WO2013080432A1 - ケミカルセンサ、ケミカルセンサモジュール、化学物質検出装置及び化学物質検出方法 - Google Patents
ケミカルセンサ、ケミカルセンサモジュール、化学物質検出装置及び化学物質検出方法 Download PDFInfo
- Publication number
- WO2013080432A1 WO2013080432A1 PCT/JP2012/006884 JP2012006884W WO2013080432A1 WO 2013080432 A1 WO2013080432 A1 WO 2013080432A1 JP 2012006884 W JP2012006884 W JP 2012006884W WO 2013080432 A1 WO2013080432 A1 WO 2013080432A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refractive index
- light
- chemical sensor
- detection
- index layer
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N21/643—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6452—Individual samples arranged in a regular 2D-array, e.g. multiwell plates
- G01N21/6454—Individual samples arranged in a regular 2D-array, e.g. multiwell plates using an integrated detector array
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/648—Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/34—Optical coupling means utilising prism or grating
Definitions
- the present technology relates to a chemical sensor, a chemical sensor module, a chemical substance detection apparatus, and a chemical substance detection method for detecting a chemical substance by using light emission resulting from a chemical bond.
- Chemical sensors that detect chemical substances using luminescence caused by chemical bonds are being studied. Specifically, when a probe material that specifically binds to a target material to be detected is fixed on the sensor and a sample is supplied to the sensor, the target material contained in the sample is bonded to the probe material. For example, when the conjugate is made to emit light using a fluorescent label that can be introduced into the conjugate of the target material and the probe material, detection by the photoelectric conversion element becomes possible. By fixing a plurality of types of probe materials on the sensor, the type of target material contained in the sample can also be specified.
- Patent Document 1 discloses “a biosensor using an evanescent waveguide and an integrated sensor” in which a sample is fluorescently emitted using an evanescent wave (near-field light) of excitation light.
- a detector, a filter, a contact clad layer, and a waveguide layer are laminated in this order, and a sample is placed on the waveguide layer.
- excitation light laser
- Patent Document 2 discloses an “all-polymer optical waveguide sensor” that causes a sample to emit fluorescence using an evanescent wave of excitation light.
- a polymer waveguide is formed on a polymer substrate, and a sample is fixed on the polymer waveguide.
- a sample is excited by an evanescent wave of a light wave (coherent light) traveling through a polymer waveguide, and the generated fluorescence is detected by a detector.
- Patent Document 1 and Patent Document 2 both prevent the excitation light from reaching the photoelectric conversion element by confining the excitation light in the waveguide structure. Therefore, an evanescent wave for causing the sample fixed on the waveguide structure to fluoresce is an element of both inventions.
- JP-T 2010-518389 (paragraph [0023], [0126])
- JP-T 2009-511896 (paragraph [0056], [0102])
- the intensity of the evanescent wave is much smaller than the intensity of the light introduced into the waveguide structure, light energy cannot be used efficiently in the invention as described above.
- the thickness of the waveguide structure is limited (several tens of nm), so that it may be difficult or expensive to manufacture the sensor.
- the reach distance of the evanescent wave is very small (about several tens of nm), it cannot be detected unless a fluorescent substance is present in the vicinity of the surface of the sample (evanescent wave reach range).
- an object of the present technology is to provide a chemical sensor, a chemical sensor module, a chemical substance detection apparatus, and a chemical substance detection method capable of detecting a chemical substance with high accuracy and high sensitivity. It is in.
- a chemical sensor includes a substrate, a low refractive index layer, a high refractive index layer, and a light detection unit.
- the low refractive index layer is laminated on the substrate and has a second refractive index smaller than the first refractive index that is the refractive index of the detection target.
- the high refractive index layer is laminated on the low refractive index layer, has a third refractive index larger than the first refractive index, has a holding surface for holding the detection target, and propagates illumination light.
- the light detection unit is provided on the substrate and detects detection target light generated in the detection target by the illumination light.
- the illumination light introduced into the high refractive index layer is refracted and transmitted to the detection target, but the first refractive index that is the refractive index of the detection target as described above is that of the low refractive index layer. It is larger than the second refractive index which is a refractive index. Therefore, by making the illumination light enter the high refractive index layer at an appropriate incident angle, the illumination light is totally reflected at the interface between the high refractive index layer and the low refractive index layer, and is refracted and transmitted to the detection target. It becomes possible. Therefore, it becomes possible to detect the detection target light generated in the detection target by the light detection unit while preventing the illumination light from reaching the light detection unit located below the low refractive index layer. It is possible to prevent a decrease in detection accuracy due to detection of illumination light.
- the holding surface may further include an adsorption area where the detection object is adsorbed and a non-adsorption area where the detection object is not adsorbed.
- the non-adsorption region since the non-adsorption region is not in contact with the detection object that causes the refractive transmission of the illumination light, the refractive transmission of the illumination light in the non-adsorption region can be prevented. That is, when the non-adsorption region faces the air, or is in contact with a substance having a refractive index sufficiently smaller than the refractive index (first refractive index) of the detection object, illumination is performed in the non-adsorption region. Total reflection of light can occur. As a result, the illumination light reaches the detection target in the adsorption region, but is totally reflected in the non-adsorption region, so that it is possible to prevent loss of light energy of the illumination light.
- the adsorption area may be separated by the non-adsorption area.
- the adsorption regions can be arranged in an island shape, different target materials can be adsorbed in each adsorption region, and various chemical substances can be detected simultaneously.
- a plurality of the light detection units may be provided, and each of the adsorption regions may face one light detection unit.
- the detection target substance adsorbed in each adsorption region corresponds to the light detection unit on a one-to-one basis, it is possible to detect the detection target light with high accuracy.
- a plurality of the light detection units may be provided, and each of the adsorption regions may face the plurality of the light detection units.
- the detection target object adsorbed in each adsorption region corresponds to a plurality of light detection units, it is possible to confirm the characteristics of the emission spectrum of the detection target light in one adsorption region.
- the adsorption region may be formed so that the area increases along the direction in which the illumination light propagates.
- the amount of illumination light incident on each adsorption region can be made uniform.
- the illumination light is totally reflected in the non-adsorption region, light energy is not lost, but in the adsorption region, it is lost by entering the detection target. That is, the intensity of the illumination light per unit surface is smaller in the suction area located at a long distance in the direction in which the illumination light propagates than in the suction area located at a short distance.
- the ratio of the amount of light incident on the detection target and the amount of light totally reflected is adjusted, and the amount of illumination light incident on each suction area is adjusted. It can be made uniform.
- the adsorption region may be formed by a hydrophilic treatment applied to the holding surface, and the non-adsorption region may be formed by a hydrophobic treatment applied to the holding surface.
- the adsorption region may be formed by a hydrophobic treatment applied to the holding surface, and the non-adsorption region may be formed by a hydrophilic treatment applied to the holding surface.
- the adsorption region and the non-adsorption region can be distinguished.
- the non-adsorption region may be covered with a film that does not adsorb the detection object, and the adsorption region may not be covered with the film.
- the detection target is a substance that can be adsorbed on the holding surface, it is possible to distinguish the adsorption area from the non-adsorption area.
- the film may have light reflectivity.
- the illumination light can be reflected by this coating. This is particularly effective when a material having a high refractive index is laminated on the non-adsorption region.
- the chemical sensor may further include a color filter that is provided between the light detection unit and the low refractive index layer and shields wavelengths other than the detection target light.
- the illumination light is totally reflected at the interface between the high refractive index layer and the low refractive index layer, in principle, it does not reach the light detection unit. However, for example, it may be possible to reach the light detection unit through the same path as the detection target light due to reflection on the detection target. Here, it is possible to detect the detection target light with higher accuracy by removing such illumination light components by the color filter.
- the chemical sensor may further include an on-chip lens that is provided between the light detection unit and the low refractive index layer and collects the detection target light on the light detection unit.
- the detection target light can be condensed on the light detection unit by the on-chip lens, and the detection target light can be detected with higher accuracy.
- the chemical sensor may further include a light shielding wall provided in the low refractive index layer and partitioning the low refractive index layer for each region facing each light detection unit.
- the illumination light may be excitation light
- the detection target light may be fluorescence
- a chemical sensor module includes a chemical sensor and a light guide unit.
- the chemical sensor includes a substrate, a low refractive index layer that is laminated on the substrate and has a second refractive index that is lower than a first refractive index that is a refractive index of an object to be detected, and the low refractive index layer that is laminated on the low refractive index layer.
- a high refractive index layer having a third refractive index larger than the first refractive index and having a holding surface on which the detection object is held and on which the illumination light propagates is provided on the substrate, and the detection is performed by the illumination light.
- a light detection unit that detects light to be detected generated in the object.
- the light guide is bonded to the chemical sensor and introduces the illumination light into the high refractive index layer.
- a chemical substance detection apparatus includes a chemical sensor module and a light source.
- the chemical sensor module is laminated on a substrate, a low refractive index layer that is laminated on the substrate and has a second refractive index that is lower than a first refractive index that is a refractive index of a detection target, and the low refractive index layer.
- the light source irradiates the light guide unit with the illumination light.
- a chemical substance detection method has a substrate and a second refractive index smaller than the first refractive index that is stacked on the substrate and is the refractive index of the detection target.
- a high refractive index on which illumination light propagates comprising a low refractive index layer and a holding surface that is laminated on the low refractive index layer and has a third refractive index that is higher than the first refractive index and holds the detection object
- a chemical sensor is provided that includes a layer and a light detection unit that is provided on the substrate and detects detection target light generated in the detection target by the illumination light. The illumination light is introduced into the high refractive index layer through a light guide. The light to be detected is detected by the light detection unit.
- FIG. 1 is a cross-sectional view showing a configuration of a chemical sensor 1 according to the first embodiment.
- the chemical sensor 1 is configured by laminating a substrate 2, a low refractive index layer 3, and a high refractive index layer 4 in this order.
- the chemical sensor 1 is used with a detection object attached thereto in use.
- FIG. 2 is a cross-sectional view showing the detection object S placed on the chemical sensor 1.
- the refractive index (absolute refractive index, the same applies hereinafter) of the detection object S is the first refractive index n1
- the refractive index of the low refractive index layer 3 is the second refractive index n2
- the refractive index of the high refractive index layer 4 is.
- these refractive indexes have a relationship of increasing in the order of the second refractive index n2, the first refractive index n1, and the third refractive index n3.
- the substrate 2 is provided with a light detection unit 21.
- the light detection unit 21 may be an image sensor (CMOS, CCD, etc.) in which pixels (photoelectric conversion elements) are two-dimensionally arranged, a line sensor in which pixels are one-dimensionally arranged, or an optical sensor using organic photoelectric conversion.
- CMOS complementary metal-oxide-semiconductor
- CCD complementary metal-oxide-semiconductor
- the substrate 2 may be provided with a wiring (not shown) connected to the light detection unit 21.
- the protective insulating film 22 of the image sensor is provided on the substrate 2, but may not be provided depending on the configuration of the light detection unit 21.
- the low refractive index layer 3 is a layer laminated on the substrate 2 and has a second refractive index n2 smaller than the first refractive index n1 (the refractive index of the detection target S). That is, the low refractive index layer 3 can be made of a material having a refractive index of 1 (air) or more and less than the first refractive index (for example, 1.5). Moreover, as a material of the low refractive index layer 3, a material having high light transmittance is suitable at least in a wavelength range of light to be detected (hereinafter referred to as detection target light) described later.
- the refractive index shown here is a refractive index with respect to a light wavelength of 550 nm.
- the thickness of the low refractive index layer 3 is preferably 50 nm to 1 mm, and more preferably 100 nm to 1 ⁇ m or 50 ⁇ m to 500 ⁇ m.
- the high refractive index layer 4 is a layer laminated on the low refractive index layer 3 and has a third refractive index n3 larger than the first refractive index n1 (the refractive index of the detection target S). That is, the high refractive index layer 4 can be made of a material having a refractive index exceeding the first refractive index (for example, 1.5). Further, as the material of the high refractive index layer 4, a material having high light transmittance at least in the wavelength range of the detection target light is suitable. Further, a material having high light transmittance in a wavelength region of light (hereinafter referred to as illumination light) introduced into the high refractive index layer 4 described later is preferable.
- illumination light a material having high light transmittance in a wavelength region of light introduced into the high refractive index layer 4 described later is preferable.
- the refractive index shown here is a refractive index with respect to a light wavelength of 550 nm.
- the thickness of the high refractive index layer 4 is not particularly limited, but a thinner one is preferable in order to prevent attenuation of detection target light.
- the high refractive index layer 4 may be formed directly on the low refractive index layer 3 or a plate-like member made of the above material on a component in which the low refractive index layer 3 is laminated on the substrate 2. May be laminated by laminating.
- the surface of the high refractive index layer 4 is a surface on which the detection target S is held as shown in FIG. 2, and the surface is hereinafter referred to as a holding surface 4a.
- a region where the detection target S is adsorbed can be divided on the holding surface 4a.
- a region where the detection target S is adsorbed is referred to as an adsorption region, and a region where the detection target S is not adsorbed is referred to as a non-adsorption region.
- FIG. 3 is a schematic diagram showing the suction region 4a 1 and the non-suction region 4a 2 formed on the holding surface 4a.
- the adsorption zone 4a 1 may be a region surrounded by the non-suction regions 4a 2.
- the adsorption region 4a 1 is not limited to being formed on the light detection unit 21 on a one-to-one basis, but a plurality of adsorption regions 4a 1 may be formed to face one light detection unit 21. It is possible to improve detection accuracy by setting it to 1: 1.
- the chemical sensor 1 is supplied to the user in a state where the surface treatment is performed as described above, and it is assumed that an arbitrary detection target S is attached to the adsorption region 4a 1 and used by the user.
- Adsorption region 4a 1 and the non-suction regions 4a 2 may be partitioned by surface treatment with respect to the holding surface 4a.
- the region subjected to the hydrophilic treatment can be referred to as the adsorption region 4a 1 and the region subjected to the hydrophobic treatment can be referred to as the non-adsorption region 4a 2 .
- the region subjected to the hydrophobic treatment can be the adsorption region 4a 1 and the region subjected to the hydrophilic treatment can be the non-adsorption region 4a 2 .
- the adsorption region 4a 1 and the non-suction regions 4a 2 it is possible to distinguish by being deposited on the holding surface 4a coating.
- the holding surface 4a is made of a material that adsorbs the detection object S, by detecting the object S to form a coating film made of a material which does not adsorb to an area to form a film and non-suction regions 4a 2 , it can be a region that does not form a film and the adsorption region 4a 1.
- the entire area of the holding surface 4a and the suction region 4a 1, it is possible to assume that does not form a non-suction regions 4a 2.
- the detection target S is uniformly deposited on the entire area of the holding surface 4a.
- FIG. 4 is a cross-sectional view showing the chemical sensor module 5. As shown in the figure, the chemical sensor module 5 is formed by joining a chemical sensor 1 and a light guide 6.
- the light guide 6 is a member that introduces light into the high refractive index layer 4 at a predetermined angle. Details of the incident angle of light will be described later.
- the light guide 6 can be a light guide prism joined to the high refractive index layer 4 as shown in FIG. 4, and can introduce light into the high refractive index layer 4 at a predetermined angle. It may be a member.
- the light guide 6 can be joined to the high refractive index layer 4 via index matching oil or the like so that an air layer does not enter between the high refractive index layer 4.
- the arrangement of the light guide 6 is not limited to the high refractive index layer 4.
- 5 and 6 are schematic diagrams illustrating examples of different arrangements of the light guide unit 6. As shown in FIG. 5, the light guide 6 may be on the upper layer side of the high refractive index layer 4, or may be on the lower layer side of the high refractive index layer 4 as shown in FIG. 6.
- a plurality of light guides 6 may be provided so that illumination light (described later) can be introduced into the high refractive index layer 4 from a plurality of directions.
- the chemical sensor module 5 may be used as a chemical substance detection device together with a light source.
- FIG. 22 is a schematic diagram showing the configuration of the chemical substance detection apparatus. As shown in FIG. 1, the chemical substance detection apparatus 10 includes a chemical sensor module 5 and a light source 11. A lens 12 is provided between the chemical sensor module 5 and the light source 11.
- the illumination light emitted from the light source 11 can be made into parallel light by the lens 12 and can be incident on the high refractive index layer 4 via the light guide 6. It is preferable that the incident angle of the illumination light on the high refractive index layer 4 can be varied depending on the positions and angles of the light source 11 and the lens 12.
- the target material in the sample specifically binds to a predetermined probe material.
- a fluorescent labeling material capable of fluorescently labeling the conjugate of the target material and the probe material is supplied to the chemical sensor 1, only the detection target S including the conjugate of the target material and the probe material is fluorescently labeled. By detecting this fluorescence, it is possible to identify the target material contained in the sample.
- a fluorescent label may be applied to the target material in advance.
- the target material that does not bond with the probe material adsorbed on the adsorption region 4a 1 is removed from the chemical sensor 1, it can be identified as the target material using fluorescence in the same manner as described above.
- a fluorescent label may be applied to the probe material in advance, and the target material may be specified by detecting changes in the wavelength and luminance of the fluorescence due to the binding between the probe material and the target material.
- the chemical sensor 1 can identify the target material by detecting the fluorescence generated in the detection object S, accurate measurement of the fluorescence is important. If excitation light for generating fluorescence is detected by the light detection unit 21, a value different from the original fluorescence intensity is output from the light detection unit 21. However, in the chemical sensor 1 according to the present technology, the mechanism that will be described later prevents the excitation light from reaching the light detection unit 21, that is, enables accurate measurement of fluorescence.
- produces in the detection target S by irradiation of excitation light was detected by the light detection part 21, it is not restricted to this. Any kind of light may be generated as long as the detection target S is irradiated with some light. For example, a case where scattered light is generated in the detection target S only when a specific substance is included in the detection target S can be considered.
- illumination light light irradiated on the detection target S like the excitation light
- detection target light light generated in the detection target S due to the irradiation light like the fluorescence
- the chemical sensor 1 can be used in the following fields.
- chemical or biochemical analysis including analysis of biological fluids such as egg yolk, blood, serum or plasma, environmental analysis including analysis of water, dissolved soil extract and dissolved plant extract, chemical production, especially Analysis in a dye solution or reaction solution, dispersion or formulation analysis, quality protection analysis, gene analysis, and the like.
- FIG. 7 is a schematic diagram showing the operation of the chemical sensor 1.
- illumination light is introduced into the high refractive index layer 4 through the light guide 6.
- the illumination light is incident on the holding surface 4a of the high refractive index layer 4 within a predetermined angle range, which will be described later.
- the illumination light reaching the adsorption region 4a 1 where the detection object S is provided is totally reflected by making the illumination light incident on the high refractive index layer 4 at an appropriate incident angle.
- the light is refracted and transmitted without incident, and enters the detection target S. This is because the refractive index (first refractive index n1) of the detection object S is larger than the refractive index of air.
- the light reaching the non-adsorption region 4a 2 where the detection target S is not provided is totally reflected in the same manner as described above and propagates through the high refractive index layer 4 again.
- the detection in the object S is present region (suction region 4a 1) is incident illumination light to detect the object S, the illumination light in a region where the detection object S is not present (non-suction region 4a 2) All It can be reflected. Even in this case, since the refractive index (second refractive index n2) of the low refractive index layer 3 is smaller than the refractive index (first refractive index n1) of the detection object S, the low refractive index layer 3 and the low refractive index layer 4 are low. The illumination light is totally reflected at the interface of the refractive index layer 3.
- the illumination light is incident only on the detection target S while propagating through the high refractive index layer 4.
- the illumination light does not leak out, so the light energy is not lost, and the illumination light does not reach the light detection unit 21, so the illumination light is detected by the light detection unit 21. There is nothing to do.
- the non-adsorption region 4a 2 is formed of a film made of a material that the detection target S does not adsorb, by making the film have light reflectivity, the illumination light in the non-adsorption region 4a 2 It is possible to prevent leakage. Even in this case, it is possible to prevent loss of light energy and detection of illumination light by the light detector 21.
- detection light fluorescence or the like
- the detection target light is generated in the detection target S by the illumination light incident on the detection target S, and is detected by the light detection unit 21.
- the detection target light is emitted from the detection target S in all directions, a part of the detection target light passes through the high refractive index layer 4 and the low refractive index layer 3 and is detected by the light detection unit 21. Since the incident angle of the detection target light to the high refractive index layer 4 or the like is a steep angle, it reaches the light detection unit 21 without being totally reflected at the interface of the high refractive index layer 4 or the like.
- the illumination light incident on the high refractive index layer 4 does not reach the light detection unit 21, and the detection of the illumination light by the light detection unit 21 can be prevented. It is. Furthermore, the illumination light incident on the high refractive index layer 4 is not attenuated except for incident on the detection target S, that is, the light energy can be used effectively.
- FIG. 8 is a schematic diagram showing an interface between the high refractive index layer 4 and the low refractive index layer 3.
- the incident angle of the illumination light (indicated by an arrow in the figure) at the interface is an angle ⁇ 3 and the emission angle from the interface of the illumination light is an angle ⁇ 2
- the following equation (1) is established from Snell's law.
- the illumination light cannot be refracted and transmitted from the high refractive index layer 4 to the low refractive index layer 3 but is totally reflected and returns to the high refractive index layer 4.
- FIG. 9 is a schematic diagram showing an interface between the high refractive index layer 4 and the detection target S.
- the illumination light as described above is refracted and transmitted to the detection object S from the interface.
- the exit angle from the interface of the illumination light is an angle ⁇ 1
- the following equation (2) is established in the same manner as the equation (1).
- the first refractive index n1 is larger than the second refractive index n2, even when the angle ⁇ 2 is 90 °, ⁇ 1 ⁇ 90 ° from Equation (2), that is, the illumination light is refracted and transmitted to the detection target S.
- the incident angle of the illumination light to the high refractive index layer 4 can be selected according to each value of the first refractive index n1, the second refractive index n2, and the third refractive index n3.
- the illumination light can be totally reflected at the interface between the low refractive index layer 3 and the non-adsorption region 4a2, and the illumination light can be refracted and transmitted at the interface with the adsorption region 4a 1 (detection target S).
- FIG. 10 shows the total illumination light with respect to the values of the first refractive index n1 (detection target S), the second refractive index n2 (low refractive index layer 3), and the third refractive index 3 (high refractive index layer 4).
- surface which shows the incident angle which reflection generate
- the third refractive index n3 is 1.9
- the second refractive index n2 is 1.3
- the first refractive index n1 is 1.4
- the total reflection is obtained when the incident angle is 43.2 ° or more from the table. Occurs.
- refractive transmission to the detection target S occurs. That is, when the incident angle is set to 43.2 ° or more and less than 47.5 °, the illumination light can be refracted and transmitted only to the detection target S and totally reflected at other interfaces.
- FIG. 11 is a schematic view showing a method for manufacturing the chemical sensor 1.
- a photodetecting portion 21 made of an impurity region is formed on one surface of a substrate 2 made of single crystal silicon by ion implantation from the mask and subsequent heat treatment.
- a protective insulating film 22 is formed on the substrate 2 on which the light detection unit 21 is formed.
- the low refractive index layer 3 is laminated on the protective insulating film 22.
- the low refractive index layer 3 can be formed, for example, by applying a raw material resin by a method such as spin coating and drying.
- a high refractive index layer 4 is laminated on the low refractive index layer 3.
- the low refractive index layer 3 can be formed, for example, by applying a raw material resin by a method such as spin coating and drying.
- the high refractive index layer 4 can also be formed by printing or pasting a resin sheet.
- the high refractive index layer 4 can also be formed by sticking a plate-like member on the low refractive index layer 3.
- the sheet glass G is pasted to the low refractive index layer 3 by vacuum lamination with the resin sheet F side as the low refractive index layer 3 side.
- the adsorption region 4 a 1 and the non-adsorption region 4 a 2 are formed on the holding surface 4 a of the high refractive index layer 4.
- the region subjected to the hydrophilic treatment can be set as the adsorption region 4a 1 and the region subjected to the hydrophobic treatment can be set as the non-adsorption region 4a 2.
- the region subjected to the hydrophobic treatment is referred to as an adsorption region 4a 1 and the region subjected to the hydrophilic treatment is referred to as a non-adsorption region 4a 2.
- a metal thin film was formed on the holding surface 4a, it is possible to non-suction region 4a 2.
- FIG. 13 is a schematic diagram illustrating a joining mode of the light guide unit 6 to the chemical sensor 1.
- the chemical sensor 1 is provided with the sensor area
- the light guide unit 6 is joined to the light guide unit joining region C where the terminal B is not provided, for example, via index matching oil or the like.
- the light incident on the light guide 6 periodically propagates in the high refractive index layer 4.
- the chemical sensor module 5 can be manufactured as described above.
- a chemical sensor according to a second embodiment of the present technology will be described.
- the description of the same configuration as the chemical sensor according to the first embodiment is omitted, and the same reference numerals are given.
- the chemical sensor according to this embodiment has the same layer structure as that of the chemical sensor according to the first embodiment, but is different in the form of the adsorption region to which the detection target is deposited.
- FIG. 14 is a schematic diagram showing a chemical sensor 201 according to this embodiment.
- the adsorption region 204a 1 of the chemical sensor 201 is formed such that the area in three rows each from the light guiding portion 6 side becomes large.
- the non-adsorption region 204a 2 that separates the adsorption regions 204a 1 is formed so as to become thinner every three rows.
- the area of the suction region 204a 1 is not limited to the case where the area increases every three columns, but the area can be increased every column, every two columns, or every larger number of columns.
- the suction region 204a 1 By making the suction region 204a 1 in such a form, it is possible to make the amount of illumination light incident on each detection object S uniform. As described in the first embodiment, the illumination light propagating through the high refractive index layer 4 is incident on the detection target S and attenuates as the distance from the light guide unit 6 increases. Therefore, with respect to the suction area 204a 1 close to the light guiding portion 6, the illumination light intensity of the Atari unit area is small in the adsorption region 204a 1 spaced from the light guiding portion 6.
- the amount of illumination light incident on each adsorption region 204a 1 is made uniform. Is possible.
- the area ratio of the adsorption region 204a 1 and the non-suction regions 204a 2 (aperture ratio).
- the illumination light introduced into the high-refractive index layer 4 propagates while being totally reflected at the interface of the high-refractive index layer 4, but illuminates from the adsorption region 204 a 1 (hereinafter referred to as an opening) for every total reflection. Is emitted. Therefore, when the total number of reflections is n, the ratio of one side dimension (hereinafter referred to as opening dimension) of the adsorption region 204a 1 is Xn, and the amount of illumination light emitted from the opening of the nth total reflection number is In, the following expression The relationship (3) holds.
- I1 X1 2
- I2 (1-I1)
- I3 (1-I2)
- FIG. 15 is a table showing the amount of illumination light when the entire surface of the holding surface 4a is irradiated with four times of total reflection. As shown in the figure, the opening in the range of the first total reflection count is 50%, the opening in the second total reflection range is 57.7%, the opening in the third total reflection range is 70.7%, By setting the aperture in the range of the fourth total reflection count to 100%, uniform illumination can be performed over the entire surface.
- FIG. 16 is a table showing the amount of illumination light when the entire holding surface 4a is irradiated with the total number of reflections of 4 and the aperture size is about 90%.
- FIG. 17 is a table showing the amount of illumination light when the entire surface of the holding surface 4a is irradiated with the total reflection number of 8 times.
- the amount of illumination light incident on each detection object S can be made uniform.
- a chemical sensor according to a third embodiment of the present technology will be described.
- the description of the same configuration as the chemical sensor according to the first embodiment is omitted, and the same reference numerals are given.
- an on-chip lens and a color filter are added to the layer structure of the chemical sensor according to the first embodiment.
- FIG. 18 is a cross-sectional view showing the configuration of the chemical sensor 301 according to this embodiment.
- the chemical sensor 301 includes a color filter 302 and an on-chip lens 303 in addition to the substrate 2, the low refractive index layer 3, and the high refractive index layer 4.
- the color filter 302 and the on-chip lens 303 are formed on the substrate 2 in this order.
- the color filter 302 may have optical characteristics that transmit the detection target light and shield the illumination light. As described above, in principle, the illumination light does not leak from the high refractive index layer 4 to the light object light detection unit 21 side, but the illumination light incident on the detection object S is reflected in the detection object S. Or the case where it advances to the detection target S side by scattering etc. is also considered. Even in such a case, since the illumination light can be blocked by the color filter 302, it is possible to prevent the illumination light from being detected by the light detection unit 21.
- the color filter 302 may have a different transmission wavelength for each region facing each detection object S. Thereby, when the wavelength of the detection target light generated in the adjacent detection target S is different, the detection target light from the adjacent detection target S can be shielded, and crosstalk can be prevented. .
- FIGS. 23A and 24A show the transmission wavelength (C1) when the color filter 302 has one color
- FIGS. 23B and 24B show the case where the color filter 302 has three colors. Transmission wavelengths (C1, C2, C3).
- the difference can be classified.
- the on-chip lens 303 focuses the incident detection target light on the light detection unit 21.
- the on-chip lens 303 can be a hemisphere having a spherical surface on the detection object S side, or a different lens shape.
- the on-chip lenses 303 may be provided so as to face the respective light detection units 21.
- the on-chip lens 303 makes it possible to collect the detection target light isotropically emitted from the detection target S on the light detection unit 21 and improve the detection accuracy of the detection target light.
- the chemical sensor 301 is configured as described above. Note that only one of the color filter 302 and the on-chip lens 303 may be provided.
- a method for manufacturing the chemical sensor 301 will be described.
- 19 and 20 are schematic views showing a method for manufacturing the chemical sensor 301.
- the light detection unit 21 is formed on the substrate 2, and the protective insulating film 22 is further formed thereon.
- the protective insulating film 22 is formed with a film thickness adjusted so that the focal point of the on-chip lens 303 matches the inside of the light detection unit 21 in consideration of the focal length of the on-chip lens 303.
- a color filter 302 is formed on the protective insulating film 22 as shown in FIG.
- the color filter 302 can be formed by, for example, spin coating.
- an on-chip lens 303 is formed on the color filter 302 as shown in FIG.
- the on-chip lens 303 can be formed by a melt flow method.
- a lens material such as silicon nitride is formed on the color filter 302, and an island-like resist pattern is formed thereon.
- the resist pattern is caused to flow by heat treatment, and the resist pattern is formed into a convex lens shape using surface tension.
- the lens shape of the resist pattern can be transferred to the lens material, and the lens material can be processed into the lens shape.
- the low refractive index layer 3 is laminated so as to embed the on-chip lens 303.
- the low refractive index layer 3 can be formed by a spin coating method.
- PEGMEA propylene glycol monomethyl ether acetate
- the saturated dissolution amount of the fluorine-containing polysiloxane resin in PEGMEA is small, and the solution has a very low viscosity.
- the solution is applied so that the film thickness is about 1 ⁇ m from the top of the on-chip lens 303.
- the solution having a low viscosity in this manner, the embedding property of the on-chip lens 303 is improved and voids (voids) can be prevented.
- the solvent in the solution is removed by heat treatment at 120 ° C. for 1 minute, and the fluorine-containing polysiloxane resin is sufficiently cured by heat treatment at 230 ° C. for 5 minutes.
- the low refractive index layer 3 in which the lens shape of the on-chip lens 303 is embedded and the surface is molded flat can be formed.
- a high refractive index layer 4 is laminated on the low refractive index layer 3.
- the high refractive index layer 4 can be laminated by, for example, spin coating.
- the high refractive index layer 4 can also be formed by printing, sticking a resin sheet, or sticking a plate-like member.
- the chemical sensor 301 can be manufactured as described above.
- a chemical sensor module can be obtained by joining the light guide 6 to the chemical sensor 301 in the same manner as in the first embodiment.
- a chemical sensor according to a fourth embodiment of the present technology will be described.
- the description of the same configuration as the chemical sensor according to the first embodiment is omitted, and the same reference numerals are given.
- the chemical sensor according to the present embodiment is obtained by adding a light shielding wall to the layer structure of the chemical sensor according to the first embodiment.
- FIG. 21 is a cross-sectional view showing the configuration of the chemical sensor 401 according to this embodiment.
- the chemical sensor 401 includes a light shielding wall 402 in addition to the substrate 2, the low refractive index layer 3, and the high refractive index layer 4.
- the light shielding wall 402 is formed in the low refractive index layer 3 in a direction perpendicular to the layer.
- the light shielding wall 402 shields the detection target light from the adjacent detection target S.
- the light shielding wall 402 is made of a material capable of shielding at least the wavelength of the detection target light, and is arranged so as to partition the low refractive index layer 3 for each region facing each light detection unit 21. Can do. Further, the light shielding wall 402 may be provided for each of the plurality of light detection units 21.
- the light shielding wall 402 can be formed by laminating the low refractive index layer 3, patterning the low refractive index layer 3, and filling the material. In addition to this, it is also possible to form the low refractive index layer 3 by previously forming the light shielding wall 402 on the substrate 2 and filling the inside thereof with a material.
- the light to be detected is blocked by the light shielding wall 402 from the adjacent detection target S, that is, the crosstalk of the light detection unit 21 can be prevented.
- the light shielding wall 402 is formed in the high refractive index layer 4, the illumination light propagating through the high refractive index layer 4 is blocked.
- the propagation of the illumination light is performed. It is possible to guide the illumination light without hindering.
- the light shielding wall 402 can be arranged so as to partition each on-chip lens 303. Together with the collection of illumination light by the on-chip lens 303, crosstalk can be further suppressed.
- the present technology is not limited to the above embodiments, and can be changed without departing from the gist of the present technology.
- this technique can also take the following structures.
- a substrate A low refractive index layer laminated on the substrate and having a second refractive index smaller than the first refractive index which is the refractive index of the detection object;
- a high refractive index layer that is laminated on the low refractive index layer, has a third refractive index greater than the first refractive index, has a holding surface on which the detection object is held, and propagates illumination light;
- a chemical sensor comprising: a light detection unit that is provided on the substrate and detects detection target light generated in the detection target by the illumination light.
- the chemical sensor according to (1) above is a chemical sensor provided with the adsorption
- the chemical sensor according to any one of (1) to (6) above is formed by a hydrophilic treatment applied to the holding surface,
- the non-adsorption region is a chemical sensor formed by a hydrophobic treatment applied to the holding surface.
- the chemical sensor according to any one of (1) to (7) above is formed by a hydrophobic treatment applied to the holding surface,
- the non-adsorption region is formed by a hydrophilic treatment applied to the holding surface.
- a chemical sensor further comprising a color filter provided between the light detection unit and the low refractive index layer and blocking wavelengths other than the detection target light.
- a chemical sensor according to any one of (1) to (11) above, A chemical sensor further comprising an on-chip lens that is provided between the light detection unit and the low refractive index layer and condenses the detection target light on the light detection unit.
- a chemical sensor further comprising a light shielding wall provided on the low refractive index layer and partitioning the low refractive index layer for each region facing each photodetecting portion.
- the chemical sensor according to any one of (1) to (13) above,
- the illumination light is excitation light
- the detection target light is fluorescent chemical sensor.
- a substrate a low refractive index layer that is laminated on the substrate and has a second refractive index lower than the first refractive index that is the refractive index of the detection object, and the first refractive index that is laminated on the low refractive index layer.
- a high-refractive-index layer having a holding surface on which the detection object is held and having a third refractive index higher than that of the detection object, and provided on the substrate, and detection that occurs in the detection object by the illumination light
- a chemical sensor comprising a light detection unit for detecting target light;
- a chemical sensor module comprising: a light guide unit joined to the chemical sensor and introducing the illumination light into the high refractive index layer.
- a substrate a low refractive index layer that is laminated on the substrate and has a second refractive index lower than the first refractive index that is the refractive index of the detection object, and the first refractive index that is laminated on the low refractive index layer.
- a high-refractive-index layer having a holding surface on which the detection object is held and having a third refractive index higher than that of the detection object, and provided on the substrate, and detection that occurs in the detection object by the illumination light
- a chemical sensor module comprising: a chemical sensor provided with a light detection unit that detects target light; and a light guide unit that is joined to the chemical sensor and introduces the illumination light into the high refractive index layer;
- a chemical substance detection apparatus comprising: a light source that irradiates the illumination light to the light guide unit.
- a substrate a low refractive index layer that is laminated on the substrate and has a second refractive index lower than the first refractive index that is the refractive index of the detection object, and the first refractive index that is laminated on the low refractive index layer.
- a high-refractive-index layer having a holding surface on which the detection object is held and having a third refractive index higher than that of the detection object, and provided on the substrate, and detection that occurs in the detection object by the illumination light
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
上記低屈折率層は、上記基板に積層され、検出対象物の屈折率である第1の屈折率より小さい第2の屈折率を有する。
上記高屈折率層は、上記低屈折率層に積層され、上記第1の屈折率より大きい第3の屈折率を有し、上記検出対象物が保持される保持面を備え、照明光が伝播する。
上記光検出部は、上記基板に設けられ、上記照明光によって上記検出対象物において生じる検出対象光を検出する。
上記ケミカルセンサは、基板と、上記基板に積層され検出対象物の屈折率である第1の屈折率より小さい第2の屈折率を有する低屈折率層と、上記低屈折率層に積層され上記第1の屈折率より大きい第3の屈折率を有し上記検出対象物が保持される保持面を備え照明光が伝播する高屈折率層と、上記基板に設けられ、上記照明光によって上記検出対象物において生じる検出対象光を検出する光検出部とを備える。
上記導光部は、上記ケミカルセンサに接合され、上記高屈折率層に上記照明光を導入する。
上記ケミカルセンサモジュールは、基板と、上記基板に積層され検出対象物の屈折率である第1の屈折率より小さい第2の屈折率を有する低屈折率層と、上記低屈折率層に積層され上記第1の屈折率より大きい第3の屈折率を有し上記検出対象物が保持される保持面を備え照明光が伝播する高屈折率層と、上記基板に設けられ、上記照明光によって上記検出対象物において生じる検出対象光を検出する光検出部と、上記ケミカルセンサに接合され上記高屈折率層に上記照明光を導入する導光部とを備える。
上記光源は、上記導光部に上記照明光を照射する。
導光部を介して上記高屈折率層に上記照明光を導入する。
上記光検出部によって上記検出対象光を検出する。
本技術の第1の実施形態に係るケミカルセンサについて説明する。
図1は第1の実施形態に係るケミカルセンサ1の構成を示す断面図である。これらの図に示すようにケミカルセンサ1は、基板2、低屈折率層3及び高屈折率層4がこの順に積層されて構成されている。また、ケミカルセンサ1は、使用時には検出対象物が被着されて用いられる。図2は、ケミカルセンサ1に載置された検出対象物Sを示す断面図である。
上述したケミカルセンサ1は、ケミカルセンサモジュールとして用いられるものとすることができる。図4は、ケミカルセンサモジュール5を示す断面図である。同図に示すように、ケミカルセンサモジュール5は、ケミカルセンサ1と導光部6が接合されて形成されている。
ケミカルセンサモジュール5は、光源と共に化学物質検出装置として用いられるものとすることもできる。図22は、化学物質検出装置の構成を示す模式図である。同図に示すように、化学物質検出装置10は、ケミカルセンサモジュール5と光源11によって構成されている。また、ケミカルセンサモジュール5と光源11の間には、レンズ12が設けられている。
ケミカルセンサ1(及びケミカルセンサモジュール5)を用いたターゲット材料の検出方法について説明する。
ケミカルセンサ1(及びケミカルセンサモジュール5)の動作について説明する。図7は、ケミカルセンサ1の動作を示す模式図である。
上述のケミカルセンサ1の動作においては高屈折率層4への照明光の入射角度が適切な場合について説明したが、この入射角度についてより詳細に説明する。
ケミカルセンサ1(及びケミカルセンサモジュール5)の製造方法について説明する。図11は、ケミカルセンサ1の製造方法を示す模式図である。
本技術の第2の実施形態に係るケミカルセンサについて説明する。なお、本実施形態において、第1の実施形態に係るケミカルセンサと同様の構成については説明を省略し、同一の符号を付する。本実施形態に係るケミカルセンサは、第1の実施形態に係るケミカルセンサと層構造は同様であるが、検出対象物が被着される吸着領域の形態が異なる。
I2=(1-I1)X22
I3=(1-I2)X32
:
In=(1-I(n-1))Xn2 (3)
本技術の第3の実施形態に係るケミカルセンサについて説明する。なお、本実施形態において、第1の実施形態に係るケミカルセンサと同様の構成については説明を省略し、同一の符号を付する。本実施形態に係るケミカルセンサは、第1の実施形態に係るケミカルセンサの層構造に、オンチップレンズ及びカラーフィルタが追加されているものである。
本技術の第4の実施形態に係るケミカルセンサについて説明する。なお、本実施形態において、第1の実施形態に係るケミカルセンサと同様の構成については説明を省略し、同一の符号を付する。本実施形態に係るケミカルセンサは、第1の実施形態に係るケミカルセンサの層構造に、遮光壁が追加されているものである。
基板と、
上記基板に積層され、検出対象物の屈折率である第1の屈折率より小さい第2の屈折率を有する低屈折率層と、
上記低屈折率層に積層され、上記第1の屈折率より大きい第3の屈折率を有し、上記検出対象物が保持される保持面を備え、照明光が伝播する高屈折率層と、
上記基板に設けられ、上記照明光によって上記検出対象物において生じる検出対象光を検出する光検出部と
を具備するケミカルセンサ。
上記(1)に記載のケミカルセンサであって、
上記保持面は、上記保持面は、上記検出対象物が吸着される吸着領域と、上記検出対象物が吸着されない非吸着領域を備える
ケミカルセンサ。
上記(1)又は(2)に記載のケミカルセンサであって、
上記吸着領域は、上記非吸着領域によって分離されている
ケミカルセンサ。
上記(1)から(3)のうちいずれか一つに記載のケミカルセンサであって、
上記光検出部は、複数が設けられ、
上記吸着領域は、それぞれが一つの上記光検出部に対向する
ケミカルセンサ。
上記(1)から(4)のうちいずれか一つに記載のケミカルセンサであって、
上記光検出部は、複数が設けられ、
上記吸着領域は、それぞれが複数の上記光検出部に対向する
ケミカルセンサ。
上記(1)から(5)のうちいずれか一つに記載のケミカルセンサであって、
上記吸着領域は、上記照明光が伝播する方向に沿って面積が大きくなるように形成されている
ケミカルセンサ。
上記(1)から(6)のうちいずれか一つに記載のケミカルセンサであって、
上記吸着領域は、上記保持面に施された親水性処理によって形成され、
上記非吸着領域は、上記保持面に施された疎水性処理によって形成されている
ケミカルセンサ。
上記(1)から(7)のうちいずれか一つに記載のケミカルセンサであって、
上記吸着領域は、上記保持面に施された疎水性処理によって形成され、
上記非吸着領域は、上記保持面に施された親水性処理によって形成されている
ケミカルセンサ。
上記(1)から(8)のうちいずれか一つに記載のケミカルセンサであって、
上記非吸着領域は、上記検出対象物が吸着されない被膜によって被覆され、
上記吸着領域は、上記被膜によって被覆されない
ケミカルセンサ。
上記(1)から(9)のうちいずれか一つに記載のケミカルセンサであって、
上記被膜は光反射性を有する
ケミカルセンサ。
上記(1)から(10)のうちいずれか一つに記載のケミカルセンサであって、
上記光検出部と上記低屈折率層の間に設けられ、上記検出対象光以外の波長を遮蔽するカラーフィルタ
をさらに具備するケミカルセンサ。
上記(1)から(11)のうちいずれか一つに記載のケミカルセンサであって、
上記光検出部と上記低屈折率層の間に設けられ、上記検出対象光を上記光検出部に集光するオンチップレンズ
をさらに具備するケミカルセンサ。
上記(1)から(12)のうちいずれか一つに記載のケミカルセンサであって、
上記低屈折率層に設けられ、上記低屈折率層を各光検出部に対向する領域毎に区画する遮光壁
をさらに具備するケミカルセンサ。
上記(1)から(13)のうちいずれか一つに記載のケミカルセンサであって、
上記照明光は励起光であり、
上記検出対象光は蛍光である
ケミカルセンサ。
基板と、上記基板に積層され検出対象物の屈折率である第1の屈折率より小さい第2の屈折率を有する低屈折率層と、上記低屈折率層に積層され上記第1の屈折率より大きい第3の屈折率を有し上記検出対象物が保持される保持面を備え照明光が伝播する高屈折率層と、上記基板に設けられ、上記照明光によって上記検出対象物において生じる検出対象光を検出する光検出部とを備えるケミカルセンサと、
上記ケミカルセンサに接合され、上記高屈折率層に上記照明光を導入する導光部と
を具備するケミカルセンサモジュール。
基板と、上記基板に積層され検出対象物の屈折率である第1の屈折率より小さい第2の屈折率を有する低屈折率層と、上記低屈折率層に積層され上記第1の屈折率より大きい第3の屈折率を有し上記検出対象物が保持される保持面を備え照明光が伝播する高屈折率層と、上記基板に設けられ、上記照明光によって上記検出対象物において生じる検出対象光を検出する光検出部とを備えるケミカルセンサと、上記ケミカルセンサに接合され、上記高屈折率層に上記照明光を導入する導光部とを備えるケミカルセンサモジュールと、
上記導光部に上記照明光を照射する光源と
を具備する化学物質検出装置。
基板と、上記基板に積層され検出対象物の屈折率である第1の屈折率より小さい第2の屈折率を有する低屈折率層と、上記低屈折率層に積層され上記第1の屈折率より大きい第3の屈折率を有し上記検出対象物が保持される保持面を備え照明光が伝播する高屈折率層と、上記基板に設けられ、上記照明光によって上記検出対象物において生じる検出対象光を検出する光検出部とを備えるケミカルセンサを準備し、
導光部を介して上記高屈折率層に上記照明光を導入し、
上記光検出部によって上記検出対象光を検出する
化学物質検出方法。
2…基板
3…低屈折率層
4…高屈折率層
5…ケミカルセンサモジュール
6…導光部
10…化学物質検出装置
11…光源
21…光検出部
Claims (17)
- 基板と、
前記基板に積層され、検出対象物の屈折率である第1の屈折率より小さい第2の屈折率を有する低屈折率層と、
前記低屈折率層に積層され、前記第1の屈折率より大きい第3の屈折率を有し、前記検出対象物が保持される保持面を備え、照明光が伝播する高屈折率層と、
前記基板に設けられ、前記照明光によって前記検出対象物において生じる検出対象光を検出する光検出部と
を具備するケミカルセンサ。 - 請求項1に記載のケミカルセンサであって、
前記保持面は、前記検出対象物が吸着される吸着領域と、前記検出対象物が吸着されない非吸着領域を備える
ケミカルセンサ。 - 請求項2に記載のケミカルセンサであって、
前記吸着領域は、前記非吸着領域によって分離されている
ケミカルセンサ。 - 請求項3に記載のケミカルセンサであって、
前記光検出部は、複数が設けられ、
前記吸着領域は、それぞれが一つの前記光検出部に対向する
ケミカルセンサ。 - 請求項3に記載のケミカルセンサであって、
前記光検出部は、複数が設けられ、
前記吸着領域は、それぞれが複数の前記光検出部に対向する
ケミカルセンサ。 - 請求項2に記載のケミカルセンサであって、
前記吸着領域は、前記照明光が伝播する方向に沿って面積が大きくなるように形成されている
ケミカルセンサ。 - 請求項2に記載のケミカルセンサであって、
前記吸着領域は、前記保持面に施された親水性処理によって形成され、
前記非吸着領域は、前記保持面に施された疎水性処理によって形成されている
ケミカルセンサ。 - 請求項2に記載のケミカルセンサであって、
前記吸着領域は、前記保持面に施された疎水性処理によって形成され、
前記非吸着領域は、前記保持面に施された親水性処理によって形成されている
ケミカルセンサ。 - 請求項2に記載のケミカルセンサであって、
前記非吸着領域は、前記検出対象物が吸着されない被膜によって被覆され、
前記吸着領域は、前記被膜によって被覆されない
ケミカルセンサ。 - 請求項9記載のケミカルセンサであって、
前記被膜は光反射性を有する
ケミカルセンサ。 - 請求項1に記載のケミカルセンサであって、
前記光検出部と前記低屈折率層の間に設けられ、前記検出対象光以外の波長を遮蔽するカラーフィルタ
をさらに具備するケミカルセンサ。 - 請求項1に記載のケミカルセンサであって、
前記光検出部と前記低屈折率層の間に設けられ、前記検出対象光を前記光検出部に集光するオンチップレンズ
をさらに具備するケミカルセンサ。 - 請求項4に記載のケミカルセンサであって、
前記低屈折率層に設けられ、前記低屈折率層を各光検出部に対向する領域毎に区画する遮光壁
をさらに具備するケミカルセンサ。 - 請求項1に記載のケミカルセンサであって、
前記照明光は励起光であり、
前記検出対象光は蛍光である
ケミカルセンサ。 - 基板と、前記基板に積層され検出対象物の屈折率である第1の屈折率より小さい第2の屈折率を有する低屈折率層と、前記低屈折率層に積層され前記第1の屈折率より大きい第3の屈折率を有し前記検出対象物が保持される保持面を備え照明光が伝播する高屈折率層と、前記基板に設けられ、前記照明光によって前記検出対象物において生じる検出対象光を検出する光検出部とを備えるケミカルセンサと、
前記ケミカルセンサに接合され、前記高屈折率層に前記照明光を導入する導光部と
を具備するケミカルセンサモジュール。 - 基板と、前記基板に積層され検出対象物の屈折率である第1の屈折率より小さい第2の屈折率を有する低屈折率層と、前記低屈折率層に積層され前記第1の屈折率より大きい第3の屈折率を有し前記検出対象物が保持される保持面を備え照明光が伝播する高屈折率層と、前記基板に設けられ、前記照明光によって前記検出対象物において生じる検出対象光を検出する光検出部とを備えるケミカルセンサと、前記ケミカルセンサに接合され、前記高屈折率層に前記照明光を導入する導光部とを備えるケミカルセンサモジュールと、
前記導光部に前記照明光を照射する光源と
を具備する化学物質検出装置。 - 基板と、前記基板に積層され検出対象物の屈折率である第1の屈折率より小さい第2の屈折率を有する低屈折率層と、前記低屈折率層に積層され前記第1の屈折率より大きい第3の屈折率を有し前記検出対象物が保持される保持面を備え照明光が伝播する高屈折率層と、前記基板に設けられ、前記照明光によって前記検出対象物において生じる検出対象光を検出する光検出部とを備えるケミカルセンサを準備し、
導光部を介して前記高屈折率層に前記照明光を導入し、
前記光検出部によって前記検出対象光を検出する
化学物質検出方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280057307.4A CN103946690B (zh) | 2011-11-28 | 2012-10-26 | 化学传感器、化学传感器模块、化学物检测装置和化学物检测方法 |
US14/356,730 US9618457B2 (en) | 2011-11-28 | 2012-10-26 | Chemical sensor, chemical sensor module, chemical detection apparatus, and chemical detection method |
KR1020147013039A KR102017355B1 (ko) | 2011-11-28 | 2012-10-26 | 케미컬 센서, 케미컬 센서 모듈, 화학물질 검출 장치 및 화학물질 검출 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-259452 | 2011-11-28 | ||
JP2011259452 | 2011-11-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013080432A1 true WO2013080432A1 (ja) | 2013-06-06 |
Family
ID=48534937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/006884 WO2013080432A1 (ja) | 2011-11-28 | 2012-10-26 | ケミカルセンサ、ケミカルセンサモジュール、化学物質検出装置及び化学物質検出方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9618457B2 (ja) |
JP (1) | JPWO2013080432A1 (ja) |
KR (1) | KR102017355B1 (ja) |
CN (1) | CN103946690B (ja) |
TW (1) | TWI499769B (ja) |
WO (1) | WO2013080432A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019524095A (ja) * | 2016-07-14 | 2019-09-05 | ベース4 イノベーション リミテッド | 堆積物中の液滴を特定する方法と関連シーケンサ |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1832600A1 (en) | 2006-03-09 | 2007-09-12 | Max-Delbrück-Centrum Für Molekulare Medizin | Peptides against autoantibodies associated with glaucoma and use of these peptides |
US10488639B2 (en) | 2015-10-08 | 2019-11-26 | Visera Technologies Company Limited | Detection device for specimens |
KR102229731B1 (ko) * | 2018-07-25 | 2021-03-22 | 한국과학기술연구원 | 초소형 온칩 다중 형광 이미징 시스템 및 그 제작방법 |
KR102658571B1 (ko) * | 2019-06-11 | 2024-04-19 | 에스케이하이닉스 주식회사 | 이미지 센싱 장치 및 그 제조 방법 |
US20240009664A1 (en) * | 2022-07-06 | 2024-01-11 | Visera Technologies Company Limited | Bio-chip, bio-detection system and bio-detection method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000507350A (ja) * | 1996-03-19 | 2000-06-13 | ユニバーシティー オブ ユタ リサーチ ファンデーション | 検体の濃度を決定するためのシステム |
JP2003515737A (ja) * | 1999-10-14 | 2003-05-07 | ユニバーシティ オブ ユタ リサーチ ファウンデーション | 高感度で高スループットの生物学的センサおよび方法のための共鳴式光キャビティ |
JP2006502379A (ja) * | 2002-09-27 | 2006-01-19 | ミクロナス ゲーエムベーハー | 分析試料内に含まれる少なくとも1つのリガンドを検出する装置 |
JP2009511896A (ja) * | 2005-10-12 | 2009-03-19 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 全ポリマー光導波路センサ |
JP2009530589A (ja) * | 2004-11-18 | 2009-08-27 | エッペンドルフ アレイ テクノロジーズ ソシエテ アノニム | マイクロアレイ上での複数標的のリアルタイム定量化 |
JP2010532873A (ja) * | 2007-07-12 | 2010-10-14 | ナノアイデント テクノロジーズ アクチェンゲゼルシャフト | 光電子センサシステム |
JP2011525111A (ja) * | 2008-06-16 | 2011-09-15 | ピーエルシー ダイアグノスティクス, インコーポレイテッド | フェーズ合成による核酸配列決定システム及び方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7384797B1 (en) * | 2000-10-12 | 2008-06-10 | University Of Utah Research Foundation | Resonant optical cavities for high-sensitivity high-throughput biological sensors and methods |
EP1659183A1 (en) * | 2004-11-18 | 2006-05-24 | Eppendorf Array Technologies | Real-time quantification of multiple targets on a micro-array |
CN101606053A (zh) | 2007-02-08 | 2009-12-16 | 皇家飞利浦电子股份有限公司 | 具有渐逝波导和集成传感器的生物传感器 |
US8865077B2 (en) * | 2010-06-11 | 2014-10-21 | Industrial Technology Research Institute | Apparatus for single-molecule detection |
-
2012
- 2012-10-26 WO PCT/JP2012/006884 patent/WO2013080432A1/ja active Application Filing
- 2012-10-26 CN CN201280057307.4A patent/CN103946690B/zh not_active Expired - Fee Related
- 2012-10-26 JP JP2013546962A patent/JPWO2013080432A1/ja active Pending
- 2012-10-26 US US14/356,730 patent/US9618457B2/en active Active
- 2012-10-26 KR KR1020147013039A patent/KR102017355B1/ko active IP Right Grant
- 2012-10-29 TW TW101139983A patent/TWI499769B/zh not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000507350A (ja) * | 1996-03-19 | 2000-06-13 | ユニバーシティー オブ ユタ リサーチ ファンデーション | 検体の濃度を決定するためのシステム |
JP2003515737A (ja) * | 1999-10-14 | 2003-05-07 | ユニバーシティ オブ ユタ リサーチ ファウンデーション | 高感度で高スループットの生物学的センサおよび方法のための共鳴式光キャビティ |
JP2006502379A (ja) * | 2002-09-27 | 2006-01-19 | ミクロナス ゲーエムベーハー | 分析試料内に含まれる少なくとも1つのリガンドを検出する装置 |
JP2009530589A (ja) * | 2004-11-18 | 2009-08-27 | エッペンドルフ アレイ テクノロジーズ ソシエテ アノニム | マイクロアレイ上での複数標的のリアルタイム定量化 |
JP2009511896A (ja) * | 2005-10-12 | 2009-03-19 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 全ポリマー光導波路センサ |
JP2010532873A (ja) * | 2007-07-12 | 2010-10-14 | ナノアイデント テクノロジーズ アクチェンゲゼルシャフト | 光電子センサシステム |
JP2011525111A (ja) * | 2008-06-16 | 2011-09-15 | ピーエルシー ダイアグノスティクス, インコーポレイテッド | フェーズ合成による核酸配列決定システム及び方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019524095A (ja) * | 2016-07-14 | 2019-09-05 | ベース4 イノベーション リミテッド | 堆積物中の液滴を特定する方法と関連シーケンサ |
Also Published As
Publication number | Publication date |
---|---|
TWI499769B (zh) | 2015-09-11 |
JPWO2013080432A1 (ja) | 2015-04-27 |
US20140299750A1 (en) | 2014-10-09 |
TW201321738A (zh) | 2013-06-01 |
KR102017355B1 (ko) | 2019-09-02 |
KR20140096060A (ko) | 2014-08-04 |
US9618457B2 (en) | 2017-04-11 |
CN103946690B (zh) | 2017-03-15 |
CN103946690A (zh) | 2014-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013080432A1 (ja) | ケミカルセンサ、ケミカルセンサモジュール、化学物質検出装置及び化学物質検出方法 | |
EP2772751B1 (en) | Chemical sensor, biomolecule detection device, and biomolecule detection method | |
US8921280B2 (en) | Integrated bio-chip and method of fabricating the integrated bio-chip | |
TWI503533B (zh) | Chemical detector, chemical detector module, biological molecular detection device and biological molecular detection method | |
US9453799B2 (en) | Optical fluorescence-based chemical and biochemical sensors and methods for fabricating such sensors | |
CN106053402B (zh) | 用于样本的侦测装置 | |
WO2010079648A1 (ja) | 光導波路型ケミカルセンサ | |
US10422895B2 (en) | Passive waveguide structures and integrated detection and/or imaging systems incorporating the same | |
CN106568746B (zh) | 用于样本的检测装置 | |
US20220113254A1 (en) | An apparatus and method for detecting photoluminescent light emitted from a sample | |
JP5130517B2 (ja) | 光導波路型dnaセンサおよびdna検出方法 | |
JP2005030830A (ja) | 蛍光分析用光合分波器、蛍光分析用光学モジュール、蛍光分析装置、蛍光・光熱変換分光分析装置、及び蛍光分析用チップ | |
JP5946330B2 (ja) | Sprセンサセルおよびsprセンサ | |
JP2015532422A (ja) | 分析物を検出するための方法 | |
US20220082558A1 (en) | Optical sensor, system and method for detecting pathogenic germs | |
KR20100091840A (ko) | 집적된 바이오칩 및 이의 제조방법 | |
JP6928930B2 (ja) | 目的物質検出チップ、目的物質検出装置及び目的物質検出方法 | |
JP2013061301A (ja) | Sprセンサセルおよびsprセンサ | |
KR20100091839A (ko) | 집적된 바이오칩 및 이의 제조방법 | |
KR20100091843A (ko) | 집적된 바이오칩 및 이의 제조방법 | |
JP6936987B2 (ja) | 目的物質検出チップ、目的物質検出装置及び目的物質検出方法 | |
KR101569834B1 (ko) | 집적된 바이오칩 및 이의 제조방법 | |
JP2013047661A (ja) | 検出板、検出装置及び検出方法 | |
JP2013160623A (ja) | 光測定装置 | |
CN109425601A (zh) | 光学传感器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12852861 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013546962 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14356730 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20147013039 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12852861 Country of ref document: EP Kind code of ref document: A1 |