WO2013073760A1 - 갯벌 메타게놈 유래 신규 유전자 및 이로부터 얻어지는 포스포리파제 및 리파제 동시 활성을 보이는 신규 단백질 - Google Patents

갯벌 메타게놈 유래 신규 유전자 및 이로부터 얻어지는 포스포리파제 및 리파제 동시 활성을 보이는 신규 단백질 Download PDF

Info

Publication number
WO2013073760A1
WO2013073760A1 PCT/KR2012/005705 KR2012005705W WO2013073760A1 WO 2013073760 A1 WO2013073760 A1 WO 2013073760A1 KR 2012005705 W KR2012005705 W KR 2012005705W WO 2013073760 A1 WO2013073760 A1 WO 2013073760A1
Authority
WO
WIPO (PCT)
Prior art keywords
phospholipase
lipase
activity
mplag
protein
Prior art date
Application number
PCT/KR2012/005705
Other languages
English (en)
French (fr)
Inventor
윤정훈
이미화
강철형
오기훈
오태광
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to CN201280067563.1A priority Critical patent/CN104471065B/zh
Priority to EP12850464.4A priority patent/EP2784160B1/en
Priority to DK12850464.4T priority patent/DK2784160T3/en
Publication of WO2013073760A1 publication Critical patent/WO2013073760A1/ko
Priority to US14/280,062 priority patent/US9441018B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38627Preparations containing enzymes, e.g. protease or amylase containing lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/23Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a GST-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • C07K2319/41Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation containing a Myc-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • C07K2319/43Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation containing a FLAG-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01032Phospholipase A1 (3.1.1.32)

Definitions

  • the present invention relates to a novel protein exhibiting simultaneous phospholipase and lipase activity, specifically, a gene having both new phospholipase and lipase activity isolated from the metagenome of mud flat soil microorganisms and calcium-dependent phosphate encoded therefrom. It relates to a protein having both lipase and lipase activity.
  • Lipase (glycerol ester hydrolases, EC 3.1.1.3) is a carboxy ester hydrolase in the ⁇ / ⁇ hydrolase family that hydrolyzes or synthesizes long-chain acylglycerols.
  • lipases are present in vivo, involved in fat metabolism, relatively high in organic solvents, do not require coenzymes, and have a broad substrate specificity and relatively high optical specificity. , Pitch removal in the paper industry , Widely used as biocatalyst in bioconversion reaction.
  • lipase-producing microorganisms include Candida sp., Candida sp., Bacillus ⁇ iBaciUus sp., And Penicillium ⁇ Penicilh sp. ), Muw nose genus 01 ⁇ 2 / ⁇ sp.), Rhizopus sp.), Pseudomonas sp.) And iStreptomyces spj.
  • Lysophospholipids which are produced by the hydrolysis of phospholipids by phospholipase, not only act as functional groups in platelet aggregation, but also mediate various physiological activities such as signal transduction, or as plant hormones. It is known to play a role in preventing over-maturation.
  • lysophospholipids have high solubility in water, can form stable emulsions at various hydrogen concentrations and temperatures, and are stable even in the presence of magnesium and calcium silver, and are therefore medicated as emulsifiers. , It is widely used in cosmetics and food industry.
  • lysophospholipids can be produced from phospholipids by phospholipidase, a phospholipid hydrolase in the biochemical pathway, and the electrical process involves phospholipase A in the 1-acyl group or 2'acyl group of phospholipids. This occurs by hydrolyzing the group to produce lysophospho lipids and fatty acids.
  • phospholipase A is an enzyme essential for the synthesis process of phospholipids containing useful fatty acids such as polyunsaturated fatty acids (PUFA) such as DHA or EPA.
  • phospholipases A include a variety of mammals, snakes and bees of toxins, Serratia sp.) And Aspergillus sp.), Streptomyces sp), and Fusarium spp. ⁇ sar / M »sp J has been isolated from microorganisms and used in the food industry, but for further industrial use, much room for improvement in substrate specificity and enzyme stability is required (De Maria et al., 74.290-300, 2007) .
  • the lipase and phospholipase are the only lipases derived from Staphylococcus hyicus, an enzyme known to be active simultaneously on both lipids and phospholipids, despite similar mechanisms.
  • lipase has been studied as an additive for detergents and bleaching agents by hydrolyzing fatty components into fatty acids or glycerol, which are soluble in water, to facilitate the action of surfactants. to be. This is because the fat and oil components are poorly removed in black due to the poor activity of the lipase at low washing temperatures.
  • efforts to discover enzymes with excellent activity or stability have been made mainly for microorganisms that can be cultured, and various microbial enzymes found therefrom are being used industrially. Many recent studies of molecular microbial ecology, however, have demonstrated that more than 99% of the microorganisms present in the spontaneous associations are not identified by conventional culture techniques performed in the laboratory (Amann et al., Microbiol.
  • Metagenome is defined as the collective genome of all microorganisms in nature.
  • the metagenome study consists of separating metagenomes without culturing microorganisms from natural samples, preparing them as libraries, and introducing them into cultivable E. coli.
  • the present inventors isolate a new gene from a metagenomic library of mud flat soil microorganisms in which various microorganisms exist, prepare a vector including the gene, transform the vector into Escherichia coli, and then convert the vector into the transformant.
  • the present invention has been completed by confirming that the protein produced from shows excellent phospholipase and lipase simultaneous activity, and has excellent activity and stability at low temperature and basicity. '
  • An object of the present invention has a novel gene isolated from the metagenome of the mud flat soil microorganism, a recombinant vector comprising the genes, a transformant transfected with the expression vector and a phospholipase and lipase activity encoded from the gene It is to provide a polypeptide.
  • Another object of the present invention is to provide a detergent additive containing a polypeptide having both phospholipase and lipase activity of the present invention as an active ingredient.
  • the present invention described in SEQ ID NO: 5 ' It consists of an acidic sequence and provides a polypeptide having both phospholipase and lipase activity.
  • the present invention also provides a polynucleotide encoding the polypeptide of the present invention.
  • the present invention also provides a recombinant expression vector comprising the polynucleotide of the present invention.
  • the present invention also provides a transformant in which the recombinant expression vector of the present invention is transformed into a host cell.
  • the present invention also provides a detergent additive containing a polypeptide having both phospholipase and lipase activity of the present invention as an active ingredient.
  • the present invention also provides a washing method comprising treating a surface having a polypeptide having both phospholipase and lipase activity of the present invention.
  • the present invention also provides the use of a polypeptide having both phospholipase and lipase activity of the invention in the preparation of a detergent.
  • terms used in the present invention are defined.
  • the term “recombinant expression vector” is a vector capable of expressing a target protein or RNA of interest in a suitable host cell, wherein the polypeptide of interest is operably linked to additional fragments provided for transcription of the expression vector.
  • a linear or circular DNA molecule consisting of fragments that encode, such additional fragments include a promoter and termination sequence, an expression vector comprising one or more replication initiation points, one or more selection markers, polya Denylation signals and the like.
  • Expression vectors are generally derived from plasmid or virus DNA, or contain elements of both.
  • operably linked is a functional linkage between a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein or RNA of interest to perform a general function.
  • promoters and nucleic acid sequences encoding proteins or RNAs may be operably linked to affect expression of the coding nucleic acid sequences.
  • Operative linkages with recombinant vectors are known in the art. It can be prepared using well-known genetic recombination techniques, site-specific DNA cleavage and ligation using enzymes generally known in the art, etc.
  • the present invention will be described in detail. It consists of the amino acid sequence represented by 5, and provides a polypeptide having both phospholipase and lipase activity.
  • the present invention also provides a polynucleotide encoding a polypeptide having both phospholipase and lipase activity as set forth in SEQ ID NO: 5.
  • the phospholipase and lipase exhibit excellent activity at a pH of 5 to 10, more preferably a pH of 6 to 9, and most preferably a pH of 8, but are not limited thereto.
  • the phospholipase and lipase preferably have an active temperature of 3 to 30 ° C, more preferably 5 to 25 ° C, but is not limited thereto.
  • the polynucleotide is preferably composed of the nucleotide sequence set forth in SEQ ID NO: 3, but is not limited thereto.
  • a DNA was extracted from soil samples of the tidal flat and cloned into a fosmid vector to produce a metagenome library, and the library was supplemented with tricaprylin emulsion. It was plated in a solid medium and cultured. Subsequently, the colonies producing the clear ring were searched for recombinant plasmid (pFosPlaG), and the entire sequencing was performed, and these genes were registered in US GenBank with accession number EU285670 (SEQ ID NO: 1).
  • the open reading frame (0RF) corresponding to the 4578 region of the complementary nucleotide number 2881 is a protein coding region having both phospholipase and lipase activity of the present invention, and shows the sequence of 1698 bp of SEQ ID NO: 2
  • the gene region having both phospholipase and lipase activity was determined, and the gene having both phospholipase and lipase activity was named PlaG.
  • the phospholipase / lipase PlaG (protein PlaG) having both phospholipase and lipase activity was compared with a conventional protein using a blast (BLAST) database.
  • the heavy amino and carboxy terminal regions showed homology with the proteins of distinct characteristics.
  • the 167 amino acid residues at the carboxy terminus showed the highest similarity to the phospholipase of Grimontia hollisae CIP 101886 and showed a low homology of 30-35% to the previously reported phospholipase gene population. It has been identified as a novel gene encoding the agent.
  • the homology between the phospholipase / lipase PlaG of the present invention and the amino acid sequence of the similar phospholipase showed that conservative glycine-X-serine-X-glycine (Gly) of ⁇ / ⁇ hydrolase.
  • the 26 amino acid residues at the amino terminus have been identified as secretory signal peptides
  • the 27th alanine residue (Ala) to the 157th glycine residue (Gly) from which the secretory signal peptide ends is the following amino acid 158 It consists of a repeating sequence from the th threonine residue (Thr) to the 287 th glycine residue (Gly). That is, it was confirmed that the gene of SEQ ID NO: 2 was composed of a structural domain consisting of 287 amino acids of amino termini and a functional domain (MPlaG) consisting of 278 amino acids of carboxy termini.
  • MPlaG was designed as a transcription decoding frame consisting of only the functional domain from SEQ ID NO: 2, and this is shown in SEQ ID NO: 3.
  • the design of the transcription decoding frame is usually secreted out of cells in the case of lipases. Because the process is microbial, it also avoids the difficulty of expressing foreign proteins. Guanin cytosine ratio of the MPlaG gene having both phospholipase and lipase activity of SEQ ID NO: 3 was 44.1%.
  • the molecular weight of the resulting protein was about 30.5 kDa, and the isoelectric point was assumed to be pi 4.0.
  • the amino acid sequence of the phosphorase / lipase MPlaG (protein MPlaG having both phospholipase and lipase activity), which is a polypeptide encoded by SEQ ID NO: 3 of the present invention (SEQ ID NO: 5 ) Constructs a phylogenetic tree with the amino acid sequences of various known lipases and phospholipases.
  • SEQ ID NO: 5 the polypeptide encoded by SEQ ID NO: 5 of the present invention
  • the phospholipase / lipase MPlaG derived from the mudflat metagenome of the present invention has a common sequence of lipase or phospholipase A, but it was confirmed that it is a novel enzyme showing low homology not only with lipase but also with phospholipase.
  • the MPlaG gene described in SEQ ID NO: 3 is cloned into a vector (see FIG. 2), and the vector is transformed into E. coli, followed by phospholipase / lipase produced from the transformant.
  • the phospholipase / lipase MPlaG of the present invention in order to confirm the phospholipid resolution of the MPlaG gene described in SEQ ID NO: 3, dropping the phospholipase / lipase MPlaG of the present invention in a solid medium to which the phosphatidylcholine emulsion is added to make the activity transparent
  • the phospholipid / lipase MPlaG of the present invention was confirmed that it has a phospholipid resolution by confirming the formation of a transparent ring in a solid medium dropping (see Fig. 4).
  • the phospholipase / lipase MPlaG of the present invention exhibits the following properties: P H is stable in the range of 5 to 10, exhibits maximum activity at pH 8 (see FIG.
  • MPlaG has high affinity for para-nitrophenyl ester having a long acyl straight chain, triglyceride having a short acyl straight chain, and phospholipid having a medium acyl straight chain.
  • Purified enzyme showed activity against triolein (C18: l) that was not hydrolyzed by esterases, and measured hydrolytic activity with increasing concentration of tributyrin Purified enzymes showed surfactant activity, indicating that MPlaG is not an esterase (see FIG. 9A).
  • the hydrolysis site of MPlaG was purified using 1-oleoyl— 2-palmitoyl ⁇ phosphatidylcholine (1-01 eo 1 y-2-pa 1 mit oy 1 -phospha ti dy 1 cho 1 ine, 0PPC). It was determined by liquid chromatography mass spectrometry (LC-MS) (see FIG. 11). After reacting MPlaG with 0PPC (molecular weight of 759) substrate for 12 hours at 25 ° C, LC-MS analysis showed that MPlaG decomposed 0 ??
  • a polypeptide having an amino acid sequence set forth in SEQ ID NO: 5 of the present invention has a different sequence by deletion, insertion, substitution, or combination of amino acid residues within a range that does not affect the function of protein quality. Variants or fragments of amino acids are included within the scope of the invention: proteins that do not alter the activity of the molecule as a whole and Amino acid exchange in peptides is known in the art.
  • the present invention includes a polypeptide having an amino acid sequence substantially identical to the polypeptide having an amino acid sequence as set forth in SEQ ID NO: 5 and a variant thereof or an active fragment thereof, wherein the substantially identical polypeptide is at least 80% Preferably those having homology of at least 90% and most preferably at least 95% of the amino acid sequences.
  • the present invention is not limited thereto, and the amino acid sequence has a homology of 70% or more and is included in the present invention as long as it has the same biochemical activity.
  • polynucleotide of the present invention is preferably characterized in that the polynucleotide described in SEQ ID NO: 3.
  • genes having both phospholipase and lipase activity of the present invention due to the degeneracy of codons or in view of codons preferred in organisms which wish to express genes having both phospholipase and lipase activity.
  • the present invention includes polynucleotides having fragments of the same base and substantially the same nucleotide sequence as the gene having both phospholipase and lipase activity described in SEQ ID NO: 3.
  • Polynucleotides having substantially the same nucleotide sequence mean those having sequence homology of at least 80%, preferably at least 90%, most preferably at least 95%. However, it is not limited thereto and is included in the present invention as long as it has at least 70% sequence homology and the same biochemical activity of the encoded protein. As described above, the polynucleotide of the present invention is . One or more nucleic acid bases may be mutated by substitution, deletion, insertion, or a combination thereof, as long as they encode a protein having equivalent activity, and these are also included in the scope of the present invention.
  • Polypeptides having an amino acid sequence set forth in SEQ ID NO: 5 are preferably encoded by a nucleic acid molecule having a polynucleotide sequence set forth in SEQ ID NO: 3,
  • the present invention is not limited thereto, and as long as the protein of the present invention having the same amino acid sequence can be encoded, the nucleic acid molecule having a nucleotide sequence having another nucleotide sequence substantially the same as the nucleotide sequence of SEQ ID NO: 3 is to be encoded. It may be.
  • the sequence of such nucleic acid molecules may be single or double chained, and may be DNA molecules or RNA (m A) molecules.
  • the present invention also provides a recombinant expression vector comprising the polynucleotide of the present invention set forth in SEQ ID NO: 3.
  • a promoter terminal
  • enhancer enhancer
  • Expression control sequences, sequences for membrane targeting or secretion, etc. may be appropriately selected and variously combined according to the purpose.
  • Expression vectors of the present invention include, but are not limited to, plasmid vectors, cosmid vectors, bacteriophage vectors, and viral vectors. Suitable expression vectors include signal sequences or leader sequences for membrane targeting or secretion in addition to expression control elements such as promoters, operators, initiation codons, termination codons, polyadenylation signals, and enhancers, and can be prepared in various ways depending on the purpose. have.
  • the promoter of the expression vector may be constitutive or inducible.
  • the signal sequence includes a PhoA signal sequence, an OmpA signal sequence, etc., when the host is Escherichia sp., And an ⁇ -amylase signal sequence, a subtilisin signal, when the host is a Bacillus sp. If the host is a yeast, the MFa signal sequence, the SUC2 signal sequence, etc., or if the host is an animal cell, the insulin signal sequence, the a -interferon signal sequence, the antibody molecule signal sequence, etc. can be used. However, it is not limited thereto.
  • the expression vector may comprise a selection marker for selecting a host cell containing the vector and, in the case of a replicable expression vector, includes the origin of replication.
  • the recombinant expression vector comprising the gene encoding the phospholipase / lipase MPlaG according to the present invention
  • the phospholipase / lipase MPlaG protein is expressed in the host cell, as shown above, .
  • a substrate such as tricapryline
  • the recombinant expression vector may include a sequence for facilitating the purification of the expression, and specifically, to encode a tag for specific purification that is operable to a gene having both phospholipase and lipase activity of the present invention.
  • Polynucleotides can be linked.
  • the separation and purification tag GST, poly-Arg, FLAG, histidine-tag (His' tag) and c-myc, etc. may be used alone, or any two or more may be connected in sequence.
  • the phospholipase / lipase MPlaG expressed using a Ni-NTA (Ni-nitriloteiacetic acid, Qiagen, Germany) column was purified by placing histidine-tag at the C-terminus. It was.
  • the MPlaG gene gene described in SEQ ID NO: 3 is cloned into a vector (see FIG. 2), and the vector is transformed into E. coli, followed by phospholipase produced from the transformant.
  • / Lipase MPlaG protein was confirmed by the SDS-PAGE method was confirmed that the molecular weight is effectively produced at about 31kDa,
  • the phospholipase / lipase MPlaG of the present invention was confirmed that the expression in water-soluble form ( See FIG. 10).
  • the present invention also provides a transformant in which a recombinant expression vector comprising the polynucleotide of the present invention described in SEQ ID NO: 3 is transfected into a host cell.
  • the novel phospholipase according to the present invention by transforming the recombinant expression vector according to the present invention into an appropriate host cell, eg, E. coli or yeast cell, preferably E. coli, and then culturing the transformed host cell.
  • DNA of genes having both lipase activity in large quantities or in mass production of proteins Suitable culture methods, media conditions, and the like according to the type of host cell can be easily selected by those skilled in the art from known techniques known to those skilled in the art.
  • a recombinant vector pET22b (+)-MPlaG comprising the novel MPlaG gene was constructed (see FIG. 2), transformed into E. coli BL2KDE3), and the phospho expressed from the transformed strain.
  • the polynucleotide encoding the separation and purification tag and the protein cleavage enzyme recognition site may be further connected to the N-terminus of the polynucleotide of step 1), thereby purifying phospholipase / lipase MPlaG or phosphate in its original form. It may be possible to obtain lipase / lipase MPlaG. That is, the phospholipase / lipase MPlaG is purified using a tag for separation and purification, and then, further comprising the step of treating the protein cleavage enzyme capable of cleaving the protein cleavage recognition site by phospholipase of the original form / Lipase MPlaG can be obtained.
  • the separation and purification tag is preferably one or more selected from the group consisting of GST, poly-Arg, FLAG, histidine-tag (His-tag) and c-myc, histi More preferably, but not limited thereto.
  • the present invention also provides a detergent additive comprising an amino acid sequence set forth in SEQ ID NO: 5 and containing a polypeptide having both phospholipase and lipase activity as an active ingredient.
  • the present invention also provides a washing method comprising treating a surface having a polypeptide having both phospholipase and lipase activity of the present invention.
  • the present invention also provides the use of a polypeptide having both phospholipase and lipase activity of the invention in the preparation of a detergent.
  • novel gene isolated from the metagenome library of the mud flat soil microorganism of the present invention and the protein having both the phospholipase and lipase activity encoded therefrom are expressed in water-soluble form, which allows mass production, and uses a Ni-NTA column. It is possible to obtain a protein of significantly high purity with only one step of purification, shows excellent activity at pH 5 to 10, excellent low temperature up to 3 ° C to 40 ° C, maintains the activity and stability, high for various organic solvents Because of its resistance, it can be usefully used in various industries such as oil refining and conversion biomedical sciences and fine chemistry.
  • novel gene isolated from the metagenomic library of the mud flat soil microorganism of the present invention and the protein having both the phospholipase and lipase activity encoded therefrom are expressed in water-soluble form, which allows mass production, and uses a Ni-NTA column. It is possible to obtain a protein of significantly high purity with only one step of purification, shows excellent activity at pH 5 to 10, maintains excellent low temperature activity and stability from 3 ° C to 40 ° C, high for various organic solvents Because of its resistance, it can be usefully used in various industries such as oil refining and conversion biomedical sciences and fine chemistry.
  • FIG. 1 shows phospholipase / lipase PlaG (phospholipase and lipase activity of the invention This is a result of comparing the homology between the protein PlaG) having both and the amino terminus (A) and the similar protein or the carboxy terminus (B).
  • ZP_02001945 is 3 ⁇ 43 ⁇ 4 ⁇ / sp. Secreted protein derived from PS;
  • EBL22535 is a hypothetical protein derived from marine metagenome
  • MD10476 shows Serratia sp. Phosphol ipase Al derived from MK1;
  • MM13978 is a phosphol ipase derived from cesc
  • YP_001005338 contains phosphol ipase A derived from Yersinia enterocol itica 8081;
  • YP_001479905 is a phospholipase AKphosphol ipase Al derived from Serratia proteamaculans 568;
  • Amino acids denoted with * denote well-preserved lipase specific catalytic triads, and underlines indicate common amino acid sequences around the serine residues of phospholipase A.
  • FIG. 2 is a schematic diagram of the recombinant vector pET22b (+)-MPlaG containing MPlaG, which is a functional domain of the novel PlaG gene derived from the metagenome of the mud flat soil microorganism according to the present invention.
  • Figure 3 shows a lipase metaphorome-derived phospholipase / lipase MPlaG (protein MPlaG having both phospholipase and lipase activity) and several lipase, phospholipase / lipase MPlaG selected from the known lipase family (FIG. Constructing a phylogenetic tree with similar phospholipases and other known phospholipases; The phylogenetic tree was constructed using the program MEGALIGN and the bars represent the occurrence of amino acid substitutions.
  • Figure 4 shows the activity of the phospholipase / lipase MPlaG of the present invention on a solid medium to which tricaplyrin and phosphatidylcholine emulsions have been added, a host used to make a transformant as a negative control.
  • Cell lysates of E. coli BL2KDE3 were used and Candida antarctica ⁇ lipase B (CALB) was used as a lipase-positive control.
  • CALB Candida antarctica ⁇ lipase B
  • 5 is a graph showing the activity and stability of the phospholipase / lipase MPlaG of the present invention according to pH.
  • Figure 6 shows the phospholipase / lipase MPlaG activity of the present invention with temperature It is a graph.
  • FIG. 8 shows the substrate specificity of the phospholipase / lipase MPlaG of the present invention for various phospholipids.
  • Figure 9 shows the chain length specificity of MPlaG for ( a ) triglycerides, (b) para-nitrophenyl esters, and (C) phosphatidylcholine, respectively, measured using pH-titration, spectroscopy, LC-MS methods.
  • Phosphatidylcholine (1,2—dimyristoyl phosphatidylcholine), 96.5%) and 8.91 min 512 2-myristoyl-lysophosphate tidylcholine (2—myristoyl—lysophosphat idyl chol ine, 3.5%).
  • FIG. 10 is a diagram showing the results confirmed by SDS 'PAGE (Sodium dodecy 1 su 1 f at e-polyacryl amide gel electrophoresis) to confirm the purified phospholipase / lipase MPlaG of the present invention:
  • Lane 1 phospholipase / lipase PlaG, a full-length protein
  • Lane 2 truncated protein 1
  • Lane 3 cleaved protein 2 (phospholipase / lipase MPlaG).
  • the transformants were randomly selected and recombinant plasmids were extracted and subjected to restriction enzyme treatment. All of them had recombinant plasmids and the average size of the inserted metagenome was 35 kb.
  • Example 2 Screening and Separation of Reconstituted Plasmids Having Lipid Degradation Activity Solid medium containing tricaprylin to search for lipolytic genes from the metagenomic library obtained in Example 1 above.
  • the meta genomic library was cultured.
  • the metagenome library was used as a tricapryline emulsion [1% ( ⁇ / ⁇ ) tricaprylin ⁇ 1 mM calcium chloride (CaCl 2 ), 0.5% (w / v) gum arabic ] Added solid medium [l% (w / v) trypton, 0.5% (w / v) yeast extract, 0.5% (w / v) sodium chloride (NaCl), 1.5% (w / v) agar (agar)] and incubated at 37 ° C.
  • the lipolytic enzyme breaks down tricaprylin, so that the tricapryline is decomposed to form a clear ring, and then the recombinant plasmid is separated from the colonies having the highest tricapryline resolution. It was named pFosPlaG.
  • Example 3 Base Sequence Analysis and Base Sequence Determination of Recombinant Plasmids with Excellent Lipolytic Activity
  • Recombinant plasmid pFosPlaG isolated from the metagenomic library was sequenced using a shot-gun sequencing method.
  • DNA fragments were subcloned into a P UC118 (TaKaRa) vector and performed using an autobase sequencer (ABI 3730 DNA analyzer).
  • pFosPlaG was 28, 845 bp in size, and the nucleotide sequence of these genes was shown as SEQ ID NO: 1, and they were registered with GenBank as accession number EU285670.
  • the ORF finder of the Nat ional Center for Biotechnology Informat ion (NCBI) was used to identify only open reading frames (ORFs) with e-values of less than or equal to e- 2 , and using blast ax (BiastX). By predicting the function of each transcription decoding frame.
  • the gene having both phospholipase and lipase activity of the present invention (plaG) is composed of 1698 nucleotide sequences and has a guanin cytosine composition of 44.94%, and is expressed from this gene, phospholipase / lipase PlaG (phospholipase and lipase).
  • the protein PlaG having all the activities; SEQ ID NO: 4) was a protein having both phospholipase and lipase activity consisting of 566 amino acids and having a molecular weight of about 61,187 Da. Table 1
  • Blast (BLAST) database was used to compare the amino acid sequence with the existing protein.
  • phospholipase / lipase PlaG SEQ ID NO: 4
  • phospholipase / lipase MPalG protein having both phospholipase and lipase activity; expressed from the functional domain MPlaG of PlaG; SEQ ID NO: 5
  • phospholipase / lipase PlaG SEQ ID NO: 4
  • phospholipase / lipase MPalG protein having both phospholipase and lipase activity; expressed from the functional domain MPlaG of PlaG; SEQ ID NO: 5
  • Catalytic triad consisting of the 435th serine residue (Ser), the 496th aspartic acid (Asp) and the 550th histidine (His) in the consensus sequence of Gly-X-Ser-X-Gly ) And the surrounding amino acids are characteristic of phospholipase A ([LIV]- ⁇ KG ⁇ ⁇ [LIWY]-[LIVMST] -G- [HYWV] -S- ⁇ YAG ⁇ -G- [GSTAC]) It was confirmed that consisting of (Fig. 1B). On the other hand, the 287 amino acid residues at the amino terminus of the phospholipase / lipase PlaG were Beggiatoa sp.
  • amino acid sequence of phospholipase / lipase MPlaG (SEQ ID NO: 5) constructed a phylogenetic tree with various lipases and amino acid sequences of known phospholipases classified according to amino acid sequence and properties.
  • the phospholipase / lipase MPlaG of the present invention did not belong to any lipase family, it was confirmed that the phylogenetic relationship with phospholipase than lipase is more flexible ( 3).
  • the phylogenetic distance from the lipase derived from Staphylococcus ⁇ / ⁇ ⁇ which is known to specifically exhibit excellent phospholipase activity as well as lipase activity.
  • the 71 known Serratia sp the 71 known Serratia sp.
  • the amino acid sequences of phospholipase derived from MK1, Serratia marcescens, Yersinia enterocol it ica 8081, Serratia proteawaculans 568 show high homology (59 / 7-88.1%) to each other, whereas the phospholipase / lipase MPlaG of the present invention 17.2-20. Showed low homology.
  • the phosphatase and lipase derived from the tidal metagenome have a common sequence of lipase or phospholipase A, but reaffirmed that it is a novel enzyme showing low homology not only with lipase but also with phospholipase.
  • a transcriptional detoxification frame consisting of only the functional domain of PlaG (MPlaG) was designed and the construct was prepared.
  • the construct was located at 862 bp of SEQ ID NO: 2 at the restriction enzymes ⁇ - ⁇ and 3 ⁇ 4-I of pET-22b (+) (Novagen). 837 bp (SEQ ID NO: 3) was cloned. This construct was transformed into Escherichia coli BL2UDE3) to produce Escherichia coli BL21 (DE3) / pET22b (+)-MPlaG.
  • the MPlaG gene N-terminal primer and C-terminal primer of the present invention are respectively A ligation nucleotide having the restriction enzyme cleavage site of l and set forth in SEQ ID NOs: 6, 7.
  • Recombinant vector pET22b (+)-MPlaG has a strong T7 promoter and a readout signal, which can be used for mass production of phospholipase / lipase MPlaG when E. coli BL2KDE3) containing T7 RNA polymerase is used as a host.
  • a tag encoding six histidines is formed at the C-terminus to facilitate the purification of phospholipase and lipase.
  • DNA fragments amplified by polymerase chain reaction were completely cut into restriction enzymes ⁇ 3 ⁇ 4 ⁇ and 3 ⁇ 4? I and then linked to expression vector pET-22b (+) treated with the same restriction enzyme and calf intestinal phosphatase.
  • ligation to prepare recombinant plasmid P ET22b (+)-MPlaG for phospholipase and lipase expression (FIG. 2).
  • the recombinant plasmid pET22b (+)-MPlaG was subjected to electroporation with E. coli BL2KDE3) to prepare a transformed strain.
  • the transformants were named Escherichia coli BL21 (DE3) / pET22b (+) — MPlaG, respectively, and were deposited on May 30, 2011 in Korea Biotechnology Research Institute (Accession Number: KCTC 11942BP).
  • E. coli BL21 (DE3) / pET22b (+)-MPlaG prepared in ⁇ Example 4> liquid nutrient medium containing ampicillin (ampicillin, 100 / g / m) [(w / v) trypton, 0.5% (w / v) yeast extract, 0.5% (w / v) sodium chloride (NaCl)] until the absorbance at 600 nm is 0.6, IPTGCisopropyl- ⁇ with a final concentration of 0.5 mM -D-thiogalactopyranoside) was added to the culture and incubated for 12 hours.
  • ampicillin ampicillin, 100 / g / m
  • trypton 0.5%
  • yeast extract 0.5%
  • NaCl sodium chloride
  • binding buffer 50 mM Trisma buffer (Tris-HCl, H 8), 500 mM sodium chloride (NaCl), lOmM imidazole. After suspension, it was broken by ultrasonic grinding. The supernatant recovered by centrifugation again was added to a nickel-NTA (nitriloteiacetic acid) column to elute phospholipas
  • the phospholipase / lipase MPlaG of the present invention confirmed that the molecular weight of the protein in the sample is effectively produced at about 31 kDa after 12 hours of expression, which is the activity of phospholipase and lipase Significantly close to the molecular weight deduced from the amino acid sequence having all, it was confirmed that this protein band is the novel phospholipase / lipase MPlaGs of the present invention.
  • the phospholipase / lipase MPlaG of the present invention is expressed in a water-soluble form and compared with the protein expression amount of the phospholipase / lipase PlaG, a full-length protein of the present invention, the force of the present invention It was confirmed that the amount of lipase / lipase MPlaG expression was significantly increased (FIG. 10).
  • Recombinant plasmid pFosPlaG isolated from the metagenome library was isolated from nutrient solid medium supplemented with tricapryline emulsion, which is widely used for the isolation of lipase genes.
  • Phosphatidylcholine emulsion [0.5% (w / v) phosphatidylcholine (phosphatidyl choline), 0.5% (w / v) taurochol ic acid, 20 mM calcium chloride (CaCl 2 )) and drop the phospholipase / lipase MPlaG into solid medium added Confirmed.
  • a cell lysate of lipase CALB lipase B from Candida antarctica
  • E. coli BL2KDE3 a host cell used to make a transformant
  • the first method is the pH-stat method, which contains triglycerides of 5 1 and 495 m £ arabic rubber suspension [20 mM sodium chloride (NaCl), ImM calcium chloride (CaCl 2 ), .0.5% (w / v) arabic rubber ( gum arabic)], and then using the Waring blendor to create an emulsion.
  • the triglyceride was added to Emulsion 25 II in a reactor equipped with a temperature controller, and then titrated to pH 8 by dropping 10 mM NaOH.
  • Phospholipase / lipase MPlaG enzyme solution obtained through purification was added to the titration solution, and the amount of NaOH added during the hydrolysis reaction at 25 ° C. was measured by pH titration (842T Titrando, Metrohm). 1 unit (U) of the enzyme was defined as the amount of enzyme which produces 1 minute ⁇ ⁇ fatty acid thereof.
  • Another method is the standard activity assay of the present invention, wherein 10 mM para-nitrophenyl ester substrate 20, ethane is added to 40 50 mM trisma complete solution (Tr is-HCl, pH 8) 940 ⁇ .
  • the activity was measured in various pH buffers and showed the maximum activity at pH 8, and the residual activity was measured after being left at various pHs for 180 minutes. It was found to be stable in the range (FIG. 5).
  • the effect of silver on the phospholipase and lipase activity was found to be optimal at 25 ° C, and had the highest activity of 3 »at 5 ° C. This drastically decreased (FIG. 6).
  • the melting temperature was analyzed by using a differential scanning calorimeter (DSC), it was 38.5 ° C (Fig. 7).
  • the phospholipase / lipase MPlaG of the present invention is a low temperature and alkaline lipase.
  • Investigation of specificity of phospholipase / lipase MPlaG for various phospholipids In order to investigate substrate specificity for various phospholipids, purified phospholipase / lipase MPlaG was dropped on solid medium to which various phospholipid emulsions were added. The activity was compared by the size of the transparent ring.
  • Phospholipid emulsion dogs consisted of a composition consisting of 0.5% (w / v) phospholipid substrate, 0.5% (w / v) taroholic acid, 20 mM calcium chloride (CaCl 2 ), and the substrate used was phosphatidylcholine (PC).
  • PC phosphatidylcholine
  • phosphatidylcholine 99% purity
  • phosphatidylethanolamine PE, phosphatidylethanol amine, 97% purity
  • phosphatidyl serine 97% purity
  • phosphatidyl inositol PI, phosphatidyl inositol, 98% purity
  • Phosphatidylglycerol PG, phosphat idyl glycerol, 99% purity
  • phosphatidyl acid PA, phosphat i die acid, 98% purity
  • phosphatidylcholine and phosphatidyl ethane showed excellent activity with respect to amine phosphatidylglycerol, but phosphatidylserine and phosphatidyl acid, which are known to be degraded by secretory phosphatidase A, could not be degraded (FIG. 8).
  • phosphatidylcholine and phosphatidyl ethane showed excellent activity with respect to amine phosphatidylglycerol, but phosphatidylserine and phosphatidyl acid, which are known to be degraded by secretory phosphatidase A, could not be degraded (FIG. 8).
  • Characteristics of phospholipase / lipase MPlaG for various carbon lengths The hydrolytic activity of MPlaG against triacylglycerides, olive oil, and phosphatidylcholine was measured by titrating free fatty acids using a pH titrator
  • MPlaG is a cognate protein of phospholipase and has a significant lipase activity against olive oil. Indicated.
  • tributyrin C4
  • tricaprylin C8
  • tricaprin C10
  • trilaurin C12
  • tripalmitin C16
  • triolein C18: l
  • the results of the pH-titration evaluation for triacylglycerides showed the highest activity in tributyrin (tributyrin) (C4) and the enzyme activity decreased markedly with increasing chain length (FIG. 9A).
  • spectroscopic analysis was performed at room temperature to determine the activity of para-nitrophenyl ester, a synthetic substrate of MPlaG.
  • Para-nitrophenyl butyrate (C4), para-nitrophenyl caprylate (C8), para-nitrophenyl caprate (C10), para-nitrophenyl Activity was compared using p-nitrophenyl laurate (C12), para-nitrophenyl palmitate (C16), and para-nitrophenyl stearate (C18) as substrates. .
  • MPlaG activity against p-nitrophenyl ester was measured by a standard evaluation method using spectrophotometric detection.
  • para-nitrophenyl caprate (p 10) was used as the substrate, and 5 mM Ca 2+ was added to the reaction solution.
  • Enzyme activity was determined by using the product, para-nitrophenol, using a DU800 spectrophotometer (Beckman). Measurement was continued for 5 minutes at. Activity for one unit of para-nitrophenyl ester was defined as the amount of enzyme that releases para-nitrophenyl of liimole per minute. All measurements under different conditions were used as control reactions without enzyme addition to exclude non-enzymatic hydrolysis values of the substrate.
  • Mobile phase A was 10 mM formic acid (a ⁇ onium formate) with pH adjusted to 3.0 using formic acid, and mobile phase B was acetonitrile. Gradient elution was performed at a flow rate of 0.2 ml / min as follows: 0-10 min, 10% to 40% A (linear gradient); 10-20 min 70% A (isosolvent). The column temperature was room temperature and the dose was lOyL. Mass spectra were obtained at ⁇ ⁇ values ranging from negative ion mode 100-1200 at 3 microscans and a maximum ion implantation time of 200 ms.
  • the hydrolytic enzymatic activity of phosphatidylcholine against lysophosphat idyl choline was determined by 1,2-dioctanoyl-phosphatidylcholine (1,2-Dioctanoyl- highest in phosphatidylcholine) (diC8PC) (FIG. 9C).
  • MPlaG showed high affinity for para-nitrophenyl ester with long acyl straight chain, triglyceride with short acyl straight chain and phospholipid with medium acyl straight chain, showing various chain length specificities depending on the substrate.
  • Purified enzymes were active against triolein (C18: 1) that was not hydrolyzed by esterases and measured hydrolytic activity with increasing concentration of tributyrin. When purified, the purified enzyme showed surfactant activity, indicating that MPlaG was not an esterase (FIG. 9A).
  • the hydrolysis position of MPlaG was determined by LC—MS analysis using 1-leleoyl-2-palmitoyl-phosphatidylcholine (1-01 eo 1 y-2-pa lmitoyl-phosphatidylcholine) (FIG. 11) .
  • LOMS spectra revealed that MPlaG decomposed OPPC A 804, [M-H + HC00H]-) to produce a semi-ung product of m / z 540. It was shown.
  • MPlaG of the present invention is not phosphoesterase / esterase but phospholipase / lipase by decomposing trilane which esterase cannot decompose and exhibiting interfacial activity with increasing concentration of tributyrin.
  • the activity was increased by about 10-fold by calcium ions (Ca 2+ ), and the activity was strongly inhibited by EDTA.
  • the melting temperature of the phospholipase / lipase MPlaG of the present invention was increased from 38.51 to 47.2 ° C and 49.2 ° C, respectively, indicating that structural stabilization was increased by calcium. It can be expected to be (FIG. 7).
  • DMS0 dimethyl sulfoxide
  • DMF dimethyl formamide
  • Ethanol ethanol
  • Phospholipase / lipase MPlaG activity was measured at various concentrations to determine the stability of methanol, methanol, acetonitrile and acetone.
  • CALB showed the highest activity on the substrate
  • the phospholipase / lipase MPlaG of the present invention showed the highest activity on the natural substrate of olive oil.
  • only phospholipase / lipase MPlaG of the present invention showed activity against phosphatidylcholine, which is a phospholipase substrate.
  • the phospholipase / lipase MPlaG of the present invention was quantitatively confirmed to exhibit phospholipase activity.
  • a lipase derived from P was quantitatively confirmed to exhibit phospholipase activity.
  • pseudosecali genes reported phospholipase activity of 5.7 U / mg and 6 U / mg phospholipase activity for Lecitase TM (Novozyme) (Biochimica et Biophysica). Compared with Acta 1259 (1995) 9-17), it was confirmed that the phospholipase / lipase MPlaG of the present invention has excellent degradation activity not only for lipids but also for phospholipids (Table 4).
  • the activity of the phospholipase / lipase MPlaG and full-length protein of the present invention was measured.
  • the phospholipase / lipase MPlaG of the present invention was measured as the full length of the present invention. It was confirmed that the inactivation increased by more than 2 times compared to the (full-length) protein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 갯벌 메타게놈 유래 신규 유전자 및 이로부터 얻어지는 포스포리파제 및 리파제 동시 활성을 보이는 단백질에 관한 것으로, 구체적으로, 갯벌 토양 미생물의 메타게놈 라이브러리로부터 분리한 신규 유전자 및 이로부터 코딩되는 포스포리파제 및 리파제 활성을 모두 갖는 단백질은 수용성 형태로 발현되므로 대량생산이 가능하고, Ni-NTA 컬럼을 이용한 한 단계의 정제만으로 현저히 높은 순도의 단백질 수득이 가능하며, pH 5 내지 10에서 우수한 활성을 나타내고, 3℃ 내지 40℃까지 우수한 저온 활성 및 안정성을 유지하며, 다양한 유기용매에 대한 높은 내성을 가지므로, 유지의 정제 및 전환 생물의학과 정밀화학분야 등의 다양한 산업에 유용하게 이용될 수 있다.

Description

【명세서】
【발명의 명칭】
갯벌 메타게놈 유래 신규 유전자 및 이로부터 얻어지는 포스포리파제 및 리파제 동시 활성을 보이는 신규 단백질
【기술분야】
본 발명은 포스포리파제 및 리파제 동시 활성을 보이는 신규한 단백질에 관 한 것으로서, 구체적으로 갯벌 토양 미생물의 메타게놈에서 분리한 신규 포스포리 파제 및 리파제 활성을 모두 갖는 유전자 및 이로부터 코딩되는 칼슘 의존성 포스 포리파제 및 리파제 활성을 모두 갖는 단백질에 관한 것이다.
【배경기술】
리파제 (lipase; glycerol ester hydrolases, EC 3.1.1.3)는 긴 체인의 아실 글리세를 (long-chain acylglycerol )을 가수분해하거나 합성하는 α/β가수분해효소 군 중의 카르복시 에스터 가수분해효소 (carboxy ester hydrolase)로서 현재까지 많 은 종류의 동물, 식물ᅳ 미생물이 리파제를 생산하는 것으로 알려져 있으며, 리파제 의 생화학적 특성에 대한 연구와 리파제 유전자에 대한 연구가 활발히 진행되고 있 다. 또한, 리파제는 생체 내에 존재하여 지방의 대사에 관여할 뿐만 아니라, 유기 용제에 대한 안정성이 상대적으로 높고, 조효소가 필요 없으며, 넓은 기질 특이성 과 상대적으로 높은 광학 특이성을 지니고 있어 세제 산업, 식품 첨가제 제조, 제 지 산업에서의 피치 (pitch) 제거, 생물 전환 반웅에서의 생체 촉매로서 널리 이용 되고 있다. 상기와 같이 다양한산업적 이용가치가 있는 리파제를 고효율로 대량생 산하기 위한 연구가 활발하게 진행되고 있다. 특히, 리파제를 생산하는 미생물에 관한 연구가 활발하게 이루어지고 있는데, 리파제를 생산하는 균주로는 캔디다 속 ( Candida sp . ), 바실러스 ^iBaciUus sp.), 페니실리움 쏙 Penicilh sp . ), 뮤우 코 속 0½/α sp.), 라이조푸스 쏙 Rhizopus sp.), 슈우도모나스 ^ Pseudomonas sp.) 및 스트렙토마이세스 쏙 iStreptomyces spj 등이 있다. ' 포스포리피드가 포스포리파제에 의해 가수분해되어 생성되는 라이소포스포 리피드 (lysophospholipid)는 혈소판 응집에서 작용기의 역할을 할 뿐만 아니라 신 호전달 등 여러 가지 생리적 활성을 매개하거나, 식물 호르몬으로서 식물이나 과일 의 과숙성을 방지하는 역할을 한다고 알려졌다. 특히, 라이소포스포리피드는 물에 대한 용해도가 높고, 다양한 수소 이은농도 및 온도에서도 안정한 유제 (emulsion) 를 형성시킬 수 있으며 , 마그네슘과 칼슘 이은 존재 하에서도 안정성을 가지므로, 유화제 (emulsifier)로서 의약, 화장품 및 식품 산업에서 다양하게 활용되고 있다. 상술한 라이소포스포리피드는 생화학적인 경로에서 인지질 가수분해효소인 포스포리파제에 의해서 포스포리피드로부터 생성될 수 있으며, 전기 과정은 포스포 리파제 A가 포스포리피드의 1-아실기 또는 2ᅳ아실기를 가수분해하여 라이소포스포 리피드와 지방산을 생성됨으로써 일어난다. 이러한 포스포리파제 A는 DHA 또는 EPA 등의 다가불포화지방산 (PUFA)과 같은 유용지방산을 함유하는 인지질의 합성공정에 필수적인 효소이다. 이와 같은 포스포리파제 A는 다양한 포유동물, 뱀이나 벌 종류 의 독성분, 세라시아 쏙 Serratia sp.)과 아스퍼질러스 쏙 ^Aspergillus sp.), 스트 렙토마이시스 속 Streptomyces sp) , 푸사리움 속 (^ sar/M» sp J등의 미생물로부터 분리되어, 식품산업에 웅용되고 있으나, 더욱 많은 산업 분야에 웅용하기 위해서는 기질 특이성이나 효소 안정성에 있어 많은 개선의 여지가 필요하다 (De Maria et al. , Appl. Microbiol. Biotechnol . 74:290-300, 2007). 리파제와 포스포리파제는 그 기작이 유사함에도 불구하고, 지질과 인지질 양쪽에 대하여 동시에 활성을 갖는 것으로 알려진 효소인 Staphylococcus hyicus 부터 얻어진 리파제가 유일하다 (van Oort et al ., Biochemistry, 28:9278-9285, 1989) . 그러나, 5.
Figure imgf000004_0001
효소의 경우 대량 생산이 어려우며, 안정성 역시 상대적으로 낮아 산업적으로 이용하기에는 부적합하다. 의약품을 비롯한 부가가치가 높은 선도물질을 합성하는 정밀화학분야에서, 기존의 화학적인 방법으로 에스테르화합물을 합성하는 경우, 고온과 고압에서 합성 되기 때문에 에너지가 많이 소모되며 품질에 나쁜 영향을 주는 여러 가지 부반웅이 일어날 뿐 아니라, 전환율.및 특정 광학이성체의 순도가 낮아서 고순도의 정밀화학 제품 생산에 어려움이 있어왔다. 최근에는 이러한 문제점을 보완하기 위해서, 위치 특이성과 광학활성 특이성을 나타내는 효소를 생촉매로 사용하는 반웅이 활발히 연 구되고 있으나, 저은에서 활성이 떨어지는 단점 때문에 웅용가능성에 제한을 받고 있다.
또한, 리파제는 지방성분의 때를 물에 잘 녹는 지방산 또는 글리세롤로 가 수분해시켜 계면활성제의 작용을 용이하게 해주는 기능이 있어 세제, 표백제의 첨 가제로 연구돼 왔지만, 현재까지 사용실적이 미미한 상태이다. 이는 낮은 세정온도 에서 리파제의 .활성이 떨어지는 단점으로 인해ᅳ 지방이나 유지성분이 불량하게 흑 은 불완전하게 제거되기 때문이다. 한편, 활성이나 안정성이 뛰어난 효소를 발굴하고자 하는 노력은 주로 배양 이 가능한 미생물을 대상으로 이루어졌고, 이로부터 밝혀진 다양한 미생물 효소들 이 산업적으로 이용되고 있다. 그러나 최근 많은 분자미생물 생태학의 연구들은 자 연계에 존재하는 99% 이상의 미생물들이 실험실에서 행해지는 전통적인 배양기법을 통해서는 분리 동정 되지 않는다는 사실을 증명하였다 (Amann et al . , Microbiol. Rev. 59: 143-169, 1995; Hugenholtz and Pace, Trends Biotechnol . 14: 190-197, 1996; Ward et al . , Nature 345: 63-65, 1990). 따라서 자연계로부터 배양 없이 직 접적으로 추출한 모든 미생물의 유전체인 메타게놈 (metagenome)을 이용하여 라이브 러리를 만들어 그동안 배양되지 않아서 이용하지 못했던 많은 신규 유전자들을 발 굴하고 그 유용 산물을 확보하고자 하는 새로운 연구가 진행되고 있다. 메타게놈 (metagenome)은 자연계에 존재하는 모든 미생물의 유전체를 통칭하 는 것으로 정의된다. 일반적으로, 메타게놈 연구는 자연계 시료로부터 미생물을 배 양하지 않고 메타게놈을 분리한 후, 이들을 라이브러리로 작성하여 배양가능한 대 장균에 도입하는 단계로 구성된다. 이는.배양이 불가능했던 미생물로부터 유용 산 물을 확보하기 위한 방법으로, 유전자의 유래가 되는 미생물에 대한 정보는 얻기가 어려우나 미생물의 산물과 유전자를 동시에 확보할 수 있는 장점이 있다. 미국 위스콘신 대학 연구팀은 처음으로 대형 메타게놈을 성공적으로 분리하 여 인위적 염색체 (bacterial artificial chromosome, BAC) 백터에 클로닝하여 메타 게놈 라이브러리를 구축하였고, 이로부터 광범위한 항생물질 및 그의 생합성에 관 련된 유전자들을 분리하였다 (Gillespie et al . , Ap l. Environ. Microbiol. 68: 4301-4306, 2002; Rondon et al . , Appl. Environ.. Microbiol . 66: 2541-2547, 2000). TIGR (The Institute for Genomic Research) 연구팀에서도 해양 미생물의 총 미생물 메타게놈 라이브러리를 BAC 백터에 구축하여 해양 생태계로부터 배양되 지 않는 미생물의 유전자원 탐색을 시도하고 있다.
1 이에, 본 발명자들은 다양한 미생물이 존재하는 갯벌 토양 미생물의 메타게 놈 라이브러리로부터 신규 유전자를 분리하여, 상기 유전자를 포함하는 백터를 제 작하고, 상기 백터를 대장균에 형질전환 한 후 상기 형질전환체로부터 생산된 단백 질이 우수한 포스포리파제 및 리파제 동시 활성을 나타내고, 저온 및 염기성에서 우수한 활성과 안정성을 가지는 것을 확인함으로써 본 발명을 완성하였다. '
【발명의 상세한 설명】 【기술적 과제】
본 발명의 목적은 갯벌 토양 미생물의 메타게놈에서 분리한 신규 유전자, 상기 유전자들을 포함하는 재조합 백터, 상기 발현백터가 형질 도입된 형질전환체 및 상기 유전자로부터 암호화되는 포스포리파제 및 리파제 활성을 모두 갖는 폴리 펩티드를 제공하는 것이다.
본 발명의 다른 목적은 본 발명의 포스포리파제 및 리파제 활성을 모두 갖 는 폴리펩티드를 유효성분으로 함유하는 세제첨가제를 제공하는 것이다.
본 발명의 다른 목적은 본 발명의 포스포리파제 및 리파제 활성을 모두 갖 는 폴리펩티드를 표면에 처리하는 단계를 포함하는 세척방법을 제공하는 것이다. 본 발명의 다른 목적은 본 발명의 포스포리파제 및 리파제 활성을 모두 갖 는 폴리펩티드를 세제의 제조에 이용하는 용도를 제공하는 것이다.
【기술적 해결방법】
상기와 같은 목적을 달성하기 위해, 본 발명은 서열번호 5로 기재되는 아 ' 노산 서열로 구성되며, 포스포리파제 및 리파제 활성을 모두 갖는 폴리펩티드를 제 공한다.
또한, 본 발명은 본 발명의 플리펩티드를 암호화하는 폴리뉴클레오티드를 제공한다.
또한 본 발명은 본 발명의 폴리뉴클레오티드를 포함하는 재조합 발현백터 를 제공한다.
또한, 본 발명은 본 발명의 재조합 발현백터가 숙주세포에 형질 도입된 형 질전환체를 제공한다.
또한, 본 발명은,
1) 본 발명의 폴리뉴클레오티드를 포함하는 재조합 발현백터를 제조하는 단 계;
2) 상기 재조합 발현백터를 숙주세포에 도입하여 형질전환체를 제조하는 단 계; 및,
3) 상기 형질전환체를 배양하여 재조합 단백질의 발현을 유도하고 이를 수 득하는 단계를 포함하는 포스포리파제 및 리파제 활성을 모두 갖는 재조합 단백질 제조방법을 제공한다.
또한, 본 발명은 본 발명의 포스포리파제 및 리파제 활성을 모두 갖는 폴리 펩티드를 유효성분으로 함유하는 세제첨가제를 제공한다.
또한 본 발명은 본 발명의 포스포리파제 및 리파제 활성을 모두 갖는 폴리 펩티드를 표면에 처리하는 단계를 포함하는 세척방법을 제공한다.
또한 본 발명은 본 발명의 포스포리파제 및 리파제 활성을 모두 갖는 폴리 펩티드를 세제의 제조에 이용하는 용도를 제공한다. 이하, 본 발명에서 사용된 용어를 정의한다.
'
본 발명에서 사용된 용어 "재조합 발현백터' '란 적당한 숙주세포에서 목적 단백질 또는목적 RNA을 발현할 수 있는 백터로서, 발현백터의 전사에 제공되는 추 가단편에 작동가능하게 연결된 관심의 플리펩티드를 암호화하는 단편으로 구성되는 선형 또는 원형의 DNA 분자이다. 그와 같은 추가단편은 프로모터 및 종료암호 서열 을 포함한다. 발현백터는 하나 이상의 복제 개시점, 하나 이상의 선택마커, 폴리아 데닐화 신호 등을 또한 포함한다. 발현백터는 일반적으로 플라스미드 또는 바이러 스 DNA로부터 유도되거나, 또는 둘 다의 요소를 함유한다.
본 발명에서 사용된 용어 "작동가능하게 연결된 (operably linked)' '이란 일 반적인 기능을 수행하도톡 핵산 발현조절 서열과 목적하는 단백질 또는 RNA를 코딩 하는 핵산 서열이 기능적으로 연결 (functional linkage)되어 있는 것을 말한다. 예 를 들어 프로모터와 단백질 또는 RNA를 코딩하는 핵산서열이 작동가능하게 연결되 어 코딩하는 핵산 서열의 발현에 영향을 미칠 수 있다. 재조합 백터와의 작동적 연 결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으 며, 부위ᅳ특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용한다. 이하, 본 발명을 상세히 설명한다. 본 발명은 서열번호 5로 기재되는 아미노산 서열로 구성되며, 포스포리파제 및 리파제 활성을 모두 갖는 폴리펩티드를 제공한다. '
또한, 본 발명은 서열번호 5로 기재되는 포스포리파제 및 리파제 활성을 모 두 갖는 폴리펩티드를 암호화하는 폴리뉴클레오티드를 제공한다.
상기 포스포리파제 및 리파제는 pH가 5 내지 10에서 우수한 활성을 나타내 는 것이 바람직하고, pH가 6 내지 9인 것이 보다 바람직하고, pH가 8인 것이 가장 바람직하나 이에 한정되지 않는다.
상기 포스포리파제 및 리파제는 활성온도가 3 내지 30°C인 것이 바람직하고, 5 내지 25°C인 것이 보다 바람직하나 이에 한정되지 않는다.
상기 폴리뉴클레오티드는 서열번호 3으로 기재되는 염기서열로 구성되는 것 이 바람직하나 이에 한정되지 않는다.
본 발명의 구체적인 실시예에서 갯벌의 토양샘플로부터 DNA를 추출하고 이 를 포스미드 (fosmid) 백터에 클로닝하여 메타게놈 라이브러리를 제작하고, 이 라이 브러리를 트리카프릴린 (tricaprylin) 에멀견이 첨가된 영양고체배지에 도말하여 배 양하였다. 그 후, 투명환을 생성하는 콜로니를 탐색하여 재조합 플라스미드 (pFosPlaG)를 분리하고, 전체 염기서열 분석하였으며, 이들 유전자를 미국 GenBank 에 둥록번호 EU285670으로 등록하였다 (서열번호: 1). 서열번호 1의 염기서열에서 상보적인 뉴클레오티드 번호 2881에서 4578 부위에 해당하는 전사해독프레임 (open reading frame, 0RF)은 본 발명의 포스포리파제 및 리파제 활성을 모두 갖는 단백 질 코딩 영역으로, 서열번호 2의 1698 bp의 염기서열을 갖는 포스포리파제 및 리파 제 활성을 모두 갖는 유전자 부위로 결정하고, 상기 포스포리파제 및 리파제 활성 을 모두 갖는 유전자를 PlaG로 명명하였다.
본 발명의 구체적인 실시예에서 본 발명의 포스포리파제 /리파제 PlaG (포스 포리파제 및 리파제 활성을 모두 가지는 단백질 PlaG) 서열을 블라스트 (BLAST) 데 이터베이스를 이용하여 기존 단백질과 비교해 본 결과, 전체서열 중 아미노 말단 부위와 카르복시 말단 부위가 별개의 각각 다른 특징의 단백질들과 상동성을 나타 내었다. 아미노 말단의 287개의 아미노산 잔기들은 Beggiatoa sp. PS유래의 분비 단백질 (secreted protein; ZP_02001945)과 54%로 가장 높은 유사성을 나타내었다 (도 1A 참조). 반면, 카르복시 말단의 167개의 아미노산 잔기들은 Grimontia hollisae CIP 101886의 포스포리파제와 가장 높은 유사성을 나타내었으며, 이전에 보고된 포스포리파제 유전자 집단과 30~35% 정도의 낮은 상동성을 보여 포스포리파 제를 암호화하는 신규한 유전자로서 확인되었다. 또한, 본 발명의 포스포리파제 /리 파제 PlaG와 이와 유사한 포스포리파제의 아미노산 서열 사이의 상동성을 비교한 결과, α/β가수분해효소의 보존적인 글리신 -X-세린 -X-글리신 (Gly-X-Ser-X-Gly)의 공통서열 (consensus sequence) 내의 435번째 세린잔기 (Ser), 496번째 아스파라긴산 (Asp), 550번째 히스티딘 (His)으로 이루어져 있는 세작용기 촉매 (catalytic triad) 를 갖고 있었으며 그 주변의 아미노산들이 포스포리파제 A의 특징적 서열들로 이루 어져 있는 것을 확인하였다 (도 1B 참조). 특히, 아미노 말단의 26개의 아미노산 잔 기들은 분비 시그날 펩티드 (signal peptide)로 동정 되어졌으며, 분비 시그날 펩티 드가 끝나는 27번째 알라닌 잔기 (Ala)부터 157번째 글리신 잔기 (Gly)는 다음의 아 미노산인 158번째 트레오닌 잔기 (Thr)부터 287번째 글리신 잔기 (Gly)까지 반복되는 서열로 구성돼 있었다. 즉, 서열번호 2의 유전자는 아미노 말단 287개의 아미노산 으로 구성돼 있는 구조 도메인과 카르복시 말단의 278개의 아미노산으로 이루어져 있는 기능 도메인 (MPlaG)으로 구성돼 있는 것을 확인하였다. 이러한 분석을 근거로 하여, 서열번호 2로부터 기능 도메인만으로 이루어져 있는 전사해독프레임을 MPlaG 를 디자인하였고, 이를 서열번호 3에 나타내었다. 이러한 전사해독프레임의 디자인 은 리파제와 같은 경우 일반적으로 세포 바깥으로 분비되는 경우가 많으며, 이러한 과정은 미생물에 따라 다르기 때문에, 이로 인한 외래 단백질 발현의 난점을 피하 기 위함이기도 하다. 서열번호 3의 포스포리파제 및 리파제 활성을 모두 갖는 MPlaG 유전자 중 구아닌시토신 비율은 44.1%였으몌 이로부터 얻어지는 단백질의 분자량은 약 30.5 kDa이며, 등전점은 pi 4.0으로 추측되었다.
본 발명의 구체적인 실시예에서, 본 발명의 서열번호 3에 의해 코딩되는 폴 피펩티드인 포스포리라제 /리파제 MPlaG (포스포리파제 및 리파제 활성을 모두 갖는 단백질 MPlaG)의 아미노산 서열 (서열번호: 5)은 기존에 알려진 다양한 리파제 및 포스포리파제의 아미노산 서열들과 함께 계통발생나무 (phylogenetic tree)를 구축 하였다. 그 결과, 본 발명의 포스포리파제 /리파제 MPiaG는 어떠한 리파제 패밀리에 도 속하지 않았으며, 리파제보다는 포스포리파제와 계통발생학적으로 더 유연한 관 계가 있는 것을 확인하였다 (도 3 참조). 즉, 본 발명의 갯벌 메타게놈 유래의 포스 포리파제 /리파제 MPlaG는 리파제 또는 포스포리파제 A의 공통서열은 가지고 있지만 리파제 뿐만 아니라 포스포리파제와도 낮은 상동성을 보여 신규 효소임을 재확인하 였다.
본 발명의 구체적인 실시예에서, 상기 서열번호 3으로 기재되는 MPlaG 유전 자를 백터에 클로닝하고 (도 2 참조), 상기 백터를 대장균에 형질전환시킨 후, 상기 형질전환체로부터 생산된 포스포리파제 /리파제 MPlaG를 SDS-PAGE 방법으로 확인함 으로써 분자량이 약 31kDa으로 효과적으로 생산되었음을 알 수 있었으며, 본 발명 의 포스포리파제 /리파제 MPlaG는 수용성 형태로 발현이 이루어지고 있음을 확인할 수 있었다 (도 10 참조).
본 발명의 구체적인 실시예에서, 서열번호 3으로 기재되는 MPlaG 유전자의 인지질 분해능을 확인하기 위하여, 포스파티딜콜린 에멀견이 첨가된 고체배지에 본 발명의 포스포리파제 /리파제 MPlaG를 떨어뜨려 그 활성능을 투명환으로 확인한 결 과, 본 발명의 포스포리파제 /리파제 MPlaG를 떨어뜨린 고체배지에서 투명환 형성을 확인하여 인지질 분해능도 가지고 있음을 확인하였다 (도 4 참조). 또한, 본 발명의 포스포리파제 /리파제 MPlaG는 다음과 같은 특성을 나타낸다: PH 5 내지 10 범위에서 안정하며, pH 8에서 최대 활성을 나타내고 (도 5 참조), 40°C까지 활성을 나타내고 25°C에서 최적활성을 보였으며 (도 6 참조), 시차주사열량계 (DSC, differential scanning calorimetry)를 이용하여 녹는 온도 (melting temperature)를 분석한 결과, 38.5°C임을 확인하였다 (도 7 참조). 또한, 다양한 인지질에 대한 본 발명의 포스포리파제 /리파제 MPlaG의 특이성을 조사한 결과, 포스파티딜콜린, 포스파티딜에탄올아민, 포스파티딜글리세를에 대해서 뛰어난 활성을 보였으나, 분비성 포스포리파제 A가 분해하는 것으로 알려져 있는 포스파티딜세린과 포스파티딜산은 분해하지 못하는 것을 확인하였으며 (도 8 참조), MPlaG는 긴 아실 직쇄를 가지는 파라 -니트로페닐 에스테르, 짧은 아실 직쇄를 가지는 트리글리세라이드 및 중간 아실 직쇄를 가지는 포스포리피드에 대하여 높은 선호도를 나타냄으로써 기질에 따라 다양한 사슬길이 특이성을 보였다. 정제된 효소는 에스터라제 (esterases)에 의해 가수분해되지 않는 트리올레인 (triolein)(C18:l)에 대해서 활성을 나타내었으며, 트리부티린 (tributyrin)의 농도 증가와 함께 가수 분해 활성을 측정하였을 때 정제된 효소는 계면 활성을 나타내었고, 이것은 MPlaG가 에스터라제 (esterase)가 아니라는 것을 나타낸다 (도 9A 참조). 부가적으로 MPlaG의 가수분해 위치를 1- 올레오일— 2-팔미토일ᅳ포스파티딜콜린 ( 1-01 eo 1 y-2-pa 1 m i t oy 1 -phospha t i dy 1 cho 1 ine, 0PPC)을 이용하여 액체 크로마토그래피 질량 분석법 (Liquid chromatography mass spectrometry, LC-MS)을 통해 결정하였다 (도 11 참조). MPlaG를 0PPC(759의 분자량)기질과 함께 25°C에서 12시간 동안 반웅한 후에, LC-MS분석결과는 MPlaG가 0??C(m/z 804, [M-H+HCOOHD를 분해하여 Λ 540의 반웅산물을 생성하였다는 것을 나타내었다. 만약 MPlaG가 0PPC의 sn-2 위치에서 팔미산 (palmitic acid)을 잘랐다면, 반응 생성물은 »Λ 567에서 관찰되었을 것이다. 그러나, MS 스펙트럼은 2-팔미토일-라이소포스파티딜콜린 (2— palmitoyl-lysophosphatidylchoHne) 에 대웅하는 ιη/ζ 540 ([M-h+C00H-C18:l]—)에서 탐지되었기 때문에, MPlaG는 포스포리피드의 sn— 1 위치에 있는 아실기의 가수분해를 촉진할 수 있는 포스포리파제 임이 동정되었다. 아울러, 다양한 첨가물에 대한 영향을 확인한 결과, 칼슘이온 (Ca2+)에 의해 활성이 약 10배 정도 증가하는 것을 확인하였고 (표 1 참조), 다양한 유기용제에 의한 활성 저해는 없는 것을 확인하였다 (표 2 참조). 본 발명의 서열번호 5로 기재되는 아미노산 서열을 갖는 폴리펩티드는 단백 질의 기능에 영향을 미치지 않는 범위 내에서 아미노산 잔기의 결실, 삽입, 치환 또는 이들의 조합에 의해서 상이한 서열을 가지는 아미노산의 변이체 또는 단편을 본 발명의 범위에 포함한다. 분자의 활성을 전체적으로 변경시키지 않는 단백질 및 펩티드에서의 아미노산 교환은 당해 분야에 공지되어 있다. 경우에 따라서는 인산 화 ( phosphorylation ), 황화 (sulfation), 아크릴화 (acrylation) , 당화 (glycosylation), 메틸화 (methylat ion) , 파네실화 (f arnesylat ion) 등으로 수식 (modification)될 수도 있다. 따라서, 본 발명은 상기 서열번호 5로 기재되는 아미 노산서열을 갖는 폴리펩티드와 실질적으로 동일한 아미노산 서열을 갖는 폴리펩티 드 및 이의 변이체 또는 이의 활성 단편을 포함하며, 실질적으로 동일한 폴리펩티 드란 80% 이상, 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 아미노 산 서열의 상동성을 갖는 것들을 의미한다. 그러나 이에 한정되는 것은 아니며, 70% 이상의 아미노산서열의 상동성을 가지며 동일한 생화학적 활성올 가진다면 본 원 발명에 포함된다.
또한, 본 발명의 폴리뉴클레오티드는 바람직하게는 서열번호 3으로 기재되 는 폴리뉴클레오티드인 것을 특징으로 한다. 그러나 코돈의 축퇴성 (degeneracy)으 로 인하여 또는 상기 포스포리파제 및 리파제 활성을 모두 갖는 유전자를 발현시키 고자 하는 생물에서 선호되는 코돈을 고려하여, 본 발명의 포스포리파제 및 리파제 활성을 모두 갖는 유전자는 코딩영역으로부터 발현되는 포스포리파제 및 리파제 활 성을 모두 갖는 단백질의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩영역 에 다양한 변형이 이루어질 수 있고, 코딩영역을 제외한 부분에서도 유전자의 발현 에 영향을 미치지 않는 범위 내에서 다양한 변형 또는 수식이 이루어질 수 있으며, 그러한 변형 유전자 역시 본 발명의 범위에 포함됨을 당업자는 잘 이해할 수 있을 것이다. 따라서 본 발명은 상기 서열번호 3으로 기재되는 포스포리파제 및 리파제 활성을 모두 갖는 유전자와 실질적으로 동일한 염기 서열을 갖는 폴리뉴클레오티드 및 상기 유전자의 단편을 포함한다. 실질적으로 동일한 염기서열을 갖는 플리뉴클 레오티드란 80% 이상, 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 갖는 것들을 의미한다. 그러나 이에 한정되는 것은 아니며, 70% 이 상의 서열 상동성을 가지며 암호화된 단백질의 동일한 생화학적 활성을 가진다면 본원 발명에 포함된다. 상술한 바와 같이, 본 발명의 폴리뉴클레오티드는.이와 동 등한 활성을 갖는 단백질을 코딩하는 한, 하나 이상의 핵산 염기가 치환, 결실, 삽 입 또는 이들의 조합에 의해 변이될 수 있으며, 이들 또한 본 발명의 범위에 포함 된다. 서열번호 5로 기재되는 아미노산 서열을 갖는 폴리펩티드는 바람직하게는 서 열번호 3으로 기재되는 폴리뉴클레오티드 서열을 갖는 핵산 분자에 의해 코딩되나, 본 발명은 이에 제한되지 않고, 동일 아미노산서열을 갖는 본 발명의 단백질을 코 딩할 수 있는 한, 서열번호 3의 염기서열과 실질적으로 동일한 다른 염기서열을 갖 는 뉴클레오티드 서열을 갖는 핵산 분자에 의해 코딩될 수도 있다. 이러한 핵산 분 자의 서열은 단쇄 또는 이중쇄일 수 있으며, DNA 분자 또는 RNA(m A)분자일 수 있 다. 또한, 본 발명은 서열번호 3으로 기재되는 본 발명의 폴리뉴클레오티드를 포함하는 재조합 발현백터를 제공한다.
상기 재조합 발현백터의 제작 시에는, 상기 포스포리파제 및 리파제 활성을 모두 갖는 유전자 또는 단백질을 생산하고자 하는 숙주세포의 종류에 따라 프로모 터 (promoter), 종결자 (terminator ) , 인핸서 (inhancer) 등과 같은 발현조절 서열, 막 표적화 또는 분비를 위한 서열 등을 적절히 선택하고 목적에 따라 다양하게 조 합할 수 있다.
본 발명의 발현백터는 플라스미드 백터, 코즈미드 백터, 박테리오파이지 백 터 및 바이러스 백터 등을 포함하나 이에 제한되지 않는다. 적합한 발현백터는 프 로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발 현 조절 엘리먼트 외에도 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열 을 포함하며 목적에 따라 다양하게 제조될 수 있다. 발현백터의 프로모터는 구성적 또는 유도성일 수 있다. 상기 시그널 서열에는 숙주가 에쉐리키아속 (Escherichia sp.) 균인 경우에는 PhoA 시그널 서열, OmpA 시그널 서열 등이, 숙주가 바실러스속 {Bacillus sp.) 균인 경우에는 α-아밀라아제 시그널 서열, 서브틸리신 시그널 서 열 등이,ᅳ숙주가 효모 (yeast)인 경우에는 MFa 시그널 서열, SUC2 시그널 서열 등 이, 숙주가 동물세포인 경우에는 인슐린 시그널 서열, a-인터페론 시그널 서열, 항체 분자 시그널 서열 등을 이용할 수 있으나, 이에 제한되지 않는다. 또한, 발현 백터는 백터를 함유하는 숙주 세포를 선택하기 위한 선택 마커를 포함할 수 있고, 복제 가능한 발현백터인 경우 복제 기원을 포함한다. 그러나 본 발명에 따른 포스 포리파제 /리파제 MPlaG를 코딩하는 유전자를 포함하는 재조합 발현백터의 경우, 상 기 포스포리파제 /리파제 MPlaG 단백질이 숙주세포에서 발현하면 그 활성을 나타내 게 되므로, 상기한 바와 같이, 숙주세포의 배양 배지에 트리카프릴린등의 기질을 첨가함으로써, 선택마커 없이도 형질전환된 숙주세포의 선별이 가능하도록 할 수 있다.
또한, 상기 재조합 발현백터는 발현물의 정제를 용이하게 하기 위한 서열을 포함할 수 있으며, 구체적으로 본 발명의 포스포리파제 및 리파제 활성을 모두 갖 는 유전자에 작동 가능하도특 분리정제용 태그를 코딩하는 플리뉴클레오티드가 연 결될 수 있다. 이때, 상기 분리정제용 태그는 GST, poly-Arg, FLAG, 히스티딘-택 (Hisᅳ tag) 및 c-myc 등이 단독으로 사용되거나 어느 두 개 이상을 순차적으로 연결 하여 사용할 수 있다.
본 발명의 구체적 실시예에서, 히스티딘 -택을 C-말단에 위치시켜 니켈ᅳ엔티 에이 (Ni-NTA, Ni-nitriloteiacetic acid, Qiagen, 독일) 컬럼을 이용하여 발현된 포스포리파제 /리파제 MPlaG를 정제하였다.
본 발명의 구체적인 실시예에서, 상기 서열번호 3으로 기재되는 MPlaG유전 자 유전자를 백터에 클로닝하고 (도 2 참조), 상기 백터를 대장균에 형질전환시킨 후, 상기 형질전환체로부터 생산된 포스포리파제 /리파제 MPlaG 단백질을 SDS-PAGE 방법으로 확인함으로써 분자량이 약 31kDa으로 효과적으로 생산되는 것을 확인하였 으며, 또한, 본 발명의 포스포리파제 /리파제 MPlaG는 수용성 형태로 발현이 이루어 지고 있음을 확인할 수 있었다 (도 10 참조). 또한, 본 발명은 서열번호 3으로 기재되는 본 발명의 폴리뉴클레오티드를 포함하는 재조합 발현백터가 숙주세포에 형질 도입된 형질전환체를 제공한다. 본 발명에 따른 상기 재조합 발현 백터를 적절한 숙주 세포, 예를 들어, 대 장균 또는 효모 세포, 바람직하게는 대장균에 형질전환시킨 후, 형질전환된 숙주세 포를 배양함으로써 본 발명에 따른 신규 포스포리파제 및 리파제 활성을 모두 갖는 유전자의 DNA를 대량으로 복제하거나 단백질을 대량 생산할 수 있다. 숙주세포의 종류에 따른 적절한 배양 방법 및 배지 조건 등은 당해 분야의 통상의 기술자에게 알려진 공지 기술로부터 당업자가 용이하게 선택할 수 있다. 본 발명의 구체적인 실시예에서, 신규 MPlaG 유전자를 포함하는 재조합 백터 pET22b(+)-MPlaG를 작제하고 (도 2 참조), 이를 대장균 BL2KDE3)에 형질전환시켰으며, 상기 형질전환 균주로부터 발현된 포스포리파제 /리파제 MPlaG 활성을 조사한 결과 상기 유전자를 포함하지 않는 pET-22b (+)백터로만 형질전환된 대장균은 트리카프릴린 (tricaprylin)과 인지질인 포스파티딜콜린 (phosphatidylcholine)을 전혀 분해하지 못한 반면 본 발명의 포스포리파제 /리파제 MPlaG로 형질전환된 대장균은 트리카프릴린과 포스파티딜콜린을 효과적으로 분해하여 포스포리파제 및 리파제 동시 활성을 나타내었다 (도 4 참조). 이로부터 갯벌 메타게놈에서 분리한 포스포리파제 및 리파제 활성을 모두 갖는 유전자가 대장균 형질전환체에서 발현되어 우수한 활성을 나타냄을 확인하였다. 또한, 포스포리파제 활성과 리파제 활성을 확인하기 위해 동일한 단백질 양을 트리카프릴린과 포스파티딜콜린이 들어있는 고체배지에 떨어뜨린 결과, 리파제 기질인 트리카프릴린과 인지질인 포스파티딜콜린을 함유한 배지에서 모두 투명환을 형성함으로써 포스포리파제 활성뿐만 아니라 리파제 활성도 가지고 있음을 확인하였다 (도 4 참조). 아울러, 상기 형질전환된 대장균 BL21(DE3)/pET22b(+)-MPlaG를 2011년 05월 30일자로 한국생명공학연구원 유전자은행에 기탁번호 KCTC 11942BP로 기탁하였다. 아울러, 본 발명은,
1) 서열번호 3으로 기재되는 플리뉴클레오티드를 포함하는 재조합 발현백터 를 제조하는 단계 ;
2) 상기 재조합 발현백터를 숙주세포에 도입하여 형질전환체를 제조하는 단 겨); 및,
3) 상기 형질전환체를 배양하여 재조합 단백질의 발현을 유도하고 이를 수 득하는 단계를 포함하는 포스포리파제 및 리파제 활성을 모두 갖는 재조합 단백질 제조방법을 제공한다.
상기 단계 1)의 폴리뉴클레오티드의 N-말단에 분리정제용 태그를 암호화하 는 폴리뉴클레오티드와 단백질 절단효소 인식부위가 추가로 연결될 수 있고, 이로 인해 포스포리파제 /리파제 MPlaG의 정제 또는 원래 형태의 포스포리파제 /리파제 MPlaG의 수득이 가능할 수 있다. 즉, 포스포리파제 /리파제 MPlaG를 분리정제용 태 그를 이용하여 정제한 후, 상기 단백질 절단효소 인식부위를 절단할 수 있는 단백 질 절단효소를 처리하는 단계를 추가로 포함함으로써 원래 형태의 포스포리파제 /리 파제 MPlaG를 수득할 수 있다.
상기 분리정제용 태그는 GST, poly-Arg, FLAG, 히스티딘-택 (His-tag) 및 c- myc으로 이루어진 군으로부터 선택되는 어느 하나 이상인 것인 바람직하고, 히스티 딘 -택인 것이 보다 바람직하나 이에 한정되지 않는다. 또한, 본 발명은 서열번호 5로 기재되는 아미노산 서열로 구성되며, 포스포 리파제 및 리파제 활성을 모두 갖는 폴리펩티드를 유효성분으로 함유하는 세제첨가 제를 제공한다.
또한 본 발명은 본 발명의 포스포리파제 및 리파제 활성을 모두 갖는 폴리 펩티드를 표면에 처리하는 단계를 포함하는 세척방법을 제공한다.
또한 본 발명은 본 발명의 포스포리파제 및 리파제 활성을 모두 갖는 폴리 펩티드를 세제의 제조에 이용하는 용도를 제공한다.
본 발명의 갯벌 토양 미생물의 메타게놈 라이브러리로부터 분리한 신규 유 전자 및 이로부터 코딩되는 포스포리파제 및 리파제 활성을 모두 갖는 단백질은 수 용성 형태로 발현되므로 대량생산이 가능하고, Ni-NTA 컬럼을 이용한 한 단계의 정 제만으로 현저히 높은 순도의 단백질 수득이 가능하며 , pH 5 내지 10에서 우수한 활성을 나타내고, 3°C 내지 40°C까지 우수한 저은 활성 및 안정성을 유지하며, 다 양한 유기용매에 대한 높은 내성을 가지므로, 유지의 정제 및 전환 생물의학과 정 밀화학분야 등의 다양한 산업에 유용하게 이용될 수 있다.
【유리한 효과】
본 발명의 갯벌 토양 미생물의 메타게놈 라이브러리로부터 분리한 신규 유 전자 및 이로부터 코딩되는 포스포리파제 및 리파제 활성을 모두 갖는 단백질은 수 용성 형태로 발현되므로 대량생산이 가능하고, Ni-NTA 컬럼을 이용한 한 단계의 정 제만으로 현저히 높은 순도의 단백질 수득이 가능하며, pH 5 내지 10에서 우수한 활성을 나타내고, 3°C 내지 40°C까지 우수한 저온 활성 및 안정성을 유지하며, 다 양한 유기용매에 대한 높은 내성을 가지므로, 유지의 정제 및 전환 생물의학과 정 밀화학분야 등의 다양한 산업에 유용하게 이용될 수 있다.
【도면의 간단한 설명】
도 1은 본 발명의 포스포리파제 /리파제 PlaG (포스포리파제 및 리파제 활성 을 모두 가지는 단백질 PlaG)와 그의 아미노 말단 (A)과 유사한 단백질 또는 카르복 시 말단 (B)과 유사한 단백질 사이의 상동성을 비교한 결과이다:
ZP_02001945는 ¾¾·/ sp. PS유래의 분비성 단백질 (secreted protein);
EBL22535는 해양 메타게놈 유래의 가상단백질 (hypothet ical protein);
MD10476은 Serratia sp. MK1유래의 포스포리파제 Al(phosphol ipase Al);
MM13978은 cesc 유래의 포스포리파제 (phosphol ipase) ;
YP_001005338은 Yersinia enterocol itica 8081유래의 포스포리파제 A(phosphol ipase A);
YP_001479905은 Serratia proteamaculans 568유래의 포스포리파제 AKphosphol ipase Al); 및
*로 표시돼 있는 아미노산들은 잘 보존되어있는 리파제 특이적 세작용기 촉 매 (catalytic triad)를, 밑줄은 포스포리파제 A의 세린 (Ser) 잔기 주변의 공통적인 아미노산 서열들을 나타낸다.
도 2는 본 발명에 따른 갯벌 토양 미생물의 메타게놈 유래의 신규 PlaG 유 전자의 기능 도메인인 MPlaG를 포함하는 재조합 백터 pET22b(+)-MPlaG의 모식도이 다.
도 3은 갯벌 메타게놈 유래 포스포리파제 /리파제 MPlaG (포스포리파제 및 리 파제 활성을 모두 가지는 단백질 MPlaG)와 기존에 알려진 리파제 패밀리 (family)로 부터 선별된 여러 리파제, 포스포리파제 /리파제 MPlaG와 유사한 포스포리파제 및 다른 알려진 포스포리파제와의 계통발생나무 (phylogenetic tree)를 구축한 것이 다; 계통발생나무는 프로그램 MEGALIGN을 이용하여 구축되었고, 막대기는 아미노산 치환 발생을 나타낸다.
도 4는 본 발명의 포스포리파제 /리파제 MPlaG의 트리카프릴린 (tricaplyrin) 과 포스파티딜콜린 (phosphatidylcholine) 에멀견이 첨가된 고체배지 상에서의 활성 을 나타낸 결과로서, 음성대조군으로서 형질전환체를 만들기 위해 사용한 숙주 세 포인 대장균 BL2KDE3)의 세포 용해물을 사용하였고 리파제 -양성 대조군으로서 Candida antarctica^ lipase B(CALB)를 사용하였다.
도 5는 pH에 따른 본 발명의 포스포리파제 /리파제 MPlaG의 활성 (參)과 안정 성 (画)을 나타낸 그래프이다.
도 6은 온도에 따른 본 발명의 포스포리파제 /리파제 MPlaG 활성을 나타낸 그래프이다.
도 7은 OmM(-), 2mM(0), 5mM(#) 칼슘에 의한 본 발명의 포스포리파제 /리 파제 MPlaG의 녹는 온도 (melting temperature)의 변화를 보여준다.
도 8은 다양한 포스포리피드에 대한 본 발명의 포스포리파제 /리파제 MPlaG 의 기질특이성을 보여준다.
도 9은 (a)트리글리세라이드, (b)파라 -니트로페닐 에스테르 및 (C)포스파티 딜콜린에 대한 MPlaG의 사슬 길이 특이성을 각각 pH-적정, 분광분석, LC—MS 법을 이용하여 측정한 것이다; (a), (b)에서 수직 및 수평선은 각각 기½ 탄소 사슬 길 이 및 최대 활성을 100% 라 했을 때의 상대적 활성을 나타낸다; LC-MS 분석에 있어 서, 포스파티딜콜린 기질에 대한 MPlaG의 반웅 생성물은 HPLC를 이용하여 하기의 보유 시간 (retention time)에서 분리되었다: diC6PC, 8.77 분 498의 1,2-디핵 사노일-포스파티딜콜린 (1,2-dihexanoylᅳ phosphatidylcholine), 89.6%) 및 10.36 분 {w/z 400의 2-핵사노일-라이소포스파티딜콜린 (2-hexanoyl- lysophosphat idyl choline), 10.4%); diC7PC, 8.40 분 526의 1,2-디헵타노일- 포스파티딜콜린 (1,2-diheptanoyl-phosphatidylcholine), 50.5%) 및 9.99 분
Figure imgf000018_0001
414의 2-헵타노일-라이소포스파티딜콜린 (2ᅳ heptanoy卜 lysophosphat idyl chol ine) , 49.5%); diC8PC, 8.14 분 {m/z 554의 1,2-디옥타노일- 포스파티딜콜린 (1,2- dioctanoy卜 phosphatidylcholine), 49.6%) 및 9.73 분 428의 2-옥타노일 -라이 소포스파티딜콜린 (2-octanoyl-lysophosphatidyIcholine), 50.4%); diCUPC, 7.68 분 m/z 722의 1,2—디미리스토일ᅳ포스파티딜콜린 (1,2— dimyristoyl phosphatidylcholine), 96.5%) 및 8.91 분
Figure imgf000018_0002
512의 2-미리스토일ᅳ라이소포스파 티딜콜린 (2— myristoyl— lysophosphat idyl chol ine), 3.5%) .
도 10은 정제된 본 발명의 포스포리파제 /리파제 MPlaG를 확인하기 위하여, SDSᅳ PAGE (Sodium dodecy 1 su 1 f at e-polyacryl amide gel electrophoresis)로 확인한 결과를 나타낸 도이다:
M: size marker;
레인 1: 전장 (full-length) 단백질인 포스포리파제 /리파제 PlaG;
레인 2: 절단형 단백질 (truncated protein) 1; 및
레인 3: 절단형 단백질 2(포스포리파제 /리파제 MPlaG).
도 11은 MPlaG의 포스포리파제 M 활성을 동정한 것을 나타낸 도이다; 0PPC (1-을레오일 -2-팔미토일 -포스파티딜콜린, l-oleoyl-2-pa nitoyl- phosphat idyl choline)에 대한 MPlaG의 위치 특이성을 LOMS를 이용하여 결정하였 다; (a) MPlaG에 의한 반응 생성물은 HPLC를 이용하여 16.93분 804, OPPC, (b) 의 위쪽 그래프) 및 18.14 ^ n/z 540, 2-팔미토일-라이소포스파티딜콜린 (2- palmi toyl-lysophoaphat idylchol ine) , (b)의 아래쪽 그래프)에 분리되었다.
【발명의 실시를 위한 최선의 형태】
이하, 본 발명올 실시예 및 실험예에 의해 상세히 설명한다.
단 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용 이 하기 실시예 및 실험예에 한정되는 것은 아니다.
<실시예 1> 메타게놈 (Metagenome) 라이브러리의 구축
전라북도 부안군 새만금 간척지 갯벌에서 채취한 토양 시료 10 g을 50 !igl m의 프로테이나제 (proteinase) K를 포함하는 동일부피의 DNA .추출용 완충액 [100 mM 트리즈마 완충액 (Tris-HCl, pH 8), 100 mM EDTA( ethyl enedi ami net et raacet ic acid, Sigam, 미국), 100 mM 인산 나트륨 완충액 (sodium phosphate, pH 8, Si gam, 미국), 1.5 M 염화나트륨 (NaCl, Junsei, 일본), l%(w/v) CTAB(hexadecyl trimethyl a睡 onium bromide, Sigma, 미국)]에 현탁시킨 후, 음이온 계면활성제 (sodium dodecyl sulfate, SDS, Sigma, 미국)를 최종 2%(v/v)가 되게 첨가하여 65°C에서 2 시간 동안 반응시켰다. 그 후; 원심분리를 통해 획득한 상등액에 1.6 M 염화나트륨 (NaCl)을 포함한 30%(v/v) 폴리에틸렌 글리콜 (polyethylene glycol )을 동일 부피만 큼 첨가시켜 잘 섞어 주었다. 침전된 DNA는 원심분리를 통해 분리하여 TE 버퍼에 현탁하고, 동일 부피의 페놀 /클로로포름 /이소아밀 알코올
(phenol /chloroform/ isoamyl alcohol ) (25:24: 1)과 클로로포름 /이소아밀 알코을 (chloroform/isoamyl alcohol)(24:l) 흔합액을 첨가하여 두 번 추출하였다. 원심분 리하여 획득한 상등액에 이소프로파놀 (isopropanol)을 첨가하여 DNA를 침전회수하 였다. DNA 침전물을 완전히 건조시켜 멸균수에 녹인 후 불순물을 완전히 제거하고, 약 23~48 kb정도의 DNA 단편으로 부분 절단하기 위해 PFGE(pulse-f ield gel electrophoresis)를 이용하여 전기영동하고 Gelase(Epicentre, 미국)를 사용하여 겔 용출을 수행하였다. 정제된 DNA단편들은 CopyControl fosmid 라이브러리 제작 키트 (Epicentre, 미국)를 사용하여 메타게놈 라이브러리를 구축하였다.
라이브러리의 질을 검사하기 위해, 형질전환체들을 무작위적으로 선택하여 재조합 플라스미드를 추출하여 제한효소 처리해 본 결과, 모두 재조합 플라스미드 를 가지고 있었으며 삽입된 메타게놈의 평균 크기는 35 kb였다.
<실시예 2>지질분해 활성능을 가진 재조함플라스미드의 탐색 및 분리 상기 <실시예 1>에서 수득한 메타게놈 라이브러리로부터 지질분해성 유전자 를 탐색하기 위해 트리카프릴린 (tricaprylin)을 포함하는 고체배지에서 상기 메타 게놈 라이브러리를 배양하였다.
구체적으로, 상기 메타게놈 라이브러리를 트리카프릴린 에멀젼 [1%(ν/ν) 트 리카프릴린 (tricaprylin)ᅳ 1 mM 염화칼슘 (CaCl2), 0.5%(w/v) 아라비아 고무 (Gum arabic)]가 첨가된 영양고체배지 [l%(w/v) 트립톤 (trypton), 0.5%(w/v) 이스트 추출 물 (yeast extract), 0.5%(w/v) 염화나트륨 (NaCl), 1.5%(w/v) 한천 (agar)]에 도말하 여 37°C에서 배양하였다. 그런 다음, 지질 분해 효소는 트리카프릴린 (tricaprylin) 을 분해하므로, 트리카프릴린이 분해되어 투명환을 형성하는 콜로니를 선별한 후, 트리카프릴린 분해능이 가장 우수한 콜로니로부터 재조합 플라스미드를 분리하여 pFosPlaG로 명명하였다. <실시예 3> 지질분해 활성능이 우수한 재조합 플라스미드의 염기서열 분석 및 염기서열 결정
<3-1> 재조합 플라스미드의 염기서열 분석
메타게놈 라이브러리로부터 분리된 재조합 플라스미드 pFosPlaG는 샷건 시 퀸싱 (shot— gun sequencing) 방법을 이용하여 염기서열을 분석하였다.
구체적으로, pFosPlaG로부터 피펫팅을 이용한 물리적인 방법으로 만들어진
DNA단편을 PUC118(TaKaRa)백터에 서브클로닝하고 자동염기서열분석기 (ABI 3730 DNA analyzer)를 사용하여 수행하였다.
=L 결과, pFosPlaG는 28, 845 bp 크기였으며 , 이들 유전자의 염기서열은 서 열번호: 1과 같으며, 이들은 미국 진뱅크 (GenBank)에 등록번호 (accession number) EU285670으로서 등록하였다. 또한, Nat ional Center for Biotechnology Informat ion(NCBI )의 ORF finder 를 이용하여 e— 2 이하의 e-value값을 가지는 전사해독프레임 (open reading frame, ORF)만을 동정하였고, 블라스트액스 (BiastX)를 이용하여 각 전사해독프레임의 기능 을 예측하였다.
그 결과, 표 1에 나타낸 바와 같이 총 15개의 전사해독프레임이 동정 되었 으며, 서열번호 1의 상보적인 염기서열에서 뉴클레오티드 번호 2881에서 4578 부위 에 해당하는 전사해독프레임이 포스포리파제 단백질 코딩영역이었으며 상기 유전자 를 plaG로 명명하였다. 본 발명의 포스포리파제 및 리파제 활성을 모두 갖는 유전 자 (plaG)는 1698 개의 염기서열로 구성되며 구아닌시토신 조성이 44.94%이고, 이 유전자로부터 발현되는 포스포리파제 /리파제 PlaG (포스포리파제 및 리파제 활성을 모두 가지는 단백질 PlaG; 서열번호: 4)는 566 개의 아미노산으로 이루어지며 분자 량이 약 61,187 Da으로 예측되는 포스포리파제 및 리파제 활성을 모두 갖는 단백질 이었다. 【표 1】
Figure imgf000021_0001
Figure imgf000022_0001
<3-2>상동성 분석
블라스트 (BLAST) 데이타베이스를 이용하여 기존 단백질과 아미노산 서열을 비교 분석하였다.
그 결과, 포스포리파제 /리파제 PlaG (서열번호: 4), 더 바람직하게는 PlaG의 기능 도메인 MPlaG로부터 발현되는 포스포리파제 /리파제 MPalG (포스포리파제 및 리 파제 활성을 모두 갖는 단백질; 서열번호: 5)는 Grimontia hollisae CIP 101886과 가장 높은 유사성을 나타내었으며, 이전에 보고된 포스포리파제 유전자 집단과 30-35% 정도의 낮은 유사성을 보여 포스포리파제를 암호화하는 신규한 유전자로서 확인되었다. 또한, 본 발명의 포스포리파제 /리파제 PlaG 아미노산 서열과 이와 유 사한 포스포리파제의 아미노산 서열 사이의 상동성을 비교한 결과, α/β가수분해 효소의 보존적인 글리신 -X-세린 -X—글리신 (Gly-X-Ser-X-Gly)의 공통서열 (consensus sequence) 내의 435번째 세린잔기 (Ser), 496번째 아스파라긴산 (Asp), 550번째 히스 티딘 (His)으로 이루어져 있는 세작용기 촉매 (catalytic triad) 갖고 있었으며 그 주변의 아미노산들이 포스포리파제 A의 특징적 서열 ([LIV]-{KG}ᅳ [LIWY]-[LIVMST]- G-[HYWV]-S-{YAG}-G- [GSTAC])들로 이루어져 있음을 확인하였다 (도 1B). 한편, 포스 포리파제 /리파제 PlaG의 아미노 말단의 287개 아미노산 잔기들은 Beggiatoa sp. PS 유래의 분비 단백질 (secreted protein; ZP_02001945)과 54%로 가장 높은 유사성을 나타내었다 (도 1A). 또한, 아미노 말단의 26개의 아미노산 잔기들은 분비 시그날 펩티드 (signal peptide)로 동정 되어졌으며, 분비 시그날 펩티드가 끝나는 27번째 알라닌 잔기 (Ala)부터 157번째 글리신 잔기 (Gly)는 다음의 아미노산인 158번째 트 레오닌 (Thr)부터 287번째 글리신 (Gly)까지 반복되는 서열로 구성돼 있었다 (도 3). 즉, 분비 시그날 펩티드와 반복서열의 존재, 블라스트 데이트베이스 분석 결과를 근거로 하여 포스포리파제 /리파제 PlaG는 구조도메인과 기능도메인으로 구성돼 있 을 것으로 예측 가능하였으며, 포스포리파제 /리파제 PlaG의 기능 도메인을 포스포 리파제 /리파제 MPlaG로 명명하였다. <3-3> 계통발생나무 (phylogenetic tree)를 통한 계통분석
포스포리파제 /리파제 MPlaG의 아미노산 서열 (서열번호: 5)은 아미노산 서열 과 특성에 따라 분류된 다양한 리파제 및 기존에 알려진 포스포리파제의 아미노산 서열들과 함께 계통발생나무 (phylogenetic tree)를 구축하였다.
그 결과, 도 3에 나타낸 바와 같아, 본 발명의 포스포리파제 /리파제 MPlaG 는 어떠한 리.파제 패밀리에도 속하지 않았으며, 리파제보다는 포스포리파제와 계통 발생학적으로 더 유연관계가 있는 것을 확인할 수 있었다 (도 3). 특히, 특이적으로 리파제 활성뿐만 아니라 우수한 포스포리파제 활성을 나타내는 것으로 알려져 있는 Staphylococcus Λτ/α^유래의 리파제와도 계통발생학적으로 거리가 멀었다. 또한, 71존의 알려진 Serratia sp. MK1, Serratia marcescens, Yersinia enterocol i t ica 8081, Serratia proteawaculans 568유래의 포스포리파제의 아미노산 서열들은 서로 높은 상동성 (59/7-88.1%)을 보이는 반면, 본 발명의 포스포리파제 /리파제 MPlaG와 는 17.2-20. «의 낮은 상동성을 보였다. 즉, 갯벌 메타게놈 유래의 포스포리파제 및 리파제는 리파제 또는 포스포리파제 A의 공통서열은 가지고 있지만, 리파제 뿐 만 아니라 포스포리파제와도 낮은 상동성을 보여 신규 효소임을 재확인하였다.
<실시예 4>: 형질전환체의 제조
본 발명의 신규 포스포리파제 /리파제 MPlaG를 대량으로 생산할 수 있는 재 조합 플라스미드를 제조하기 위해, PlaG의 기능 도메인 (MPlaG)만으로 이루어져 있 는 전사해독프레임을 디자인하고 그 작제물을 제조하였다. 상기 작제물은 pET- 22b(+)(Novagen)의 제한효소 Λ ?Ι과 ¾?I부위에 서열번호 2의 서열 위치 862 bp에 서 시작하는 837 bp를 (서열번호: 3) 클로닝하였다. 이 작제물은 대장균 BL2UDE3) 에 형질전환시켜 대장균 BL21(DE3)/pET22b(+)-MPlaG를 제조하였다.
구체적으로, 메타게놈 라이브러리로부터 탐색 된 재조합 플라스미드 pFosPlaG을 주형 DNA로 하고, 합성된 하기 서열번호 6의 N-말단 프라이머와 합성된 서열번호 7의 C-말단 프라이머 (primer)를 사용하여 중합효소 연쇄반웅 (polymerase chain reaction, PCR)을 수행하였다: 서열번호 6: 51 -CCCCATATGTTAAATCAGTCTGATTATGA-31
서열번호 7: 51 -CCCCTCGAGAAATTTATCGTTCTCAAGCAT-3 ' 본 발명의 MPlaG유전자 N-말단 프라이머와 C-말단 프라이머는 각각
Figure imgf000024_0001
l의 제한효소 절단부위를 가지며 서열번호 6, 7로 기재되는 을리고 뉴클레오티 드이다. 재조합백터 pET22b(+)-MPlaG에는 강력한 T7프로모터와 판독신호가 내재되 어 있어서, 이를 T7 RNA중합효소를 갖고 있는 대장균 BL2KDE3)를 숙주로 사용하 는 경우 포스포리파제 /리파제 MPlaG의 대량 생산이 가능하다. 또한, C-말단에는 포 스포리파제 및 리파제의 정제를 수월하게 수행할 수 있게 하는 6 개의 히스티딘을 암호화하는 택이 형성되어 있다.
중합효소 연쇄반웅을 통해 대량 증폭된 DNA단편을 제한효소 Λ¾Ι과 ¾?I으 로 완전히 자른 후, 동일한 제한효소와 포스파타제 (calf intestinal phosphatase) 를 처리한 발현용 백터 pET-22b (+)와 연결 (ligation)하여 포스포리파제 및 리파제 발현용 재조합 플라스미드 PET22b(+)-MPlaG를 제조하였다 (도 2). 상기 재조합 플라 스미드 pET22b(+)-MPlaG를 대장균 BL2KDE3)로 전기층격유전자전달 (electroporation)을 수행하여 형질전환된 균주를 제조하였다. 상기 형질전환체를 각각 대장균 BL21(DE3)/pET22b(+)— MPlaG라 명명하고, 한국생명공학연구원 유전자은 행에 2011년 05월 30일자로 기탁하였다 (수탁번호: KCTC 11942BP) .
<실시예 5>포스포리파제 /리파제 MPlaG생산 확인
<5-1>포스포리파제 /리파제 MPlaG의 발현 및 정제
상기 <실시예 4>에서 제조한 대장균 BL21(DE3)/pET22b(+)-MPlaG를 암피실린 (ampicillin, 100/g/m )이 포함된 액체영양배지 [ (w/v) 트립톤 (trypton), 0.5%(w/v) 효모 추출액 (yeast extract), 0.5%(w/v) 염화나트륨 (NaCl )]에서 600 nm 에서의 흡광도가 0.6이 될 때까지 배양한 후, 최종 농도 0.5mM의 IPTGCisopropyl- β-D-thiogalactopyranoside)를 배양액에 넣어 12시간 동안 배양하였다. 원심분리 를 통해 얻어진 대장균 BL21(DE3)/pET22b(+)— MPlaG는 결합완층액 (50mM 트리즈마 완 충액 (Tris-HCl, H 8), 500mM 염화나트륨 (NaCl), lOmM 이미다졸 (imidazole))에 현 탁시킨 후, 초음파 분쇄법으로 파쇄하였다. 이를 다시 원심분리하여 회수한 상층액 만을 니켈-엔티에이 (Ni-NTA(nitriloteiacetic acid))컬럼에 가하여 이미다졸 (imidazole) 농도 구배를 이용해 포스포리파제 및 리파제를 용출시킨 후 투석농축 하였다. 상기와 같이 정제된 포스포리파제 /리파제 MPlaG를 확인하기 위해, SDS- PAGE (Sodium dodecyl sul f ate-polyacrylamide gel electrophoresis)를 수행하였고 쿠마시 블루 (comassie brilliant blue)로 염색하였다.
그 결과, 도 10에 나타낸 바와 같이, 본 발명의 포스포리파제 /리파제 MPlaG 는 발현 12 시간 후 시료 속 단백질의 분자량이 약 31 kDa으로 효과적으로 생산되 는 것을 확인하였으며, 이는 포스포리파제 및 리파제의 활성을 모두 갖는 아미노산 배열로부터 추론된 분자량과 상당히 근접하여 이 단백질 밴드가본 발명의 신규 포 스포리파제 /리파제 MPlaG들임을 확인할 수 있었다. 또한, 본 발명의 포스포리파제 / 리파제 MPlaG는 수용성 형태로 발현이 이루어지며 본 발명의 전장 (full-length) 단 백질인 포스포리파제 /리파제 PlaG와 단백질 발현량을 비교한 결과, 본 발명의 포스 포리파제 /리파제 MPlaG의 발현양이 현저히 증가한 것을 확인하였다 (도 10). 아울러, 전장 (full-length) 단백질 포스포리파제 /리파제 PlaG 단백질의 경우 여러 단계의 정제 과정 또는 새로운 백터시스템을 이용하더라도 항상 비특이적 단백질 (nonspecific protein)이 함께 존재하지만, 본 발명의 포스포리파제 /리파제 MPlaG는 Ni-NTA 컬럼을 이용한 한 단계의 정제만으로도 월등히 높은 순도의 단백질을 수득 할 수 있음을 확인하였다.
<5-2> 인지질 분해능 확인
메타게놈 라이브러리로부터 분리된 재조합 플라스미드 pFosPlaG는 리파제 유전자의 분리 확인을 위해 널리 사용되어지고 있는 트리카프릴린 에멀견이 첨가된 영양고체배지에서 분리되었으므로, 이 유전자의 포스포리파제로서의 인지질 분해능 을 확인하기 위해 포스파티딜콜린 에멀젼 [0.5%(w/v) 포스파티딜콜린 (phosphatidyl choline), 0.5%(w/v) 타로콜릭산 (taurochol ic acid), 20mM 염화칼슴 (CaCl2))이 첨 가된 고체배지에 포스포리파제 /리파제 MPlaG를 떨어뜨려 그 활성능을 투땅환으로 확인하였다. 실험의' 수행에 있어서 비교군으로서는 우수한 리파제 활성능을 지닌 리파제 CALB( lipase B from Candida antarctica)와 형질전환체를 만들기 위해 사용 한 숙주 세포인 대장균 BL2KDE3)의 세포 용해물을 사용하였다.
그 결과, 도 4에 나타낸 바와 같이, 대장균 BL2KDE3)의 세포 용해물은 두 고체배지 상에서 모두 활성을 나타내지 않았고, CALB는 트리카프 ¾린 에멀견이 첨 가된 영양고체배지에서만 투명환을 형성하였으며, 본 유전자는 두 고체배지 상에서 모두 투명환을 형성하여 지질의 분해능뿐만 아니라 인지질 분해능도 가지고 있음을 확인할 수 있었다 (도 4).
<실시예 6> 갯벌 메타게놈으로부터 분리한 포스포리파제 /리파제 MPlaG의 특 성 조사
상기 <실시예 5>에서 정제한 포스포리파제 /리파제 MPlaG의 온도 및 pH 변화 에 따른 효소활성, 다양한 탄소길이를 갖고 있는 기질에 대한 특이성, 다양한 금속 이온, 저해제, 그리고 유기용제에 대한 영향을 리파제 활성을 기준으로 하여 다음 과 같이 측정하였다.
구체적으로, 효소활성 측정을 위해 두 가지 방법올 사용하였다. 첫 번째 방 법은 pH-stat법으로, 트리글리세를 5 1 과 495 m£의 아라비아 고무 현탁액 [20 mM 염화나트륨 (NaCl), ImM 염화칼슘 (CaCl2),.0.5%(w/v) 아라비아 고무 (gum arabic)]을 흔합한 다음, Waring blendor를 이용하여 에멀견을 만들었다. 상기 트리글리세를 에멀젼 25 II 을 온도 조절장치가 장착된 반응조에 넣은 후 10 mM NaOH을 떨어드려 pH 8로 적정하였다. 상기 적정액에 정제를 통해 수득한 포스포리파제 /리파제 MPlaG 효소액을 첨가하였고, 25°C에서 가수분해 반응을 진행하면서 첨가되는 NaOH양을 pH 적정 (842T Titrando, Metrohm)을 통하여 측정하였다. 효소의 1 unit(U)는 분당 1 μιη이의 지방산을 생산하는 효소의 양으로 정의하였다. 또 다른 방법은 본 발명의 표준 활성 측정법으로서, 10 mM 파라 -니트로페닐 에스테르 (p-nitrophenyl ester)기 질 20 , 에탄을 40 50 mM트리즈마 완층액 (Tr is-HCl, pH 8) 940 ^로 구성된 반웅액에 포스포리파제 /리파제 MPlaG 효소액을 첨가하여 5분간 반웅시키면서, 기질 에서 분해되어 나오는 파라 -니트로페놀 (p-nitrophenol)을 405nm에서의 흡광도 증가 율로 측정하였다. 1 unit(U)은 분당 1 μιτωΐ의 파라-니트로페놀을 가수분해하여 생 산할 수 있는 효소의 양으로 정의하였다.
<6-1>은도 및 ρΗ에 대한포스포리파제 /리파제 MPlaG의 특성
효소 활성에 대한 pH의 영향을 조사하기 위해, 다양한 pH 완충액에서 활성 을 측정한 결과 pH 8에서 최대의 활성을 나타내었고, 다양한 pH에서 180분간 방치 한 후 잔존 활성올 측정한 결과 pH 5 내지 10의 범위에서 안정한 것으로 나타났다 (도 5). 또한, 포스포리파제 및 리파제 활성에 미치는 은도의 영향을 조사한 결과, 25°C에서 최적 활성을 보였으며, 5°C에서도 최고 활성의 3»의 활성능을 가지고 있 었으며, 최적 활성 온도이상에서는 활성이 급격히 감소하였다 (도 6). 아을러, 시차 주사열량계 (DSC, differential scanning calor imetry)를 이용하여 녹는 온도 (melting temperature)를 분석한 결과, 38.5°C였다 (도 7). 이는 본 발명의 포스포 리파제 /리파제 MPlaG는 저온성과 알칼리성의 리파제임을 보여주었다. <6-2>다양한 인지질에 대한포스포리파제 /리파제 MPlaG의 특이성 조사 다양한 인지질에 대한 기질특이성을 조사하기 위해 다양한 인지질 에멀견 이 첨가된 고체배지에 정제된 포스포리파제 /리파제 MPlaG를 떨어뜨려서 그 활성능 을 투명환의 크기로 비교하였다. 인지질 에멀견은 0.5%(w/v) 인지질 기질, 0.5%(w/v) 타로콜릭산 (taurocholic acid), 20mM 염화칼슘 (CaCl2)으로 구성된 조성 액으로 만들어졌으며, 사용되어진 기질은 포스파티딜콜린 (PC, phosphatidylcholine 99%순도), 포스파티딜에탄올아민 (PE, phosphatidylethanol amine, 97% 순도), 포스 파티딜세린 (PS, phosphatidyl serine, 97% 순도), 포스파티딜오노시를 (PI, phosphatidyl inositol , 98%순도), 포스파티딜글리세롤 (PG, phosphat idyl glycerol , 99%순도), 포스파티딜산 (PA, phosphat i die acid, 98%순도)이다.
그 결과, 도 8에 나타낸 바와 같이, 포스파티딜콜린, 포스파티딜에탄을아민 포스파티딜글리세를에 대해서 뛰어난 활성을 보였으나, 분비성 포스포리파제 A가 분해하는 것으로 알려져 있는 포스파티딜세린과 포스파티딜산은 분해하지 못하였다 (도 8). <6-3> 다양한 탄소길이에 대한 포스포리파제 /리파제 MPlaG의 특성 트리아실글리세라이드 (triacylglycerides), 을리브 오일 (olive oil), 및 포 스파티딜콜린 (phosphatidylcholine)에 대한 MPlaG의 가수분해 활성을 pH 적정기 (842 Tirando, Metrohm)을 이용하여 유리 지방산을 적정함으로써 측정하였다. 10mM 의 수산화나트륨 용액을 첨가하여 기질 에멀견의 pH를 8.0으로 조정한 후에, 적정 량의 효소 용액을 첨가하였다. 지방산의 배출 속도를 5분 동안 pH 적정기를 이용하 여 측정하였다. 1 단위 (unit)의 리파제 활성은 분당 lymole 의 지방산을 방출시키 는 효소의 양으로 정의되었다. 기질의 비효소적 가수분해 값을 제외하기 위해 서로 다른 조건에서 효소 첨가 없이 측정하여 대조군 반응으로 이용하였다.
그 결과, 올리브 오일 및 포스파티딜콜린에 대한 MPlaG의 특이적 활성은 각 각 2957±144 및 1735±147 U.mg"1 이었다. MPlaG는 포스포리파제의 동족 단백질이 나, 올리브 오일에 대해서 현저한 리파제 활성을 나타내었다.
다양한 탄소 길이를 갖고 있는 기질에 대한 특이성을 알아보기 위하여, 트 리부티린 (tributyrin, C4) , 트리카프릴린 (tricaprylin, C8), 트리카프린 (tr icaprin, C10), 트리라우린 (trilaurin, C12), 트리팔미틴 (tripalmitin, C16), 트리을레인 (triolein, C18:l)을 기질로 사용하여 활성을 비교하였다. 트리아실글리세라이드에 대한 pH-적정 평가의 결과는 트리부티린 (tributyrin)(C4)에서 가장 높은 활성을 보 였고, 사슬 길이가 증가함에 따라 효소 활성은 현저하게 감소하였다 (도 9A). 또한, MPlaG의 합성기질인 파라 -니트로페닐 에스테르에 대한 활성을 알아보 기 위해 분광 분석법을 실온에서 수행하였다. 파라 -니트로페닐 부틸레이트 (P- nitrophenyl butyrate, C4) , 파라ᅳ니트로페닐 카프릴에이트 (p-nitrophenyl caprylate, C8), 파라 -니트로페닐 카프레이트 (p-nitrophenyl caprate, C10), 파라- 니트로페닐 로레이트 (p-nitrophenyl laurate, C12), 파라ᅳ니트로페닐 팔미테이트 (p-nitrophenyl palmitate, C16), 및 파라 -니트로페닐 스티어레이트 (p-nitrophenyl stearate, C18)를 기질로 사용하여 활성을 비교하였다. 구체적으로 파라ᅳ니트로페 닐 에스테르 (p-nitrophenyl ester)에 대한 MPlaG 활성을 분광탐지기 (spectrophotometric detection)을 이용하여 표준 평가 방법으로 측정하였다. 별도 의 표시가 없으면 파라 -니트로페닐 카프레이트 (p-nitrophenyl caprate) (C 10)을 기 질로 이용하였고, 5 mM Ca2+를 반웅 용액에 첨가하였다. 효소 활성은 생산물인 파 라-니트로페놀을 DU800 분광광도계 (spectrophotometer) (Beckman)을 사용하여 450體 에서 5분간 계속적으로 측정하였다. 1 단위 (unit)의 파라 -니트로페닐 에스테르에 대한 활성은 분당 liimole 의 파라-니트로페닐을 방출하는 효소의 양으로 정의되었 다. 기질의 비효소적 가수분해 값을 제외하기 위해 서로 다른 조건에서의 모든 측 정을 효소 첨가 없이 대조군 반웅으로 아용하였다.
그 결과, MPlaG는 파라 -니트로페닐 팔미테이트 (p-nitrophenyl palmitate)(C
16)에 대하여 약 112배의 가장 높은 활성을 보였고, 다음으로는 파라 -니트로페닐 부틸레이트 (p-nitrophenyl butyrate)(C 4)였다 (도 9B). 또한, MPlaG의 포스포리피드의 위치 및 사슬길이 특이성을 알아보기 위해 다양한 탄소 길이 (C6, C7, C8 C14)의 포스파티딜콜린 (phosphatidyl choline)과 1-올 레오일 -2-팔미토일-포스파티딜콜린 ( 1-01 eo 1 y-2-pa lmitoyl -phosphat i dy 1 cho line, 0PPC)을 이용하여 수행하였다. 정제된 MPlaG를 5mM 염화칼슘 및 150mM 염화나트륨 을 포함하는 50mM 트리스 버퍼 (pH 8.0)에 ΙηιΜ 기질과 함께 12시간 동안 25°C에서 효소 반응하였다. 액체' 크로마토그래피 질량 분석법 (Liquid chromatography mass spectrometry, LOMS) 을 Finnigan LCQ를 이용하여 반응 생성물의 분석을 수행하였 다. 어드밴테이지 이온 트랩 질량분석기 (Advantage MAX ion trap mass spectrometer , Thermo Fisher Sceintific)는 전자분무 이온화 소스 (electrospray ionization source)가 장착되었다.' HPLC 분리는 HILIC 가드 컬럼 (4 x 2.0隱, Phenomenex)와 함께 Kinetex HILIC 컬럼 (2.6/im, 2.1 x 100瞧, Phenomenex)을 이용 하여 수행하였다. 이동상 A는 포름산을 이용하여 pH 를 3.0으로 조정한 10mM 포름 산 암모니움 (a醒 onium formate)였고, 이동상 B는 아세토나이트릴 (acetonitri le)이 었다. 기울기 용리 (gradient elution)는 다음과 같이 0.2ml/min의 유동 속도에서 수행되었다: 0 - 10분, 10%에서 40%의 A (선형 구배) ; 10 - 20분 70%의 A(등용매). 컬럼 온도는 실온이었고, 주입량은 lOyL 이었다. 질량 스펙트라는 3 마이크로스캔 및 200ms의 최대 이온 주입시간에서 네거티브 이온 모드 (negative ion mode) 100 - 1200 범위의 历 Λ값에서 얻었다.
그 결과, 특징적인 질량 스펙트럼은 네거티브 이온 모드에서 탈양자 분자 이은 [M-H]- 및 [M-H+HC00H]- 와 같은 용매 부가이온을 나타내었다. 라이소포스파 티딜콜린 (lysophosphat idyl choline)에 대한 포스파티딜콜린의 가수분해 효소적 활 성은 1,2-디옥타노일-포스파티딜콜린 (1,2-Dioctanoyl- phosphatidylcholine)(diC8PC)에서 가장 높았다 (도 9C). 그러므로 MPlaG는 긴 아실 직쇄를 가지는 파라 -니트로페닐 에스테르, 짧은 아실 직쇄를 가지는 트리글리세라 이드 및 중간 아실 직쇄를 가지는 포스포리피드에 대하여 높은 선호도를 나타내어 기질에 따라서 다양한 사슬길이 특이성을 보였다. 정제된 효소는 에스터라제 (esterases)에 의해 가수분해되지 않는 트리올레인 (triolein)(C18: 1)에 대해서 활 성을 나타내었으며 트리부티린 (tributyrin)의 농도 증가와 함께 가수 분해 활성을 측정하였을 때, 정제된 효소는 계면 활성을 나타내었고, 이것은 MPlaG가 에스터라 제 (esterase)가 아니라는 것을 나타낸다 (도 9A) . 부가적으로 MPlaG의 가수분해 위 치를 1-을레오일 -2-팔미토일-포스파티딜콜린 ( 1-01 eo 1 y-2-pa lmitoyl- phosphatidylcholine)을 이용하여 LC— MS 분석을 통해 결정하였다 (도 11). MPlaG를 0PKX759의 분자량)로 25°C에서 12시간 동안 반웅한 후에, LOMS 스펙트럼은 MPlaG 가 OPPC A 804, [M-H+HC00H]-)를 분해하여 m/z 540의 반웅산물을 생성하였다는 것을 나타내었다. 만약 MPlaG가 0PPC의 sn-2 위치에서 팔미산 (palmitic acid)을 잘 랐다면, 반웅 생성물은 Λ7Λ 567에서 관찰되었을 것이다. 그러나, MS 스펙트럼은 2- 팔미토일ᅳ라이소포스파티딜콜린 (2-Palmitoyl-lysophosphatidylcholine)에 대웅하는 m/z 540 ([M-h+C00H-C18:l]-)에서 탐지되었기 때문에, MPlaG는 포스포리피드의 sn- 1 위치에 있는 아실기의 가수분해를 촉진할 수 있는 포스포리파제 A1임이 동정되었 다.
따라서, 에스터라제가 분해할 수 없는 트리을레인을 분해하고 트리부티린의 농도증가에 따라서 계면활성을 보임으로써 본 발명의 MPlaG는 포스포에스터라제 /에 스터라제가 아니라 포스포리파제 /리파제임을 알 수가 있다ᅳ
<6-4>금속이온 및 저해제에 대한 포스포리파제 /리파제 MPlaG의 영향 하기의 [표 2]에서와 같은 다양한 농도의 다양한 금속이온과 저해제에 대한 포스포리파제 및 리파제의 활성을 측정하였다.
그 결과 도 7에 나타낸 바와 같이 칼슘이온 (Ca2+)에 의해 활성이 약 10배 증가하는 것을 확인하였으며 EDTA에 의해서 활성이 강하게 저해되었다. 또한, 2 mM 과 5 mM의 칼슘 이온을 첨가하였을 경우, 본 발명의 포스포리파제 /리파제 MPlaG의 녹는 온도가 38.51에서 각각 47.2°C와 49.2°C로 증가되어 칼슘에 의해 구조적인 안정화가 증가되었을 것으로 기대할 수 있다 (도 7). 【표 2】
Figure imgf000031_0001
본 발명의 포스포리파제 /리파제 MPlaG의 하기 [표 3]의 디메틸설폭사이드 (DMS0, dimethyl sulfoxide), 디메틸품아마이드 (DMF, dimethyl formamide) , 2ᅳ프로 판놀^^^ ^ ), 에탄올 (Ethanol), 메탄올 (Methanol ), 아세토니트릴 (Acetronitrile) 및 아세톤 (Acetone)에 대한 안정성을 알아보기 위해 다양한 농도 에서 포스포리파제 /리파제 MPlaG활성을 측정하였다.
그 결과, 60%(v/v)농도까지 사용한 유기용제'들에 의한 포스포리파제 /리파제 MPlaG의 활성 저해는 관찰되지 않았으며, 이는 유기용제 환경에서의 산업적인 응용 에서도 층분히 활용 가능함을 보여주는 것이다.
【표 3】
Figure imgf000031_0002
Figure imgf000032_0001
<6-6>포스포리파제 /리파제 MPlaG의 효소활성 비교
본 발명의 포스포리파제 /리파제 MPlaG와 산업적으로 많이 이용되는 CALB( lipase from Candida antartica) 및 CRL( lipase from Candida rugosa) 을 효 소 활성 분석법 (pH-stat법)에 따라서 비활성도 (specific activity)를 측정하였다. 그 결과, 표 4에 나타낸 바와 같이, 비록 합성된 트리부티린 (tributyrin,
C4) 기질에 대해서는 CALB가 가장 높은 활성을 나타내었지만, 천연기질인 을리브유 (Olive oil)에 대해서는 본 발명의 포스포리파제 /리파제 MPlaG가 가장 높은 활성을 나타내었다. 또한, 포스포리파제 기질인 포스파티딜콜린 (phosphatidylcholine)에 대해서는 본 발명의 포스포리파제 /리파제 MPlaG만이 활성을 나타내었다. 즉, 리파 제인 CALB 및 CRL과 달리 본 발명의 포스포리파제 /리파제 MPlaG는 포스포리파제 활 성을 나타내고 있다는 것을 정량적으로 확인하였다. 또한, P.pseudoalcali genes유 래의 리파제의 경우 5.7 U/mg의 포스포리파제 활성을, Lecitase™ (Novozyme)의 경 우 6 U/mg의 포스포리파제 활성을 나타내는 것으로 보고한 문헌 (Biochimica et Biophysica Acta 1259(1995) 9-17)과 비교해 보았을 때, 본 발명의 포스포리파제 / 리파제 MPlaG는 지질 (lipid)뿐만 아니라 인지질 (phosphol ipid)에 대해서도 우수한 분해활성을 가지는 것을 확인하였다 (표 4).
아을러, 합성기질올 이용한 활성분석에서, 본 발명의 포스포리파제 /리파제 MPlaG 및 전장 (full-length) 단백질의 비활성도를 측정한 결과, 본 발명의 포스포 리파제 /리파제 MPlaG는 본 발명의 전장 (full-length) 단백질에 비해 2배 이상 비활 성도가 증가하는 것을 확인하였다.
【표 4]
Figure imgf000033_0001
a: not determined
번 역 문 륙 *¾차상피.생률 ? msi국^3 ί 관한 부다 i^s 국제 서식
?.H si한
원기탁에 대한수탁증 O: 윤 정 ^
한국생명공학언구원
쒀한¾¾ 대¾¾역시 큐성구 톼학 S 1¾∞-806)
Figure imgf000034_0001
4 KCTC ?

Claims

【청구의 범위】
【청구항 1】
서열번호 5로 기재되는 아미노산 서열로 구성되며, 포스포리파제 및 리파제 활성을 모두 갖는 폴리펩티드.
【청구항 2]
제 1항에 있어서, 상기 포스포리파제 및 리파제의 활성 pH는 pH가 5 내 10인 것을 특징으로 하는 폴리펩티드.
【청구항 3】
제 1항에 있어서, 상기 포스포리파제 및 리파제는 활성온도가
Figure imgf000035_0001
30°C인 것을 특징으로 하는 폴리펩티드.
【청구항 4]
제 1항의 폴리펩티드를 암호화하는 폴리뉴클레오티드.
【청구항 5】
제 4항에 있어서, 상기 폴리뉴클레오티드는 서열번호 3으로 기재되는 염기서열을 갖는 것을 특징으로 하는 폴리뉴클레오티드.
【청구항 6]
제 4항의 폴리뉴클레오티드를 포함하는 재조합 발현백터
【청구항 7】
제 6항의 재조합 발현백터가 숙주세포에 형질 도입된 형질전환체.
【청구항 8】
제 7항에 있어서, 상기 형질전환체는 기탁번호 KCTC 11942BP로 기탁된 것을 특징으로 하는 형질전환체 .
【청구항 9】
1) 제 4항의 폴리뉴클레오티드를 포함하는 재조합 발현백터를 제조하는 단계;
2) 상기 재조합 발현백터를 숙주세포에 도입하여 형질전환체를 제조하는 단 계; 및,
3) 상기 형질전환체를 배양하여 재¾합 단백질의 발현을 유도하고 이를 수 득하는 단계를 포함하는 포스포리파제 및 리파제 활성을 모두 갖는 재조합 단백질 제조방법.
【청구항 10】
제 9항에 있어서, 상기 단계 1)의 폴리뉴클레오티드의 Nᅳ말단에 분리정제용 태그를 암호화하는 폴리뉴클레오티드와 단백질 절단효소 인식부위가 추가로 연결되는 것을 특징으로 '하는 제조방법 .
【청구항 11】
제 10항에 있어서, 상기 분리정제용 태그는 GST, poly-Arg, 히스티딘-택 (His-tag) 및 c-niyc으로 이루어진 군으로부터 선택되는 어:
Figure imgf000036_0001
이상인 것을 특징으로 하는 제조방법.
【청구항 12】
제 10항에 있어서, 상기 단백질 절단효소 인식부위를 절단할 수 있는 단백질 분해효소를 처리하여 원래 형태의 포스포리파제 및 리파제 활성을 모두 갖는 재조합 단백질을 수득하는 단계를 추가로 포함하는 것을' 특징으로 하는 제조방법.
【청구항 13]
서열번호 5로 기재되는 아미노산 서열로 구성되며, 포스포리파제 및 리파제 활성을 모두 갖는 폴리템티드를 유효성분으로 함유하는 세제첨가제.
【청구항 14】
서열번호 5로 기재되는 아미노산서열로 구성되며, 포스포리파제 및 리파제 활성을 모두 갖는 폴리펩티드를 표면에 처리하는 단계를 포함하는 세척방법.
【청구항 15】
서열번호 5로 기재되는 아미노산 서열로 구성되며, 포스포리파제 및 리파제 활성을 모두 갖는 폴리펩티드를 세제의 제조에 이용하는 용도.
PCT/KR2012/005705 2011-11-18 2012-07-17 갯벌 메타게놈 유래 신규 유전자 및 이로부터 얻어지는 포스포리파제 및 리파제 동시 활성을 보이는 신규 단백질 WO2013073760A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280067563.1A CN104471065B (zh) 2011-11-18 2012-07-17 来自于淤泥滩宏基因组的基因和从其获得的显示出磷脂酶和脂肪酶共活性的蛋白质
EP12850464.4A EP2784160B1 (en) 2011-11-18 2012-07-17 Novel gene derived from mud flat metagenome and novel protein obtained therefrom showing coactivity of phospholipase and lipase
DK12850464.4T DK2784160T3 (en) 2011-11-18 2012-07-17 Novel gene derived from tidal metagenome and novel protein, which is obtained therefrom, and exhibits koaktivitet of phospholipase and lipase
US14/280,062 US9441018B2 (en) 2011-11-18 2014-05-16 Gene from tidal flat metagenome and a novel protein displaying both phospholipase and lipase activities

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110120844 2011-11-18
KR10-2011-0120844 2011-11-18
KR10-2012-0077632 2012-07-17
KR1020120077632A KR101336785B1 (ko) 2011-11-18 2012-07-17 갯벌 메타게놈 유래 신규 유전자 및 이로부터 얻어지는 포스포리파제 및 리파제 동시 활성을 보이는 신규 단백질

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/280,062 Continuation US9441018B2 (en) 2011-11-18 2014-05-16 Gene from tidal flat metagenome and a novel protein displaying both phospholipase and lipase activities

Publications (1)

Publication Number Publication Date
WO2013073760A1 true WO2013073760A1 (ko) 2013-05-23

Family

ID=48663979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005705 WO2013073760A1 (ko) 2011-11-18 2012-07-17 갯벌 메타게놈 유래 신규 유전자 및 이로부터 얻어지는 포스포리파제 및 리파제 동시 활성을 보이는 신규 단백질

Country Status (6)

Country Link
US (1) US9441018B2 (ko)
EP (1) EP2784160B1 (ko)
KR (1) KR101336785B1 (ko)
CN (1) CN104471065B (ko)
DK (1) DK2784160T3 (ko)
WO (1) WO2013073760A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199945A1 (ja) * 2022-04-13 2023-10-19 花王株式会社 新規リパーゼ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022615A1 (en) * 1994-02-22 1995-08-24 Novo Nordisk A/S A method of preparing a variant of a lipolytic enzyme
US20080271207A1 (en) * 2005-06-10 2008-10-30 University Of York Lipase Polypeptide
EP2302042A2 (en) * 2004-09-30 2011-03-30 Novozymes A/S Polypeptides having lipase activity and polynucleotides encoding same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8137477B2 (en) * 2005-03-22 2012-03-20 Gumlink A/S Method of cleaning a surface attached with at least one chewing gum lump
MX2009003034A (es) * 2006-09-21 2009-11-18 Verenium Corp Fosfolipasas, acidos nucleicos que las codifican, y metodos de hacerlas y usarlas.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022615A1 (en) * 1994-02-22 1995-08-24 Novo Nordisk A/S A method of preparing a variant of a lipolytic enzyme
EP2302042A2 (en) * 2004-09-30 2011-03-30 Novozymes A/S Polypeptides having lipase activity and polynucleotides encoding same
US20080271207A1 (en) * 2005-06-10 2008-10-30 University Of York Lipase Polypeptide

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
AMANN ET AL., MICROBIOL. REV., vol. 59, 1995, pages 143 - 169
BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1259, 1995, pages 9 - 17
DATABASE GENBANK [online] 9 January 2008 (2008-01-09), "phospholipase A1 [uncultured bacterium pFosPlaG]", XP003031597, Database accession no. ABY56067 *
DE MARIA ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 74, 2007, pages 290 - 300
GILLESPIE ET AL., APPL. ENVIRON. MICROBIOL., vol. 68, 2002, pages 4301 - 4306
HUGENHOLTZ; PACE, TRENDS BIOTECHNOL., vol. 14, 1996, pages 190 - 197
LEE MH ET AL.: "Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases", APPL ENVIRON MICROBIOL., vol. 72, no. 11, 1 September 2006 (2006-09-01), pages 7406 - 7409, XP055137748 *
LEE MH ET AL.: "Novel metagenome-derived, cold-adapted alkaline phospholipase with superior lipase activity as an intermediate between phospholipase and lipase", APPL ENVIRON MICROBIOL., vol. 7, no. 14, 27 April 2012 (2012-04-27), pages 4959 - 66, XP055137750 *
RONDON ET AL., APPL. ENVIRON. MICROBIOL., vol. 66, 2000, pages 2541 - 2547
See also references of EP2784160A4 *
VAN OORT ET AL., BIOCHEMISTRY, vol. 28, 1989, pages 9278 - 9285
WARD ET AL., NATURE, vol. 345, 1990, pages 63 - 65

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199945A1 (ja) * 2022-04-13 2023-10-19 花王株式会社 新規リパーゼ

Also Published As

Publication number Publication date
EP2784160A1 (en) 2014-10-01
US20150329840A1 (en) 2015-11-19
US9441018B2 (en) 2016-09-13
EP2784160A4 (en) 2014-12-31
KR20130055507A (ko) 2013-05-28
EP2784160B1 (en) 2016-01-13
DK2784160T3 (en) 2016-04-11
KR101336785B1 (ko) 2013-12-04
CN104471065A (zh) 2015-03-25
CN104471065B (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
Kim et al. Screening and characterization of a novel esterase from a metagenomic library
Glogauer et al. Identification and characterization of a new true lipase isolated through metagenomic approach
JP5850342B2 (ja) 枝葉コンポスト由来新規エステラーゼ
Nguyen et al. Enzymatic properties and expression patterns of five extracellular lipases of Fusarium graminearum in vitro
Lee et al. Characterization of a novel alkaline family VIII esterase with S-enantiomer preference from a compost metagenomic library
Simons et al. Biochemical properties of staphylococcal (phospho) lipases
Vijayakumar et al. Rice (Oryza sativa) lipase: molecular cloning, functional expression and substrate specificity
CN108220267B (zh) 磷脂酶及其应用
KR101336785B1 (ko) 갯벌 메타게놈 유래 신규 유전자 및 이로부터 얻어지는 포스포리파제 및 리파제 동시 활성을 보이는 신규 단백질
KR100986161B1 (ko) 갯벌 메타게놈 유래 신규 에스터라제 및 이의 제조방법
ES2333201T3 (es) Butinol 1 esterasa.
CN106884008B (zh) 磷脂酶、编码基因及其制备方法
KR101209700B1 (ko) 메타게놈 유래 신규 저온성 에스터라제
Chao et al. Molecular cloning of the carboxylesterase gene and biochemical characterization of the encoded protein from Pseudomonas citronellolis ATCC 13674
Kim et al. Characterization of an alkaline family I. 4 lipase from Bacillus sp. W130-35 isolated from a tidal mud flat with broad substrate specificity
KR101734935B1 (ko) 메타게놈 라이브러리로부터 유래한 신규 지질분해효소 및 그의 생산 방법
KR101383546B1 (ko) 심해 해저에서 분리된 에스터라제 ktl 4
KR100572722B1 (ko) 신규 에스터라제
JP6857927B1 (ja) ホスファチジルグリセロール特異的な新規酵素
JP2017060424A (ja) リパーゼ、ポリヌクレオチド、組換えベクター、形質転換体、リパーゼの製造法、グリセロ脂質を加水分解する方法及びグリセロ脂質の加水分解物を製造する方法
KR100644924B1 (ko) 옥플록사신 에스테르에 대한 광학선택적 리파제, 이를암호화하는 뉴클레오타이드 및 이를 이용하여레보플록사신을 제조하는 방법
KR100714374B1 (ko) 오플록사신 에스테르에 대한 광학선택적 에스터라아제,이를 암호화하는 뉴클레오타이드 및 이를 이용하여레보플록사신을 제조하는 방법
KR101715817B1 (ko) 메타게놈 라이브러리로부터 유래한 신규 지질분해효소 및 그의 생산 방법
KR20120129852A (ko) 심해 해저에서 분리된 에스터라제 ktl 9
KR101596435B1 (ko) 남극 유래 바실러스 푸밀러스 리파아제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012850464

Country of ref document: EP