WO2013075312A1 - 一种抛光装置 - Google Patents

一种抛光装置 Download PDF

Info

Publication number
WO2013075312A1
WO2013075312A1 PCT/CN2011/082853 CN2011082853W WO2013075312A1 WO 2013075312 A1 WO2013075312 A1 WO 2013075312A1 CN 2011082853 W CN2011082853 W CN 2011082853W WO 2013075312 A1 WO2013075312 A1 WO 2013075312A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
polishing apparatus
polishing
unit
grid
Prior art date
Application number
PCT/CN2011/082853
Other languages
English (en)
French (fr)
Inventor
王君林
王绍治
刘健
马占龙
张玲花
Original Assignee
中国科学院长春光学精密机械与物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春光学精密机械与物理研究所 filed Critical 中国科学院长春光学精密机械与物理研究所
Priority to PCT/CN2011/082853 priority Critical patent/WO2013075312A1/zh
Publication of WO2013075312A1 publication Critical patent/WO2013075312A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/31Processing objects on a macro-scale
    • H01J2237/3151Etching

Definitions

  • the present invention relates to a polishing apparatus for polishing a surface to be polished. Background technique
  • the present invention provides a polishing apparatus according to the present invention, which can be operated under a normal atmospheric atmosphere, avoiding the use of a vacuuming device, thereby simplifying operation and improving processing efficiency.
  • it uses physical sputtering of ions, does not generate harmful gases, and does not cause environmental pollution.
  • the polishing apparatus includes: a gas supply unit, an ionization unit, an ion acceleration unit, and a nozzle; the gas supply unit supplies a gas of a certain pressure and flow rate to the ionization unit; the ionization a unit ionizes the gas to form an ion beam; the ion beam includes electrons and positive ions, the ion acceleration unit absorbs electrons in the ion beam, and accelerates positive ions in the ion beam; The positive ions strike the workpiece surface through the nozzle to produce sputtering.
  • the ionization unit comprises a plasma showerhead, a plasma anode and a plasma cathode; the plasma anode and the plasma cathode are disposed in the plasma showerhead; the plasma anode is connected to an anode of a high voltage RF power source; the plasma cathode is a cathode connection of a high voltage radio frequency power source; an insulator is disposed between the plasma anode and the plasma cathode to preferably separate the insulator, the insulator is a cylinder, and at least one through hole is provided on the outer circumference thereof for plasma gas by.
  • the ion acceleration unit includes a screen grid and an acceleration grid, the screen grid is connected to a positive pole of the high voltage DC power source, the acceleration grid is connected to a cathode of the high voltage DC power source, and a potential of the screen grid is higher than the The potential of the gate is accelerated to accelerate the positive ions; the electrons are preferably provided with an insulating pad between the screen and the accelerating gate.
  • the screen grid and the acceleration grid are concave spherical, and the screen grid and the acceleration grid are uniformly provided with small holes, and the holes are opposite to each other and focus the ion beam.
  • the polishing apparatus operates in a normal atmospheric environment.
  • the polishing apparatus further includes a frame supporting the ionization unit and the nozzle; and the polishing apparatus is mounted on an actuator of the numerical control machine tool by the frame.
  • the voltage of the ion acceleration unit can be adjusted.
  • the plasma shower head is an insulator
  • the ion acceleration unit is connected to the ionization unit; and the ion acceleration unit is connected to the nozzle.
  • the distance and angle of the polishing device to the surface of the workpiece are the same as when the test piece is processed.
  • the polishing apparatus provided in accordance with the present invention has at least one aspect of the following advantageous effects: Since the polishing apparatus according to the present invention operates in a normal atmospheric environment, vacuuming can be omitted The preparation and sealing structure, the system structure is greatly simplified, and the cost is also reduced; the polishing device according to the invention can be directly operated in a normal pressure atmosphere, avoiding the process steps such as vacuuming, simplifying the operation, and greatly reducing the preparation time. At the same time, the production efficiency is also improved; 3) The plasma used in the polishing apparatus according to the present invention is close to the room temperature, does not raise the surface temperature of the workpiece, avoids the occurrence of thermal deformation, and can process various materials. DRAWINGS
  • Figure 1 is a schematic view of a polishing apparatus in accordance with the present invention.
  • FIG. 2 is a partial axial cross-sectional view of an ionization unit in accordance with the present invention. detailed description
  • Figure 1 is a schematic view of a polishing apparatus in accordance with the present invention
  • Figure 2 is a partial axial cross-sectional view of an ionization unit in accordance with the present invention.
  • a polishing apparatus includes: a gas supply unit 1, an ionization unit, an ion acceleration unit, and a nozzle 10; as shown in Fig. 1, according to a preferred embodiment of the present invention, the gas supply unit 1 will have a certain pressure And a flow of gas to the ionization unit; the ionization unit ionizes the gas to form an ion beam; the ion beam includes electrons and positive ions, the ion acceleration unit absorbs electrons in the ion beam, and the ion beam The positive ions are accelerated; the accelerated positive ions strike the surface of the workpiece 16 through the nozzle 10 to cause sputtering.
  • the gas supply unit 1 may include a gas cylinder, a pressure reducing valve, a mass flow meter, etc., after the high pressure gas is depressurized by the pressure reducing valve, the flow rate of the inflowing gas is precisely controlled by the mass flow meter, and the gas here may be helium gas, argon gas or Nitrogen. Further, the gas supply unit 1 can supply the gas into the ionization unit through the flexible tube 4. Other gas supply units can also be used by those skilled in the art.
  • the ionization unit includes a plasma showerhead 8, a plasma anode 6, and a plasma cathode 7; a plasma anode 6 and a plasma cathode 7 are disposed in the plasma showerhead 8; a plasma anode 6 is connected to an anode of the high voltage RF power source 2; The cathode of the high voltage RF power source 2 is connected; an insulator 5 is provided between the plasma anode 6 and the plasma cathode 7 to isolate the two.
  • the plasma anode 6 may be a cylinder
  • the plasma cathode 7 may be a cylindrical body
  • the insulator 5 is a cylinder having at least one through hole in the outer periphery for plasma gas to pass therethrough.
  • the power of the high-voltage radio frequency power source 2 is adjusted in the range of 20-800 W.
  • the power is large, the energy of the plasma obtained is higher, and it is easier to sputter-removal the surface of the workpiece.
  • the plasma showerhead 8 is an insulator, the material of which may be a polymer or an insulating ceramic, and a channel formed therein for facilitating the passage of the connecting wires.
  • the ion acceleration unit includes a screen grid 11 and an acceleration grid 14, the screen grid 11 is connected to the anode of the high voltage DC power source 3, the acceleration grid 14 is connected to the cathode of the high voltage DC power source 3, and the screen grid 11 is The potential is higher than the potential of the acceleration grid 14 so that the positive ions are accelerated; the electrons are absorbed by the screen 11.
  • an insulating pad 13 is disposed between the screen 11 and the acceleration grid 14.
  • the screen 11 and the acceleration grid 13 are concave in shape, and the screen 11 and the acceleration grid 14 are uniformly provided with small holes which are opposed to each other and focus the ion beam.
  • the base material of the screen 11 and the acceleration grid 14 is molybdenum.
  • the screen 11 and the acceleration grid 14 may be connected by screws 15 and fixed to the plasma head 8, and an insulating pad 12 may be disposed between the screen 11 and the plasma head 8.
  • the screw 15 may be Made of metal or non-metal insulating material, if the screw 15 is made of a metal material, a layer of insulating material is provided between the screw 15 and the inner wall of the fixing hole of the accelerating grid 14, thereby avoiding the possibility of occurrence between the screen 11 and the accelerating grid 14. Short circuit.
  • the accelerating voltage between the screen 11 and the accelerating grid 14 is adjusted in the range of 500-5000V. When the accelerating voltage is large, the energy obtained by the positive ions is higher and the removal efficiency is also higher. Further, by using the internal passage of the plasma head, the connection wires can connect the screen 11 and the acceleration grid 14 to the high voltage DC power source 3.
  • the polishing apparatus may further comprise a frame 9, the frame 9 supporting the ionization unit and the nozzle 10; the polishing apparatus is mounted on the actuator of the numerically controlled machine tool by means of the frame 9, and the ion acceleration unit is connected to the nozzle 10.
  • a method of polishing a workpiece according to the polishing apparatus of the present invention comprising the steps of: 1) polishing the test piece for a period of time using the polishing apparatus; 2) stopping polishing, detecting the test piece, obtaining the polishing The corresponding removal function of the device / 3)
  • the workpiece to be machined is tested to obtain the surface error z m (x ⁇ ) of the workpiece to be machined ; 4)
  • the Fourier transform is performed: 'M" F , W; i ) 'G , W , and the deformation is : ( ⁇ y ⁇ H ⁇ ⁇ ) / ⁇ ⁇ ), and then Fourier Inverse transformation, obtaining a dwell time function g(x, y) ; 5) performing path planning according to a dwell time function; 6) performing a path planning by a numerically controlled machine tool equipped with the polishing device, using the polishing device to process The workpiece is polished; 7) The surface shape of the processed part is detected. If the requirement is not met, repeat the processing from step 4) until the requirement is met.
  • the dwell time function means: in optical processing, polishing
  • the grinding heads are not necessarily the same in different areas of the machined optical surface. Mathematically describing the change in residence time at these different locations is a residence time function.
  • the distance and angle of the polishing device to the surface of the workpiece are the same as those at the time of processing the test piece.
  • the numerical control machine tool can be adjusted to align the device with the test piece, and the nozzle is kept at a large distance from the surface of the test piece, and the RF power source is preheated, for example, preheating.
  • the time is 5 ⁇ 10 minutes; open the plasma gas bottle and adjust the flow rate within l ⁇ 25L/min; when the discharge chamber of the plasma nozzle is filled with plasma gas and the flow is stable, start the RF power supply 2 and gradually increase its power until the nozzle appears.
  • a stable plasma jet a DC voltage is applied between the screen 11 and the accelerating grid 14, so that the positive ions are accelerated after passing, and the accelerating voltage is adjusted to a desired value; and the Faraday cup is sampled along the radial points of the plasma flame, Thereby, the shape, charge distribution and symmetry of the plasma flame are obtained, and the numerical control machine tool is controlled to keep the plasma nozzle and the surface of the test piece at a small distance and unchanged.
  • Those skilled in the art can also adjust the preparation work before the above processing as needed.
  • the distance between the nozzle 10 and the surface of the workpiece to be processed can be adjusted between l-300 mm.
  • the distance is small, the energy is concentrated, the removal speed is fast, and when the distance is large, the energy is dispersed and the removal speed is slow.
  • the plasma jet 8 can be placed horizontally, or the workpiece can be scanned at an angle.
  • a raster scan path can be used to machine from the top of the workpiece to the underside of the workpiece.
  • the gas enters the nozzle through the flexible tube, and under the action of the high-voltage radio frequency power source, a discharge is generated between the anode and the cathode of the plasma nozzle to ionize the gas into a plasma, and the plasma is often Pressing occurs, which is a cold plasma.
  • the thermal velocity of the electron is much larger than the thermal velocity of the positive ion, that is, the number of electrons reaching the wall of the hole per unit time is much larger than the number of ions reaching the wall of the hole, so A net negative charge builds up at the wall of the screen hole and repels subsequent electrons, attracting positive ions, thereby forming a space charge layer composed of positive ions, ie, an ion sheath.
  • the ion sheath can cause the screen to extract ions from the plasma, and the extracted ions are accelerated to form an ion beam at a high voltage of the screen to the acceleration grid.
  • the ion beam with higher energy reaches the surface of the workpiece and collides with atoms in the shallow layer of the surface continuously, transferring some momentum and energy to the shallow atoms in the surface during the collision. If the kinetic energy obtained by the superficial atom of the surface is greater than the lattice displacement energy that needs to be overcome to move from its position to the surface and the surface binding energy required to detach from the surface, it will be emitted from the solid surface, also known as sputtering. This will result in the removal of surface atomic magnitude.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

本发明提供一种抛光装置,其包括:气体供给单元、离子化单元、离子加速单元、以及喷嘴;所述气体供给单元将一定压力和流量的气体供给至离子化单元;所述离子化单元将所述气体离子化以形成离子束;所述离子束包括电子和正离子,所述离子加速单元将所述离子束中的电子吸收,以及将所述离子束中的正离子加速;加速后的正离子通过喷嘴撞击工件表面产生溅射。利用本发明的抛光装置,其可以在常压大气环境下进行抛光,提供了抛光操作的便利性。

Description

一种抛光装置
技术领域
本发明涉及一种抛光装置, 其用于对被抛光表面进行抛光处理。 背景技术
在光学加工领域,需要对光学元件进行抛光处理,现有技术中的离子 束抛光设备, 其抛光操作需要在高真空下进行, 因此需要抽真空设备, 其 对密封要求高, 从而导致加工之前的准备时间长, 加工效率底; 此外, 常 用的 Kaufman离子源只能在高真空条件下工作且产生的离子温度较高, 在高速轰击工件表面时, 会使工件表面温度升高, 产生热变形。 发明内容
为了解决上述问题的至少一个方面,本发明提出一种抛光装置,根据 本发明所提供的抛光装置,其可以在常压大气环境下操作,避免使用抽真 空设备,从而使操作简单,加工效率提高,另外,其使用离子的物理溅射, 不产生有害气体, 不会造成环境污染。
具体地, 根据本发明的抛光装置, 其包括: 气体供给单元、 离子化 单元、离子加速单元、 以及喷嘴; 所述气体供给单元将一定压力和流量的 气体供给至离子化单元; 所述离子化单元将所述气体离子化以形成离子 束;所述离子束包括电子和正离子,所述离子加速单元将所述离子束中的 电子吸收, 以及将所述离子束中的正离子加速;加速后的正离子通过喷嘴 撞击工件表面产生溅射。
优选地, 所述离子化单元包括等离子喷头、 等离子阳极以及等离子 阴极;所述等离子阳极和等离子阴极设置在所述等离子喷头内;所述等离 子阳极与高压射频电源的阳极连接;所述等离子阴极与高压射频电源的阴 极连接;所述等离子阳极和所述等离子阴极之间设有绝缘体, 以使两者隔 优选地, 所述绝缘体为圆柱体, 其外周设有至少一个通孔, 用于等 离子气体通过。 优选地, 所述离子加速单元包括屏栅和加速栅, 所述屏栅与高压直 流电源的正极连接,所述加速栅与高压直流电源的负极连接,并且所述屏 栅的电位高于所述加速栅的电位, 以使正离子被加速;所述电子由所述屏 优选地, 所述屏栅与所述加速栅之间设有绝缘垫。
优选地, 所述屏栅和加速栅为凹球形, 以及所述屏栅和所述加速栅 均匀设有小孔, 所述孔相对并使离子束聚焦。
优选地, 所述抛光装置在常压大气环境下工作。
优选地, 所述抛光装置还包括框架, 所述框架支撑所述离子化单元 以及喷嘴; 利用所述框架将所述抛光装置安装于数控机床的执行机构上。
优选地, 所述离子加速单元的电压能够调节。
优选地, 所述等离子喷头为绝缘体, 所述离子加速单元与所述离子 化单元连接; 所述离子加速单元与所述喷嘴连接。
另外一个方面, 本发明提供一种使用上述抛光装置对工件进行拋光 的方法, 其包括下述步骤: 1 ) 使用所述抛光装置对试验件进行抛光一段 时间; 2) 停止抛光, 对试验件进行检测, 获得与所述抛光装置相对应的 去除函数 /(X, ; 3 ) 对待加工工件进行检测, 获得待加工工件的面形误 差^ (X, ; 4) 通过如下方法, 计算驻留时间函数: 首先, 计算目标去除 量 Wx^ 'C )- (x,W, 其中 为理想面形误差, 同时要满足卷积 公式 · y) = f x, y) · six, y) = [[/("' v) · ― l" x― v)dudv 式中 g(x, 为驻留时 间函数, 将上式进行傅里叶变换得: = ^Wt,^)'G(^,W"), 变形 得: c^y^ H ^ ' ^ / /^^') , 再对其进行傅里叶逆变换, 得到驻留 时间函数 g(x,W ; 5 ) 根据驻留时间函数进行路径规划; 6) 装配有所述抛 光装置的数控机床执行所述路径规划,利用所述抛光装置对待加工工件进 行抛光; 7)对加工后的加工进行面形检测, 如果不满足要求, 从步骤 4) 开始进行反复加工, 直至满足要求为止。
优选地, 在上述步骤 6) 中, 抛光装置到工件表面的距离和角度均与 加工试验件时相同。
根据本发明所提供的抛光装置具有如下有益效果的至少一个方面: 由于根据本发明的抛光装置在常压大气环境中工作,所以可省去抽真空设 备和密封结构, 系统结构大大简化, 成本也随之降低; 根据本发明的抛光 装置可直接在常压大气环境中操作,避免了抽真空等工艺步骤,使操作简 化, 准备时间大为降低, 同时也提高了生产效率; 3 )根据本发明的抛光装 置所采用的等离子的温度与室温接近,不会使工件表面温度升高,避免了 热变形的产生, 可加工各种材料。 附图说明
图 1为根据本发明的抛光装置的示意图;
图 2为根据本发明的离子化单元的局部轴向截面示意图。 具体实施方式
下面结合附图对本发明进行具体说明:图 1为根据本发明的抛光装置 的示意图, 图 2为根据本发明的离子化单元的局部轴向截面示意图。
根据本发明的抛光装置其包括: 气体供给单元 1、 离子化单元、 离子 加速单元、 以及喷嘴 10; 如图 1所示, 根据本发明的优选的实施方式, 所述气体供给单元 1将一定压力和流量的气体供给至离子化单元;离子化 单元将所述气体离子化以形成离子束;离子束包括电子和正离子,离子加 速单元将所述离子束中的电子吸收, 以及将离子束中的正离子加速;加速 后的正离子通过喷嘴 10撞击工件 16表面产生溅射。
气体供给单元 1 可以包括气体钢瓶、 减压阀、 质量流量计等, 高压 气体经减压阀减压后,通过质量流量计精确控制流入的气体流量,这里的 气体可以是氦气、 氩气或氮气。 此外, 气体供给单元 1可以通过柔性管 4 将气体供给到离子化单元内。本领域技术人员也可以采用其他的气体供给 单元。
其中, 离子化单元包括等离子喷头 8、等离子阳极 6以及等离子阴极 7; 等离子阳极 6和等离子阴极 7设置在所述等离子喷头 8内; 等离子阳 极 6与高压射频电源 2的阳极连接;等离子阴极 Ί与高压射频电源 2的阴 极连接;等离子阳极 6和等离子阴极 7之间设有绝缘体 5,以使两者隔离。 如图 2所示, 等离子阳极 6可以为圆柱体, 等离子阴极 7可以为圆筒体, 绝缘体 5为圆柱体, 其外周设有至少一个通孔, 用于等离子气体通过。根 据本发明优选的实施方式, 高压射频电源 2的功率在 20-800W范围内调 节, 当功率较大时, 所获得的等离子体的能量较高, 更容易使工件表面发 生溅射去除。
根据本发明的优选的实施方式, 等离子喷头 8 为绝缘体, 其材料可 以是高分子或绝缘陶瓷, 以及其内部形成有通道, 便于连接导线穿过。
根据本发明的优选的实施方式, 离子加速单元包括屏栅 11和加速栅 14, 屏栅 11与高压直流电源 3的正极连接, 加速栅 14与高压直流电源 3 的负极连接,并且屏栅 11的电位高于加速栅 14的电位, 以使正离子被加 速; 电子由屏栅 11吸收。
如图 1所示, 屏栅 11与加速栅 14之间设有绝缘垫 13。屏栅 11和加 速栅 13为凹球形, 以及屏栅 11和加速栅 14均匀设有小孔, 所述孔相对 并使离子束聚焦。 优选地, 屏栅 11和加速栅 14的基体材料为钼。
根据本发明的优选地实施方式, 可以通过螺钉 15将屏栅 11 和加速 栅 14连接, 并固定到等离子喷头 8上,在屏栅 11和等离子喷头 8之间设 置绝缘垫 12, 螺钉 15可以由金属或非金属绝缘材料制成, 如果螺钉 15 由金属材料制成的,螺钉 15与加速栅 14的固定孔内壁之间设有绝缘材料 层, 从而避免屏栅 11和加速栅 14之间可能发生短路。 此外, 屏栅 11与 加速栅 14之间的加速电压在 500-5000V范围调整, 当加速电压较大时, 正离子获得的能量较高, 去除效率也较高。另外, 利用等离子喷头的内部 的通道, 连接导线可以将屏栅 11和加速栅 14与高压直流电源 3连接。
此外, 根据本发明的抛光装置还可以包括框架 9, 框架 9支撑离子化 单元以及喷嘴 10;利用框架 9将抛光装置安装于数控机床的执行机构上, 离子加速单元与喷嘴 10连接。
根据本发明的抛光装置对工件进行抛光的方法,其包括下述步骤: 1 ) 使用所述抛光装置对试验件进行抛光一段时间; 2 ) 停止抛光, 对试验件 进行检测, 获得与所述抛光装置相对应的去除函数/ 3 ) 对待加工 工件进行检测, 获得待加工工件的面形误差 zm(x^) ; 4) 通过如下方法, 计算驻留时间函数: 首先, 计算目标去除量 (x= z,,,(x, — , 其中 z"(x^y) 为 理 想 面 形 误 差 , 同 时 要 满 足 卷 积 公 式 : h" (χ' = ,(x, W · g(x' = ίί,("' v) · S(x - ^ - ^dudv 中 g(x, y . 留时 f -, ¾ 数, 将上式进行傅里叶变换得: ' M" F ,W;i)'G ,W , 变形得: (^y^ H ^ ^) / ^^ ^), 再对其进行傅里叶逆变换, 得到驻留时间 函数 g(x,y) ; 5 ) 根据驻留时间函数进行路径规划; 6)装配有所述抛光装 置的数控机床执行所述路径规划,利用所述抛光装置对待加工工件进行抛 光; 7) 对加工后的加工进行面形检测, 如果不满足要求, 从步骤 4) 开 始进行反复加工, 直至满足要求为止。其中, 驻留时间函数是指: 在光学 加工中,抛光磨头在被加工光学表面不同区域,停留时间是不一定相同的, 用数学来描述这种不同位置下停留时间的变化, 就是驻留时间函数。
在上述步骤 6)中, 抛光装置到工件表面的距离和角度均与加工试验 件时相同。
根据本发明的优选地实施方式, 在对试验件加工之前, 可以先调整 数控机床将本装置对准试验件,并使喷嘴与试验件表面保持较大距离,预 热射频电源, 例如, 预热时间为 5~10分钟; 打开等离子气体瓶, 调节流 量在 l〜25L/min之内;当等离子喷头的放电腔内充满等离子气体且流动稳 定时, 启动射频电源 2并逐渐增加其功率至喷嘴出现稳定的等离子射流; 在屏栅 11与加速栅 14间加入直流电压, 使得正离子在通过后获得加速, 调节其加速电压至所需值; 使用法拉第杯沿等离子焰的径向各点进行采 样, 从而获得等离子焰的形状、 电荷分布及对称性等信息, 控制数控机床 使等离子喷头与试件表面保持较小距离且不变。本领域技术人员也可以根 据需要调整上述加工之前的准备工作。
另外,喷嘴 10距离待加工工件的表面的距离可以在 l-300mm之间调 整, 距离小时, 能量较集中, 去除速度快, 距离大时, 能量较分散, 去除 速度慢。 加工时, 如果工件竖直放置, 等离子喷头 8可以水平放置, 也可 以倾斜某一个角度对工件进行扫描。在上述的路径规划步骤内,可以采用 光栅扫描式路径自工件上方至工件下方进行加工。
根据对本发明的抛光装置的工作原理简要说明如下: 气体通过柔性 管进入喷头,在高压射频电源的作用下,等离子喷头阳极和阴极之间产生 放电使气体电离为等离子体,这种等离子体在常压下产生,其为冷等离子 体。等离子体在到达屏栅时,由于电子的热速度要远大于正离子的热速度, 即单位时间内到达孔壁上的电子数要远大于到达孔壁上的离子个数,所以 在屏栅孔壁处会形成净负电荷积累并排斥后续电子、吸引正离子,从而形 成一个由正离子构成的空间电荷层, 即离子鞘。离子鞘可以使屏栅从等离 子体中抽取离子,抽取的离子在屏栅对加速栅的高电压下获得加速形成离 子束。具有较高能量的离子束到达工件表面与表面浅层内的原子不断地进 行碰撞,在碰撞中将一些动量和能量传递给表面浅层原子。若表面浅层原 子获得的动能大于从它的位置移动到表面所需要克服的晶格位移能和从 表面脱离所需要的表面结合能时, 它将从固体表面发射出去, 也称溅射。 这样就会获得表面原子量级的去除。

Claims

权 利 要 求
1. 一种抛光装置, 其包括:
气体供给单元、 离子化单元、 离子加速单元、 以及喷嘴;
所述气体供给单元将一定压力和流量的气体供给至离子化单元; 所述离子化单元将所述气体离子化以形成离子束;
所述离子束包括电子和正离子, 所述离子加速单元将所述离子束中 的电子吸收, 以及将所述离子束中的正离子加速;
加速后的正离子通过喷嘴撞击工件表面产生溅射。
2. 根据权利要求 1所述的抛光装置, 其中,
所述离子化单元包括等离子喷头、 等离子阳极以及等离子阴极; 所 述等离子阳极和等离子阴极设置在所述等离子喷头内;
所述等离子阳极与高压射频电源的阳极连接;
所述等离子阴极与高压射频电源的阴极连接;
所述等离子阳极和所述等离子阴极之间设有绝缘体, 以使两者隔离。
3. 根据权利要求 2所述的抛光装置, 其中, 所述绝缘体为圆柱体, 其外周设有至少一个通孔, 用于等离子气体通过。
4. 根据权利要求 1所述的抛光装置, 其中, 所述离子加速单元包括 屏栅和加速栅,所述屏栅与高压直流电源的正极连接,所述加速栅与高压 直流电源的负极连接,并且所述屏栅的电位高于所述加速栅的电位, 以使 正离子被加速; 所述电子由所述屏栅吸收。
5. 根据权利要求 4所述的抛光装置, 其中, 所述屏栅与所述加速栅 之间设有绝缘垫。
6. 根据权利要求 4所述的抛光装置, 其中, 所述屏栅和加速栅为凹 球形, 以及所述屏栅和所述加速栅均匀设有小孔,所述孔相对并使离子束 聚焦。
7. 根据权利要求 1所述的抛光装置, 其中, 所述抛光装置在常压大 气环境下工作。
8. 根据权利要求 1所述的抛光装置, 其中, 所述抛光装置还包括框 架, 所述框架支撑所述离子化单元以及喷嘴;
利用所述框架将所述抛光装置安装于数控机床的执行机构上。
9. 根据权利要求 1所述的抛光装置, 其中, 所述离子加速单元的电 压能够调节。
10. 根据权利要求 1所述的抛光装置, 其中, 所述等离子喷头为绝缘 体, 所述离子加速单元与所述离子化单元连接;
所述离子加速单元与所述喷嘴连接。
11. 一种使用权利要求 1-10所述的抛光装置对工件进行抛光的方法, 其包括下述步骤:
1 ) 使用所述抛光装置对试验件进行抛光一段时间;
2) 停止抛光, 对试验件进行检测, 获得与所述抛光装置相对应的去 除函数 ./(x,y);
3) 对待加工工件进行检测, 获得待加工工件的面形误差 Z„,(x,W;
4) 通过如下方法, 计算驻留时间函数: ·
首先, 计算目标去除量 /7''(x= z"'(x'w- 0 ' , 其中 0, 为理想面 形误差, 同时要满足卷积公式:
hd (X, y) = f (x, y) · g(x, y) = jj, (u, v) · g(x - u,x v)dndv 式中 g^, 为驻留时间函数,
将上式进行傅里叶变换得: ' ) = (^ '^'„),
变形得: ^'^'" H' ^)/^'^'), 再对其进行傅里叶逆变换, 得到驻留时间函数 g(x,w;
5) 根据驻留时间函数进行路径规划;
6) 装配有所述抛光装置的数控机床执行所述路径规划, 利用所述抛 光装置对待加工工件进行抛光;
7) 对加工后的加工进行面形检测, 如果不满足要求, 从歩骤 4) 开 始进行反复加工, 直至满足要求为止。
12. 根据权利要求 11 所述的方法, 其中, 在上述步骤 6) 中, 抛光 装置到工件表面的距离和角度均与加工试验件时相同。
PCT/CN2011/082853 2011-11-24 2011-11-24 一种抛光装置 WO2013075312A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/082853 WO2013075312A1 (zh) 2011-11-24 2011-11-24 一种抛光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/082853 WO2013075312A1 (zh) 2011-11-24 2011-11-24 一种抛光装置

Publications (1)

Publication Number Publication Date
WO2013075312A1 true WO2013075312A1 (zh) 2013-05-30

Family

ID=48469011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082853 WO2013075312A1 (zh) 2011-11-24 2011-11-24 一种抛光装置

Country Status (1)

Country Link
WO (1) WO2013075312A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106181594A (zh) * 2016-08-31 2016-12-07 北京埃德万斯离子束技术研究所股份有限公司 一种亚纳米级离子束抛光设备及抛光方法
CN106404677A (zh) * 2016-08-31 2017-02-15 北京埃德万斯离子束技术研究所股份有限公司 一种痕量分析方法及其前处理方法
CN107414609A (zh) * 2017-09-13 2017-12-01 成都睿坤科技有限公司 延长稳定工作时长的离子束抛光机
CN107457617A (zh) * 2017-09-13 2017-12-12 成都睿坤科技有限公司 具有长期连续工作能力的离子束抛光设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050061783A1 (en) * 2003-08-14 2005-03-24 Rapt Industries, Inc. Systems and methods for laser-assisted plasma processing
CN1983504A (zh) * 2005-12-14 2007-06-20 鸿富锦精密工业(深圳)有限公司 离子源及使用所述离子源的模具抛光装置
CN100406197C (zh) * 2006-07-17 2008-07-30 哈尔滨工业大学 常压等离子体抛光装置
US7459702B2 (en) * 2004-10-26 2008-12-02 Jayant Neogi Apparatus and method for polishing gemstones and the like
CN101659568A (zh) * 2009-09-23 2010-03-03 哈尔滨工业大学 WC、SiC光学模压模具的大气等离子体化学加工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050061783A1 (en) * 2003-08-14 2005-03-24 Rapt Industries, Inc. Systems and methods for laser-assisted plasma processing
US7459702B2 (en) * 2004-10-26 2008-12-02 Jayant Neogi Apparatus and method for polishing gemstones and the like
CN1983504A (zh) * 2005-12-14 2007-06-20 鸿富锦精密工业(深圳)有限公司 离子源及使用所述离子源的模具抛光装置
CN100406197C (zh) * 2006-07-17 2008-07-30 哈尔滨工业大学 常压等离子体抛光装置
CN101659568A (zh) * 2009-09-23 2010-03-03 哈尔滨工业大学 WC、SiC光学模压模具的大气等离子体化学加工方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106181594A (zh) * 2016-08-31 2016-12-07 北京埃德万斯离子束技术研究所股份有限公司 一种亚纳米级离子束抛光设备及抛光方法
CN106404677A (zh) * 2016-08-31 2017-02-15 北京埃德万斯离子束技术研究所股份有限公司 一种痕量分析方法及其前处理方法
CN106404677B (zh) * 2016-08-31 2019-10-25 北京埃德万斯离子束技术研究所股份有限公司 一种痕量分析方法及其前处理方法
CN107414609A (zh) * 2017-09-13 2017-12-01 成都睿坤科技有限公司 延长稳定工作时长的离子束抛光机
CN107457617A (zh) * 2017-09-13 2017-12-12 成都睿坤科技有限公司 具有长期连续工作能力的离子束抛光设备

Similar Documents

Publication Publication Date Title
US9520294B2 (en) Atomic layer etch process using an electron beam
US6933508B2 (en) Method of surface texturizing
JP5600371B2 (ja) 荷電粒子ビーム処理のための保護層のスパッタリング・コーティング
JP6752490B2 (ja) 基板処理方法における欠陥削減
US6730237B2 (en) Focused ion beam process for removal of copper
JP2003521812A (ja) ガスクラスターイオンビーム・スムーザー装置
WO2012151789A1 (zh) 一种激光诱导等离子体注入基材的方法及装置
JP6220749B2 (ja) イオンガン及びイオンミリング装置、イオンミリング方法
WO2013075312A1 (zh) 一种抛光装置
US20170098557A1 (en) Plasma processing device
TW201802934A (zh) 電漿處理裝置
JP5607760B2 (ja) Cvd装置及びcvd方法
KR100626905B1 (ko) 이온 에너지 감쇄
KR100798160B1 (ko) 플라즈마 에칭방법
KR102467978B1 (ko) 가스 클러스터 이온 빔 노즐 조립체
US20200066485A1 (en) Compensated Location Specific Processing Apparatus And Method
KR20170049429A (ko) 정전 척 클리닝 방법
JP2006253190A (ja) 中性粒子ビーム処理装置および帯電電荷の中和方法
Janes et al. Analysis of large‐area beam attacks on surfaces and testing of etching reactions
JPS62149133A (ja) 基板の表面処理装置
TWI766500B (zh) 離子研磨裝置
TW202307903A (zh) 調整氣體團簇離子束系統
KR102644783B1 (ko) 빔 프로세싱 시스템에서 빔 스캔 크기 및 빔 위치를 사용하여 높은 처리량을 위한 방법
KR20040075550A (ko) 샤도우 링의 구조가 개선된 건식식각설비
JP2015215972A (ja) イオンビーム処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876206

Country of ref document: EP

Kind code of ref document: A1