WO2013077505A1 - 코어/쉘 구조를 갖는 열전 나노와이어의 제조 방법 - Google Patents

코어/쉘 구조를 갖는 열전 나노와이어의 제조 방법 Download PDF

Info

Publication number
WO2013077505A1
WO2013077505A1 PCT/KR2012/002566 KR2012002566W WO2013077505A1 WO 2013077505 A1 WO2013077505 A1 WO 2013077505A1 KR 2012002566 W KR2012002566 W KR 2012002566W WO 2013077505 A1 WO2013077505 A1 WO 2013077505A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
core
nanowires
shell structure
nanowire
Prior art date
Application number
PCT/KR2012/002566
Other languages
English (en)
French (fr)
Inventor
이우영
강주훈
노종욱
심우영
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to US14/360,004 priority Critical patent/US20140342488A1/en
Publication of WO2013077505A1 publication Critical patent/WO2013077505A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/04Isothermal recrystallisation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/08Epitaxial-layer growth by condensing ionised vapours
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth

Definitions

  • the present invention relates to the production method of the heat wire, and more particularly, to a method of manufacturing a thermoelectric nano-wire having a core / shell structure that a shell, and the thermoelectric material in the core or Bi nowayieo.
  • thermoelectric materials As (arsenic), Si (silicon), and Ge (germanium) have intermediate properties between metal and nonmetal, and are used in electric devices in the form of single or alloy. In particular, these semimetals are attracting much attention as thermoelectric materials as alloys with semi conductors.
  • thermoelectric materials are low thermal conductivity and high electrical conductivity. Recently, research on thermoelectric materials has been in progress. For example, Bi x T ei - x , an alloy of Bi and Te (tellurium), has a large mass and a small spring constant due to Van der Waals bonding between Bi and Te and covalent bonding between Te. As a result, the thermal conductivity can be reduced. As a result, it is possible to increase the figure of merit (ZT) indicating the thermoelectric properties of the thermoelectric material, which is currently used as a thermoelectric material.
  • ZT figure of merit
  • the Bi x T ei - x alloy is made of thermoelectric nanowires to control the electric energy density of the state, and the shape of the electric energy level density function. Matching the peak position to the Fermi level allows the Seebeck coefficient to be influenced by the thermoelectric effect. In addition, it is possible to maintain the electrical conductivity at a high value by increasing the electron motion by the quantum confinement effect, thereby overcoming the limitations of the bulk thermoelectric material and obtaining a relatively large ZT value.
  • thermoelectric nanowires In order to obtain high thermoelectric efficiency, production of single crystal thermoelectric nanowires is required.
  • the conventional thermoelectric materials are difficult to have a single crystal due to the inherent characteristics of the material, which limits the growth of the thermoelectric nanowires, and the growth method of the single crystal thermoelectric nanowires is not known so far.
  • thermoelectric nanowires since thermoelectric nanowires must be grown as an alloy rather than a single material, a method of growing using a solvent in which each material is dissolved is mainly used. These methods include the template-assisted method and the solution-phase Solutions (phase solution method), pressure injection method (Pressure injection method) and the like.
  • the template-subsidiary method is not easy to prepare a template, and the other methods have the disadvantage that the complex process is necessary, such as the need for a starting material.
  • it is essential to remove the appropriate template and the chemicals remaining on the surface of the nanowire for the single nanowire device process, and there is a difficulty in forming various patterns in the device process due to the low aspect ratio.
  • the thermoelectric nanowires grown by such a conventional method are polycrystalline and thus have low thermoelectric efficiency and have limitations in observing intrinsic properties of single crystal thermoelectric nanowires.
  • thermoelectrics ⁇ 8> With the development of nanotechnology in the 1990s, research on the field of thermoelectrics has been active again. Known as the most suitable material for thermoelectric applications in bulk materials
  • thermoelectric performance index ZT
  • thermoelectric performance index ZT
  • the values of thermoelectric performance indexes using single thin films or Na-ro were not enough to be used for commercialization, and the thermoelectric performance indexes using heterostructures such as 2D superlattice films were measured.
  • a thin film was prepared to obtain a high thermoelectric figure of merit of 2.4.
  • the nanowire so far heterostructure that is the production of a core / shell structure of measuring the thermal performance index using a single nanowire group has no core / shell structure synthesis techniques using conventional nanowire synthesis method i Difficult thermocouples also only used computer simulations to analyze the mechanisms.
  • the present invention is to solve the problem to provide a method for manufacturing a thermoelectric nanowire of Bi / thermoelectric material core / shell structure easily after the production of a single nanowire, and then sputtering the thermoelectric material. Shall be.
  • the present invention provides a method for manufacturing a core / shell structured thermoelectric nanowire which can obtain a desired thermal conductivity by adjusting the interfacial roughness between cores and shells of a core / shell structured thermoelectric nanowire.
  • thermoelectric nanowire having a core / shell structure of Bi / thermoelectric material is formed by sputtering a thermoelectric material on the Bi single crystal nanowire while cooling the substrate of the structure in which the nanowires are grown at a low temperature. Manufacturing steps
  • thermoelectric nanowire manufacturing method having a core / shell structure comprising a.
  • the manufacturing of the thermoelectric nanowires may include adjusting the roughness of the interface between the Bi single crystal nanowires and the thermoelectric material by adjusting the temperature at which the substrate is cold-warmed.
  • the low temperature excitation can be made using liquid nitrogen.
  • the forming of the Bi thin film may include forming a Bi thin film on the oxide layer by sputtering in a state where the substrate is low temperature.
  • thermoelectric material may be one selected from Te, Bi 2 Te 3> PbTe, Sb, S.
  • the thickness of the shell which is a thermoelectric material layer constituting the thermoelectric nanowire, may be half the diameter of the Bi single crystal nanowire as a core.
  • the single crystal Bi nanowires may have a diameter of 50 to 100m.
  • the oxide layer may be one selected from Si0 2 , BeO, Mg 2 Al 4 Si 5 0 18 .
  • the heat treatment temperature may be 200 to 270 ° C. In one embodiment of the present invention, it may further comprise the step of the final heat treatment of the core / shell thermoelectric nanowires prepared in the step of manufacturing the thermoelectric nanowires. In this embodiment, the final heat treatment temperature may be selected from a temperature range of either Bi melting point or less, Bi melting point or less of the thermoelectric material melting point.
  • the present invention can more easily synthesize single crystal core / shell nanowires.
  • the synthesis of nanowires is possible without a separate template or catalyst
  • thermoelectric nanowires manufactured by the method of the present invention can determine the thermal conductivity by adjusting the roughness of the core / shell interface, and accordingly, the nanowire manufacture can satisfy the requirements required in various applications. There is a possible effect.
  • thermoelectric materials Furthermore, it is possible to synthesize tube structures of various thermoelectric materials and to use them to help observe the properties of various new materials such as magnetic kondo effects as well as thermoelectric properties.
  • thermoelectric nanowire manufacturing process having a core / shell structure according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a semi-anneal heat treatment apparatus used to grow single crystal Bi nanowires in an embodiment of the present invention.
  • FIG. 3 show a core / shell structure of a nanowire of a core / shell structure generated by performing a low temperature cooling process using liquefied nitrogen and a core / shell structure generated without performing a low temperature engraving process. It is a schematic diagram which compares and shows the nanowire of.
  • thermoelectric nanowire having a core / shell structure manufactured by a method according to an embodiment of the present invention and another embodiment.
  • FIG. 5 is a graph comparing thermal conductivity of thermoelectric nanowires having a core / shell structure manufactured according to various embodiments of the present disclosure.
  • thermoelectric nanowires prepared by the method according to an embodiment of the present invention.
  • thermoelectric nanowire 7 is a TEM image of a thermoelectric nanowire manufactured by the method according to an embodiment of the present invention, showing the element mapping.
  • FIG. 8 is a diagram illustrating a line scan image of the cross-section of the thermoelectric nanowire of FIG. 6.
  • thermoelectric nanowire 9 is a TEM image photograph of a thermoelectric nanowire manufactured by the method of another embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a line scan image of a cross-section of the thermoelectric nanowire of FIG. 9. 11 shows thermoelectric nanowires prepared by the method of another embodiment of the present invention.
  • thermoelectric nanowire manufacturing process having a core / shell structure according to an embodiment of the present invention.
  • a substrate 10 having an oxide layer 30 formed on one surface thereof is provided, and a Bi thin film ( 50) can begin from the step of forming.
  • the substrate 10 may be a silicon substrate, and the oxide layer 30 may use one oxide layer selected from Si0 2 , BeO, and Mg 2 Al 4 Si 5 0 18 .
  • the thickness of the oxide layer 30 may be formed to 3000 to 5000 A.
  • the Bi thin film 50 can be formed on the upper surface of the oxide layer 30. do.
  • This Bi thin film 50 can be effectively produced by a conventionally known general sputtering method.
  • the Bi thin film 50 may be formed on the upper surface of the oxide layer 30 at a speed of 32.7 A / s by RF (Radio Frequency) magnetron sputtering at a pressure of 4 ⁇ 10 ⁇ 8 Torr.
  • RF Radio Frequency magnetron sputtering at a pressure of 4 ⁇ 10 ⁇ 8 Torr.
  • the substrate 10 may be cooled using liquid nitrogen. This engraved process is intended to form small grain tissue to reduce the diameter of Bi nanowires formed in subsequent processes.
  • the Bi thin film 50 is preferably formed of a single crystal thin film.
  • the Bi thin film is a single crystal film, it has the orientation of (003), (006) and (009) in the X-ray diffraction pattern.
  • the Bi thin film 50 is 50 nm to 4 It is desirable to have a thickness.
  • the structure generated in FIG. 1 (a) is subjected to heat treatment, and between the substrate 10, the oxide layer 30, and the Bi thin film.
  • a compressive force according to the thermal expansion coefficient difference of (50) to grow Bi single crystal nanowires on the upper surface of the Bi thin film (50).
  • single crystal Bi nanowires are grown by heating and heat-inducing a compressive force.
  • FIG. 2 is a schematic view showing a semi-anneal heat treatment apparatus used to grow single crystal Bi nanowires in an embodiment of the present invention.
  • the semi-heat treatment apparatus used in the embodiment of the present invention includes a quartz having a reaction vessel 110 and an alumina boat 130 configured to be located inside the reaction furnace. It can be configured to include a tube (150). A structure in which a Bi thin film is formed may be disposed in the alumina boat 130 to grow Bi nanowires.
  • the heater is located inside the reaction furnace 110 may be configured to heat the alumina boat 130. Through such an arrangement structure and heating inside the reactor 110, compressive stress may be induced by applying heat to a structure including the substrate 10 / oxide layer 30 / Bi thin film 50.
  • Bi thin film has a coefficient of thermal expansion of 13.4 X 10 _6 / ° C
  • the oxide layer in the case of Si0 2
  • X has a coefficient of thermal expansion of 10- 6 / ° C
  • the substrate a Si substrate Has a coefficient of thermal expansion of 2.4 X io 6 rc.
  • the compressive force is added to the structure including the substrate 10 / oxidation layer 30 / Bi thin film 50 due to the large coefficient of thermal expansion, and as a function to alleviate such compressive force, Nanowires can be grown on top. That is, the compressive force induced by the above-described heat treatment may provide a driving force in the growth of the nanowires.
  • the heat treatment temperature of the Bi thin film 50 it is preferable to determine the heat treatment temperature of the Bi thin film 50 to 200 to 270 ° C.
  • the heat treatment time may be 1 to 15 hours, and as the heat treatment time increases, the Bi thin film may further expand to induce a lot of compressive force.
  • thermoelectric material 70 on the grown nanowires, the nanowires having a core / shell structure composed of Bi nanowires / thermoelectric materials may be generated.
  • thermoelectric material generally refers to the thermoelectric properties of the Seebeck effect, in which a voltage is generated by the temperature difference between the materials, and the Peltier effect, in which one side generates heat and the other side absorbs heat when a current flows between both ends of the material.
  • thermoelectric material refers to a substance having;
  • One embodiment of the present invention is not limited to a specific kind of such thermoelectric material, but one thermoelectric material selected from Te, Bi 2 Te 3 , PbTe, Sb, and S may be used.
  • a step of subjecting the substrate 10 to low temperature ablation at the same time as the sputtering process can be performed. That is, in one embodiment of the present invention, during the sputtering process, the substrate 10 is exposed to a solvent such as liquid nitrogen to maintain the low temperature angle of the substrate 10 while maintaining the low temperature angle of the thermoelectric material 70. ) Can be sputtered. By minimizing the kinetic energy of the sputtered thermoelectric material through the low temperature conformal process of the substrate 10, the interfacial roughness between Bi nanowires / thermoelectric materials having a core / shell structure can be smoothly formed. Through this, it can be seen that the interface roughness can be controlled to a desired level by appropriately adjusting the cooling temperature by the low temperature relief process.
  • FIG. 3 show a core / shell structure of a nanowire of a core / shell structure formed by performing a low temperature engraving process using liquefied nitrogen and a core / shell structure generated without performing a low temperature etching process. It is a schematic diagram which compares and shows the nanowire of.
  • the core / shell structured nanowires produced by the low temperature engraving process are made of Bi nanowires 210 serving as cores and thermoelectric materials 230 serving as shells. The interface between them is formed smoothly.
  • the interface between the Bi nanowires 310 and the thermoelectric material 330 has a low temperature cooling process. It can be confirmed that it is rough compared with the case performed.
  • thermoelectric nanowires having the core / shell structure derived through the aforementioned processes may be further performed.
  • a final heat treatment temperature may be less than or equal to Bi melting point, or may be in a temperature range less than or equal to melting point of Bi or higher thermoelectric material. If Bi is below melting point When the temperature is set, the diffusion of materials occurs, and diffusion of Te, which is a thermoelectric material, occurs in the Bi core region, thereby obtaining a BiTe compound composition.
  • a thermoelectric core having a core / shell structure in which thermoelectric components are diffused in the core region Nanowires can be prepared.
  • the final heat treatment temperature is a temperature range below the melting point of the Bi melting point thermoelectric material
  • Bi components can be evaporated to synthesize nanowires having a thermoelectric tube structure.
  • the tube structure of the thermoelectric material can be synthesized, and the lubricated nanowires can be used to observe not only the thermoelectric properties but also the properties of various new materials such as the magnetic Kondo effect. .
  • thermoelectric nanowire having a core / shell structure having a Bi nanowire manufactured using compression force as a core and a thermoelectric material layer as a shell can be effectively obtained. have.
  • a Bi thin film was formed on the oxide layer by rf magnetron sputtering.
  • the basic pressure of sputtering was 4 xiO -8 Torr, and the formation rate of the Bi thin film was 32.7 A / s.
  • the substrate was inscribed with liquid nitrogen.
  • Bi single crystal nanowires were grown by mounting the Bi thin film-formed substrate on an alumina boat in a reaction furnace as shown in FIG. At this time, the heat treatment temperature was 260 to 270 ° C, the holding time was 10 hours.
  • Te a thermoelectric material
  • thermoelectric nanowire having a core / shell structure manufactured by the above method is shown in FIG. 4A.
  • FIG. 4A A TEM image of a thermoelectric nanowire having a core / shell structure manufactured by the above method is shown in FIG. 4A.
  • (a) of FIG. 4 it can be seen that the interface between the Bi nanowire as the core and the Te layer as the shell is smoothly formed with almost no relative height difference.
  • thermoelectric nanowire of the core / shell structure prepared by this Example 2 is shown in FIG. 4 (b).
  • FIG. 4 (b) of FIG. 4 it can be seen that the interface between the Bi nanowire, which is the core, and the Te layer, which is the shell, is formed as a rough surface having a height difference of 5 to 12 nm.
  • FIG. 5 is a graph comparing thermal conductivity according to temperature of nanowires having various diameters of core / shell structures manufactured by Examples 1 and 2, and Bi nanowires without sputtering thermoelectric materials. . Comparing the nanowires with similar diameters, the Bi nanowires without the shell structure had the largest thermal conductivity, and the smooth interface generated in Example 1 among the nanowires with the shell structure was formed. It can be seen that the nanowires having a larger thermal conductivity than the nanowires having the rough interface generated in Example 2. As such, it can be seen that the nanowires having a core / shell structure have lower thermal conductivity than the pure Bi nanowires, and in particular, the thermal conductivity is different according to the interfacial roughness between the Bi nanowires and the Te shell. . Therefore, it can be seen that the nanowires having thermal conductivity suitable for various applications can be manufactured by controlling the interfacial roughness of the core / shell by adjusting the excursion temperature in the sputtering process of the thermoelectric material.
  • Figure 6 (a) is a core / shell thermoelectric nanowires prepared in Example 2
  • FIG. 6 (a) is a TEM picture of a single nanowire of the core / shell structure prepared in Example 2 it can be clearly seen the shell structure having a core and a rough surface inside.
  • Figure 6 (c) is a HRTEM photograph of a single nanowire of the core / shell structure prepared in Example 2, it can be observed a local single crystal Te shell having a single crystal Bi core and defects.
  • the atomic arrangement of the interface between the core and the shell is broken, which can be expected to reduce the thermal conductivity.
  • Figure 7 (a) is a TEM image of the cross-section of the core / shell structure of the thermoelectric nanowire prepared in Example 2, it is seen that the Bi single crystal nanowire core is surrounded by a shell, the thermoelectric material layer And others represent deposited Pt.
  • (B) to (d) of FIG. 7 show element mapping of the nanowires, (b) shows Bi element mapping, (c) shows Te element mapping, and (d) shows Bi and Te element mapping.
  • the thermoelectric nanowires of the core / shell structure is composed of a Bi core inside the Te element.
  • thermoelectric nanowire 8 shows a line scan image of a cross section of a thermoelectric nanowire as described above, and shows a core / shell thermoelectric nanowire in which Te surrounds around Bi.
  • FIG. 9 is a TEM image photograph prepared to deposit Pt around the manufactured thermoelectric nanowires using a dual beam device and to observe a cross section of the nanowires by removing both ends of the required cross section of the nanowires. As shown in FIG. 9, the middle back part (core) and the surrounding part (shell) can be observed.
  • Figure 10 is a diagram showing the line-scan image of the cross-section of the thermoelectric nano-wire as described above, it can be seen that Te is diffused and alloyed in the Bi region, the overall thermoelectric nanowire of the core / shell structure well presented Doing.
  • Bi / Te thermoelectric nanowires having a core / shell structure were prepared under the same conditions as in Example 2. Subsequently, during the final heat treatment, the heat treatment temperature was heat-treated at a temperature of Bi melting point (2 degrees) or more and Te melting point (449 degrees) or less, specifically, at 33 C C for 10 hours.
  • FIG. 11 As a result of the heat treatment, an SEM cross-sectional image of the obtained nanowire is shown in FIG. 11. As shown in Figure 11, when the final heat treatment at this temperature range, it can be seen that the Bi component is volatilized to remove the Te nanowire of the tube structure as a whole.
  • the present invention provides a core / shell thermoelectric nanowire manufacturing technology and It is possible to secure other nano-device technology, to improve the characteristics of the conventional device and to enable the emergence of new devices.
  • thermoelectric device using the core / shell thermoelectric nanowire of the present invention has an ultra-high efficiency thermoelectric effect, and thus may be an opportunity to suggest a method for developing a new power generation system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

코어/쉘 구조를 갖는 열전 나노와이어의 제조 방법이 개시된다. 상기 열전나노와이어의 제조 방법은, 일면에 산화층이 형성된 기판을 마련하고, 상기 산화층 상에 Bi 박막을 형성하는 단계; 상기 Bi 박막을 형성하는 단계에서 생성된 구조물 을 열처리하여, 상기 기판, 상기 산화층 및 상기 Bi 박막 사이의 팽창계수 차이에 따른 압축응력을 유도하여 상기 Bi 박막 상면에 Bi 단결정 나노와이어를 성장시 키는 단계; 및 상기 나노와이어가 성장된 구조물의 기판을 저온 냉각시키고, 상기 저온 냉각이 이루어지는 상태에서 상기 Bi 단결정 나노와이어 상에 열전재료를 스 퍼터링함으로써 Bi/열전재료의 코어/쉘 구조를 갖는 열전 나노와이어를 제조하는 단계를 포함한다.

Description

【명세서】
【발명의 명칭】
코어 /쉘 구조를 갖는 열전 나노와이어의 제조 방법
【기술분야】
<]> 본 발명은 열전 와이어의 제조 방법에 관한 것으로, 더욱 상세하게는, Bi 나 노와이어를 코어로하고 열전재료를 쉘로하는 코어 /쉘 구조를 갖는 열전 나노와이어 의 제조 방법에 관한 것이다.
【배경기술】
<2> 일반적으로 반금속 (semimetallic)인 Bi (bismuth) , Sb(ant imony) ,
As(arsenic), Si (silicon), Ge( germanium)은 금속과 비금속의 중간적 성질을 가지 며 단독 또는 합금의 형태로 전기소자에 이용되고 있다. 특히, 이러한 반금속들은 반도체 (semi conductor)와의 합금 형태로서 열전물질 (thermoelectric material)로 많은 관심을 받고 있다.
<3> 열전물질로는 열전도도가 낮고 전기전도도가 높은 물질로서 최근 열전물질에 대한 연구가 심도있게 진행되고 있다. 예컨대, Bi와 Te(tellurium)의 합금인 BixTei-x는 큰 질량을 가지고 Bi와 Te 간의 반 데르 발스 결합 (Van der Waals bonding)과 Te 간의 공유결합 (Covalent bonding)으로 작은 스프링 상수를 갖기 때 문에 열전도도를 감소시킬 수 있다. 이로 인해 열전물질의 열전특성을 나타내는 성 능지수 (figure of merit, ZT)를 증가시킬 수 있어 현재 열전물질로 이용되고 있다. <4> 또한, 이러한 BixTei-x 합금을 열전 나노와이어 (nanowire)로 제조함으로써 전 자 에너지 준위 밀도 (electrical density of state)를 제어할 수 있게 되며, 이 전 자 에너지 준위 밀도함수의 모양과 피크 위치를 페르미 준위에 매칭시키게 되면 열 전 효과에 영향을 주는 제백 계수 (Seebeck coefficient)를 조정할 수 있게 된다. 또한, 양자구속 효과에 의해 전자운동을 증가시켜 전기전도도를 높은 값으로 유지 할 수 있어 벌크상 열전물질의 한계를 극복하고 비교적 큰 ZT 값을 얻을 수 있다.
<5> 그런데 높은 열전 효율을 얻기 위해서는 단결정 열전 나노와이어의 제조가 요구된다. 그러나, 종래의 열전물질들은 물질 고유의 특성상 단결정을 가지기 어려 워 열전 나노와이어 성장에 제한이 있을 뿐만 아니라 단결정 열전 나노와이어의 성 장방법은 현재까지 많이 알려져 있지 않다.
<6> 일반적으로, 열전 나노와이어는 단일 물질이 아닌 합금으로 성장시켜야 하기 때문에 각 물질이 용해되어 있는 용매를 이용하여 성장시키는 방법이 주를 이루고 있다. 이러한 방법으로는 템플릿 -보조 방법 (Templated-assisted method) , 용액-상 방법 (Solution一 phase method) , 압력주입 방법 (Pressure injection method) 등을 들 수 있다.
<?> 그러나, 템플릿 -보조 방법은 템플릿의 마련이 쉽지 않으며, 그 외 다른 방법 들은 초기물질 (starting material)이 필요하다는 등 복잡한 공정이 필수적으로 수 반되는 단점이 있다. 아울러, 단일 나노와이어 소자 공정을 위해 적절한 템플릿의 제거와 나노와이어 표면에 잔존하는 화학물질의 제거를 필수적으로 요하며, 낮은 장평비 (aspect ratio)로 인해 소자 공정시 다양한 패턴 형성에 어려움이 있다. 특 히, 이러한 기존 방법으로 성장된 열전 나노와이어는 다결정성 (polycrystalline)을 가지게 되어 열전 효율이 낮고 단결정 열전 나노와이어의 고유의 특성을 관찰하는 데 한계가 있다.
<8> 지난 1990년대 나노기술의 발전과 함께 다시 열전 웅용분야에 대한 연구가 활발해졌다. 벌크상태의 재료에서 가장 열전 웅용에 적합한 물질로 알려져 있던
Bi2Te3을 나노사이즈로 제작하면 기존에 한계에 부딪혔던 열전 성능 지수 (ZT)값이 증가할 수 있다는 이론적 배경이 발표 되었기 때문이다. 하지만 단일 박막이나 나 노선을 이용한 열전 성능 지수 값은 상용화에 이용되기에는 턱없이 부족하였으며 2D초격자 박막과 같은 헤테로구조를 이용한 열전 웅용에서 오히려 높은 열전 성능 지수가 측정되었으며, venkatasubramanian 그룹에서 2D 초격자 박막을 제조하여 2.4의 높은 열전 성능 지수값을 얻어내었다.
<9> 하지만 지금까지 나노선을 헤테로 구조, 즉 코어 /쉘 구조로 제작하여 단일 나노선을 이용한 열전 성능지수를 측정한 그룹은 없으며 기존의 나노선 합성방법을 이용한 코어 /쉘 구조 합성 기술이 어려워 열전 대가에 해당하는 그룹들 역시 컴퓨 터 시물레이션을 이용하여 메커니즘을 분석하였을 뿐이다.
【발명의 상세한 설명】
【기술적 과제】
<10> 본 발명은 단일 나노와이어를 제조한 후, 이후 열전재료의 스퍼터링을 통하 여 손쉽게 Bi/열전재료 코어 /쉘 구조의 열전 나노와이어를 제조할 수 있는 방법을 제공하는 것을 해결하고자 하는 기술적 과제로 한다.
<π> 특히 본 발명은 코어 /쉘 구조의 열전 나노와이어의 코어 /쉘 간 계면 거칠기 를 조정함으로써 원하는 열전도도를 얻을 수 있는 코어 /쉘 구조의 열전 나노와이어 를 제조할 수 있는 방법을 제공하는 것을 해결하고자 하는 기술적 과제로 한다. 【기술적 해결방법】
<12> 상기 기술적 과제를 해결하기 위한 수단으로서 본 발명은, 일면에 산화층이 형성된 기판을 마련하고, 상기 산화층 상에 Bi 박막을 형성 하는 단계 ;
상기 Bi 박막을 형성하는 단계에서 생성된 구조물을 열처리하여, 상기 기판, 상기산화층 및 상기 Bi 박막 사이의 열팽창계수 차이에 따른 압축웅력을 유도하여 상기 Bi 박막 상면에 Bi 단결정 나노와이어를 성장시키는 단계 ;
상기 나노와이어가 성장된 구조물의 기판을 저온 냉각시키고, 상기 저온 넁 각이 이루어지는 상태에서 상기 Bi 단결정 나노와이어 상에 열전재료를 스퍼터링함 으로써 Bi/열전재료의 코어 /쉘 구조를 갖는 열전 나노와이어를 제조하는 단계
를 포함하는 코어 /쉘 구조를 갖는 열전 나노와이어 제조방법을 제공한다. 본 발명의 일 실시형태에서, 상기 열전 나노와이어를 제조하는 단계는, 상기 기판을 저온 넁각시키는 온도를 조정하여 상기 Bi 단결정 나노와이어와 열전재료 간 계면의 거칠기를 조정하는 단계를 포함할 수 있다.
본 발명의 일 실시형태에서, 상기 저온 넁각은 액체 질소를 이용하여 이루어 질 수 있다.
본 발명의 일 실시형태에서, 상기 Bi 박막을 형성하는 단계는, 상기 기판을 저온 넁각시킨 상태에서 상기 산화층 상에 스퍼터링법으로 Bi 박막을 형성하는 단 계를 포함할 수 있다.
본 발명의 일 실시형태에서,상기 열전재료는 Te, Bi2Te3> PbTe, Sb, S중에서 선택된 1종일 수 있다.
본 발명의 일 실시형태에서, 상기 열전 나노와이어를 이루는 열전재료층인 쉘의 두께는 코어인 상기 Bi 단결정 나노와이어 직경의 절반일 수 있다.
본 발명의 일 실시형태에서, 상기 단결정 Bi 나노와이어는 50 내지 lOOOnm의 직경을 가질 수 있다.
본 발명의 일 실시형태에서, 상기 산화층은 Si02, BeO, Mg2Al4Si5018 중에서 선택된 1종일 수 있다.
본 발명의 일 실시형태에서, 상기 열처리온도는 200 내지 270°C일 수 있다. 본 발명의 일 실시형태에서, 상기 열전 나노와이어를 제조하는 단계에서 제 조된 코어 /쉘 열전 나노와이어를 최종 열처리하는 단계를 더 포함할 수 있다. 이 실시형태에서, 상기 최종 열처리온도는 Bi 융점 이하, 또는 Bi 융점이상 열전재료 융점 이하 중 어느 하나의 온도범위에서 선택될 수 있다.
【유리한 효과】 <31> 상술한 바와 같이 본 발명은, 먼저 보다 손쉽게 단결정 코어 /쉘 나노와이어 를 합성할 수 있다. 또한 별도의 템플릿이나 촉매제 없이 나노와이어의 합성이 가 능하다는 장점이 있으며, 다양한 열전재료를 이용하여 Bi 나노와이어를 기반으로 한 코어 /쉘 나노와이어의 합성이 가능하다는 잇점이 있다.
<32> 아울러, 본 발명의 방법으로 제조된 열전 나노와이어는 코어 /쉘 계면의 거칠 기를 조정함으로써 열전도도를 결정할 수 있으며, 이에 따라 다양한 웅용분야에서 요구하는 요건을 층족시킬 수 있는 나노와이어 제조가 가능한 효과가 있다.
<33> 나아가, 다양한 열전재료의 튜브 구조 합성이 가능하며 튜브구조 나노선을 이용하여 열전 특성뿐만 아니라 magnetic kondo effect와 같은 다양한 새로운 재료 의 물성을 관찰하는데 도움이 될 수 있다.
【도면의 간단한 설명】
<34> 도 1의 (a) 내지 (d)는 본 발명의 일 실시형태에 따른 코어 /쉘 구조를 갖는 열전 나노와이어 제조 과정을 도시한 공정도이다.
<35> 도 2는 본 발명의 일 실시형태에서 단결정 Bi 나노와이어를 성장시키는데 이 용되는 반웅 열처리 장치를 나타내는 모식도이다.
<36> 도 3의 (a)와 (b)는 액화 질소에 의한 저온 냉각 공정을 진행하여 생성한 코 어 /쉘 구조의 나노와이어와 저온 넁각 공정을 진행하지 않은 상태에서 생성한 코어 /쉘 구조의 나노와이어를 비교 도시한 모식도이다.
<37> 도 4는 본 발명의 일 실시예와 다른 실시예에 의한 방법으로 제조된 코어 /쉘 구조의 열전 나노와이어의 TEM 이미지 사진이다.
<38> 도 5는 본 발명의 다양한 실시예에 의해 제조된 코어 /쉘 구조의 열전 나노와 이어의 열전도도를 비교한 그래프이다.
<39> 도 6은 본 발명의 일 실시예에 의한 방법으로 제조된 열전 나노와이어의 SEM 및 TEM 이미지 사진을 나타낸다.
<40> 도 7은 본 발명의 일 실시예에 의한 방법으로 제조된 열전 나노와이어의 TEM 이미지 사진으로, 원소 맵핑을 나타낸다.
<4i> 도 8은 도 6의 열전 나노와이어 단면의 라인 스캔 이미지를 나타내는 그림이 다.
<42> 도 9는 본 발명의 다른 실시예의 방법으로 제조된 열전 나노와이어의 TEM 이 미지 사진이다.
<43> 도 10은 도 9의 열전 나노와이어 단면의 라인 스캔 이미지를 나타내는 그림 이다. <44> 도 11는 본 발명의 또 다른 실시예의 방법으로 제조된 열전 나노 와이어의
SEM사진이다.
【발명의 실시를 위한 최선의 형태】
<45> 이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 보다 상세하게 설명한 다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명되는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형 태는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 또한, 본 발명을 설명함에 있어서, 정 의되는 용어들은 본 발명에서의 기능을 고려하여 정의 내려진 것으로, 이는 당 분 야에 종사하는 기술자의 의도 또는 관례 등에 따라 달라질 수 있으므로 , 본 발명의 기술적 구성요소를 한정하는 의미로 이해되어서는 아니 될 것이다.
<46>
<47> 도 1의 (a) 내지 (d)는 본 발명의 일 실시형태에 따른 코어 /쉘 구조를 갖는 열전 나노와이어 제조 과정을 도시한 공정도이다.
<48> 먼저, 도 1의 (a)에 도시된 바와 같이, 본 발명의 일 실시형태는 일면에 산 화층 (30)이 형성된 기판 (10)을 마련하고 상기 산화층 (30) 상에 Bi 박막 (50)을 형 성하는 단계로부터 시작될 수 있다. 본 발명의 일 실시형태에서 상기 기판 (10)은 실리콘 기판이 적용될 수 있으며, 상기 산화층 (30)은 Si02, BeO, Mg2Al4Si5018중 선 택된 하나의 산화층을 적용할 수 있다. 바람직하게, 상기 산화층 (30)의 두께는 3000 내지 5000 A로 형성될 수 있다.
<49> 본 발명의 일 실시형태에서는 상기 산화층 (30)의 상면에 Bi 박막 (50)을 형성 할 수 있다. 한다. 이 Bi 박막 (50)은 통상의 알려진 일반적인 스퍼터링법으로 유효 하게 제조될 수 있다. 예를 들어, 상기 Bi 박막 (50)은, 4 X10-8 Torr의 압력에서 RF(Radio Frequency) 마그네트론 스퍼터링법에 의해 32.7 A/s의 속도로 상기 산화 층 (30) 상면에 형성될 수 있다. 특히, 이러한 Bi 박막 (50)의 형성이 진행되는 동안 상기 기판 (10)은 액체 질소를 이용하여 냉각이 이루질 수 있다. 이러한 넁각 공정 은, 이후 공정에서 형성되는 Bi 나노와이어의 직경을 감소시키기 위해 작은 입자 조직을 형성하기 위한 것이다.
<50> 본 발명의 일 실시형태에서, 상기 Bi 박막 (50)은 단결정박막으로 형성되는 것이바람직하다. 통상, Bi박막이 단결정막인 경우, X-선 회절패턴에서 (003), (006), (009)의 배향성을 가진다.
<5i> 더하여, 본 발명의 일 실시형태에서 , 상기 Bi 박막 (50)은 50 nm 내지 4 의 두께를 갖는 것이 바람직하다 .
<52>
<53> 이어, 본 발명의 일 실시형태에서는 도 1의 (b)와 같이, 도 1의 (a)에서 생 성된 구조물 열처리하여, 상기 기판 (10), 상기 산화층 (30) 및 상기 Bi 박막 사이 (50)의 열팽창계수 차이에 따른 압축웅력을 유도하여 상기 Bi 박막 (50) 상면에 Bi 단결정 나노와이어를 성장시킨다. 더욱 구체적으로, Bi 박막 (50)이 형성된 구조물 을 반웅로내 적치한 후, 가열 열처리하여 압축웅력을 유발함으로써 단결정 Bi 나노 와이어를 성장시킨다.
<54> 도 2는 본 발명의 일 실시형태에서 단결정 Bi 나노와이어를 성장시키는데 이 용되는 반웅 열처리 장치를 나타내는 모식도이다.
<55> 도 2에 도시된 것과 같이, 본 발명의 일 실시형태에 이용되는 반웅 열처리 장치는, 크게 반웅로 (110)와 그 반웅로 내부에 위치하도톡 구성된 알루미나 보트 (130)를 탑재하는 석영튜브 (150)를 포함하여 구성될 수 있다. 상기 알루미나 보트 (130)의 내부에는 Bi 나노와이어의 성장을 위하여 Bi 박막이 형성된 구조물이 배치 될 수 있다. 또한, 반웅로 (110)의 내부에는 히터가 위치하여 알루미나 보트 (130)을 가열할 수 있도록 구성될 수 있다. 이러한 배치구조 및 반응로 (110) 내부의 가열을 통해 기판 (10)/산화층 (30)/Bi 박막 (50)을 포함하는 구조물에 열을 가하여 압축응력 을 유도할 수 있다.
<56> 예를 들어, Bi 박막은 13.4 X 10_6/°C의 열팽창계수를 가지며, 산화층 (Si02 의 경우)은 0.5 X 10— 6/°C의 열팽창계수를 가지고, 기판 (Si 기판의 경우)은 2.4 X io6rc의 열팽창계수를 갖는다. 이러한, 큰 열팽창계수 차이에 의해 기판 (10)/산화 층 (30)/Bi 박막 (50)을 포함하는 구조물에 압축웅력이 부가되며, 이러한 압축웅력을 완화하기 위한 작용으로 Bi 박막 (50)의 상면에 나노와이어가 성장될 수 있다. 즉, 상술한 열처리로 유도된 압축웅력은 나노와이어의 성장에 있어 구동력을 제공할 수 있다.
<57> 한편, 본 발명의 일 실시형태에서 상기 Bi 박막 (50)의 열처리온도를 200 내 지 270 °C로 결정하는 것이 바람직하다. 더하여, 열처리시간을 1 내지 15시간으로 할 수 있으며, 열처리시간이 증가할수록 Bi박막은 더욱 팽창하여 많은 압축웅력을 유도할 수 있다.
<58>
<59> 이어, 본 발명의 일 실시형태에서는 도 1의 (c)와 같이, Bi 박막 (50) 상에 성장된 나노와이어 상에 열전재료 (70)를 스퍼터하여, Bi 나노와이어 /열전재료로 이 루어지는 코어 /쉘 구조의 나노와이어를 생성할 수 있다.
<60> 통상 열전재료란 재료의 양단 온도차에 의해 전압이 발생하는 제백 (Seebeck) 효과와 재료의 양단간에 전류를 통하면 한면은 발열하고 다른 면은 흡열하는 펠티 에 (Peltier) 효과의 열전특성을 갖는 물질을 말한다. 본 발명의 일 실시형태는 이 러한 열전재료의 구체적인 종류에 제한되는 것은 아니나, Te, Bi2Te3, PbTe, Sb, S 중에서 선택된 하나의 열전 물질을 이용할 수 있다.
<61> 본 발명의 일 실시형태는, 이러한 스퍼터 공정과 동시에 기판 (10)을 저온 넁 각하는 공정을 수행할 수 있다. 즉, 본 발명의 일 실시형태에서는, 스퍼터 공정이 수행되는 동안 기판 (10)은 액체 질소 등과 같은 넁매에 노출시킴으로써 기판 (10)의 저온 넁각을 유지하면서 나노와이어가 성장된 면에 열전재료 (70)를 스퍼터 할 수 있다. 이러한 기판 (10)의 저온 넁각 공정을 통해 스퍼터 되는 열전재료의 운동 에 너지를 최소화함으로써 코어 /쉘 구조의 Bi 나노와이어 /열전재료 사이의 계면 거칠 기를 매끄럽게 형성할 수 있다. 이를 통해, 저온 넁각 공정에 의한 냉각 온도를 적 절하게 조정함으로써 계면 거칠기를 원하는 수준으로 제어할 수 있음을 확인할 수 있다.
<62>
<63> 도 3의 (a)와 (b)는 액화 질소에 의한 저온 넁각 공정을 진행하여 생성한 코 어 /쉘 구조의 나노와이어와 저온 넁각 공정을 진행하지 않은 상태에서 생성한 코어 /쉘 구조의 나노와이어를 비교 도시한 모식도이다.
<64>
<65> *도 3의 (a)에 도시한 것과 같이, 저온 넁각 공정을 진행하여 생성한 코어 / 쉘 구조의 나노와이어는 코어가 되는 Bi 나노와이어 (210)와 쉘이 되는 열전물질 (230) 사이의 계면이 매끄럽게 형성된다. 이에 반해, 도 3의 (b)에 도시한 것과 같 이ᅳ 저온 냉각 공정을 진행하지 않은 코어 /쉘 구조의 나노와이어는 Bi 나노와이어 (310)와 열전물질 (330)의 계면이 저온 냉각 공정을 수행한 경우에 비해 거칠게 형 성됨을 확인할 수 있다.
<66>
<67> 한편, 본 발명의 일 실시형태에서는 전술한 공정들을 통해 도출된 코어 /쉘 구조의 열전 나노와이어를 최종 열처리하는 공정이 더 수행될 수 있다. 본 발명의 일 실시형태에서는 이러한 최종 열처리온도를 Bi 융점 이하로도 할 수 있으며, Bi 융점이상 열전재료의 융점 이하의 온도 범위로도 할 수 있다. 만일 Bi 융점 이하의 온도로 할 경우, 재료의 확산현상이 발생하여 Bi 코어 영역에 열전재료인 Te등의 확산이 일어나 BiTe 화합물조성이 얻어지며, 이를 통해 코어영역에 열전재료 성분 이 확산된 코어 /쉘 구조를 갖는 열전 나노와이어를 제조할 수 있다.
<68> 한편, 최종 열처리온도를 Bi 융점이상 열전재료의 융점 이하의 온도 범위로 할 경우, Bi성분이 증발되어 열전재료 튜브 구조의 나노선을 합성할 수 있다. 즉, 이러한 열처리온도를 이용함으로써 열전재료의 튜브구조 합성이 가능하며 류브구조 나노선을 이용하여 열전 특성뿐만 아니라 마그네틱 콘도 효과 (magnetic Kondo effect)와 같은 다양한 새로운 재료의 물성을 관찰하는데 이용될 수 있다.
<69>
<70> 상술한 바와 같이, 본 발명에서는 압축웅력을 이용하여 제조된 Bi 나노와이 어를 코어로 하고, 열전재료층을 쉘로 하는 코어 /쉘 구조를 갖는 열전 나노와이어 를 효과적으로 얻을 수 있음을 알 수 있다.
<71>
【발명의 실시를 위한 형태】
<72> 이하, 다양한 실시예를 통하여 본 발명을 상세히 설명한다.
<73>
<74> -실시예 1-
<75> 상부에 Si02 산화층이 형성된 Si기판을 준비한후, 상기 산화층의 상부에 rf 마그네트론 스퍼터링법으로 Bi 박막을 형성하였다. 이 때, 스퍼터링의 기본 압력은 4 xiO-8 Torr이고, Bi 박막의 형성속도는 32.7 A/s이었다. 또한, Bi 박막의 스퍼 터링 과정에서 액체 질소를 이용하여 기판을 넁각하였다.
<76> 그리고 상기 Bi 박막 형성된 기판을 도 2와 같은 반웅로내 알루미나 보트에 탑재시켜 열처리함으로써 Bi 단결정 나노와이어를 성장시켰다. 이때, 열처리 온도 를 260내지 270 °C, 유지시간을 10시간으로 하였다.
<77> 이후, rf 마그네트론 스퍼터링 기법을 이용하여 상온에서 Bi 나노와이어 상 에 열전재료인 Te를 증착 시켰다. 이 스퍼터링 과정에서, 액체 Bi 나노와이어를 성 장시킨 기판을 저온 냉각시켰으며, rf 마그네트론 스퍼터링의 파워는 12 W(rf)를 이용하였다.
<78> 상기의 방법으로 제조된 코어 /쉘 구조의 열전 나노와이어에 대한 TEM 이미지 가 도 4의 (a)이다. 도 4의 (a)에 나타난 바와 같이, 코어인 Bi 나노와이어와 쉘인 Te 층 사이의 계면이 상대적인 높이 차가 거의 없이 매끈하게 형성됨을 확인할 수 있다. <79>
<80> -실시예 2-
<8i> 실시예 1과 같이 Bi 나노와이어를 생성한 후, rf 마그네트론 스퍼터링 기법을 이용하여, 상온에서 Bi 나노와이어 상에 열전재료인 Te를 증착 시켰다. 이 스퍼터 링 과정에서, 실시예 1과는 다르게 액체 Bi 나노와이어를 성장시킨 기판을 저온 냉 각시키는 공정을 실시하지 않았으며, rf 마그네트론 스퍼터링의 파워는 30 W(rf)를 이용하였다.
<82> 이 실시예 2에 의해 제조된 코어 /쉘 구조의 열전 나노와이어에 대한 TEM 이미 지가 도 4의 (b)이다. 도 4의 (b)에 나타난 바와 같이, 코어인 Bi 나노와이어와 쉘 인 Te 층 사이의 계면은 5 내지 12 nm의 높이차를 갖는 거친 면으로 형성됨을 확인 할 수 있다.
<83> 도 5는 실시예 1 및 실시예 2에 의해 제조된 다양한 직경의 코어 /쉘 구조의 나 노와이어와, 열전재료를 스퍼터링하지 않은 Bi 나노와이어 등의 온도에 따른 열전 도도를 비교한 그래프이다. 유사한 크기의 직경을 갖는 각각의 나노와이어들을 비 교해 볼 때, 쉘구조를 형성하지 않은 Bi 나노와이어가 가장 큰 열전도도를 가지며, 쉘구조를 형성한 나노와이어들 중 실시예 1에서 생성된 매끈한 계면을 갖는 나노와 이어가 실시예 2에서 생성된 거친 계면을 갖는 나노와이어 보다 큰 열전도도를 가짐 을 확인할 수 있다. 이와 같이, 코어 /쉘 구조를 갖는 나노와이어는 열전도도가 순 수 Bi 나노와이어보다 낮음을 확인할 수 있으며, 특히 Bi 나노와이어와 Te 쉘 사이 의 계면 거칠기에 따라 열전도도가 차이가 있음을 확인할 수 있다. 따라서, 열전재 료의 스퍼터링 과정에서 넁각온도를 조정함으로써 코어 /쉘의 계면 거칠기를 제어하 면 다양한 용도에 적합한 열전도도를 갖는 나노와이어의 제조가 가능함을 확인할 수 있다.
<84> 한편, 도 6의 (a)는 실시예 2에서 제조된 코어 /쉘 열전 나노와이어에 대한
SEM 이미지이다. 도 6의 (a)를 통해 나노와이어가 곧게 성장하여 열전웅용재료에 적합한 거친 표면 또한 관찰할 수 있음을 알 수 있다. 도 6의 (b)는 실시예 2에서 제조된 코어 /쉘 구조의 단일 나노와이어의 TEM 사진으로 내부의 코어와 거친 표면 을 갖는 쉘 구조를 명확히 알 수 있다. 또한 도 6의 (c)는 실시예 2에서 제조된 코 어 /쉘 구조의 단일 나노와이어의 HRTEM 사진으로, 단결정 Bi 코어와 결함을 갖는 국부적인 단결정 Te 쉘을 관찰할 수 있다. 그리고 코어와 쉘 간 계면의 원자배열이 깨져 있음을 확인할 수 있으며, 이로 인해 열전도도 감소를 기대할 수 있음을 알 수 있다. <85> 또한, 도 7의 (a)는 실시예 2에서 제조된 코어 /쉘 구조의 열전 나노와이어의 단면에 대한 TEM 사진으로서 Bi 단결정 나노선 코어가 열전재료층인 쉘로 둘러쌓여 져 있음을 알 수 있으며, 그 밖은 증착된 Pt를 나타낸다. 도 7의 (b) 내지 (d)는 이러한 나노선의 원소맵핑을 나타낸 것으로서, (b)는 Bi 원소 맵핑, (c)는 Te 원소 맵핑,그리고 (d)는 Bi와 Te원소 맵핑을 나타낸다. 도 6의 (d)와 같이, 코어 /쉘 구 조의 열전 나노와이어는 그 내부는 Bi 코어로 그 둘레는 Te원소로 조성됨을 알 수 있다.
<86> 그리고 도 8은 상기와 같은 단면의 열전 나노와이어 단면의 라인 스캔 이미 지를 나타내는 그림이며, Bi를 중심으로 하여 Te이 그 주위를 둘러싸고 있는 코어 / 쉘 열전 나노와이어를 잘 보여주고 있다.
<87>
<89> -실시예 3-
<90> 실시예 2과 동일한 조건으로 제조된 코어 /쉘 열전 나노와이어를 Bi 융점 이하 의 온도로, 즉, 250°C에서 2시간 최종 열처리함으로써 코어 영역에 BiTe화합물을 갖는 코어 /쉘 구조의 Bi/Te 열전 나노 와이어를 제조하였다. 도 9는 Dual Beam장비 를 이용하여 상기 제조된 열전 나노와이어 주위에 Pt를 증착하고, 나노와이어의 필 요한 단면의 양단을 제거하여 나노와이어의 단면을 관찰할 수 있도록 마련된 TEM 이미지 사진이다. 도 9에 나타난 바와 같이, 가운데 등근 부분 (코어)와 둘러싸고 있는 부분 (쉘)을 관찰할 수 있다. 한편, 도 10은 상기와 같은 단면의 열전 나노와 이어 단면의 라인 스캔 이미지를 나타내는 그림이며, Bi영역에 Te이 확산되어 합금 화되었음을 알 수 있으며, 전체적으로 코어 /쉘 구조의 열전 나노와이어를 잘 제시 하고 있다.
<91>
<92> -실시예 4-
<93> 실시예 2과 동일한 조건으로 코어 /쉘 구조를 갖는 Bi/Te열전 나노와이어를 제 조하였다. 이후, 그 최종 열처리시 그 열처리 온도를 Bi융점 (2기도)이상 Te 융점 (449도)이하의 온도, 구체적으로 33C C에서 10시간 열처리하였다.
<94> 이러한 열처리한 결과, 얻어진 나노와이어의 SEM 단면 이미지를 도 11에 나 타내었다. 도 11과 같이, 이러한 온도범위에서 최종 열처리할 경우, Bi성분은 휘발 제거되어 전체적으로 튜브 구조의 Te 나노 와이어가 제조됨을 알 수 있다.
【산업상 이용가능성】
<95> 상술한 바와 같이 본 발명은 코어 /쉘 열전 나노와이어 제조기술 및 이에 따 른 나노소자 웅용기술을 확보할 수 있으며, 종래 소자의 특성 향상을 도모할 수 있 도록 하고 새로운 소자의 출현을 가능하게 한다.
<96> 또한 본 발명의 코어 /쉘 열전 나노와이어를 이용한 열전소자는 초고효율 열 전효과를 가지므로 새로운 발전시스템 개발함에 하나의 방법을 제시하는 계기가 될 수 있다.
<97> 아울러, 본 발명의 기술을 이용함으로써 우주용 발전기, 발열기, 항공용 열 조절장치, 군사용 적외선 탐지기, 미사일 유도용 회로 넁각기 등 다양한 분야에사 한차원 높은 발전을 가져을 수 있다.
<98>

Claims

【청구의 범위】
【청구항 1】
일면에 산화층이 형성된 기판을 마련하고, 상기 산화층 상에 Bi 박막을 형성 하는 단계;
상기 Bi 박막을 형성하는 단계에서 생성된 구조물을 열처리하여, 상기 기판, 상기 산화층 및 상기 Bi 박막 사이의 열팽창계수 차이에 따른 압축웅력을 유도하여 상기 Bi 박막 상면에 Bi 단결정 나노와이어를 성장시키는 단계; 및
상기 나노와이어가 성장된 구조물의 기판을 저온 냉각시키고, 상기 저온 넁 각이 이루어지는 상태에서 상기 Bi 단결정 나노와이어 상에 열전재료를 스퍼터링함 으로써 Bi/열전재료의 코어 /쉘 구조를 갖는 열전 나노와이어를 제조하는 단계
를 포함하는 코어 /쉘 구조를 갖는 열전 나노와이어 제조방법.
【청구항 2】
제 1항에 있어서, 상기 열전 나노와이어를 제조하는 단계는,
상기 기판을 저온 넁각시키는 온도를 조정하여 상기 Bi 단결정 나노와이어와 열전재료 간 계면의 거칠기를 조정하는 단계를 포함하는 것을 특징으로 하는 코어 / 쉘 구조를 갖는 열전 나노와이어의 제조 방법.
【청구항 3】
제 1항 또는 게 2항에 있어서,
상기 저온 냉각은 액체 질소를 이용하여 이루어지는 것을 특징으로 하는 코 어 /쉘 구조를 갖는 열전 나노와이어의 제조 방법.
【청구항 4】
제 1항에 있어서, 상기 Bi 박막을 형성하는 단계는,
상기 기판을 저온 넁각시킨 상태에서 상기 산화층 상에 스퍼터링법으로 Bi 박막을 형성하는 단계를 포함하는 것을 특징으로 하는 코어 /쉘 구조를 갖는 열전 나노와이어의 제조 방법 .
【청구항 5]
제 1항에 있어서,
' 상기 열전재료는 Te, Bi2Te3, PbTe, Sb, S중에서 선택된 1종임을 특징으로 하는 코어 /쉘 구조를 갖는 열전 나노와이어 제조방법 .
【청구항 6]
제 1항에 있어서,
상기 단결정 Bi 나노와이어는 50 내지 lOOOnm의 직경을 갖는 것을 특징으로 하는 코어 /쉘 구조를 갖는 열전 나노와이어 제조방법.
【청구항 7】
제 1항에 있어서,
상기 산화층은 Si02, BeO, Mg2Al4Si50i8 중에서 선택된 1종인 것을 특징으로 하는 코어 /쉘 구조를 갖는 열전 나노와이어 제조방법.
【청구항 8】
제 1항에 있어서,
상기 열처리온도는 200 내지 270°C인 것을 특징으로 하는 코어 /쉘 구조를 갖 는 열전 나노와이어 제조방법.
【청구항 91
제 1항에 있어서,
상기 열전 나노와이어를 제조하는 단계에서 제조된 코어 /쉘 열전 나노와이어 를 최종 열처리하는 단계를 더 포함하는 코어 /쉘 구조를 갖는 열전 나노와이어 제 조방법 .
【청구항 10】
제 9항에 있어서,
상기 최종 열처리온도는, Bi 융점 이하 또는 Bi 융점이상 열전재료 융점 이 하 중 어느 하나의 온도범위에서 선택된 것을 특징으로 하는 코어 /쉘 구조를 갖는 열전 나노와이어 제조방법 .
PCT/KR2012/002566 2011-11-24 2012-04-05 코어/쉘 구조를 갖는 열전 나노와이어의 제조 방법 WO2013077505A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/360,004 US20140342488A1 (en) 2011-11-24 2012-04-05 Preparation Method of Manufacturing Thermoelectric Nanowires Having Core/Shell Structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0123806 2011-11-24
KR1020110123806A KR101303859B1 (ko) 2011-11-24 2011-11-24 코어/쉘 구조를 갖는 열전 나노와이어의 제조 방법

Publications (1)

Publication Number Publication Date
WO2013077505A1 true WO2013077505A1 (ko) 2013-05-30

Family

ID=48469922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002566 WO2013077505A1 (ko) 2011-11-24 2012-04-05 코어/쉘 구조를 갖는 열전 나노와이어의 제조 방법

Country Status (3)

Country Link
US (1) US20140342488A1 (ko)
KR (1) KR101303859B1 (ko)
WO (1) WO2013077505A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103647016A (zh) * 2013-12-12 2014-03-19 中国科学院半导体研究所 基于核壳结构的热电器件制备方法
CN103904209A (zh) * 2014-04-18 2014-07-02 中国科学院半导体研究所 基于纳米线的平面热电器件的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101460500B1 (ko) * 2013-02-27 2014-11-11 한양대학교 에리카산학협력단 칼코지나이드계 나노선을 이용한 열화학 가스 센서 및 그 제조방법
RU2654305C1 (ru) * 2016-12-06 2018-05-17 ООО "НПО "Синергетика" Термоэлектрическое устройство для точечного охлаждения
KR102452121B1 (ko) * 2021-01-28 2022-10-11 국방과학연구소 합금기반 n형 열전 나노와이어 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100083551A (ko) * 2009-01-14 2010-07-22 연세대학교 산학협력단 열전 나노와이어 및 그의 제조방법
KR20110041214A (ko) * 2009-10-15 2011-04-21 연세대학교 산학협력단 코어/쉘 구조를 갖는 열전 나노와이어의 제조방법
KR20110125505A (ko) * 2010-05-13 2011-11-21 고려대학교 산학협력단 나노라드 또는 나노와이어로 구성된 벌크 열전소재의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100221894A1 (en) * 2006-12-28 2010-09-02 Industry-Academic Cooperation Foundation, Yonsei University Method for manufacturing nanowires by using a stress-induced growth
JP2010021171A (ja) * 2008-07-08 2010-01-28 Renesas Technology Corp 半導体装置の製造方法およびそれに用いる半導体製造装置
JP4631940B2 (ja) * 2008-07-10 2011-02-16 セイコーエプソン株式会社 スパッタリング装置、及び液晶装置の製造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100083551A (ko) * 2009-01-14 2010-07-22 연세대학교 산학협력단 열전 나노와이어 및 그의 제조방법
KR20110041214A (ko) * 2009-10-15 2011-04-21 연세대학교 산학협력단 코어/쉘 구조를 갖는 열전 나노와이어의 제조방법
KR20110125505A (ko) * 2010-05-13 2011-11-21 고려대학교 산학협력단 나노라드 또는 나노와이어로 구성된 벌크 열전소재의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATTAMATTA, ARVIND ET AL.: "Modeling heat transfer in Bi2Te3-Sb2Te3 nanostructures.", INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER., vol. 52, 2009, pages 860 - 869, XP025817486, DOI: doi:10.1016/j.ijheatmasstransfer.2008.09.004 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103647016A (zh) * 2013-12-12 2014-03-19 中国科学院半导体研究所 基于核壳结构的热电器件制备方法
CN103647016B (zh) * 2013-12-12 2016-04-20 中国科学院半导体研究所 基于核壳结构的热电器件制备方法
CN103904209A (zh) * 2014-04-18 2014-07-02 中国科学院半导体研究所 基于纳米线的平面热电器件的制备方法
CN103904209B (zh) * 2014-04-18 2016-08-24 中国科学院半导体研究所 基于纳米线的平面热电器件的制备方法

Also Published As

Publication number Publication date
KR101303859B1 (ko) 2013-09-04
US20140342488A1 (en) 2014-11-20
KR20130057848A (ko) 2013-06-03

Similar Documents

Publication Publication Date Title
KR101047610B1 (ko) 코어/쉘 구조를 갖는 열전 나노와이어의 제조방법
KR100996675B1 (ko) 열전 나노와이어 및 그의 제조방법
TW554388B (en) Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
KR101680764B1 (ko) 이방성 신장 열전 나노복합물, 그의 제조방법 및 이를 포함한 열전소자
JP4434575B2 (ja) 熱電変換素子及びその製造方法
US20140116491A1 (en) Bulk-size nanostructured materials and methods for making the same by sintering nanowires
US8083986B2 (en) Fabrication of advanced thermoelectric materials by hierarchical nanovoid generation
JP4784947B2 (ja) 圧縮応力を用いたナノワイヤ製造方法
WO2013077505A1 (ko) 코어/쉘 구조를 갖는 열전 나노와이어의 제조 방법
Wu et al. Nanoporous (00l)-oriented Bi2Te3 nanoplate film for improved thermoelectric performance
KR100872332B1 (ko) 인장응력을 이용한 단결정 열전 나노선 제조 방법
JP6502193B2 (ja) シリコン微結晶複合体膜、熱電材料及びそれらの製造方法
TW202239981A (zh) 磁性材料、積層體及積層體之製造方法、以及熱電轉換元件及磁性感應器
KR101151644B1 (ko) 이종구조를 갖는 열전 나노 와이어 제조방법 및 그 열전 나노와이어
Tan et al. Unique hierarchical structure and high thermoelectric properties of antimony telluride pillar arrays
KR20140098353A (ko) 열전성능이 우수한 코어/쉘 구조를 갖는 열전 나노와이어, 및 이를 포함하는 열전 나노소자 제조방법
US20140004643A1 (en) Method of fabricating thermoelectric material and thermoelectric material fabricated thereby
KR101993365B1 (ko) 전이금속 칼코젠 화합물의 제조 방법
US20210002736A1 (en) Monocrystalline metal foil and manufacturing method therefor
Lin Fabrication, characterization and theoretical modeling of Te-doped Bi nanowire systems for thermoelectric applications
TWI765829B (zh) 以碲化鉍為主的n型熱電複合材料及其製法
KR102489412B1 (ko) 카드뮴 아세나이드 나노선 및 이의 제조방법
WO2013131586A1 (en) Three-dimensional nano-sculptured structures of high surface-atom mobility materials and method of making same
JP2002255699A (ja) 環状結晶体及びその製造方法
TWI290592B (en) Single crystal metallic silicide-nanowire and method producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850771

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14360004

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850771

Country of ref document: EP

Kind code of ref document: A1