナノ粒子101が配列したサンプルを作製した。
 その後、相変化ナノ粒子101及び結晶化促進材料部103の酸化を防止するための上部保護膜105として、(SiO25(Cr50(ZrO25膜(厚み:10nm)をスパッタリング法によって成膜した。
 最後に、相変化ナノ粒子101をレーザビームで結晶化させる初期化工程を行った。
 以上のようにして、結晶化促進材料部103の材料が異なる複数のサンプルを製造した。
 このようにして得られたサンプルについて、結晶化促進材料部103の材料と、実施例1と同様の方法で評価した相変化ナノ粒子101を結晶化させるために必要なパルス数との関係を、(表5)に示す。
Figure JPOXMLDOC01-appb-T000005
 この結果、結晶化促進材料部103が無いサンプル5-1の場合には、相変化ナノ粒子101を結晶化するのに必要なパルス数が2000であったのに対し、結晶化促進材料部103を成膜したサンプル5-2から5-5では、結晶化するのに必要なパルス数がサンプル5-1の場合の1/20以下となっており、結晶化しやすくなっていることがわかった。
 (実施例6)
 実施例6では、実施例7と同様に図8Dの情報記録媒体300を作製し、結晶化促進材料部103の材料と、相変化ナノ粒子101の結晶化能との関係を調べた。具体的には、結晶化促進材料部103の材料が異なる情報記録媒体300のサンプル6-1から6-5を作製し、相変化ナノ粒子101にパルスレーザを照射した際の結晶化に要するパルス数を測定し、相変化ナノ粒子101の結晶化能を確認した。
 サンプル6-1から6-6は、実施例5と同様の方法で作製した。これらのサンプルが実施例5と異なるのは、相変化ナノ粒子101形成用の記録材料を含む膜403としてSb90Te10膜(厚み:20nm)を成膜したことであった。膜403を成膜する際には、所望の膜組成が得られるSb-Te合金のスパッタリングターゲットを用いた。
 得られた各サンプルについて、結晶化促進材料部103の材料と、実施例1と同様の方法で評価した相変化ナノ粒子101を結晶化させるために必要なパルス数との関係を、(表6)に示す。
Figure JPOXMLDOC01-appb-T000006
 この結果、結晶化促進材料部103が無いサンプル6-1の場合には、相変化ナノ粒子101を結晶化するのに必要なパルス数が20000であったのに対し、結晶化促進材料部103を成膜したサンプル6-2から6-6では、相変化ナノ粒子101結晶化するのに必要なパルス数がサンプル6-1の場合の1/60以下となっており、結晶化しやすくなっていることがわかった。
 (実施例7)
 実施例7では、図1の情報記録媒体100を作製し、結晶化促進材料部103の厚みと、相変化ナノ粒子101の結晶化能との関係を調べた。具体的には、結晶化促進材料部103の厚みが異なる情報記録媒体100のサンプル7-1から7-6を作製し、相変化ナノ粒子101にパルスレーザを照射した際の結晶化に要するパルス数を測定し、相変化ナノ粒子101の結晶化能を確認した。また、アモルファス化した相変化ナノ粒子101の安定性も合わせて確認した。
 サンプル7-1から7-6は、実施例1と同様の方法で作製した。但し、結晶化促進材料部103の材料はGe14.3Bi28.6Te57.1であり、所望の膜組成が得られるGe-Bi-Te合金ターゲットを用いて成膜し、厚みを0.5~5nmまで変化させたサンプルを準備した。
 なお、アモルファス化した相変化ナノ粒子101の安定性については、アモルファス化記録した相変化ナノ粒子101を有するサンプルを恒温恒湿槽で温度80℃、相対湿度80%の条件で100hr保持した後、アモルファス化マークが消えずに残っているかで評価した。アモルファス化マークが残っていれば安定性○、残っていなければ安定性×と判定した。
 得られた各サンプルについて、結晶化促進材料部104の厚みと実施例1と同様の方法で評価した相変化ナノ粒子101を結晶化させるために必要なパルス数、及びアモルファス化マークの安定性の関係を(表7)に示す。
Figure JPOXMLDOC01-appb-T000007
 この結果、結晶化促進材料部103の厚みが厚くなるに従い、相変化ナノ粒子101を結晶化させるために必要なパルス数が減少し、相変化ナノ粒子101が結晶化しやすくなっていることがわかった。但し、結晶化促進材料部103の厚みが相変化ナノ粒子101の厚みの1/5より厚いサンプル7-6の場合には、アモルファス化マークの安定性が×であり好ましくないことがわかった。以上の結果から、結晶化促進材料部103の厚みは相変化ナノ粒子101の厚みの1/5以下であることが好ましいことがわかった。
 (実施例8)
 実施例8では、実施例3と同様に図7Bの情報記録媒体200を作製し、結晶化促進材料部103の配置位置と、相変化膜302の結晶化能との関係を調べた。具体的には、結晶化促進材料部103の相変化膜302に対する配置位置が異なる情報記録媒体100のサンプル8-1から8-4を作製し、相変化膜302にパルスレーザを照射した際の結晶化に要するパルス数を測定し、相変化膜302の結晶化能を確認した。
 サンプル8-1から8-4は、実施例3と同様の方法で作製した。これらのサンプルが実施例3と異なるのは、相変化膜302としてGe10Sb90膜(厚み:40nm)を成膜したことと、結晶化促進材料部103としてSb膜(厚み:3nm)を成膜したことと、結晶化促進材料部103の相変化膜302に対する配置位置を変化させたことであった。結晶化促進材料部103の相変化膜302に対する配置位置について、サンプル8-2では、結晶化促進材料部103を相変化膜302の成膜前のみ成膜した。サンプル8-3では、結晶化促進材料部103を相変化膜302の成膜後のみ成膜した。サンプル8-4では、結晶化促進材料部103を相変化膜302の成膜前及び成膜後の両方で成膜した。サンプル8-1では、結晶化促進材料部103を成膜しなかった。なお、相変化膜302を成膜する際には、所望の膜組成が得られるSb-Te合金のスパッタリングターゲットを用いた。
 得られた各サンプルについて、結晶化促進材料部103の配置位置と、実施例1と同様の方法で評価した相変化膜302を結晶化させるために必要なパルス数の関係とを、(表8)に示す。
Figure JPOXMLDOC01-appb-T000008
 この結果、結晶化促進材料部103が無いサンプル8-1の場合には、相変化膜302を結晶化するのに必要なパルス数が2000であったのに対し、結晶化促進材料部103を成膜したサンプル8-2から8-4では、相変化膜302を結晶化するのに必要なパルス数がサンプル8-1の場合より少なくなっており、その中でも特に相変化膜302の成膜後に結晶化促進材料部103を成膜したサンプル8-3、8-4で相変化膜302を結晶化するのに必要なパルス数が1/100以下に少なくなっており、結晶化しやすくなっていることがわかった。すなわち、結晶化促進材料部がナノ記録領域の上部表面上に配置された構成とすることによって、結晶化促進材料部によるナノ記録領域の結晶化促進効果をより効果的に発揮させることができた。
 なお、実施例の項においてなされた具体的な実施形態又は実施例は、あくまでも本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と特許請求事項との範囲内で、種々変更して実施することができるものである。
 本発明に係る情報記録媒体は、微細化した相変化材料の結晶化を促進する優れた結晶化促進材料を有し、記録密度を大幅に向上した書換形の光学的情報記録媒体等として有用である。また、書換形の相変化材料を用いた不揮発性半導体メモリ(Phase change Random Access Memory、PRAM)等の用途にも応用できる。

Claims (12)

  1.  基板と、
     前記基板上に孤立した状態で配列された、記録材料を含む複数のナノ記録領域と、
     前記ナノ記録領域の表面上の少なくとも一部に、当該ナノ記録領域の表面に接して配置された、前記記録材料の結晶化を促進する結晶化促進材料を含む結晶化促進材料部と、
    を備えた情報記録媒体。
  2.  前記結晶化促進材料が、Ge、Sn、Sb、Te及びBiから選ばれる少なくともいずれか一つを含む、
    請求項1に記載の情報記録媒体。
  3.  前記結晶化促進材料が、SnTe、GeTe-BiTe、BiTe、Bi-Te、Bi、Sb及びBi-Sbから選ばれる少なくともいずれか一つを含む、
    請求項2に記載の情報記録媒体。
  4.  前記結晶化促進材料が、Wを主として含む、
    請求項1に記載の情報記録媒体。
  5.  前記記録材料が、Ge-Teを含み、且つTeを50原子%以上含む、
    請求項1に記載の情報記録媒体。
  6.  前記記録材料が、Sb-Ge及びSb-Teから選ばれるいずれか一つの材料を含み、且つSbを70原子%以上含む、
    請求項1に記載の情報記録媒体。
  7.  前記ナノ記録領域の情報記録方向に沿った長さが、3nm以上100nm以下である、請求項1に記載の情報記録媒体。
  8.  近接場光を用いて、前記ナノ記録領域に対して情報が記録及び/又は再生される、
    請求項1に記載の情報記録媒体。
  9.  前記結晶化促進材料部は、前記ナノ記録領域の上部表面上に配置されている、
    請求項1に記載の情報記録媒体。
  10.  基板と、前記基板上に孤立した状態で配列された、記録材料を含む複数のナノ記録領域と、前記ナノ記録領域の表面上の少なくとも一部に、当該ナノ記録領域の表面に接して配置された、前記記録材料の結晶化を促進する結晶化促進材料を含む結晶化促進材料部と、を備えた情報記録媒体を製造する方法であって、
    (I)前記基板上に配列された、情報記録方向に沿った長さが3nm以上100nm以下である複数の孤立したピラーを形成する工程と、
    (II)前記ピラーが形成された前記基板上に、前記記録材料及び前記結晶化促進材料を成膜することによって、前記ピラー上に前記ナノ記録領域と前記結晶化促進材料部とを形成する工程と、
    を含む、情報記録媒体の製造方法。
  11.  基板と、前記基板上に孤立した状態で配列された、記録材料を含む複数のナノ記録領域と、前記ナノ記録領域の表面上の少なくとも一部に、当該ナノ記録領域の表面に接して配置された、前記記録材料の結晶化を促進する結晶化促進材料を含む結晶化促進材料部と、を備えた情報記録媒体を製造する方法であって、
    (I)前記基板上に、前記記録材料を含む膜及び前記結晶化促進材料を含む膜を含む多層膜を形成する工程と、
    (II)前記多層膜の上に、情報記録方向に沿った長さが3nm以上100nm以下となるパターンを有するマスクを配置する工程と、
    (III)前記マスクの上から前記多層膜をエッチングする工程と、
    (IV)前記マスクを除去して、前記基板上に、情報記録方向に沿った長さが3nm以上100nm以下である前記ナノ記録領域と、前記結晶化促進材料部とを形成する工程と、
    を含む、情報記録媒体の製造方法。
  12.  基板と、前記基板上に孤立した状態で配列された、記録材料を含む複数のナノ記録領域と、前記ナノ記録領域の表面上の少なくとも一部に、当該ナノ記録領域の表面に接して配置された、前記記録材料の結晶化を促進する結晶化促進材料を含む結晶化促進材料部と、を備えた情報記録媒体を製造する方法であって、
    (I)前記基板上に、下地層を形成する工程と、
    (II)前記下地層の上に、所定のパターンを有するマスクを配置する工程と、
    (III)前記マスクの上から前記下地層をエッチングすることによって、前記下地層のパ
    ターンを形成する工程と、
    (IV)前記下地層のパターンが形成された前記基板上に、前記記録材料を含む膜及び前記結晶化促進材料を含む膜を含む多層膜を形成する工程と、
    (V)前記下地層を、前記下地層の上に形成された前記多層膜と共に除去することにより、前記基板上に、情報記録方向に沿った長さが3nm以上100nm以下である前記ナノ記録領域と、前記結晶化促進材料部とを形成する工程と、
    を含む、情報記録媒体の製造方法。
PCT/JP2012/007455 2011-11-28 2012-11-20 情報記録媒体及びその製造方法 WO2013080489A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011259446 2011-11-28
JP2011-259446 2011-11-28
JP2012-077005 2012-03-29
JP2012077005 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013080489A1 true WO2013080489A1 (ja) 2013-06-06

Family

ID=48534986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007455 WO2013080489A1 (ja) 2011-11-28 2012-11-20 情報記録媒体及びその製造方法

Country Status (1)

Country Link
WO (1) WO2013080489A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002288901A (ja) * 2001-03-27 2002-10-04 Toshiba Corp 光記録媒体及び光記録装置
JP2002304767A (ja) * 2001-01-31 2002-10-18 Ricoh Co Ltd 相変化型光情報記録媒体
JP2007185776A (ja) * 2006-01-11 2007-07-26 Hitachi Maxell Ltd 情報記録媒体
WO2010116707A1 (ja) * 2009-04-09 2010-10-14 パナソニック株式会社 情報記録媒体及び情報記録媒体の製造方法
WO2011010447A1 (ja) * 2009-07-21 2011-01-27 パナソニック株式会社 情報記録媒体、光学情報記録再生装置、光学情報記録再生方法及び情報記録媒体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304767A (ja) * 2001-01-31 2002-10-18 Ricoh Co Ltd 相変化型光情報記録媒体
JP2002288901A (ja) * 2001-03-27 2002-10-04 Toshiba Corp 光記録媒体及び光記録装置
JP2007185776A (ja) * 2006-01-11 2007-07-26 Hitachi Maxell Ltd 情報記録媒体
WO2010116707A1 (ja) * 2009-04-09 2010-10-14 パナソニック株式会社 情報記録媒体及び情報記録媒体の製造方法
WO2011010447A1 (ja) * 2009-07-21 2011-01-27 パナソニック株式会社 情報記録媒体、光学情報記録再生装置、光学情報記録再生方法及び情報記録媒体の製造方法

Similar Documents

Publication Publication Date Title
KR100734641B1 (ko) 광기록매체, 광기록/재생장치, 광기록장치 및 광재생장치,광기록매체용 데이터 기록/재생 방법 및 데이터 기록방법및 데이터 재생 방법
KR20010111276A (ko) 정보기록매체와 그 제조방법
CN102566259A (zh) 形成纳米结构的方法
JP2000090491A (ja) 相変化光記録媒体
US6998162B2 (en) Optical recording medium with phase transition layer and method of manufacturing the optical recording medium
JPWO2011024381A1 (ja) 情報記録媒体とその製造方法
WO2010116707A1 (ja) 情報記録媒体及び情報記録媒体の製造方法
US7851779B2 (en) Medium for use in data storage, thermal energy storage and other applications, with functional layer made of different materials
WO2013080489A1 (ja) 情報記録媒体及びその製造方法
JP5796180B2 (ja) 情報記録媒体およびその製造方法
JP4285451B2 (ja) 情報記録媒体、情報再生方法及び情報記録方法
JPH08106647A (ja) 相変化型記録媒体
JP2013242945A (ja) 情報記録媒体及びその製造方法
JP2013242946A (ja) 情報記録媒体、並びに情報記録媒体の製造方法
Yamada et al. Phase‐Change Nanodot Material for an Optical Memory
JP2004190120A (ja) スパッタターゲットの製造方法及びスパッタターゲット
JP2009245505A (ja) 光学情報記録媒体製造用の原盤
CN101636278B (zh) 信息记录介质及其制造方法、溅射靶和成膜装置
JP4078633B2 (ja) 相変化型光情報記録媒体
Huang et al. Phase transformations induced in Ge1Sb2Te4 films by single femtosecond pulses
JPH04228127A (ja) 情報記録用薄膜、情報記録部材及びそれらの製造方法
JP2013143174A (ja) 情報記録媒体
JP2004185731A (ja) 光情報記録媒体およびその製造方法、製造装置
JP2004295968A (ja) 光学的記録媒体およびその製造方法
JP2012531006A (ja) Ptm層およびニッケルアンダーコートを有するマスターディスク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP