WO2013073240A1 - サーミスタ - Google Patents

サーミスタ Download PDF

Info

Publication number
WO2013073240A1
WO2013073240A1 PCT/JP2012/069989 JP2012069989W WO2013073240A1 WO 2013073240 A1 WO2013073240 A1 WO 2013073240A1 JP 2012069989 W JP2012069989 W JP 2012069989W WO 2013073240 A1 WO2013073240 A1 WO 2013073240A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermistor
electrode layer
lead wire
thermistor body
peripheral surface
Prior art date
Application number
PCT/JP2012/069989
Other languages
English (en)
French (fr)
Inventor
三浦 忠将
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013073240A1 publication Critical patent/WO2013073240A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/223Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor characterised by the shape of the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/008Thermistors

Definitions

  • FIG. 9 is a configuration diagram of the temperature sensor 500 described in Patent Document 1.
  • the temperature sensor 500 includes a surface mount type thermistor 502 and lead wires 504 and 506.
  • the surface mount type thermistor 502 is a chip component having a rectangular parallelepiped shape. External electrodes are provided on both end faces of the surface mount type thermistor 502.
  • Each of the lead wires 504 and 506 is connected to an external electrode of the surface mount type thermistor 502 by solder, and extends downward from the surface mount type thermistor 502.
  • the width of the tip of the sensor depends on the length of the surface mount type thermistor 502. For this reason, the width of the tip of the lead wire temperature sensor 500 is increased. Therefore, the temperature sensor 500 is not suitable for measuring the temperature in a narrow gap.
  • an object of the present invention is to provide a thermistor that can be inserted into a narrow gap.
  • a thermistor according to an embodiment of the present invention includes a thermistor body having a truncated cone shape or a cone shape, and a first electrode layer and a second electrode layer that are provided in the thermistor body and are insulated from each other. It is characterized by providing.
  • the thermistor can be inserted into a narrow gap.
  • FIG. 1 It is an external appearance perspective view of the thermistor which concerns on one Embodiment. It is a cross-section figure of a thermistor. It is an expanded view of the thermistor body of the thermistor. It is a manufacturing process figure of a thermistor. It is sectional structure drawing of the thermistor which concerns on a 1st modification. It is an expanded view of the thermistor body of the thermistor. It is sectional structure drawing of the thermistor which concerns on a 2nd modification. It is an expanded view of the thermistor body of the thermistor. 2 is a configuration diagram of a temperature sensor described in Patent Document 1. FIG.
  • the thermistor according to the embodiment of the present invention will be described below.
  • FIG. 1 is an external perspective view of a thermistor 10 according to an embodiment.
  • FIG. 2 is a sectional view of the thermistor 10.
  • FIG. 3 is a development view of the thermistor body 12 of the thermistor 10.
  • FIG. 3A is a plan view of the outer peripheral surface of the thermistor body 12, and
  • FIG. 3B is a plan view of the inner peripheral surface of the thermistor body 12.
  • the thermistor 10 includes a thermistor body 12, electrode layers 14 and 16, lead wires 18 and 20, and solders 22 and 24.
  • the thermistor body 12 has a conical shape having no bottom surface by bending a ceramic green sheet to be described later, and is produced by firing the ceramic green sheet. Therefore, when the thermistor body 12 is unfolded, it has a fan shape as shown in FIG.
  • the thermistor body 12 is a semiconductor ceramic layer, an NTC characteristic material containing Mn, Ni, Fe, Ti, Co, Al, Zn, etc. in any combination, or Ba, Ti, Sr, Ca, Pb, It is made of a PTC characteristic material containing Mn, La, Nd, Sm, Eu, Gd, Dy, Y, etc. in any combination.
  • oxides of the listed metal elements are used as raw materials, but carbonates, hydroxides, and the like of the listed metal elements may be used as raw materials.
  • the NTC characteristic means a characteristic that the resistance value decreases as the temperature rises
  • the PTC characteristic means a characteristic that the resistance value increases as the temperature rises.
  • the thermistor body 12 has a thickness of 5 ⁇ m, for example.
  • the electrode layer 14 is provided on the outer peripheral surface of the thermistor body 12, as shown in FIG. In the thermistor 10 according to the present embodiment, the electrode layer 14 covers the entire outer peripheral surface of the thermistor body 12 as shown in FIGS. 1 and 3A.
  • the electrode layer 14 is a conductor that is in ohmic contact with the thermistor body 12, and includes, for example, noble metals such as Ag, Pd, Pt, and Au for NTC characteristic materials, and Cu, Ni, Al, W, Ti, etc. for PTC characteristic materials.
  • the base metal is made of a simple substance or an alloy thereof.
  • the thickness of the electrode layer 14 is larger than the thickness of the thermistor body 12 and is, for example, 50 ⁇ m.
  • the electrode layer 16 is provided on the inner peripheral surface of the thermistor body 12, as shown in FIG.
  • the electrode layer 16 does not cover the entire inner peripheral surface of the thermistor body 12 as shown in FIGS. 1 and 3B. More specifically, as shown in FIG. 3B, the electrode layer 16 is not provided in the vicinity of the outer edge of the thermistor body 12 in the expanded state.
  • the electrode layer 16 is provided with a predetermined gap from the bottom of the conical thermistor body 12. As a result, the electrode layer 14 and the electrode layer 16 are insulated from each other.
  • the electrode layer 16 has a thickness of 2 ⁇ m, for example.
  • the lead wire 18 is connected to the electrode layer 14.
  • the electrode layer 14 and the lead wire 18 are fixed by solder 22. More specifically, as shown in FIG. 2, the tip end of the lead wire 18 is in contact with the bottom of the thermistor element body 12 and when the thermistor element body 12 is viewed in plan view from the height direction, It overlaps with the body 12.
  • the lead wire 20 is connected to the electrode layer 16.
  • the electrode layer 16 and the lead wire 20 are fixed by solder 24.
  • the lead wire 20 is inserted into the thermistor element body 12 from the bottom of the thermistor element body 12, thereby contacting the electrode layer 16.
  • the tip of the lead wire 20 is processed into a shape that follows the inner peripheral surface of the thermistor body 12, as shown in FIG. That is, the tip of the lead wire 20 is cut obliquely.
  • FIG. 4 is a manufacturing process diagram of the thermistor 10.
  • a large film 100 is prepared.
  • an oxide such as Mn 3 O 4 , NiO, Fe 2 O 3 , or TiO 2 is weighed into a composition having a resistivity of 10 4 ⁇ cm, and a grinding medium such as zirconia is used. And wet pulverize with a ball mill. Furthermore, the obtained powder is calcined at a predetermined temperature to obtain a ceramic powder. Then, an organic binder is added to the ceramic powder, and a wet mixing process is performed to obtain a ceramic slurry.
  • the mother ceramic green sheet 110 is formed.
  • the mother ceramic green sheet 110 is a large ceramic green sheet.
  • a conductive paste mainly composed of Ag—Pd is applied to the mother ceramic green sheet 110 attached on the film 100 by a screen printing method or the like. By doing so, the conductor layer 120 to be the electrode layer 14 is formed. At this time, the conductive paste is applied so that the thickness of the electrode layer 14 after firing is larger than the thickness of the thermistor body 12 after firing.
  • the mother ceramic green sheet 110 on which the conductor layer 120 is formed is processed into a predetermined shape. More specifically, after the mother ceramic green sheet 110 is peeled from the film 100, the mother ceramic green sheet 110 is punched into a fan shape shown in FIG. Thereby, a fan-shaped ceramic green sheet 112 on which the electrode layer 14 is formed is obtained. A plurality of ceramic green sheets 112 can be obtained from one mother ceramic green sheet 110.
  • a conductive paste mainly composed of Ag—Pd is applied to the surface of the ceramic green sheet 112 where the electrode layer 14 is not formed by a screen printing method or the like.
  • the electrode layer 16 is formed by coating.
  • the ceramic green sheet 112 is bent to produce a conical unfired thermistor body 12. Specifically, the ceramic green sheet 112 is rolled so that the vicinity of the two fan-shaped radii overlap. Then, thermocompression bonding is performed by applying heat treatment to the two adjacent fan-shaped radii.
  • the unfired thermistor body 12 is subjected to a binder removal treatment and then fired at a temperature of 900 ° C. to 1300 ° C.
  • the thermistor 10 is completed through the above steps.
  • the thermistor body 12 has a conical shape. Thereby, the thermistor 10 can be inserted into a narrow gap.
  • the electrode layer 16 is provided with a predetermined gap from the bottom of the thermistor body 12. Thereby, even if the tip of the lead wire 18 is in contact with the bottom of the thermistor body 12, the electrode layer 16 and the lead wire 18 do not contact each other, and a short circuit does not occur between them.
  • the tip of the lead wire 20 is processed into a shape that follows the inner peripheral surface of the thermistor body 12. Thereby, the adhesion between the tip of the lead wire 20 and the electrode layer 16 is improved.
  • the electrode layer 14 is larger than the thickness of the thermistor body 12.
  • the electrode layer 14 made of metal has a higher ability to maintain the shape than the thermistor body 12 made of ceramic. Therefore, when the thickness of the electrode layer 14 is made larger than the thickness of the thermistor element body 12, the expansion of the thermistor element body 12 is suppressed.
  • FIG. 5 is a cross-sectional structure diagram of the thermistor 10a according to the first modification.
  • FIG. 6 is a development view of the thermistor body 12 of the thermistor 10a.
  • FIG. 6A is a plan view of the outer peripheral surface of the thermistor body 12, and
  • FIG. 6B is a plan view of the inner peripheral surface of the thermistor body 12.
  • the difference between the thermistor 10 and the thermistor 10a is how the lead wire 18 is attached.
  • the thermistor 10a will be described focusing on the difference.
  • the tip of the lead wire 18 is inserted into the thermistor element body 12 from the bottom of the thermistor element body 12, thereby contacting the inner peripheral surface of the thermistor element body 12. .
  • the lead wire 18 must not contact the electrode layer 16a. Therefore, as shown in FIG. 5, the electrode layer 16 a is not provided at the portion where the tip of the lead wire 18 is in contact with the inner peripheral surface of the thermistor body 12. Therefore, as shown in FIG. 6B, the electrode layer 16a is provided with a notch in a part of the arc of the electrode layer 16a.
  • the tip of the lead wire 18 is processed into a shape that follows the inner peripheral surface of the thermistor body 12. That is, the tip of the lead wire 18 is cut obliquely.
  • the lead wire 18 is connected to the electrode layer 14 via the solder 22.
  • the thermistor 10a configured as described above can be inserted into a narrow gap.
  • FIG. 7 is a cross-sectional structure diagram of the thermistor 10b according to the second modification.
  • FIG. 8 is a development view of the thermistor body 12 of the thermistor 10b.
  • 8A is a plan view of the outer peripheral surface of the thermistor body 12
  • FIG. 8B is a plan view of the inner peripheral surface of the thermistor body 12.
  • the difference between the thermistor 10 and the thermistor 10b is that the thermistor body 12 of the thermistor 10b has a conical shape, whereas the thermistor body 12 of the thermistor 10b has a quadrangular pyramid shape.
  • the thermistor body 12 will be described focusing on the difference.
  • the thermistor body 12 has a quadrangular pyramid shape having no bottom surface. Therefore, when the thermistor body 12 is unfolded, it has a shape in which four triangles are connected as shown in FIG.
  • the electrode layer 16b is provided on the inner peripheral surface of the thermistor body 12, as shown in FIG.
  • the electrode layer 16b does not cover the entire inner peripheral surface of the thermistor body 12 as shown in FIGS. 7 and 8B. More specifically, as shown in FIG. 8B, the electrode layer 16b is not provided in the vicinity of the outer edge of the thermistor body 12 in the expanded state. Thereby, when the thermistor body 12b is assembled, the electrode layer 16b is not provided near the bottom surface of the thermistor body 12b having a quadrangular pyramid shape. This prevents the electrode layer 14b and the electrode layer 16b from being short-circuited.
  • the thermistor 10b configured as described above can be inserted into a narrow gap.
  • the thermistor according to the present invention is not limited to the thermistors 10, 10a, and 10b according to the above-described embodiment, and can be changed within the scope of the gist thereof.
  • the thermistor body 12 is assumed to have a conical shape or a quadrangular pyramid shape, but may have other shapes.
  • the thermistor body 12 may have a truncated cone shape or a truncated pyramid shape having no bottom surface.
  • the application of the ceramic slurry to the film 100 is performed by the doctor blade method, but may be performed by screen printing, gravure printing, ink jet printing, or the like.
  • the conductor layer is applied by a screen printing method, but may be formed by sputtering, vapor deposition, or the like.
  • the mother ceramic green sheet 110 is punched to obtain the ceramic green sheet 112, and then the electrode layer 16 is formed on the ceramic green sheet 112.
  • punching may be performed after printing the plurality of electrode layers 16 on the mother ceramic green sheet 110.
  • the electrode layers 14 and 16 may be formed by dip or pins.
  • the lead wires 18 and 20 are fixed to the electrode layers 14 and 16 via the solders 22 and 24, but may be fixed to the electrode layers 14 and 16 via a conductive adhesive.
  • the tip of the lead wire 18 may be in contact with the electrode layer 14 by contacting the outer peripheral surface of the thermistor body 12 instead of the inside or bottom of the thermistor body 12. Also in this case, the lead wire 20 is in contact with the electrode layer 16 by being inserted into the thermistor element body 12 from the bottom of the thermistor element body 12.
  • the present invention is useful for a thermistor and is particularly excellent in that it can be inserted into a narrow gap.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Abstract

 狭い隙間に挿入できるサーミスタを提供することである。 サーミスタ素体(12)は、セラミックグリーンシートが円錐状に加工されたセラミックグリーンシートが焼成されて作製されている。電極層(14)は、サーミスタ素体(12)の外周面に設けられている。電極層(16)は、サーミスタ素体(12)の内周面に設けられている。

Description

サーミスタ
 本発明は、サーミスタに関し、より特定的には、温度測定等に用いられるサーミスタに関する。
 従来のサーミスタに関する発明としては、例えば、特許文献1に記載のリード線付き温度センサが知られている。図9は、特許文献1に記載の温度センサ500の構成図である。
 温度センサ500は、表面実装型サーミスタ502及びリード線504,506を備えている。表面実装型サーミスタ502は、直方体状をなすチップ部品である。表面実装型サーミスタ502の両端面にはそれぞれ、外部電極が設けられている。リード線504,506はそれぞれ、表面実装型サーミスタ502の外部電極にはんだによって接続されており、表面実装型サーミスタ502から下方に向かって延在している。
 ところで、特許文献1に記載の温度センサ500では、センサの先端の幅が表面実装型サーミスタ502の長さに依存している。そのため、リード線付き温度センサ500の先端の幅が太くなってしまう。よって、温度センサ500は、狭い隙間内の温度の測定には不向きであった。
国際公開第2008/156082号
 そこで、本発明の目的は、狭い隙間に挿入可能なサーミスタを提供することである。
 本発明の一形態に係るサーミスタは、錐台状又は錐状をなすサーミスタ素体と、前記サーミスタ素体に設けられており、互いに絶縁されている第1の電極層及び第2の電極層と、を備えていること、を特徴とする。
 本発明によれば、サーミスタを狭い隙間に挿入できる。
一実施形態に係るサーミスタの外観斜視図である。 サーミスタの断面構造図である。 サーミスタのサーミスタ素体の展開図である。 サーミスタの製造工程図である。 第1の変形例に係るサーミスタの断面構造図である。 サーミスタのサーミスタ素体の展開図である。 第2の変形例に係るサーミスタの断面構造図である。 サーミスタのサーミスタ素体の展開図である。 特許文献1に記載の温度センサの構成図である。
 以下に、本発明の実施形態に係るサーミスタについて説明する。
(サーミスタの構造)
 まず、一実施形態に係るサーミスタの構造について図面を参照しながら説明する。図1は、一実施形態に係るサーミスタ10の外観斜視図である。図2は、サーミスタ10の断面構造図である。図3は、サーミスタ10のサーミスタ素体12の展開図である。図3(a)は、サーミスタ素体12の外周面を平面視した図であり、図3(b)は、サーミスタ素体12の内周面を平面視した図である。
 サーミスタ10は、図1及び図2に示すように、サーミスタ素体12、電極層14,16、リード線18,20及びはんだ22,24を備えている。
 サーミスタ素体12は、後述するセラミックグリーンシートに曲げ加工が施されることによって、底面を有しない円錐状をなしており、該セラミックグリーンシートが焼成されることにより作製されている。したがって、サーミスタ素体12は、展開されると、図3に示すように、扇形をなしている。
 サーミスタ素体12は、半導体セラミック層であり、Mn,Ni,Fe,Ti,Co,Al,Zn等が任意の組み合わせで含まれたNTC特性材料、又は、Ba,Ti,Sr,Ca,Pb,Mn,La,Nd,Sm,Eu,Gd,Dy,Y等が任意の組み合わせで含まれたPTC特性材料により作製されている。実際には、列挙した金属元素の酸化物が原料として用いられるが、列挙した金属元素の炭酸塩、水酸化物等が原料として用いられてもよい。NTC特性とは、温度上昇に伴い抵抗値が減少する特性を意味し、PTC特性とは、温度上昇に伴い抵抗値が増加する特性を意味する。サーミスタ素体12の厚みは、例えば、5μmである。
 電極層14は、図1に示すように、サーミスタ素体12の外周面に設けられている。本実施形態に係るサーミスタ10では、電極層14は、図1及び図3(a)に示すように、サーミスタ素体12の外周面の全体を覆っている。電極層14は、サーミスタ素体12に対してオーミック接触する導体であり、例えば、NTC特性材料ではAg,Pd,Pt,Au等の貴金属、PTC特性材料ではCu,Ni,Al,W,Ti等の卑金属の単体、又は、これらの合金等により作製されている。電極層14の厚みは、サーミスタ素体12の厚みよりも大きく、例えば、50μmである。
 電極層16は、図1に示すように、サーミスタ素体12の内周面に設けられている。本実施形態に係るサーミスタ10では、電極層16は、図1及び図3(b)に示すように、サーミスタ素体12の内周面の全体を覆っていない。より詳細には、図3(b)に示すように、展開された状態のサーミスタ素体12の外縁近傍には、電極層16は設けられていない。これにより、サーミスタ素体12が組み立てられたときには、電極層16は、円錐状のサーミスタ素体12の底部から所定の隙間を空けて設けられている。その結果、電極層14と電極層16とが互いに絶縁されている。電極層16の厚みは、例えば、2μmである。
 リード線18は、電極層14に接続されている。電極層14とリード線18とははんだ22により固定されている。より詳細には、リード線18の先端は、図2に示すように、サーミスタ素体12の底部に接触しており、かつ、サーミスタ素体12の高さ方向から平面視したときに、サーミスタ素体12と重なっている。
 リード線20は、電極層16に接続されている。電極層16とリード線20とははんだ24により固定されている。リード線20は、図1及び図2に示すように、サーミスタ素体12の底部からサーミスタ素体12内に挿入されることによって、電極層16に接触している。リード線20の先端は、図2に示すように、サーミスタ素体12の内周面に倣った形状に加工されている。すなわち、リード線20の先端は、斜めにカットされている。
(サーミスタの製造方法)
 以下に、サーミスタ10の製造方法について図面を参照しながら説明する。図4は、サーミスタ10の製造工程図である。
 まず、図4(a)に示すように、大判のフィルム100を準備する。
 次に、サーミスタ素体12の原料として、Mn34、NiO、Fe23,TiO2等の酸化物を抵抗率が104Ωcmとなる配合に秤量し、ジルコニア等の粉砕媒体を用いてボールミルにより湿式粉砕する。更に、得られた粉末を所定の温度で仮焼してセラミック粉末を得る。そして、セラミック粉末に有機バインダを添加し、湿式で混合処理を行ってセラミックスラリーを得る。
 次に、図4(b)に示すように、フィルム100上にセラミックスラリーをドクターブレード法により塗布し、乾燥させる。これにより、マザーセラミックグリーンシート110を形成する。マザーセラミックグリーンシート110は、大判のセラミックグリーンシートである。
 次に、図4(c)に示すように、フィルム100上に貼り付けられた状態のマザーセラミックグリーンシート110に対して、Ag-Pdを主成分とする導電性ペーストをスクリーン印刷法等により塗布することによって、電極層14となる導体層120を形成する。この際、焼成後における電極層14の厚みが焼成後におけるサーミスタ素体12の厚みよりも大きくなるように、導電性ペーストを塗布する。
 次に、導体層120を形成したマザーセラミックグリーンシート110を所定形状に加工する。より詳細には、マザーセラミックグリーンシート110をフィルム100から剥離した後、該マザーセラミックグリーンシート110を金型等によって図3に示す扇形に打ち抜く。これにより、電極層14が形成された扇形のセラミックグリーンシート112を得る。1枚のマザーセラミックグリーンシート110から複数枚のセラミックグリーンシート112を得ることができる。
 次に、図3(b)に示すように、セラミックグリーンシート112の電極層14が形成されていない方の面に対して、Ag-Pdを主成分とする導電性ペーストをスクリーン印刷法等により塗布することによって、電極層16を形成する。
 次に、図1に示すように、セラミックグリーンシート112に曲げ加工を施すことによって、円錐状の未焼成のサーミスタ素体12を作製する。具体的には、扇形の2本の半径近傍が重なるように、セラミックグリーンシート112を丸める。そして、重なりあっている扇形の2本の半径近傍に対して加熱処理を施すことにより、熱圧着を施す。
 次に、未焼成のサーミスタ素体12に対して、脱バインダ処理を施した後、900℃~1300℃の温度で焼成を施す。
 最後に、リード線18,20を電極層14,16にはんだ付けする。以上の工程により、サーミスタ10が完成する。
(効果)
 本実施形態に係るサーミスタ10によれば、サーミスタ素体12が円錐状をなしている。これにより、サーミスタ10を狭い隙間に挿入することが可能である。
 また、電極層16は、サーミスタ素体12の底部から所定の隙間を空けて設けられている。これにより、リード線18の先端がサーミスタ素体12の底部に接触していても、電極層16とリード線18とが接触せず、これらの間で短絡が発生しない。
 また、リード線20の先端は、サーミスタ素体12の内周面に倣った形状に加工されている。これにより、リード線20の先端と電極層16との密着性が向上する。
 また、サーミスタ10及びその製造方法では、電極層14は、サーミスタ素体12の厚みよりも大きい。金属により作製されている電極層14は、セラミックにより作製されているサーミスタ素体12に比べて形状を保持する能力が高い。そこで、電極層14の厚みがサーミスタ素体12の厚みよりも大きくされることによって、サーミスタ素体12が展開することが抑制されるようになる。
(第1の変形例)
 以下に、第1の変形例に係るサーミスタ10aについて図面を参照しながら説明する。図5は、第1の変形例に係るサーミスタ10aの断面構造図である。図6は、サーミスタ10aのサーミスタ素体12の展開図である。図6(a)は、サーミスタ素体12の外周面を平面視した図であり、図6(b)は、サーミスタ素体12の内周面を平面視した図である。
 サーミスタ10とサーミスタ10aとの相違点は、リード線18の取り付け方である。以下に、かかる相違点を中心にサーミスタ10aについて説明する。
 サーミスタ10aでは、図5に示すように、リード線18の先端は、サーミスタ素体12の底部から該サーミスタ素体12に挿入されることにより、サーミスタ素体12の内周面に接触している。ただし、リード線18は、電極層16aに接触してはいけない。よって、図5に示すように、リード線18の先端がサーミスタ素体12の内周面に接触している部分には、電極層16aが設けられていない。そこで、電極層16aには、図6(b)に示すように、電極層16aの弧の一部に切り欠きが設けられている。
 また、リード線18の先端は、サーミスタ素体12の内周面に倣った形状に加工されている。すなわち、リード線18の先端は、斜めにカットされている。そして、リード線18は、電極層14に対してはんだ22を介して接続されている。
 以上のように構成されたサーミスタ10aも、サーミスタ10と同様に、狭い隙間に挿入することが可能である。
(第2の変形例)
 以下に、第2の変形例に係るサーミスタ10bについて図面を参照しながら説明する。図7は、第2の変形例に係るサーミスタ10bの断面構造図である。図8は、サーミスタ10bのサーミスタ素体12の展開図である。図8(a)は、サーミスタ素体12の外周面を平面視した図であり、図8(b)は、サーミスタ素体12の内周面を平面視した図である。
 サーミスタ10とサーミスタ10bとの相違点は、サーミスタ10のサーミスタ素体12が円錐状をなしているのに対して、サーミスタ10bのサーミスタ素体12が四角錐状をなしている点である。以下に、かかる相違点を中心にサーミスタ素体12について説明する。
 サーミスタ素体12は、図7に示すように、底面を有していない四角錐状をなしている。したがって、サーミスタ素体12は、展開されると、図8に示すように、4つの三角形が連結された形状をなしている。
 電極層14bは、図7に示すように、サーミスタ素体12の外周面に設けられている。本実施形態に係るサーミスタ10bでは、電極層14bは、図7及び図8(a)に示すように、サーミスタ素体12の外周面の全体を覆っている。
 電極層16bは、図7に示すように、サーミスタ素体12の内周面に設けられている。本実施形態に係るサーミスタ10bでは、電極層16bは、図7及び図8(b)に示すように、サーミスタ素体12の内周面の全体を覆っていない。より詳細には、図8(b)に示すように、展開された状態のサーミスタ素体12の外縁近傍には、電極層16bは設けられていない。これにより、サーミスタ素体12bが組み立てられたときには、四角錐状のサーミスタ素体12bの底面近傍には、電極層16bが設けられていない。これにより、電極層14bと電極層16bとが短絡することが防止されている。
 以上のように構成されたサーミスタ10bも、サーミスタ10と同様に、狭い隙間に挿入することが可能である。
(その他の実施形態)
 本発明に係るサーミスタは、前記実施形態に係るサーミスタ10,10a,10bに限らず、その要旨の範囲内において変更可能である。
 サーミスタ素体12は、円錐状又は四角錐状をなしているとしたが、これら以外の形状であってもよい。サーミスタ素体12は、底面を有さない円錐台状や角錐台状であってもよい。
 また、フィルム100へのセラミックスラリーの塗布は、ドクターブレード法により行うものとしたが、スクリーン印刷、グラビア印刷、インクジェット印刷等で行ってもよい。
 また、導体層の塗布は、スクリーン印刷法により行うものとしたが、スパッタリング、蒸着法等で行ってもよい。
 また、サーミスタ10の製造方法では、マザーセラミックグリーンシート110に打ち抜き加工を行ってセラミックグリーンシート112を得た後に、セラミックグリーンシート112に対して電極層16を形成している。しかしながら、マザーセラミックグリーンシート110に複数の電極層16を印刷した後に、打ち抜き加工を行ってもよい。
 また、電極層14,16を形成する前のセラミックグリーンシート112を組み立てて未焼成のサーミスタ素体12を得た後に、ディップやピンによって、電極層14,16を形成してもよい。
 また、リード線18,20は、はんだ22,24を介して電極層14,16に固定されているが、導電性接着剤を介して電極層14,16に固定されていてもよい。
 また、リード線18の先端は、サーミスタ素体12の内部や底部ではなく、サーミスタ素体12の外周面に接触することによって、電極層14に接触していてもよい。この場合においても、リード線20は、サーミスタ素体12の底部からサーミスタ素体12内に挿入されることによって、電極層16に接触している。
 以上のように、本発明は、サーミスタに有用であり、特に、狭い隙間に挿入できる点において優れている。
10,10a,10b サーミスタ
12 サーミスタ素体
14,14b,16,16a,16b 電極層
18,20 リード線
100 フィルム
110 マザーセラミックグリーンシート
112 セラミックグリーンシート
120 導体層

Claims (12)

  1.  錐台状又は錐状をなすサーミスタ素体と、
     前記サーミスタ素体に設けられており、互いに絶縁されている第1の電極層及び第2の電極層と、
     を備えていること、
     を特徴とするサーミスタ。
  2.  前記サーミスタ素体は、セラミックグリーンシートが曲げ加工されることによって、底面を有しない円錐状又は円錐台状をなしており、かつ、該セラミックグリーンシートが焼成されることによって作製されており、
     前記第1の電極層は、前記サーミスタ素体の外周面に設けられており、
     前記第2の電極層は、前記サーミスタ素体の内周面に設けられていること、
     を特徴とする請求項1に記載のサーミスタ。
  3.  前記サーミスタは、
     前記第1の電極層に接続されている第1のリード線と、
     前記第2の電極層に接続されている第2のリード線と、
     を更に備えていること、
     を特徴とする請求項2に記載のサーミスタ。
  4.  前記第2のリード線は、前記サーミスタ素体の底部から該サーミスタ内に挿入されることによって、前記第2電極層に接触していること、
     を特徴とする請求項3に記載のサーミスタ。
  5.  前記第2のリード線の先端は、前記サーミスタ素体の内周面に倣った形状に加工されていること、
     を特徴とする請求項4に記載のサーミスタ。
  6.  前記第2の電極層は、前記サーミスタ素体の底部から所定の隙間を空けて設けられていること、
     を特徴とする請求項3ないし請求項5のいずれかに記載のサーミスタ。
  7.  前記第1のリード線の先端は、前記サーミスタ素体の底部に接触しており、かつ、前記第1の電極層に対してはんだ又は導電性接着剤を介して接続されていること、
     を特徴とする請求項6に記載のサーミスタ。
  8.  前記第1のリード線の先端は、前記サーミスタ素体の底部から該サーミスタ素体内に挿入されることにより、該サーミスタ素体の内周面に接触し、
     前記第1のリード線は、前記第1の電極層に対してはんだ又は導電性接着剤を介して接続されており、
     前記第1のリード線の先端が前記サーミスタ素体の内周面に接触している部分には、前記第2の電極層が設けられていないこと、
     を特徴とする請求項3ないし請求項5のいずれかに記載のサーミスタ。
  9.  前記第1のリード線の先端は、前記サーミスタ素体の内周面に倣った形状に加工されていること、
     を特徴とする請求項8に記載のサーミスタ。
  10.  前記第1のリード線は、前記サーミスタ素体の外周面に接触することによって、前記第1の電極層に接触しており、
     前記第2のリード線は、前記サーミスタ素体の底部から該サーミスタ内に挿入されることによって、前記第2の電極層に接触していること、
     を特徴とする請求項3に記載のサーミスタ。
  11.  前記第1の電極層及び/又は前記第2の電極層は、前記セラミックグリーンシートに対して導電性ペーストが印刷されることによって形成されていること、
     を特徴とする請求項2ないし請求項10のいずれかに記載のサーミスタ。
  12.  前記第1の電極層の厚みは、前記サーミスタ素体の厚みよりも大きいこと、
     を特徴とする請求項2ないし請求項11のいずれかに記載のサーミスタ。
PCT/JP2012/069989 2011-11-17 2012-08-06 サーミスタ WO2013073240A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011251623 2011-11-17
JP2011-251623 2011-11-17

Publications (1)

Publication Number Publication Date
WO2013073240A1 true WO2013073240A1 (ja) 2013-05-23

Family

ID=48429322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069989 WO2013073240A1 (ja) 2011-11-17 2012-08-06 サーミスタ

Country Status (1)

Country Link
WO (1) WO2013073240A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220357216A1 (en) * 2021-05-08 2022-11-10 Therm-O-Disc Incorporated Temperature Sensor Probe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336044U (ja) * 1976-09-02 1978-03-30
JPS62274604A (ja) * 1986-05-22 1987-11-28 松下電器産業株式会社 チツプバリスタ
JPS641202A (en) * 1987-06-24 1989-01-05 Murata Mfg Co Ltd Thermistor
JP2010015976A (ja) * 2008-04-21 2010-01-21 Littelfuse Inc 抵抗器とヒューズエレメントとを含む回路保護デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336044U (ja) * 1976-09-02 1978-03-30
JPS62274604A (ja) * 1986-05-22 1987-11-28 松下電器産業株式会社 チツプバリスタ
JPS641202A (en) * 1987-06-24 1989-01-05 Murata Mfg Co Ltd Thermistor
JP2010015976A (ja) * 2008-04-21 2010-01-21 Littelfuse Inc 抵抗器とヒューズエレメントとを含む回路保護デバイス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220357216A1 (en) * 2021-05-08 2022-11-10 Therm-O-Disc Incorporated Temperature Sensor Probe

Similar Documents

Publication Publication Date Title
JP5206440B2 (ja) セラミック電子部品
KR102449359B1 (ko) 유전체 파우더 및 이를 이용한 적층형 세라믹 전자부품
JP5324390B2 (ja) 積層電子部品
US20210104363A1 (en) Ceramic capacitor having metal or metal oxide in side margin portins, and method of manufacturing the same
JP6487364B2 (ja) 積層セラミック電子部品の製造方法
CN103227278A (zh) 层叠型压电元件
CN106340385A (zh) 多层陶瓷电子组件
US10181369B2 (en) NTC thermistor to be embedded in a substrate, and method for producing the same
WO2013073240A1 (ja) サーミスタ
JP6107062B2 (ja) チップサーミスタ
US7075408B2 (en) Laminate-type positive temperature coefficient thermistor
JP7484046B2 (ja) セラミック電子部品およびその製造方法
US10559427B2 (en) Ceramic electronic component and mount structure therefor
JP4501969B2 (ja) 電子部品の製造方法
JP2009295683A (ja) チップ型電子部品
JP2009176829A (ja) 電子部品
WO2013073239A1 (ja) サーミスタ及びその製造方法
JP6923560B2 (ja) 圧電素子
JP6911755B2 (ja) 電子部品および積層セラミックコンデンサ
EP3279909B1 (en) Capacitor and method for manufacturing same
JPH0714702A (ja) 正の抵抗温度特性を有する積層型半導体磁器
JP4299260B2 (ja) 積層型ntcサーミスタ
WO2021070868A1 (ja) 積層型圧電素子
JP2006269985A (ja) 積層型チップバリスタ
JP4788619B2 (ja) バリスタ素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP