WO2013080383A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2013080383A1
WO2013080383A1 PCT/JP2011/077970 JP2011077970W WO2013080383A1 WO 2013080383 A1 WO2013080383 A1 WO 2013080383A1 JP 2011077970 W JP2011077970 W JP 2011077970W WO 2013080383 A1 WO2013080383 A1 WO 2013080383A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
series
main circuit
semiconductor drive
negative electrode
Prior art date
Application number
PCT/JP2011/077970
Other languages
English (en)
French (fr)
Inventor
山本 和也
正則 景山
信二 村田
伊藤 寛
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP11876647.6A priority Critical patent/EP2787625B1/en
Priority to PCT/JP2011/077970 priority patent/WO2013080383A1/ja
Priority to JP2013546942A priority patent/JP5642294B2/ja
Publication of WO2013080383A1 publication Critical patent/WO2013080383A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/107Modifications for increasing the maximum permissible switched voltage in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/689Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit
    • H03K17/691Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit using transformer coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power conversion device that converts DC power into AC power by a three-level inverter method, and more particularly to a power conversion device that performs power conversion at a high voltage.
  • a series circuit of two capacitors having the same capacitance value is disposed between the positive electrode end and the negative electrode end of the DC power source to be converted, and a three-level inverter is connected to the positive electrode end and the negative electrode end of the DC power source to be converted.
  • the positive and negative buses of the switching circuit are connected.
  • Four switching elements are arranged in series between the positive electrode bus and the negative electrode bus. In the example of the three-phase output, three series circuits of the four switching elements are arranged in parallel.
  • the bus voltage between the positive bus and the negative bus in the switching circuit of the three-level inverter is formed by charging a series circuit of two capacitors having the same capacitance value with the output voltage of the DC power source to be converted.
  • a connection end of two capacitors connected in series is connected between a connection end of two capacitors connected in series and a connection end of two switching elements connected in series on the positive electrode bus side by a diode for clamping an upper arm. And a connection end of two switching elements connected in series on the negative electrode bus side are connected by a diode for lower arm clamping.
  • the connection end of the series circuit of the two switching elements on the positive bus side and the series circuit of the two switching elements on the negative bus side constitutes the inverter output end. .
  • the three-level inverter type power conversion device switches three voltage levels of the half of the power supply voltage in addition to the power supply voltage and 0V. It can be made closer to a sine waveform than a two-level inverter type power converter that performs switching control with 0V.
  • This three-level inverter type power conversion device is also used as a power conversion device that converts high voltage generated by a DC power generation facility using a solar cell or a fuel cell.
  • Other DC power generation facilities that generate high voltage include a DC power generation facility that can output DC power by applying a converter to an AC generator such as a wind power generator or a geothermal generator.
  • AC generator such as a wind power generator or a geothermal generator.
  • a plurality of semiconductor drive circuits that respectively turn on and off a plurality of switching elements that constitute the switching circuit are individually insulated drives Since it is necessary to supply driving power from the power source for power supply, an insulating transformer is used for each semiconductor driving circuit.
  • an insulating transformer is used for each semiconductor driving circuit.
  • the insulation transformer needs to have a withstand voltage design in consideration of corona discharge in order to ensure reliability, and it is difficult to reduce the cost and reduce the size.
  • Patent Document 1 As a prior example for reducing insulation, for example, in Patent Document 1, since the potential at the connection end of two series-connected capacitors gives an intermediate potential of the output DC voltage of the solar panel, the connection between the two series-connected capacitors By connecting the end and the storage case, and fixing the reference potential of the control circuit and control power supply to the DC intermediate potential, the withstand voltage value between the power converter and the storage case and between each device is reduced. There is a proposed method.
  • the present invention has been made in view of the above, and in a situation where the power supply voltage to be converted becomes a high voltage, the power conversion capable of reducing the withstand voltage of the insulating transformer for the semiconductor drive circuit and ensuring long-term reliability.
  • the object is to obtain a device.
  • the present invention divides the DC voltage into four equal parts between the positive side and the negative side of the DC main circuit that outputs the DC voltage to be converted.
  • Main circuit capacitors connected in series to each other, and four switching elements connected in series between the positive and negative buses connected to the positive and negative ends of the series circuit of the four main circuit capacitors
  • the four switching elements in which inverter output ends are formed at the connection ends of the series circuits of the two switching elements on the positive electrode bus side and the negative electrode bus side, the four switching elements, and the four main circuits Connected in series with the connection end of the series circuit of the two main circuit capacitors on the positive electrode bus side and the negative electrode bus side and the positive electrode bus side between the capacitor and the capacitor.
  • the upper arm clamp diode disposed between the connection ends of the two switching elements, and the connection end of the two main circuit capacitors on the positive bus side and the negative bus side and the negative bus side
  • a three-level inverter switching circuit comprising at least one unit configuration, the unit comprising a lower arm clamp diode arranged between the connection ends of two switching elements connected in series in
  • a plurality of semiconductor drive circuits for driving a plurality of switching elements in a three-level inverter switching circuit, and a semiconductor for a switching element in which one signal terminal is connected to the negative electrode bus among the four switching elements in the unit configuration
  • the drive circuit is common even if the unit configuration is plural.
  • the semiconductor drive circuits for the switching elements from the second to the fourth from the negative bus to the positive bus have a one-to-one relationship even when the unit configuration is plural.
  • a pulse voltage obtained by switching the output voltage of the DC main circuit formed by a series circuit of the four main circuit capacitors in a primary winding and a plurality of insulating transformers to which the corresponding semiconductor driving circuits of the plurality of semiconductor driving circuits are connected Is applied to each of a plurality of secondary windings of the flyback transformer.
  • the flyback transformer includes a flyback transformer, a primary winding, and four secondary windings.
  • An inverter transformer to which a pulse voltage obtained by switching an output voltage of one of the rectifier circuits is applied, and at least one primary winding of the isolation transformer is connected to each of the four secondary windings;
  • a power conversion device comprising: a semiconductor drive circuit for a switching element in which one signal terminal is connected to the negative electrode bus among four switching elements in the unit configuration as a reference potential of the plurality of semiconductor drive circuits The reference potential is the potential of the negative bus, and the reference potential of the semiconductor drive circuit for the second switching element from the negative bus toward the positive bus is the negative bus side of the four main circuit capacitors.
  • the reference potential of the semiconductor drive circuit for the third switching element toward the line is the series circuit of two main circuit capacitors connected in series on the positive bus side of the four main circuit capacitors and the negative bus side
  • the reference potential of the semiconductor drive circuit for the fourth switching element from the negative electrode bus toward the positive electrode bus is the potential of the connection end of the series circuits of the two main circuit capacitors connected in series in FIG.
  • connection end of two main circuit capacitors connected in series on the negative electrode bus side among the four main circuit capacitors Of the four switching elements in the unit configuration, connected to one end of the primary winding of the insulation transformer corresponding to the semiconductor drive circuit for the second switching element from the negative electrode bus toward the positive electrode bus,
  • connection ends of two main circuit capacitors connected in series on the positive electrode bus side and the negative electrode bus side among the two main circuit capacitors are connected to the positive electrode from the negative electrode bus among the four switching elements in the unit configuration.
  • the isolation transformer corresponding to the semiconductor drive circuit for the third switching element toward the bus Connected to one end of the primary winding of the four main circuit capacitors, the connection end of the two main circuit capacitors connected in series on the positive bus side is the switching element of the four switching elements in the unit configuration It is characterized by being connected to one end of the primary winding of the insulation transformer corresponding to the semiconductor drive circuit for the fourth switching element from the negative electrode bus toward the positive electrode bus.
  • the reference potential of each semiconductor drive circuit, and the reference potential between the primary side of each isolation transformer and the secondary side of the inverter transformer for supplying the insulated DC power to the corresponding semiconductor drive circuit are supplied from the same connection end among the connection ends of the four main circuit capacitors. Therefore, the potential difference of the reference potential between the primary side and the secondary side of each of the plurality of insulating transformers is 0 V even when the power supply voltage to be converted becomes a high voltage such as DC 1000 V, for example. Therefore, even in a situation where the power supply voltage to be converted is a high voltage such as DC 1000 V, no corona discharge occurs between the primary side and the secondary side of the insulation transformer. Improved long-term reliability. And since the design which considered the withstand voltage of the insulation transformer can be relieved significantly, there exists an effect that cost reduction and size reduction can be achieved.
  • FIG. 1 is a block diagram showing a configuration of a power converter according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a power converter according to an embodiment of the present invention.
  • the DC main circuit 1 generates a DC voltage (for example, DC 1000 V) to be converted between the positive line P and the negative line N.
  • the DC main circuit 1 includes a solar cell panel 2, a main circuit capacitor 3, a bypass diode 4, and a boost chopper 5.
  • the negative electrode line N of the DC main circuit 1 is connected to the negative electrode end of the solar cell panel 2.
  • the solar cell panel 2 is a DC power generation facility that generates sunlight by receiving sunlight.
  • the main circuit capacitor 3 is disposed between the positive electrode end and the negative electrode end (the negative electrode line N of the DC main circuit 1) of the solar cell panel 2, and operates to keep the output voltage of the solar cell panel 2 smooth.
  • the output voltage of the solar cell panel 2 varies depending on environmental conditions such as sunlight and humidity. Therefore, the bypass diode 4 and the boost chopper 5 are arranged in parallel between the positive and negative ends of the solar cell panel 2 and the positive and negative lines P and N of the DC main circuit 1.
  • the bypass diode 4 has an anode terminal connected to the positive electrode end of the solar cell panel 2 and a cathode terminal connected to the positive electrode line P of the DC main circuit 1.
  • the step-up chopper 5 includes a reactor 5a, a switching element D2, and a backflow prevention diode 5b.
  • Reactor 5a has one end connected to the positive end of solar cell panel 2, and the other end connected to a connection end between one signal terminal of switching element D2 and the anode terminal of backflow prevention diode 5b.
  • the other signal terminal of the switching element D2 is connected to the negative electrode line N, and the cathode terminal of the backflow prevention diode 5b is connected to the positive electrode line P.
  • the switching element D2 is, for example, an IGBT, and a freewheeling diode is connected in antiparallel.
  • the positive electrode line P and the negative electrode line N of the DC main circuit 1 form the positive electrode bus line and the negative electrode bus line of the three-level inverter switching circuit 6, respectively.
  • four main circuit capacitors 7a, 7b, 7c, 7d are arranged in series. The capacitance values of the four main circuit capacitors 7a to 7d are the same.
  • the bus voltage between the positive and negative buses of the three-level inverter switching circuit 7 is the DC voltage that the DC main circuit 1 outputs between the positive and negative lines P and N, and the four main circuit capacitors 7a to 7d. This is formed by holding the series circuit smooth. At this time, each of the main circuit capacitors 7a to 7d acts so as to divide the DC voltage output by the DC main circuit 1 between the positive electrode line P and the negative electrode line N into four equal parts.
  • the three-level inverter switching circuit 6 shown in FIG. 1 has a three-phase output configuration, and is connected in series between the positive electrode line P and the negative electrode line N of the DC main circuit 1 forming the positive electrode bus and the negative electrode bus.
  • Three sets of switching elements (A1, B1, C1, D1) (A2, B2, C2, D1) (A3, B3, C3, D1) are connected in parallel. Note that each of the switching elements A1, B1, C1, D1, A2, B2, C2, D1, A3, B3, C3, and D1 is, for example, an IGBT, and a freewheeling diode is connected in antiparallel.
  • a connection end 8 of the series circuit of the main circuit capacitors 7a and 7b connected in series on the positive electrode line P side and the series circuit of the main circuit capacitors 7c and 7d connected in series on the negative electrode line N side, and the positive electrode line Clamping diodes 11, 12, and 13 are respectively disposed between the connection ends of three sets (A 1, B 1) (A 2, B 2) (A 3, B 3) of two switching elements connected in series on the P side. ing. Further, a clamping diode is provided between the connection end 8 and each connection end of the three sets (C1, D1) (C2, D1) (C3, D1) of two switching elements connected in series on the negative electrode line N side. 14, 15 and 16 are arranged, respectively.
  • connection ends of the switching elements B1, C1 and switching constitute an output end, and are connected to the three-phase four-wire commercial power system 100 via the reactor AC filter 17.
  • the AC filter 17 includes a reactor 18 disposed between the output end of the three-level inverter switching circuit 6 and the commercial power system 100 and a capacitor 19 disposed between the reactor 18 and the connection end 8. Is done. That is, the reference potential of the AC filter 17 is the potential of the connection end 8 (the intermediate potential of the DC voltage generated by the DC main circuit 1). Moreover, the neutral point of the commercial power system 100 is directly grounded to the ground.
  • a control power supply for supplying DC power to the control system of the three-level inverter type power converter is formed via a flyback transformer 20, an inverter transformer 21, and pulse transformers 22 to 31 that are insulating transformers.
  • the flyback transformer 20 is provided with, for example, three secondary windings with respect to the primary winding.
  • the winding start end of the primary winding of the flyback transformer 20 is connected to the negative line N via the switching element 32, and the winding end of the primary winding is connected to the positive line P.
  • the first secondary winding is connected to the analog circuit power source 34 via the rectifier circuit 33, and the second secondary winding.
  • the switching element 32 is, for example, an IGBT, and a freewheeling diode is connected in antiparallel.
  • the inverter transformer 21 has a primary winding with an intermediate tap, and for example, four secondary windings are provided for the primary winding.
  • An intermediate tap of the primary winding of the inverter transformer 21 is connected to the positive terminal of the rectifier circuit 37.
  • one winding start end of the primary winding is connected via the switching element 38 and the other winding start end of the primary winding is connected via the switching element 39 together with the negative end of the rectifier circuit 37 and the negative polarity.
  • the switching elements 38 and 39 are both IGBTs, for example, and freewheeling diodes are connected in antiparallel.
  • the primary windings of the pulse transformers 22, 26, and 29 are connected in parallel to the first secondary winding, and the second secondary winding.
  • the primary windings of the pulse transformers 23, 27, 30 are connected in parallel to the wire, and the primary windings of the pulse transformers 24, 28, 31 are connected in parallel to the third secondary winding,
  • the primary winding of one pulse transformer 25 is connected to the fourth secondary winding.
  • the pulse transformers 22 to 31 that are insulating transformers each have one secondary winding for each primary winding.
  • the secondary windings of the pulse transformers 22, 26, and 29 are connected to the A1 semiconductor driving circuit 50, the A2 semiconductor driving circuit 54, and the A3 driving the switching elements A1, A2, and A3 via the rectifier circuits 40, 44, and 47, respectively.
  • Semiconductor drive circuits 57 are connected to each other.
  • the secondary windings of the pulse transformers 23, 27, and 30 are connected to B1 semiconductor drive circuits 51, B2 semiconductor drive circuits 55, B3 that drive the switching elements B1, B2, B3 via rectifier circuits 41, 45, 48, respectively.
  • Semiconductor drive circuits 58 are connected to each other.
  • the secondary windings of the pulse transformers 24, 28, and 31 are respectively provided with a C1 semiconductor drive circuit 52, a C2 semiconductor drive circuit 56, and a C3 that drive the switching elements C1, C2, and C3 via rectifier circuits 42, 46, and 49.
  • Semiconductor drive circuits 59 are connected to each other.
  • the secondary winding of the pulse transformer 25 is connected to a D1 / D2 semiconductor drive circuit 53 for driving the switching elements D1 and D2 via a rectifier circuit 43.
  • connection end 60 of the main circuit capacitors 7a and 7b is the first secondary of the inverter transformer 21. It is connected to a connection line between the winding end of the winding and the winding end of the primary winding of the pulse transformer 22.
  • the connection end 8 of the main circuit capacitors 7 b and 7 c is connected to a connection line between the winding end of the second secondary winding of the inverter transformer 21 and the winding end of the primary winding of the pulse transformer 23.
  • connection end 61 of the main circuit capacitors 7 c and 7 d is connected to a connection line between the winding end of the third secondary winding of the inverter transformer 21 and the winding end of the primary winding of the pulse transformer 24.
  • a connection end 62 between the main circuit capacitor 7d and the negative electrode line N is connected to a connection line between the winding end of the fourth secondary winding of the inverter transformer 21 and the winding end of the primary winding of the pulse transformer 25. ing.
  • the reference potentials of the A1 semiconductor drive circuit 50, the A2 semiconductor drive circuit 54, and the A3 semiconductor drive circuit 57 are the potentials of the connection ends 60 of the main circuit capacitors 7a and 7b.
  • the reference potentials of the B1 semiconductor drive circuit 51, the B2 semiconductor drive circuit 55, and the B3 semiconductor drive circuit 58 are the potentials of the connection terminals 8 of the main circuit capacitors 7b and 7c.
  • the reference potential of the C1 semiconductor drive circuit 52, the C2 semiconductor drive circuit 56, and the C3 semiconductor drive circuit 59 is the potential of the connection end 61 of the main circuit capacitors 7c and 7d.
  • the reference potential of the D1, D2 semiconductor drive circuit 53 is the potential of the connection end 62 between the main circuit capacitor 7d and the negative line N.
  • the boost chopper 5 stops the boosting operation because the switching element D2 is turned off, so that the DC voltage generated by the solar cell panel 2 is passed through the bypass diode 4. It is output between the positive line P and the negative line N of the DC main circuit 1 and applied to the series circuit of the main circuit capacitors 7a to 7d. The series circuit of the main circuit capacitors 7a to 7d is charged, and the charging voltage rises toward the DC voltage generated by the solar cell panel 2.
  • the switching element 32 starts an on / off operation, and an AC voltage is generated in each of the three secondary windings of the flyback transformer 21.
  • the AC voltage generated in the first secondary winding is rectified and smoothed by the rectifier circuit 33 and supplied to the analog circuit power supply 34.
  • the AC voltage generated in the second secondary winding is rectified and smoothed by the rectifier circuit 35 and supplied to the digital circuit power source 36.
  • the AC voltage generated in the third secondary winding is rectified and smoothed by the rectifier circuit 37 and supplied to the primary side of the inverter transformer 21.
  • the two switching elements 38 and 39 are alternately turned on and off, so that AC voltage is supplied in parallel to the pulse transformers 22 to 31 from the four secondary windings of the inverter transformer 21. Is done.
  • the AC voltage supplied to the pulse transformer 22 becomes a DC voltage insulated by the rectifier circuit 40 and is supplied to the A1 semiconductor drive circuit 50.
  • the AC voltage supplied to the pulse transformer 23 becomes a DC voltage insulated by the rectifier circuit 41 and is supplied to the B1 semiconductor drive circuit 51.
  • the AC voltage supplied to the pulse transformer 24 becomes a DC voltage insulated by the rectifier circuit 42 and is supplied to the C1 semiconductor drive circuit 52.
  • the AC voltage supplied to the pulse transformer 25 becomes a DC voltage insulated by the rectifier circuit 43, and the insulated DC voltage is supplied to the D 1 and D 2 semiconductor drive circuit 53.
  • the AC voltage supplied to the pulse transformer 26 becomes a DC voltage insulated by the rectifier circuit 44 and is supplied to the A2 semiconductor drive circuit 54.
  • the AC voltage supplied to the pulse transformer 26 becomes a DC voltage insulated by the rectifier circuit 45 and is supplied to the B2 semiconductor drive circuit 55.
  • the AC voltage supplied to the pulse transformer 28 becomes a DC voltage insulated by the rectifier circuit 46 and is supplied to the C2 semiconductor drive circuit 56.
  • the AC voltage supplied to the pulse transformer 29 becomes a DC voltage insulated by the rectifier circuit 47 and is supplied to the A3 semiconductor drive circuit 57.
  • the AC voltage supplied to the pulse transformer 30 becomes a DC voltage insulated by the rectifier circuit 48 and is supplied to the B3 semiconductor drive circuit 58.
  • the AC voltage supplied to the pulse transformer 31 becomes a DC voltage insulated by the rectifier circuit 49 and supplied to the C3 semiconductor drive circuit 59.
  • the DC voltage generated by the solar cell panel 2 is boosted to the set voltage by the boost chopper 5, and the series circuit of the main circuit capacitors 7a to 7b is charged.
  • the boost chopper 5 stops operating and the series circuit of the main circuit capacitors 7a to 7b is charged via the bypass diode 4. .
  • the three-level inverter switching circuit 6 includes a DC voltage (bus voltage) formed by a series circuit of main circuit capacitors 7a to 7b, which is a power supply voltage output from the DC main circuit 1 between the positive line P and the negative line N, and a negative voltage
  • the AC power synchronized with the commercial power system 100 is supplied via the power source 17.
  • each of the main circuit capacitors 7 a to 7 b equally shares the maximum 1000 V.
  • DC250V is applied to each of the main circuit capacitors 7a to 7b. Therefore, the intermediate potential output to the connection end 8 is a voltage 500V which is half of the power supply voltage DC1000V.
  • This also applies to the conventional three-level inverter type power conversion device in which two main circuit capacitors arranged between the positive electrode line P and the negative electrode line N of the DC main circuit 1 are connected in series.
  • the power supply voltage to be converted is a high voltage such as DC 1000 V, for example, in order to avoid the deterioration of the insulation of the pulse transformer, it is necessary to design withstand voltage in the past, which causes a cost increase. It was difficult to reduce the size.
  • the connection line between the winding end of the secondary winding of the inverter transformer 21 and the winding end of the primary winding of each pulse transformer is in a floating state. Therefore, the three-level inverter switching circuit 6 may be erroneously susceptible to noise due to the parasitic capacitance of the inverter transformer and the parasitic capacitance of the pulse transformer.
  • each pulse transformer and the secondary side of the inverter transformer for supplying the reference potential of each semiconductor drive circuit and the DC power insulated to the corresponding semiconductor drive circuit
  • the reference potential between them is supplied from the same connection end among the connection ends 60, 8, 61, 62 of the main circuit capacitors 7a to 7b.
  • the reference potential of each of the A1 semiconductor drive circuit 50, A2 semiconductor drive circuit 54, and A3 semiconductor drive circuit 57 that drives A3 is the potential of the connection end 60 in the series circuit of the main circuit capacitors 7a to 7b.
  • the connection line with the end end is connected to the connection end 60.
  • each of the B1 semiconductor drive circuit 51, B2 semiconductor drive circuit 55, and B3 semiconductor drive circuit 58 that drives B3 is the potential of the connection end 8 in the series circuit of the main circuit capacitors 7a to 7b.
  • the connection line is connected to the connection end 8.
  • the reference potential of each of the C1 semiconductor drive circuit 52, the C2 semiconductor drive circuit 56, and the C3 semiconductor drive circuit 59 that drives C3 is the potential of the connection end 61 in the series circuit of the main circuit capacitors 7a to 7b.
  • the connection line is connected to the connection end 61.
  • the winding end of the fourth winding of the inverter transformer 21 corresponding to the winding winding end of the primary winding of the pulse transformer 25 that supplies the isolated DC power to the D1 and D2 semiconductor drive circuit 53 and the connecting line are , Connected to the connection end 62.
  • the reference potential difference between the primary side and the secondary side of each of the pulse transformers 22 to 31 is 0 V even if the power supply voltage to be converted is a high voltage such as DC 1000 V, for example. Therefore, even in a situation where the power supply voltage to be converted is a high voltage such as DC 1000 V, no corona discharge occurs between the primary side and the secondary side of the pulse transformers 22 to 31, so that insulation deterioration does not occur.
  • the long-term reliability of the pulse transformers 22 to 31 is improved. Since the design considering the withstand voltage of the pulse transformers 22 to 31 can be greatly relaxed, the cost can be reduced and the size can be reduced.
  • connection line between the winding end of the secondary winding of the inverter transformer 21 and the winding end of the primary winding of each pulse transformer is grounded via a capacitor.
  • noise caused by the parasitic capacitance of the inverter transformer and the parasitic capacitance of the pulse transformer can be reduced. Therefore, an effect that the malfunction of the three-level inverter switching circuit 6 can be prevented is also obtained.
  • the power conversion device is capable of reducing the withstand voltage of the insulating transformer for the semiconductor drive circuit and ensuring long-term reliability in a situation where the power supply voltage to be converted is high. It is useful as an inverter type power converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

 変換対象の電源電圧が高電圧になる状況下において、半導体駆動回路用の絶縁トランスの耐電圧を低下させ、長期信頼性を確保できる3レベルインバータ方式の電力変換装置を得ることを目的として、各半導体駆動回路の基準電位と、対応する半導体駆動回路に絶縁された直流電力を供給するための各絶縁トランスの1次側及びインバータトランスの2次側間の基準電位とは、共に、4つの主回路コンデンサの各接続端の中の同じ接続端から供給される。したがって、複数の絶縁トランスの各1次側-2次側間の基準電位の電位差は変換対象の電源電圧が、例えばDC1000Vのように高電圧になっても0Vである。よって、変換対象の電源電圧が、例えばDC1000Vのように高電圧になる状況下においても、絶縁トランスの1次側-2次側間にコロナ放電は起こらないので、絶縁劣化は起こらず、絶縁トランスの長期信頼性が向上する。

Description

電力変換装置
 本発明は、3レベルインバータ方式により直流電力を交流電力へ変換する電力変換装置に関し、特に高電圧での電力変換を行う電力変換装置に関するものである。
 理解を容易にするため、3レベルインバータ方式の電力変換装置の構成を簡単に説明する。
 変換対象である直流電源の正極端及び負極端の間に、等しい容量値の2つのコンデンサの直列回路が配置されるとともに、その変換対象である直流電源の正極端及び負極端に、3レベルインバータのスイッチング回路の正極母線及び負極母線が接続されている。この正極母線及び負極母線の間に、4つのスイッチング素子が直列に配置される。三相出力の例で言えば、その4つのスイッチング素子の直列回路が3つ並列に配置されている。
 つまり、3レベルインバータのスイッチング回路における正極母線及び負極母線の間の母線電圧は、等しい容量値の2つのコンデンサの直列回路が、変換対象である直流電源の出力電圧により充電されることにより形成される。直列接続される2つのコンデンサは、直流電源の出力電圧を均等に分担するので、その直列接続される2つのコンデンサの接続端には、直流電源の中間電位が出力される。
 直列接続される2つのコンデンサの接続端と正極母線側において直列接続される2つのスイッチング素子の接続端との間が上アームクランプ用のダイオードで接続され、直列接続される2つのコンデンサの接続端と負極母線側において直列接続される2つのスイッチング素子の接続端との間が下アームクランプ用のダイオードで接続されている。この直列に接続した4つのスイッチング素子のうち、当該正極母線側における2つのスイッチング素子による直列回路と当該負極母線側における2つのスイッチング素子による直列回路との接続端がインバータ出力端を構成している。
 3レベルインバータ方式の電力変換装置は、このような構成により、電源電圧と0Vの他に電源電圧の半分の電圧の3つの電圧レベルをスイッチングするので、変換出力交流電圧の波形を、電源電圧と0Vとをスイッチング制御する2レベルインバータ方式の電力変換装置よりも正弦波形に近づけることができる。
 この3レベルインバータ方式の電力変換装置は、太陽電池や燃料電池を用いる直流発電設備が発生する高電圧を電力変換する電力変換装置としても用いられている。なお、高電圧を発生する直流発電設備には、その他、風力発電機や地熱発電機などの交流発電機にコンバータを適用して直流電力を出力できるようにした直流発電設備がある。この直流発電設備は、商用電力系統と連系する発電システムで用いられるものと、自家発電システムで用いるものとがある。
 ここで、この明細書では、系統連系も行える太陽光発電システムにおいてパワーコンディショナとして使用される3レベルインバータ方式の電力変換装置を念頭に説明する。この系統連系も行える太陽光発電システムには、システムエネルギー効率向上のため、太陽電池パネルの直列数増による高電圧化が進められ、最大DC1000Vに達するシステムもある。
 そのような高電圧での電力変換を行う3レベルインバータ方式の電力変換装置では、スイッチング回路を構成する複数のスイッチング素子をそれぞれオン・オフさせる複数の半導体駆動回路は、それぞれ個々に絶縁された駆動用電源から駆動電力を供給する必要があるので、半導体駆動回路毎に絶縁トランスが用いられる。しかし、太陽電池パネルが発生する直流電圧が高電圧になると、絶縁トランスの1次巻線と2次巻線との間でコロナ放電が発生し、絶縁トランスを劣化させる。そのため、絶縁トランスは、信頼性を確保するためにコロナ放電を考慮した耐電圧の設計が必要であり、コストの低減や小型化が困難である。
 絶縁の低減を図る先行例として、例えば特許文献1では、直列接続した2つのコンデンサの接続端の電位が太陽電池パネルの出力直流電圧の中間電位を与えるので、その直列接続した2つのコンデンサの接続端と収納ケースとを接続するとともに、制御回路や制御電源の基準電位を該直流中間電位に固定することで、電力変換装置と収納ケースとの間、及び各機器相互間の耐電圧値を低下させる方法が提案されている。
特開2003-324972号公報(図1)
 しかし、上記特許文献1に記載の技術では、半導体駆動回路の基準電位を、直列接続した2つのコンデンサの接続端の電位(直流中間電位)に固定しているので、半導体駆動回路毎に設ける絶縁トランスの1次巻線と2次巻線との間の耐電圧は、その直流中間電位以下にはならない。太陽電池パネルの発生直流電圧が最大DC1000Vにもなるシステムでの適用を考慮すると、直列接続した2つのコンデンサの接続端の電位は、DC500Vになる。パッシェンの法則によれば、絶縁トランスの1次巻線と2次巻線との間の電位がDC330V以上であると、コロナ放電は発生するので、このDC500Vの電位はコロナ放電が発生する電位である。よって、上記特許文献1に記載の技術では、課題を解決できず、絶縁トランスは、従前の通りにコロナ放電を考慮した耐電圧の設計が必要である。
 本発明は、上記に鑑みてなされたものであり、変換対象の電源電圧が高電圧になる状況下において、半導体駆動回路用の絶縁トランスの耐電圧を低下させ、長期信頼性を確保できる電力変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、変換対象の直流電圧を出力する直流主回路の正極側及び負極側の間に、当該直流電圧を4等分に分担するように直列に接続される4つの主回路コンデンサと、前記4つの主回路コンデンサの直列回路の正極端側及び負極端側に接続される正極母線及び負極母線の間に直列に接続した4つのスイッチング素子であって、当該正極母線側及び当該負極母線側における2つのスイッチング素子による直列回路同士の接続端にインバータ出力端が形成される4つのスイッチング素子と、前記4つのスイッチング素子と前記4つの主回路コンデンサとの間において、前記正極母線側及び負極母線側における2つの主回路コンデンサの直列回路同士の接続端と前記正極母線側において直列に接続された2つのスイッチング素子同士の接続端との間に配置される上アームクランプ用ダイオード、及び前記正極母線側及び負極母線側における2つの主回路コンデンサの直列回路同士の接続端と前記負極母線側において直列に接続された2つのスイッチング素子同士の接続端との間に配置される下アームクランプ用ダイオードとによる構成を単位構成とし、この単位構成を少なくとも1つ備える3レベルインバータスイッチング回路と、前記3レベルインバータスイッチング回路における複数のスイッチング素子を駆動する複数の半導体駆動回路であって、前記単位構成における4つのスイッチング素子のうち、前記負極母線に一方の信号端子が接続されるスイッチング素子についての半導体駆動回路は、前記単位構成が複数になっても共通に1つ設けられ、前記負極母線から前記正極母線に向かって2つ目から4つ目までの各スイッチング素子についての半導体駆動回路は、前記単位構成が複数になっても1対1の関係で個別に設けられる複数の半導体駆動回路と、前記複数の半導体駆動回路のそれぞれと1対1の関係で設けられる複数の絶縁トランスであって、それぞれの2次巻線に、整流回路を介して前記複数の半導体駆動回路の対応する半導体駆動回路が接続される複数の絶縁トランスと、1次巻線に前記4つの主回路コンデンサの直列回路が形成する前記直流主回路の出力電圧をスイッチングしたパルス電圧が印加されるフライバックトランスと、1次巻線と4つの2次巻線とを有し、前記1次巻線に前記フライバックトランスの複数の2次巻線のそれぞれに接続される整流回路のうちの1つの整流回路の出力電圧をスイッチングしたパルス電圧が印加され、前記4つの2次巻線のそれぞれに少なくとも1つの前記絶縁トランスの1次巻線が接続されるインバータトランスとを備える電力変換装置であって、前記複数の半導体駆動回路の基準電位として、前記単位構成における4つのスイッチング素子のうち、前記負極母線に一方の信号端子が接続されるスイッチング素子についての半導体駆動回路の基準電位は、前記負極母線の電位であり、前記負極母線から前記正極母線に向かって2つ目のスイッチング素子についての半導体駆動回路の基準電位は、前記4つの主回路コンデンサのうち前記負極母線側において直列接続された2つの主回路コンデンサ同士の接続端の電位であり、前記負極母線から前記正極母線に向かって3つ目のスイッチング素子についての半導体駆動回路の基準電位は、前記4つの主回路コンデンサのうち前記正極母線側において直列接続された2つの主回路コンデンサの直列回路及び前記負極母線側において直列接続された2つの主回路コンデンサの直列回路同士の接続端の電位であり、前記負極母線から前記正極母線に向かって4つ目のスイッチング素子についての半導体駆動回路の基準電位は、前記4つの主回路コンデンサのうち前記正極母線側において直列接続された2つの主回路コンデンサ同士の接続端の電位であり、前記4つの主回路コンデンサの直列回路の負極端側と前記負極母線との接続端が、前記単位構成における4つのスイッチング素子のうち前記負極母線に一方の信号端子が接続されるスイッチング素子についての半導体駆動回路に対応する前記絶縁トランスの1次巻線の片端に接続され、前記4つの主回路コンデンサのうち前記負極母線側において直列接続された2つの主回路コンデンサ同士の接続端が、前記単位構成における4つのスイッチング素子のうち前記負極母線から前記正極母線に向かって2つ目のスイッチング素子についての半導体駆動回路に対応する前記絶縁トランスの1次巻線の片端に接続され、前記4つの主回路コンデンサのうち前記正極母線側及び前記負極母線側において直列接続された2つの主回路コンデンサの直列回路同士の接続端が、前記単位構成における4つのスイッチング素子のうち前記負極母線から前記正極母線に向かって3つ目のスイッチング素子についての半導体駆動回路に対応する前記絶縁トランスの1次巻線の片端に接続され、前記4つの主回路コンデンサのうち前記正極母線側において直列接続された2つの主回路コンデンサ同士の接続端が、前記単位構成における4つのスイッチング素子のうち前記負極母線から前記正極母線に向かって4つ目のスイッチング素子についての半導体駆動回路に対応する前記絶縁トランスの1次巻線の片端に接続されていることを特徴とする。
 本発明によれば、各半導体駆動回路の基準電位と、対応する半導体駆動回路に絶縁された直流電力を供給するための各絶縁トランスの1次側及びインバータトランスの2次側間の基準電位とは、共に、4つの主回路コンデンサの各接続端の中の同じ接続端から供給される。したがって、複数の絶縁トランスの各1次側-2次側間の基準電位の電位差は、変換対象の電源電圧が、例えばDC1000Vのように高電圧になっても、0Vである。よって、変換対象の電源電圧が、例えばDC1000Vのように高電圧になる状況下においても、絶縁トランスの1次側-2次側間にコロナ放電は起こらないので、絶縁劣化は起こらず、絶縁トランスの長期信頼性が向上する。そして、絶縁トランスの耐電圧を考慮した設計を大幅に緩和できるので、原価の低減と小型化が図れるという効果を奏する。
図1は、本発明の一実施例による電力変換装置の構成を示すブロック図である。
 以下に図面を参照して本発明にかかる電力変換装置の実施例を詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
 図1は、本発明の一実施例による電力変換装置の構成を示すブロック図である。なお、図1では、三相4線式の商用電力系統100に連系する太陽光発電システムにおいて用いられる3レベルインバータ方式の電力変換装置(パワーコンディショナ)に本発明を適用した場合の構成例が示されている。
 図1において、直流主回路1は、正極ラインP及び負極ラインNの間に、変換対象である直流電圧(例えば、DC1000V)を生成する。直流主回路1は、太陽電池パネル2と、主回路コンデンサ3と、バイパスダイオード4と、昇圧チョッパ5とで構成される。直流主回路1の負極ラインNは、太陽電池パネル2の負極端に接続されている。
 太陽電池パネル2は、太陽光を受けて直流電圧を発生する直流発電設備である。主回路コンデンサ3は、太陽電池パネル2の正極端及び負極端(直流主回路1の負極ラインN)の間に配置され、太陽電池パネル2の出力電圧を平滑保持する作用を営む。太陽電池パネル2の出力電圧は、日照や湿度などの環境条件によって変動する。そのため、太陽電池パネル2の正極端及び負極端と直流主回路1の正極ラインP及び負極ラインNとの間に、バイパスダイオード4と昇圧チョッパ5とが並列に配置されている。
 バイパスダイオード4は、アノード端子が太陽電池パネル2の正極端に接続され、カソード端子が直流主回路1の正極ラインPに接続されている。昇圧チョッパ5は、リアクトル5aと、スイッチング素子D2と、逆流阻止ダイオード5bとで構成される。リアクトル5aは、一端が太陽電池パネル2の正極端に接続され、他端がスイッチング素子D2の一方の信号端子と逆流阻止ダイオード5bのアノード端子との接続端に接続されている。スイッチング素子D2の他方の信号端子は負極ラインNに接続され、逆流阻止ダイオード5bのカソード端子は正極ラインPに接続されている。なお、スイッチング素子D2は、例えばIGBTであり環流ダイオードが逆並列に接続されている。
 次に、直流主回路1の正極ラインP及び負極ラインNは、それぞれ3レベルインバータスイッチング回路6の正極母線及び負極母線を形成し、その正極ラインP及び負極ラインNの間に、従前の2個直列接続の主回路コンデンサに代えて、4個の主回路コンデンサ7a,7b,7c,7dが直列に配置されている。4個の主回路コンデンサ7a~7dの容量値は、それぞれ同じ値である。
 つまり、3レベルインバータスイッチング回路7の正極母線及び負極母線の間の母線電圧は、直流主回路1が正極ラインP及び負極ラインNの間に出力する直流電圧を4個の主回路コンデンサ7a~7dの直列回路が平滑保持することにより形成される。このとき、主回路コンデンサ7a~7dのそれぞれは、直流主回路1が正極ラインP及び負極ラインN間に出力する直流電圧を4等分割するように作用する。
 図1に示す3レベルインバータスイッチング回路6は、三相出力の構成であり、正極母線及び負極母線を形成する直流主回路1の正極ラインP及び負極ラインNの間に、直列に接続した4つのスイッチング素子の3組(A1,B1,C1,D1)(A2,B2,C2,D1)(A3,B3,C3,D1)が並列に接続されている。なお、スイッチング素子A1,B1,C1,D1,A2,B2,C2,D1,A3,B3,C3,D1は、いずれも、例えばIGBTであり、環流ダイオードが逆並列に接続されている。
 そして、正極ラインP側において直列に接続された主回路コンデンサ7a,7bの直列回路と負極ラインN側において直列に接続された主回路コンデンサ7c,7dの直列回路との接続端8と、正極ラインP側において直列に接続された2つのスイッチング素子の3組(A1,B1)(A2,B2)(A3,B3)それぞれの接続端との間にクランプ用ダイオード11,12,13がそれぞれ配置されている。また、接続端8と、負極ラインN側において直列に接続された2つのスイッチング素子の3組(C1,D1)(C2,D1)(C3,D1)それぞれの接続端との間にクランプ用ダイオード14,15,16がそれぞれ配置されている。
 直列に接続した4つのスイッチング素子の3組(A1,B1,C1,D1)(A2,B2,C2,D1)(A3,B3,C3,D1)では、スイッチング素子B1,C1の接続端、スイッチング素子B2,C2の接続端及びスイッチング素子B3,C3の接続端は、それぞれ出力端を構成し、リアクトルACフィルタ17を介して三相4線式の商用電力系統100に接続されている。なお、ACフィルタ17は、3レベルインバータスイッチング回路6の出力端と商用電力系統100との間に配置されるリアクトル18と、リアクトル18と接続端8との間に配置されるコンデンサ19とで構成される。つまり、ACフィルタ17の基準電位は、接続端8の電位(直流主回路1が生成する直流電圧の中間電位)である。また、商用電力系統100は、中性点が直接大地に接地されている。
 そして、当該3レベルインバータ方式電力変換装置の制御系に直流電力を供給する制御電源は、フライバックトランス20、インバータトランス21及び絶縁トランスであるパルストランス22~31を介して形成される。
 まず、フライバックトランス20は、1次巻線に対し2次巻線が例えば3つ設けられている。フライバックトランス20の1次巻線の巻き始め端は、スイッチング素子32を介して負極ラインNに接続され、1次巻線の巻き終わり端は、正極ラインPに接続されている。フライバックトランス20の3つの2次巻線のうち、1つ目の二次側巻線には、整流回路33を介してアナログ回路用電源34が接続され、2つ目の二次側巻線には、整流回路35を介してディジタル回路用電源36が接続され、3つ目の二次側巻線には、整流回路37を介してインバータトランス21の一次側が接続されている。なお、スイッチング素子32は、例えばIGBTであり、環流ダイオードが逆並列に接続されている。
 次に、インバータトランス21は、1次巻線が中間タップ付きであり、この1次巻線に対し2次巻線が例えば4つ設けられている。インバータトランス21の1次巻線の中間タップが整流回路37の正極端に接続されている。そして、1次巻線の一方の巻き始め端がスイッチング素子38を介して、また1次巻線の他方の巻き始め端がスイッチング素子39を介して、それぞれ整流回路37の負極端と一緒に負極ラインNに接続されている。なお、スイッチング素子38,39は、いずれも、例えばIGBTであり、環流ダイオードが逆並列に接続されている。
 このインバータトランス21の4つの2次巻線では、1つ目の二次側巻線に、パルストランス22,26,29の1次巻線が並列に接続され、2つ目の二次側巻線に、パルストランス23,27,30の1次巻線が並列に接続され、3つ目の二次側巻線に、パルストランス24,28,31の1次巻線が並列に接続され、4つ目の二次側巻線に、1つのパルストランス25の1次巻線が接続されている。
 そして、絶縁トランスであるパルストランス22~31は、それぞれ1つの1次巻線に対し1つの2次巻線を有している。パルストランス22,26,29の各2次巻線には、整流回路40,44,47を介して、スイッチング素子A1,A2,A3を駆動するA1半導体駆動回路50,A2半導体駆動回路54,A3半導体駆動回路57がそれぞれ接続されている。パルストランス23,27,30の各2次巻線には、整流回路41,45,48を介して、スイッチング素子B1,B2,B3を駆動するB1半導体駆動回路51,B2半導体駆動回路55,B3半導体駆動回路58がそれぞれ接続されている。パルストランス24,28,31の各2次巻線には、整流回路42,46,49を介して、スイッチング素子C1,C2,C3を駆動するC1半導体駆動回路52,C2半導体駆動回路56,C3半導体駆動回路59がそれぞれ接続されている。パルストランス25の2次巻線には、整流回路43を介して、スイッチング素子D1,D2を駆動するD1・D2半導体駆動回路53が接続されている。
 以上の構成において、正極ラインP及び負極ラインNの間に直列接続した4つの主回路コンデンサ7a~7dのうち、主回路コンデンサ7a,7bの接続端60はインバータトランス21の1つ目の2次巻線の巻き終わり端とパルストランス22の1次巻線の巻き終わり端との接続ラインに接続されている。主回路コンデンサ7b,7cの接続端8はインバータトランス21の2つ目の2次巻線の巻き終わり端とパルストランス23の1次巻線の巻き終わり端との接続ラインに接続されている。主回路コンデンサ7c,7dの接続端61はインバータトランス21の3つ目の2次巻線の巻き終わり端とパルストランス24の1次巻線の巻き終わり端との接続ラインに接続されている。主回路コンデンサ7dと負極ラインNとの接続端62はインバータトランス21の4つ目の2次巻線の巻き終わり端とパルストランス25の1次巻線の巻き終わり端との接続ラインに接続されている。
 そして、接続関係は図示してないが、A1半導体駆動回路50,A2半導体駆動回路54及びA3半導体駆動回路57の各基準電位は、主回路コンデンサ7a,7bの接続端60の電位である。B1半導体駆動回路51,B2半導体駆動回路55及びB3半導体駆動回路58の各基準電位は、主回路コンデンサ7b,7cの接続端8の電位である。C1半導体駆動回路52,C2半導体駆動回路56及びC3半導体駆動回路59の基準電位は、主回路コンデンサ7c,7dの接続端61の電位である。D1,D2半導体駆動回路53の基準電位は、主回路コンデンサ7dと負極ラインNとの接続端62の電位である。
 次に、動作について説明する。太陽光発電システムの立ち上げ時などでは、昇圧チョッパ5は、スイッチング素子D2がオフしていて昇圧動作を停止しているので、太陽電池パネル2が発生した直流電圧が、バイパスダイオード4を介して直流主回路1の正極ラインP及び負極ラインNの間に出力され、主回路コンデンサ7a~7dの直列回路に印加される。主回路コンデンサ7a~7dの直列回路が充電され、その充電電圧が、太陽電池パネル2が発生した直流電圧に向かって上昇する。
 主回路コンデンサ7a~7dの直列回路の電圧が、所定電圧まで上昇すると、スイッチング素子32がオン・オフ動作を開始し、フライバックトランス21の3つの二次巻線のそれぞれに交流電圧が発生する。1つ目の2次巻線に発生した交流電圧は、整流回路33にて整流・平滑され、アナログ回路用電源34に供給される。2つ目の2次巻線に発生した交流電圧は、整流回路35にて整流・平滑され、ディジタル回路用電源36に供給される。3つ目の2次側巻線に発生した交流電圧は、整流回路37にて整流・平滑され、インバータトランス21の1次側に供給される。
 インバータトランス21の1次側では、2つのスイッチング素子38,39が交互にオン・オフ動作することで、インバータトランス21の4つの2次巻線から交流電圧がパルストランス22~31へ並列に供給される。
 パルストランス22に供給された交流電圧は、整流回路40にて絶縁された直流電圧となり、A1半導体駆動回路50に供給される。パルストランス23に供給された交流電圧は、整流回路41にて絶縁された直流電圧となり、B1半導体駆動回路51に供給される。パルストランス24に供給された交流電圧は、整流回路42にて絶縁された直流電圧となり、C1半導体駆動回路52に供給される。パルストランス25に供給された交流電圧は、整流回路43にて絶縁された直流電圧となり、D1・D2半導体駆動回路53に絶縁された直流電圧を供給される。パルストランス26に供給された交流電圧は、整流回路44にて絶縁された直流電圧となり、A2半導体駆動回路54に供給される。
 パルストランス26に供給された交流電圧は、整流回路45にて絶縁された直流電圧となり、B2半導体駆動回路55に供給される。パルストランス28に供給された交流電圧は、整流回路46にて絶縁された直流電圧となり、C2半導体駆動回路56に供給される。パルストランス29に供給された交流電圧は、整流回路47にて絶縁された直流電圧となり、A3半導体駆動回路57に供給される。パルストランス30に供給された交流電圧は、整流回路48にて絶縁された直流電圧となり、B3半導体駆動回路58に供給される。パルストランス31に供給された交流電圧は、整流回路49にて絶縁された直流電圧となり、C3の半導体駆動回路59に供給される。
 半導体駆動回路50~59に電力が供給されると、太陽電池パネル2が発生する直流電圧は、昇圧チョッパ5によって設定電圧まで昇圧され、主回路コンデンサ7a~7bの直列回路が充電される。そして、太陽電池パネル2が発生する直流電圧が上昇し、設定電位よりも高くなると、昇圧チョッパ5が動作を停止し、バイパスダイオード4を介して主回路コンデンサ7a~7bの直列回路が充電される。
 3レベルインバータスイッチング回路6は、直流主回路1が正極ラインP及び負極ラインNの間に出力する電源電圧である主回路コンデンサ7a~7bの直列回路が形成する直流電圧(母線電圧)と、負極ラインNの電位(=0V)と、主回路コンデンサ7a~7bの直列回路における接続点8に出力される中間電位(電源電圧の半分の電圧)とをスイッチングして交流電圧を発生し、ACフィルタ17を経て商用電力系統100へ同期した交流電力を供給する。
 ここで、太陽電池パネル2が発生する直流電圧が、例えば最大DC1000Vである場合、主回路コンデンサ7a~7bの直列回路では、主回路コンデンサ7a~7bのそれぞれが最大1000Vを等分に分担するので、主回路コンデンサ7a~7bのそれぞれにDC250Vが印加される。したがって、接続端8に出力される中間電位は、電源電圧DC1000Vの半分の電圧500Vである。この点は、直流主回路1の正極ラインP及び負極ラインNの間に配置される主回路コンデンサが、2個直列接続したものである従来の3レベルインバータ方式電力変換装置においても同様である。
 そのような従来の3レベルインバータ方式電力変換装置では、特許文献1に示されるように、制御回路や制御電源、半導体駆動用回路の基準電位を直流主回路の出力電圧の中間電位に接続していたので、半導体駆動回路に絶縁された直流電力の供給に必要なパルストランスの1次側-2次側間電圧の電位差は、中間電位であるDC500V以下にはならない。パッシェンの法則によれば、パルストランスの1次側-2次側間にコロナ放電が起こる電位は、DC330V以上である。したがって、変換対象の電源電圧が、例えばDC1000Vのような高電圧になると、従来ではパルストランスの絶縁劣化を回避するため、耐電圧を考慮した設計を行う必要があり、コストアップの要因となり、また、小型化が困難であった。
 また、従来の3レベルインバータ方式電力変換装置では、インバータトランス21の2次巻線の巻き終わり端と各パルストランスの1次巻線の巻き終わり端との接続ラインは、フローティングの状態であったので、インバータトランスの寄生容量やパルストランスの寄生容量に起因するノイズの影響を受け易く、3レベルインバータスイッチング回路6が誤動作する虞があった。
 本実施例によれば、この2つの課題が同時に解決される。
 まず、第1の課題に対しては、各半導体駆動回路の基準電位と、対応する半導体駆動回路に絶縁された直流電力を供給するための各パルストランスの1次側及びインバータトランスの2次側間の基準電位とは、共に、主回路コンデンサ7a~7bの接続端60,8,61,62の中の同じ接続端から供給される。
 具体的には、スイッチング素子A1,A2.A3を駆動するA1半導体駆動回路50、A2半導体駆動回路54及びA3半導体駆動回路57の各半導体駆動回路の基準電位は、主回路コンデンサ7a~7bの直列回路における接続端60の電位である。また、それらの各半導体駆動回路に絶縁された直流電力を供給するパルストランス22,26,29の各1次巻線の巻き終わり端と対応するインバータトランス21の1番目の2次巻線の巻き終わり端との接続ラインは、接続端60に接続されている。
 次のスイッチング素子B1,B2.B3を駆動するB1半導体駆動回路51、B2半導体駆動回路55及びB3半導体駆動回路58の各半導体駆動回路の基準電位は、主回路コンデンサ7a~7bの直列回路における接続端8の電位である。それらの各半導体駆動回路に絶縁された直流電力を供給するパルストランス23,27,30の各1次巻線の巻き終わり端と対応するインバータトランス21の2番目の2次巻線の巻き終わり端と接続ラインは、接続端8に接続されている。
 次のスイッチング素子C1,C2.C3を駆動するC1半導体駆動回路52、C2半導体駆動回路56及びC3半導体駆動回路59の各半導体駆動回路の基準電位は、主回路コンデンサ7a~7bの直列回路における接続端61の電位である。それらの各半導体駆動回路に絶縁された直流電力を供給するパルストランス24,28,31の各1次巻線の巻き終わり端と対応するインバータトランス21の3番目の2次巻線の巻き終わり端と接続ラインは、接続端61に接続されている。
 次のスイッチング素子D1,D2を駆動するD1・D2半導体駆動回路53の基準電位は、主回路コンデンサ7a~7bの直列回路における接続端62の電位(負極ラインNの電位=0V)である。D1・D2半導体駆動回路53に絶縁された直流電力を供給するパルストランス25の1次巻線の巻き終わり端と対応するインバータトランス21の4番目の2次巻線の巻き終わり端と接続ラインは、接続端62に接続されている。
 したがって、パルストランス22~31の各1次側-2次側間の基準電位の電位差は、変換対象の電源電圧が、例えばDC1000Vのように高電圧になっても、0Vである。よって、変換対象の電源電圧が、例えばDC1000Vのように高電圧になる状況下においても、パルストランス22~31の1次側-2次側間にコロナ放電は起こらないので、絶縁劣化は起こらず、パルストランス22~31の長期信頼性が向上する。そして、パルストランス22~31の耐電圧を考慮した設計を大幅に緩和できるので、原価の低減と小型化が図れる。
 また、第2の課題に対しては、インバータトランス21の2次巻線の巻き終わり端と各パルストランスの1次巻線の巻き終わり端との接続ラインは、コンデンサを介して接地される構成とすることで、インバータトランスの寄生容量やパルストランスの寄生容量に起因するノイズを低減させ得る。したがって、3レベルインバータスイッチング回路6の誤動作を防止できるという効果も得られる。
 以上のように、本発明にかかる電力変換装置は、変換対象の電源電圧が高電圧になる状況下において、半導体駆動回路用の絶縁トランスの耐電圧を低下させ、長期信頼性を確保できる3レベルインバータ方式の電力変換装置として有用である。
 1 直流主回路
 2 太陽電池パネル(直流発電設備)
 3 主回路コンデンサ
 4 バイパスダイオード
 5 昇圧チョッパ
 5a リアクトル
 5b 逆流阻止ダイオード
 6 3レベルインバータスイッチング回路
 7a,7b,7c,7d 主回路コンデンサ
 8,60,61,62 接続端
 11~16 クランプ用ダイオード
 17 ACフィルタ
 18 リアクトル
 19 コンデンサ
 20 フライバックトランス
 21 インバータトランス
 22~31 パルストランス(絶縁トランス)
 32,38,39 スイッチング素子
 33,35,37,40~49 整流回路
 34 アナログ回路用電源
 36 ディジタル回路用電源
 50 A1半導体駆動回路
 51 B1半導体駆動回路
 52 C1半導体駆動回路
 53 D1,D2半導体駆動回路
 54 A2半導体駆動回路
 55 B2半導体駆動回路
 56 C2半導体駆動回路
 57 A3半導体駆動回路
 58 B3半導体駆動回路
 59 C3半導体駆動回路
 A1~A3,B1~B3,C1~C3,D1,D2 スイッチング素子

Claims (2)

  1.  直流主回路の正極端側及び負極端側の間に、当該直流主回路が出力する変換対象の直流電圧を4等分に分担するように直列に接続される4つの主回路コンデンサと、
     前記4つの主回路コンデンサの直列回路の正極端側及び負極端側に接続される正極母線及び負極母線の間に直列に接続した4つのスイッチング素子と、前記4つのスイッチング素子と前記4つの主回路コンデンサとの間において、前記正極母線側及び負極母線側における2つの主回路コンデンサの直列回路同士の接続端と前記正極母線側において直列に接続された2つのスイッチング素子同士の接続端との間に配置される上アームクランプ用ダイオード、及び、前記正極母線側及び負極母線側における2つの主回路コンデンサの直列回路同士の接続端と前記負極母線側において直列に接続された2つのスイッチング素子同士の接続端との間に配置される下アームクランプ用ダイオードとで構成され、当該正極母線側及び当該負極母線側における2つのスイッチング素子による直列回路同士の接続端がインバータ出力端となる構成を単位構成とし、この単位構成を少なくとも1つ備える3レベルインバータスイッチング回路と、
     前記3レベルインバータスイッチング回路における複数のスイッチング素子を駆動する複数の半導体駆動回路であって、前記単位構成における4つのスイッチング素子のうち、前記負極母線に一方の信号端子が接続されるスイッチング素子についての半導体駆動回路は、前記単位構成が複数になっても共通に1つ設けられ、前記負極母線から前記正極母線に向かって2つ目から4つ目までの各スイッチング素子についての半導体駆動回路は、前記単位構成が複数になっても1対1の関係で個別に設けられる複数の半導体駆動回路と、
     前記複数の半導体駆動回路のそれぞれと1対1の関係で設けられる複数のパルストランスであって、それぞれの2次巻線に、整流回路を介して前記複数の半導体駆動回路の対応する半導体駆動回路が接続される複数の絶縁トランスと、
     1次巻線に前記2つのコンデンサの直列回路が形成する前記直流主回路の出力電圧をスイッチングしたパルス電圧が印加されるフライバックトランスと、
     1次巻線と4つの2次巻線とを有し、前記1次巻線に前記フライバックトランスの複数の2次巻線のそれぞれに接続される整流回路のうちの1つの整流回路の出力電圧をスイッチングしたパルス電圧が印加され、前記4つの2次巻線のそれぞれに少なくとも1つの前記絶縁トランスの1次巻線が接続されるインバータトランスと、
     を備え、
     前記複数の半導体駆動回路の基準電位として、前記単位構成における4つのスイッチング素子のうち、前記負極母線に一方の信号端子が接続されるスイッチング素子についての半導体駆動回路の基準電位は、前記負極母線の電位であり、前記負極母線から前記正極母線に向かって2つ目のスイッチング素子についての半導体駆動回路の基準電位は、前記4つの主回路コンデンサのうち前記負極母線側において直列接続された2つの主回路コンデンサ同士の接続端の電位であり、前記負極母線から前記正極母線に向かって3つ目のスイッチング素子についての半導体駆動回路の基準電位は、前記4つの主回路コンデンサのうち前記正極母線側において直列接続された2つの主回路コンデンサの直列回路及び前記負極母線側において直列接続された2つの主回路コンデンサの直列回路同士の接続端の電位であり、前記負極母線から前記正極母線に向かって4つ目のスイッチング素子についての半導体駆動回路の基準電位は、前記4つの主回路コンデンサのうち前記正極母線側において直列接続された2つの主回路コンデンサ同士の接続端の電位であり、
     前記4つの主回路コンデンサの直列回路の負極端側と前記負極母線との接続端が、前記単位構成における4つのスイッチング素子のうち前記負極母線に一方の信号端子が接続されるスイッチング素子についての半導体駆動回路に対応する前記絶縁トランスの1次巻線の片端に接続され、
     前記4つの主回路コンデンサのうち前記負極母線側において直列接続された2つの主回路コンデンサ同士の接続端が、前記単位構成における4つのスイッチング素子のうち前記負極母線から前記正極母線に向かって2つ目のスイッチング素子についての半導体駆動回路に対応する前記絶縁トランスの1次巻線の片端に接続され、
     前記4つの主回路コンデンサのうち前記正極母線側及び前記負極母線側において直列接続された2つの主回路コンデンサの直列回路同士の接続端が、前記単位構成における4つのスイッチング素子のうち前記負極母線から前記正極母線に向かって3つ目のスイッチング素子についての半導体駆動回路に対応する前記絶縁トランスの1次巻線の片端に接続され、
     前記4つの主回路コンデンサのうち前記正極母線側において直列接続された2つの主回路コンデンサ同士の接続端が、前記単位構成における4つのスイッチング素子のうち前記負極母線から前記正極母線に向かって4つ目のスイッチング素子についての半導体駆動回路に対応する前記絶縁トランスの1次巻線の片端に接続されている
     ことを特徴とする電力変換装置。
  2.  前記インバータトランスの2次巻線の巻き終わり端と、前記各パルストランスの1次巻線の巻き終わり端との接続ラインは、コンデンサを介して接地されていることを特徴とする請求項1に記載の電力変換装置。
PCT/JP2011/077970 2011-12-02 2011-12-02 電力変換装置 WO2013080383A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11876647.6A EP2787625B1 (en) 2011-12-02 2011-12-02 Power conversion device
PCT/JP2011/077970 WO2013080383A1 (ja) 2011-12-02 2011-12-02 電力変換装置
JP2013546942A JP5642294B2 (ja) 2011-12-02 2011-12-02 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/077970 WO2013080383A1 (ja) 2011-12-02 2011-12-02 電力変換装置

Publications (1)

Publication Number Publication Date
WO2013080383A1 true WO2013080383A1 (ja) 2013-06-06

Family

ID=48534896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077970 WO2013080383A1 (ja) 2011-12-02 2011-12-02 電力変換装置

Country Status (3)

Country Link
EP (1) EP2787625B1 (ja)
JP (1) JP5642294B2 (ja)
WO (1) WO2013080383A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104426406A (zh) * 2013-08-29 2015-03-18 Ls产电株式会社 具有双结构的电力单元的逆变器
EP3021472A4 (en) * 2013-07-12 2017-06-28 Kabushiki Kaisha Toshiba Switching element driving power supply circuit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3036013B1 (fr) * 2015-05-07 2019-01-25 Ge Energy Power Conversion Technology Limited Circuit d'attaque de grille pour reduire le couplage parasite
JP2017070047A (ja) * 2015-09-29 2017-04-06 株式会社日立製作所 電源装置
US20230231504A1 (en) * 2022-01-20 2023-07-20 Hamilton Sundstrand Corporation Gate drive grounding scheme in motor drive systems for wide input dc link voltage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147848B1 (ja) * 1970-03-20 1976-12-17
JPH0767353A (ja) * 1993-08-23 1995-03-10 Fuji Electric Co Ltd 3レベルインバータのスナバエネルギー回生回路
JP2003324972A (ja) 2002-04-25 2003-11-14 Fuji Electric Co Ltd 電力変換装置の絶縁構造
JP2011142783A (ja) * 2010-01-08 2011-07-21 Toshiba Corp 電力変換装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4082672B2 (ja) * 2003-03-06 2008-04-30 株式会社デンソー 電気絶縁型スイッチング素子駆動回路
JP4661139B2 (ja) * 2004-09-07 2011-03-30 富士電機ホールディングス株式会社 ゲート駆動装置への電力供給方式
JP5532192B2 (ja) * 2008-01-24 2014-06-25 独立行政法人産業技術総合研究所 電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147848B1 (ja) * 1970-03-20 1976-12-17
JPH0767353A (ja) * 1993-08-23 1995-03-10 Fuji Electric Co Ltd 3レベルインバータのスナバエネルギー回生回路
JP2003324972A (ja) 2002-04-25 2003-11-14 Fuji Electric Co Ltd 電力変換装置の絶縁構造
JP2011142783A (ja) * 2010-01-08 2011-07-21 Toshiba Corp 電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2787625A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3021472A4 (en) * 2013-07-12 2017-06-28 Kabushiki Kaisha Toshiba Switching element driving power supply circuit
CN104426406A (zh) * 2013-08-29 2015-03-18 Ls产电株式会社 具有双结构的电力单元的逆变器
EP2843822A3 (en) * 2013-08-29 2015-12-02 LSIS Co., Ltd. Inverter with power cell of dual structure
US9331601B2 (en) 2013-08-29 2016-05-03 Lsis Co., Ltd. Inverter with power cell of dual structure
CN104426406B (zh) * 2013-08-29 2018-01-16 Ls产电株式会社 具有双结构的电力单元的逆变器

Also Published As

Publication number Publication date
EP2787625A4 (en) 2016-06-15
JPWO2013080383A1 (ja) 2015-04-27
EP2787625A1 (en) 2014-10-08
JP5642294B2 (ja) 2014-12-17
EP2787625B1 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
US10454275B2 (en) Method for use of static inverters in variable energy generation environments
US10560019B2 (en) Bipolar high-voltage network and method for operating a bipolar high-voltage network
Li et al. Generalized multicell switched-inductor and switched-capacitor Z-source inverters
US20110103117A1 (en) Grid interconnection inverter and grid interconnection device
JP2014100064A (ja) コンバータ
EP3046203B1 (en) Wind power conversion system
US20130038130A1 (en) Dc-to-ac converter system and dc-to-ac converter circuit
WO2011024374A1 (ja) 太陽光発電用パワーコンディショナ
JP2007068385A (ja) トランスレス型系統連係電力変換回路
CN112868172B (zh) 三电平功率转换系统和方法
JP5642294B2 (ja) 電力変換装置
CA2998832A1 (en) Uninterruptible power supply system
WO2017000910A1 (zh) 光伏发电系统及操作其以进行光伏发电的方法
JP5254922B2 (ja) 電力変換装置
CN107070231B (zh) 具有多输入的混联变换器和使用其的充换电设施
US20170317607A1 (en) Three-level t-type npc power converter
KR20170084960A (ko) 전기자동차용 충방전 장치
Bharath et al. A novel switched-capacitor based single-phase five-level transformerless inverter
TWI653812B (zh) Dc/dc轉換器、電源調節器以及電源系統
KR20160047131A (ko) 발전 시스템의 3상 인버터 및 전력변환장치
JP2012143060A (ja) 系統連係装置
Cardoso et al. SiC based cascaded multilevel converter for solar applications: Downscaled prototype development
KR101343590B1 (ko) 계통 연계형 양방향 인버터 및 이를 포함한 태양광 발전 시스템
JP2014033552A (ja) 電源回路およびパワーコンディショナ
TW201334351A (zh) 市電併網型電源供應系統的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013546942

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011876647

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE