WO2013076949A1 - Dispositif à cycle de réfrigération et dispositif de production d'eau chaude équipé de celui-ci - Google Patents

Dispositif à cycle de réfrigération et dispositif de production d'eau chaude équipé de celui-ci Download PDF

Info

Publication number
WO2013076949A1
WO2013076949A1 PCT/JP2012/007396 JP2012007396W WO2013076949A1 WO 2013076949 A1 WO2013076949 A1 WO 2013076949A1 JP 2012007396 W JP2012007396 W JP 2012007396W WO 2013076949 A1 WO2013076949 A1 WO 2013076949A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat medium
heat
refrigerant
pressure
Prior art date
Application number
PCT/JP2012/007396
Other languages
English (en)
Japanese (ja)
Inventor
道美 日下
桂 南部
達雄 中山
繁男 青山
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013076949A1 publication Critical patent/WO2013076949A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1012Arrangement or mounting of control or safety devices for water heating systems for central heating by regulating the speed of a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • F24H15/231Temperature of the refrigerant in heat pump cycles at the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/242Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/11Geothermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/20Heat consumers
    • F24D2220/2081Floor or wall heating panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration cycle apparatus and a hot water generating apparatus including the refrigeration cycle apparatus.
  • FIG. 3 is a configuration diagram of a conventional refrigeration cycle apparatus described in Patent Document 1.
  • the conventional refrigeration cycle apparatus includes a compressor 101, a load-side heat exchanger 102 as a condenser that performs heat exchange with a load-side heat medium, an expansion valve 103, and a ground heat source.
  • the refrigerant circuit is configured by connecting the heat source side heat exchanger 104 as an evaporator for performing the above operation in an annular shape.
  • the load-side heat exchanger 102 is configured by connecting a load terminal 105 such as a floor heating panel and a load-side circulation pump (water pump) 106 that circulates the load-side heat medium in an annular shape.
  • the heat source side heat exchanger 104 is configured by connecting a ground heat heat exchanger 107 that collects ground heat and a heat source side circulation pump (brine pump) 108 that circulates the heat medium on the heat source side in a ring shape. ing. Further, a refrigerant temperature detecting means 109 is provided in the refrigerant pipe of the heat source side heat exchanger 104 from the expansion valve 103 to the compressor 101.
  • the refrigerant temperature is detected by the refrigerant temperature detecting means 109, and then the detected refrigerant temperature is compared with the target temperature.
  • the target temperature is the refrigerant temperature of the heat source side heat exchanger 104 (evaporator inlet), which has good COP in the refrigeration cycle apparatus obtained in advance by experiments.
  • the rotational speed of the heat source side circulation pump 108 is maintained.
  • the refrigerant temperature is compared with the target temperature.
  • the refrigerant temperature is lower than the target temperature, the rotation speed of the heat source side circulation pump 108 is increased, and when the refrigerant temperature is higher than the target temperature, the rotation speed of the underground heat circulation pump is decreased.
  • the present invention solves the above-described problem, and suppresses a decrease in suction pressure and an excessive increase in discharge pressure of a compressor, and can improve a start-up performance during heating operation, and hot water provided with the same
  • An object is to provide a generation device.
  • a refrigeration cycle apparatus includes a refrigerant circuit that circulates a refrigerant by connecting a compressor, a radiator, an expansion unit, and an evaporator in an annular manner in order with a refrigerant pipe, and a first heat.
  • a first heat medium circuit which circulates the first heat medium by connecting the medium circulation means, the evaporator, and the heat exchanger for external heat source in an annular manner by a first heat medium pipe; the radiator, the heat utilization terminal;
  • a second heat medium circuit that circulates the second heat medium by connecting the heat medium circulation means in a ring shape with a second heat medium pipe, first temperature detection means for detecting the temperature of the first heat medium, and the refrigerant circuit Or a second temperature detecting means for detecting an ambient temperature of the refrigerant circuit and a control device, wherein the control device detects the temperature detected by the first temperature detecting means by the second temperature detecting means.
  • the first heat medium circulating means the compressor, It is characterized in that to start in order of the serial second heat medium circulation means.
  • the first heat medium circulation means when heating operation is performed in the refrigerant circuit, when the refrigeration cycle apparatus is activated, first the first heat medium circulation means is activated, so that the first heat medium having a higher temperature than the refrigerant circuit flows through the evaporator. , The evaporator temperature rises.
  • the compressor with the second heat medium circulating means stopped the compressed high-temperature refrigerant is not radiated by the radiator, so the high pressure rises and the radiator is heated.
  • the second heat medium circulating means the high-temperature second heat medium staying in the vicinity of the heated radiator circulates and moves to the heat utilization terminal.
  • a refrigeration cycle apparatus that can suppress a decrease in suction pressure of the compressor and an excessive increase in discharge pressure, and can improve start-up performance during heating operation, and a hot water generation apparatus including the refrigeration cycle apparatus.
  • the first invention is a refrigerant circuit that circulates a refrigerant by sequentially connecting a compressor, a radiator, an expansion means, and an evaporator in an annular manner with refrigerant piping, and a first heat medium circulation means, an evaporator, and heat exchange for an external heat source
  • a first heat medium circuit that circulates the first heat medium by connecting the heat exchanger pipe in a ring shape, a heat radiator, a heat utilization terminal, and a second heat medium circulation means connected in a ring shape by the second heat medium pipe
  • a second heat medium circuit for circulating the second heat medium a first temperature detecting means for detecting the temperature of the first heat medium, a second temperature detecting means for detecting the refrigerant circuit or the ambient temperature of the refrigerant circuit, And when the temperature detected by the first temperature detecting means is higher than the temperature detected by the second temperature detecting means, the first heat medium circulating means, the compressor, and the second heat medium
  • the refrigeration cycle apparatus is activated in the order of the
  • the refrigeration cycle apparatus when heating operation is performed in the refrigerant circuit, when the refrigeration cycle apparatus is activated, first the first heat medium circulation means is activated, so that the first heat medium having a higher temperature than the refrigerant circuit flows through the evaporator. , The evaporator temperature rises. Next, by starting the compressor with the second heat medium circulating means stopped, the compressed high-temperature refrigerant is not radiated by the radiator, so the high pressure rises and the radiator is heated. Finally, by starting the second heat medium circulating means, the high-temperature second heat medium staying in the vicinity of the heated radiator circulates and moves to the heat utilization terminal.
  • the compressor can be started with the evaporator temperature raised, and the first heat medium temperature at the evaporator inlet rises, preventing an excessive reduction in the suction pressure of the compressor and improving the reliability of the compressor. It can be improved.
  • the radiator can be used in a state where the high pressure is increased, and the heating operation with good start-up performance is possible.
  • the second invention is the cooling according to the first invention, in which heat is exchanged between the refrigerant flowing from the radiator to the expansion means and the first heat medium flowing from the external heat source heat exchanger to the evaporator.
  • a vessel is provided.
  • a third invention particularly in the first or second invention, there is provided pressure detecting means for detecting a high pressure side pressure of the refrigerant circuit, and the control device has a high pressure side pressure detected by the pressure detecting means of a predetermined value or more.
  • the second heat medium circulating means is activated.
  • the fourth aspect of the invention is a hot water generator particularly comprising the first to third refrigeration cycle devices, wherein the second heat medium is water or antifreeze, and the second heat medium heated by the radiator is heated.
  • a hot water generator characterized by being used for at least one of hot water supply.
  • the type of radiator such as a refrigerant-water heat exchanger, a refrigerant-antifreeze liquid heat exchanger, or the like.
  • the heat medium heated by the radiator can be widely used in heating equipment (hot air machines, radiators, floor heating panels, etc.), hot water supply equipment, and the like.
  • FIG. 1 is a configuration diagram of a hot water generating apparatus using a refrigeration cycle apparatus according to an embodiment of the present invention
  • FIG. 2 is a control flowchart of the apparatus.
  • a refrigerant circuit 1 includes a compressor 2 that compresses a refrigerant, a radiator 3 that radiates heat of the compressed high-pressure refrigerant, a cooler 4 that cools high-temperature refrigerant, and an expansion valve 5 that decompresses and expands the high-pressure refrigerant.
  • the brine circuit 7 includes a brine pump 8 (first heat medium circulation means) that circulates the brine of the first heat medium that pumps up the underground heat, the cooler 4, the evaporator 6, and the underground.
  • the heat heat exchanger 9 heat exchanger for external heat source
  • the cooler 4 performs heat exchange between the refrigerant flowing between the radiator 3 and the expansion means 5 and the first heat medium flowing between the external heat source heat exchanger 9 and the evaporator 6.
  • the water circuit 10 (second heat medium circuit) includes a radiator 3, a water pump 11 (second heat medium circulation means) that circulates hot water absorbed from the radiator 3, and heat utilization that uses the hot water for heating.
  • the terminals 12 are sequentially connected in a ring shape by the second heat medium pipe 10a.
  • the brine circuit 7 has a first temperature sensor 13 (first temperature detecting means) for detecting the brine temperature, and the refrigerant circuit 1 has a second temperature sensor 14 (first temperature sensor for detecting the temperature when the refrigerant circuit 1 is stopped). 2 temperature detection means) and a pressure sensor 15 (pressure detection means) for detecting the high pressure side pressure of the refrigerant.
  • the pressure sensor 15 is used to detect the high pressure, but when a refrigerant that can detect the saturation pressure from the refrigerant temperature, such as R407C or R410A, is used, a temperature sensor is used instead of the pressure sensor. Also good.
  • the temperature of the radiator is measured with a temperature sensor (for example, the radiator outlet temperature), and the high-pressure side pressure is estimated from the relationship between the saturation temperature and the saturation pressure. Further, the control for controlling the operation of the compressor 2, the brine pump 8, and the water pump 11 from the temperature detected by the first temperature sensor 13 and the second temperature sensor 14 and the pressure detected by the pressure sensor 15. A device 16 is provided.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 dissipates heat in the radiator 3 and decreases in temperature to become liquid refrigerant.
  • the high-pressure liquid refrigerant whose temperature has been lowered is further cooled by the cooler 4 and expanded under reduced pressure by the expansion valve 5 to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant is evaporated by the evaporator 6 and vaporized, and is sucked into the compressor 2 again.
  • the heat collected from the ground by the underground heat exchanger 9 circulates using the brine as the second heat medium.
  • the brine further absorbs heat from the refrigerant in the cooler 4 so that the brine temperature rises and flows into the evaporator 6.
  • the evaporator 6 the evaporation of the refrigerant is promoted by the heat collected by the underground heat exchanger 9 and the heat absorbed by the cooler 4.
  • a heat utilization terminal 12 such as a fan convector or floor heating.
  • the control device 16 starts the brine pump 8 and warms the cooler 4 and the evaporator 6. Thereafter, the compressor 2 is started. After the compressor 2 is activated, the water pump 11 is activated when the pressure on the high pressure side detected by the pressure sensor 15 exceeds a predetermined value.
  • the brine temperature Tb is measured at the start of the heating operation (step 101).
  • the first temperature sensor 13 for detecting the brine temperature Tb is preferably measured at a location closer to the ground.
  • the brine pump 8 may be started for a short time, and the temperature may be measured after pumping up the underground brine.
  • the refrigerant circuit temperature Tr is measured by the second temperature sensor 14 (step 102).
  • the second temperature sensor 14 for measuring the temperature may be provided in the refrigerant pipe 1 a, the cooler 4, or the evaporator 6 in the vicinity of the evaporator 6.
  • the control device 16 compares the brine temperature Tb with the refrigerant circuit temperature Tr (step 103).
  • step 103 when the brine temperature Tb is higher than the refrigerant circuit temperature Tr, the control device 16 activates the brine pump 8 (step 104).
  • the high temperature brine flows into the cooler 4 and the evaporator 6, and the temperatures of the cooler 4 and the evaporator 6 can be raised.
  • step 105 By starting the compressor 2 with the control device 16 in this state (step 105), an excessive decrease in the suction pressure of the refrigerant sucked into the compressor 2 can be prevented, and reliability can be ensured.
  • the temperature of the cooler 4 is also rising, the discharge pressure of the refrigerant discharged from the compressor 2 can be quickly raised.
  • the high-pressure side pressure Pd here, the compressor discharge pressure
  • the control device 16 compares the measured discharge pressure Pd with a preset target discharge pressure Po (step 107).
  • the target discharge pressure Po is a pressure that can secure a temperature at which the heat utilization terminal 12 does not circulate cold water or cold air and does not cause discomfort, and is a pressure that is not excessively high. If the discharge pressure Pd is equal to or higher than the target discharge pressure Po in step 7, it is determined that the heat radiator 3 can sufficiently exchange heat with the water circuit 10 to supply hot water, and the control device 16 activates the water pump (step 108). Thereby, while the start-up performance of heating operation can be improved, an excessive increase in the discharge pressure Pd can be prevented, and the reliability of the compressor 2 can be secured at the same time.
  • the process returns to step 106 and waits for the water pump 11 to start.
  • the control device 16 does not start the brine pump 8 and compresses it to avoid cooling the cooler 4 and the evaporator 6 with brine.
  • the machine 2 is activated first (step 109). Thereafter, the control device 16 starts the brine pump 8 in a state where the suction pressure of the compressor 2 is stable (step 110), and starts the heat absorption from the ground heat through the brine in the evaporator 6. Thereafter, the discharge pressure Pd is measured in the same manner as in steps 106 to 108 (step 111).
  • the control device 16 compares the measured discharge pressure Pd with a preset target discharge pressure Po (step 112). If the discharge pressure Pd is equal to or higher than the target discharge pressure Po in step 112, it is determined that heat can be exchanged with the water circuit 10 by the radiator 3 and hot water can be supplied, and the control device 16 activates the water pump 11 (step 113). Thereby, while the start-up performance of heating operation can be improved, an excessive increase in the discharge pressure Pd can be prevented, and the reliability of the compressor 2 can be secured at the same time.
  • step 101 to step 113 By repeating step 101 to step 113 as described above, even if the refrigerant circuit temperature Tr has decreased, first, the temperature of the evaporator 6 is increased, or compression is performed without decreasing the temperature of the evaporator 6. Since the machine 2 can be started, an excessive decrease in the suction pressure can be prevented, and the reliability of the compressor 2 can be ensured. Moreover, since the compressor 2 can be started while raising the temperature of the cooler 4, the discharge pressure Pd can be quickly raised, and the startup performance of the heating operation can be improved and the operation start time can be shortened. it can. Furthermore, since the water pump 11 is started after the discharge pressure Pd of the compressor 2 reaches a predetermined discharge pressure, an excessive increase in the discharge pressure Pd of the compressor 2 can be prevented. Reliability can be ensured.
  • the refrigeration cycle apparatus prevents an excessive decrease in the suction pressure at the start of heating operation, an improvement in start-up performance, and an excessive increase in the discharge pressure even when the temperature of the refrigerant circuit is low. It can be applied to applications such as general air conditioners, heat pump hot water heaters, large-scale geothermal heat pump heaters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

Lorsque la température de la saumure Tb qui est détectée par une première sonde de température (13) est supérieure à la température (la température du circuit de fluide frigorigène Tr) d'un circuit de fluide frigorigène (1) tel que détectée par une seconde sonde de température (14), un dispositif de commande (16) démarre une pompe à saumure (8), qui réchauffe un refroidisseur (4) et un évaporateur (6), puis il démarre un compresseur (2). Une fois le compresseur (2) démarré, lorsque la pression côté haute pression qui est détectée par un capteur de pression (15) est supérieure ou égale à une valeur prescrite, le dispositif de commande démarre une pompe à eau (11). De la sorte, il est possible d'empêcher toute chute excessive de la pression d'aspiration et la fiabilité du compresseur (2) peut être garantie. D'autre part, le compresseur (2) peut être démarré tout en augmentant la température du refroidisseur (4), de sorte que la pression de refoulement Pd peut être augmentée rapidement et la performance de démarrage de l'opération de chauffage peut être améliorée.
PCT/JP2012/007396 2011-11-24 2012-11-19 Dispositif à cycle de réfrigération et dispositif de production d'eau chaude équipé de celui-ci WO2013076949A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-256228 2011-11-24
JP2011256228A JP2013108720A (ja) 2011-11-24 2011-11-24 冷凍サイクル装置およびそれを備えた温水生成装置

Publications (1)

Publication Number Publication Date
WO2013076949A1 true WO2013076949A1 (fr) 2013-05-30

Family

ID=48469416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007396 WO2013076949A1 (fr) 2011-11-24 2012-11-19 Dispositif à cycle de réfrigération et dispositif de production d'eau chaude équipé de celui-ci

Country Status (2)

Country Link
JP (1) JP2013108720A (fr)
WO (1) WO2013076949A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104154663A (zh) * 2014-08-27 2014-11-19 成都前锋电子有限责任公司 基于恒温燃气热水器的温度传感器主动冗余方法及系统
EP2827082A1 (fr) * 2013-07-16 2015-01-21 Robert Bosch Gmbh Procédé de commande d'un compresseur d'une pompe à chaleur
JP2016145664A (ja) * 2015-02-06 2016-08-12 ジオシステム株式会社 地中熱熱交換装置および地中熱熱交換装置の制御方法
EP3015794A4 (fr) * 2013-06-24 2017-04-19 LG Chem, Ltd. Appareil de récupération de chaleur
WO2017157808A1 (fr) * 2016-03-14 2017-09-21 Efficient Energy Gmbh Installation de pompes à chaleur comprenant des échangeurs de chaleur, procédé pour faire fonctionner une installation de pompes à chaleur et procédé pour réaliser une installation de pompes à chaleur
WO2017157805A1 (fr) * 2016-03-14 2017-09-21 Efficient Energy Gmbh Installation de pompes à chaleur comprenant des pompes, procédé pour faire fonctionner une installation de pompes à chaleur et procédé pour réaliser une installation de pompes à chaleur
CN111750481A (zh) * 2019-03-27 2020-10-09 日立江森自控空调有限公司 一种空调控制方法和空调系统
CN114502897A (zh) * 2019-09-30 2022-05-13 大金工业株式会社 热处理系统
WO2022258220A1 (fr) * 2021-06-08 2022-12-15 Gea Refrigeration Netherlands N.V. Agencement d'échangeur de chaleur pour une pompe à chaleur et pompe à chaleur le comprenant

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353187B (zh) * 2013-06-21 2015-07-29 浙江理工大学 套管翅片换热器热水空调设备
CN103542534B (zh) * 2013-10-08 2016-03-02 广东美的暖通设备有限公司 热泵热水器的控制方法、控制装置及热泵热水器
CN106802006A (zh) * 2017-01-22 2017-06-06 广州市华德工业有限公司 一种蒸发式冷凝空调器及其控制方法、系统
JP6859813B2 (ja) 2017-03-31 2021-04-14 ブラザー工業株式会社 画像記録装置
JP2021014201A (ja) * 2019-07-12 2021-02-12 トヨタ自動車株式会社 車載温調装置
CN111189263A (zh) * 2020-01-13 2020-05-22 上海应用技术大学 高效节能型空气源热泵

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249468A (ja) * 2009-04-20 2010-11-04 Corona Corp 地中熱ヒートポンプ装置
JP2011007343A (ja) * 2009-06-23 2011-01-13 Corona Corp 地中熱利用ヒートポンプ式給湯機
JP2011094840A (ja) * 2009-10-28 2011-05-12 Corona Corp ヒートポンプ装置
JP2011226660A (ja) * 2010-04-15 2011-11-10 Corona Corp 地中熱ヒートポンプ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249468A (ja) * 2009-04-20 2010-11-04 Corona Corp 地中熱ヒートポンプ装置
JP2011007343A (ja) * 2009-06-23 2011-01-13 Corona Corp 地中熱利用ヒートポンプ式給湯機
JP2011094840A (ja) * 2009-10-28 2011-05-12 Corona Corp ヒートポンプ装置
JP2011226660A (ja) * 2010-04-15 2011-11-10 Corona Corp 地中熱ヒートポンプ装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3015794A4 (fr) * 2013-06-24 2017-04-19 LG Chem, Ltd. Appareil de récupération de chaleur
EP2827082A1 (fr) * 2013-07-16 2015-01-21 Robert Bosch Gmbh Procédé de commande d'un compresseur d'une pompe à chaleur
CN104154663A (zh) * 2014-08-27 2014-11-19 成都前锋电子有限责任公司 基于恒温燃气热水器的温度传感器主动冗余方法及系统
CN106052139A (zh) * 2014-08-27 2016-10-26 成都前锋电子有限责任公司 基于恒温燃气热水器的温度传感器主动冗余系统
CN104154663B (zh) * 2014-08-27 2016-11-23 成都前锋电子有限责任公司 基于恒温燃气热水器的温度传感器主动冗余方法
CN106052139B (zh) * 2014-08-27 2018-11-30 成都前锋电子有限责任公司 基于恒温燃气热水器的温度传感器主动冗余系统
JP2016145664A (ja) * 2015-02-06 2016-08-12 ジオシステム株式会社 地中熱熱交換装置および地中熱熱交換装置の制御方法
WO2017157808A1 (fr) * 2016-03-14 2017-09-21 Efficient Energy Gmbh Installation de pompes à chaleur comprenant des échangeurs de chaleur, procédé pour faire fonctionner une installation de pompes à chaleur et procédé pour réaliser une installation de pompes à chaleur
WO2017157805A1 (fr) * 2016-03-14 2017-09-21 Efficient Energy Gmbh Installation de pompes à chaleur comprenant des pompes, procédé pour faire fonctionner une installation de pompes à chaleur et procédé pour réaliser une installation de pompes à chaleur
CN111750481A (zh) * 2019-03-27 2020-10-09 日立江森自控空调有限公司 一种空调控制方法和空调系统
CN114502897A (zh) * 2019-09-30 2022-05-13 大金工业株式会社 热处理系统
WO2022258220A1 (fr) * 2021-06-08 2022-12-15 Gea Refrigeration Netherlands N.V. Agencement d'échangeur de chaleur pour une pompe à chaleur et pompe à chaleur le comprenant

Also Published As

Publication number Publication date
JP2013108720A (ja) 2013-06-06

Similar Documents

Publication Publication Date Title
WO2013076949A1 (fr) Dispositif à cycle de réfrigération et dispositif de production d'eau chaude équipé de celui-ci
JP5042058B2 (ja) ヒートポンプ式給湯用室外機及びヒートポンプ式給湯装置
JP5524571B2 (ja) ヒートポンプ装置
JP5094942B2 (ja) ヒートポンプ装置
JP2013096670A (ja) 冷凍サイクル装置及び温水生成装置
JP2014196849A (ja) ヒートポンプ給湯装置
JP2014169854A (ja) 冷凍サイクル装置およびそれを備えた温水生成装置
JP5300806B2 (ja) ヒートポンプ装置
JP2006517643A (ja) 蒸気圧縮システムの超臨界圧力調整
JP5934916B2 (ja) 冷凍サイクル装置及びそれを備えた温水生成装置
JP2013104624A (ja) 冷凍サイクル装置及び温水生成装置
JP2013190186A (ja) ヒートポンプ式給湯機
JP5176474B2 (ja) ヒートポンプ給湯装置
KR20130102478A (ko) 히트펌프식 급탕장치
JP5052631B2 (ja) ヒートポンプ式温水供給装置
JP2014009829A (ja) 冷凍サイクル装置及びそれを備えた温水生成装置
JP2008224067A (ja) ヒートポンプ給湯装置
JP2009281629A (ja) ヒートポンプ給湯装置
JP6978242B2 (ja) 冷媒回路装置
JP2011027299A (ja) 貯湯式暖房装置
JP2014013098A (ja) 冷凍サイクル装置及びそれを備えた温水生成装置
JP2009085476A (ja) ヒートポンプ給湯装置
JP2014020581A (ja) ヒートポンプ装置
JP5793715B2 (ja) 空気調和装置
JP2012017945A (ja) 給湯装置およびその給湯制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851559

Country of ref document: EP

Kind code of ref document: A1