WO2013072390A2 - Stilben-verbindungen als ppar beta/delta inhibitoren für die behandlung von ppar beta/delta-vermittelten erkrankungen - Google Patents

Stilben-verbindungen als ppar beta/delta inhibitoren für die behandlung von ppar beta/delta-vermittelten erkrankungen Download PDF

Info

Publication number
WO2013072390A2
WO2013072390A2 PCT/EP2012/072655 EP2012072655W WO2013072390A2 WO 2013072390 A2 WO2013072390 A2 WO 2013072390A2 EP 2012072655 W EP2012072655 W EP 2012072655W WO 2013072390 A2 WO2013072390 A2 WO 2013072390A2
Authority
WO
WIPO (PCT)
Prior art keywords
cio
following radicals
alkyl
nhr
conh
Prior art date
Application number
PCT/EP2012/072655
Other languages
English (en)
French (fr)
Other versions
WO2013072390A3 (de
Inventor
Wibke Diederich
Gerhard Klebe
Sonja Lieber
Wolfgang Meissner
Rolf Müller
Frithjof Martin Scheer
Original Assignee
Philipps-Universität Marburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philipps-Universität Marburg filed Critical Philipps-Universität Marburg
Publication of WO2013072390A2 publication Critical patent/WO2013072390A2/de
Publication of WO2013072390A3 publication Critical patent/WO2013072390A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/14Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D295/155Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/68Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C223/00Compounds containing amino and —CHO groups bound to the same carbon skeleton
    • C07C223/06Compounds containing amino and —CHO groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/34Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring with cyano groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by unsaturated carbon chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/35Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by halogen atoms, or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/37Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by etherified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/32Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring
    • C07C255/42Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms having cyano groups bound to acyclic carbon atoms of a carbon skeleton containing at least one six-membered aromatic ring the carbon skeleton being further substituted by singly-bound nitrogen atoms, not being further bound to other hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/10Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with radicals containing only carbon and hydrogen atoms attached to ring carbon atoms
    • C07D211/14Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with radicals containing only carbon and hydrogen atoms attached to ring carbon atoms with hydrocarbon or substituted hydrocarbon radicals attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/54Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/57Nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to substances which act as selective ligands of PPAR beta / delta subtype nuclear receptors and can be used for the treatment of PPAR beta / delta-mediated diseases.
  • the substances according to the invention act as inhibitors of the PPAR beta / delta receptor.
  • Peroxisome Proliferator Activated Receptors are nuclear receptors that act as ligand-inducible transcription factors.
  • the three known PPAR alpha subtypes, PPAR beta / delta and PPAR gamma form members of the retinoid X receptor family (RXR) heterodimers, which then bind to PPAR response elements (PPRE) of the DNA and thus regulate the activity of their target genes.
  • RXR retinoid X receptor family
  • PPRE PPAR response elements
  • PPARs act as sensors for fatty acids and eicosanoid metabolites that have a role in immune regulation, such as certain prostaglandins, leukotrienes or hydroxyeicosatetraenoic acids.
  • the PPAR receptors give a central function in fat metabolism and in inflammatory processes. As a result, the PPAR receptors also play an important role in diseases such as hyperlipidemia, diabetes, fibrosis, inflammatory diseases and cancer.
  • the inflammatory diseases include Alzheimer's, arthritis, asthma, atherosclerosis, Crohn's disease, colitis, dermatitis, diverticulitis, hepatitis, irritable bowel, lupus erythematosus, nephritis, Parkinson's disease and ulcerative colitis.
  • PPAR beta / delta subtype receptors perform essential functions in lipid and glucose metabolism as well as other disease-associated biological processes such as cell differentiation, proliferation, apoptosis, and immune regulation.
  • PPAR beta / delta has a role in tumorigenesis.
  • the involvement of PPAR beta / delta receptors manifests itself in inflammation-associated processes in various functions.
  • Endogenous ligands for PPAR beta / delta receptors are fatty acids such as arachidonic acid, as well as their metabolites, such as 15-hydroxyeicosatetraenoic acid (15-HETE) and prostaglandin 12 (PGI2, prostacyclin).
  • PPAR beta / delta is often present in complex with corepressors such as SMRT or SHARP ("SMRT / HDAC I-associated repressor protein").
  • Substances acting as agonists of the PPAR beta / delta receptors induce a conformational change of PPAR beta / delta which results in dissociation of corepressors such as SMRT and / or interaction with specific coactivators such as histone acetylases. followed by transcriptional activation of genes.
  • PPAR can also regulate beta / delta genes independently of binding to DNA.
  • PPAR beta / delta interacts with BCL6 in macrophages, suppressing the repression of (pro) inflammatory genes by BCL6, such as mcpl, IL1b, and mmp9.
  • BCL6 macrophages
  • PPAR beta / delta also has a key function in the differentiation, polarization and / or function of specific immune cells, such as macrophages and T helper cells, and is associated with the pro-inflammatory mechanisms in psoriasis.
  • PPAR beta / delta agonists also modulate the effects of TGF-beta (transforming growth factor beta), among others, and may contribute to the repression of genes with functions in immune regulation.
  • TGF-beta is also a common cytokine in tumors.
  • the TGF-beta-mediated SMAD proteins induce, inter alia, the transcription of the angiopoietin-like protein ANGPTL4 gene, which, in addition to its function in the regulation of lipid metabolism, is thought to be involved in angiogenesis and tumor progression. It is known that the expression of the is also regulated by the PPAR receptors.
  • PPAR beta / delta inhibitors i. act as antagonists or as inverse PPAR beta / delta agonists.
  • the object of the present invention is to eliminate the disadvantages of the prior art by means of new compounds.
  • R 1 is one of the following radicals:
  • R 2 is one of the following radicals:
  • R 3 - R 8 , R 12 , R 15 , R 27 , R 28 independently of one another represent the following radicals:
  • Ci-Ci 0 alkyl Ci-CIO Fluoroalkyl, C 1 -C 10 -perfluoroalkyl, C 3 -C 10 -cycloalkyl, C 2 -C 10 -alkenyl, C 5 -C 10 -cycloalkenyl, C 2 -Cio -fluoroalkenyl, C 5 -C 10 -fluorocycloalkenyl,
  • R 9-11 are independently the following radicals: -R 15, -R 27, -R '
  • R and R independently of one another represent the following radicals:
  • R 18 and R 19 independently of one another represent the following radicals:
  • X stands for: -O-, -S- or -N (R 16 ) -
  • Y stands for: -O-, -S- or -N (R 17 ) -
  • R 20 - R 24 independently of one another represent the following radicals:
  • R 16 , R 17 , R 25 and R 26 independently of one another represent the following radicals:
  • Ci-Cio-alkyl C 3 -C 0 cycloalkyl, C 2 -C 0 alkenyl, C 5 -C 0 cycloalkenyl, C 2 -C 0 -
  • a preferred radical R 1 means:
  • a further preferred radical R 1 is -CN, -NC, -CHO, -COOR 13 , -CH 2 OH, -NO 2 , Ci-Cio-alkyl, C 2 -Cio-alkenyl, C 2 -Cio-alkynyl.
  • the most preferred radical R 1 is: -CN.
  • a preferred radical R 2 means:
  • R 2 is: -H.
  • C 2 -Cio-fluoroalkynyl C 2 -Cio -perfluoroalkynyl.
  • Further preferred are -H, -OH, -CH 2 OH, -CH 2 OR 18 , -F, -Cl, -Br, -I, -Ch COOH, -CH 2 -COOR 18 , Ci-Cio-alkyl, Ci -Cio-fluoroalkyl, C 3 -Ci 0 -cycloalkyl or C 2 -C 1 0-AI kenyl.
  • radicals R 9 -R 11 independently of one another represent the radicals: -R 15 , -R 27 , -R 28 ,
  • R 15 , R 16 , R 20 - R 24 and R 27 and R 28 have the meaning defined herein.
  • a preferred embodiment of the present invention relates to the use of the compounds of general formula (I)
  • R 3 - R 8 , R 12 independently of one another represent the following radicals:
  • R 9 - R 11 independently of one another represent the following radicals: -R 15 , -R 27 , -R 28 ,
  • R 15 represents one of the following radicals:
  • R 27 and R 28 independently of one another represent the following radicals:
  • a further preferred embodiment of the present invention relates to the use of the compounds of the general formula (I)
  • R 3 - R 9 , R 11 , R 12 independently represent the following radicals: -H, -OH, -CH 2 OH, -OR 18 , -CH 2 OR 18 , -CF 3 , -OCF 3 , -F, -Cl, -Br, -I, -COR 18 , -COOH, -CH 2 -COOH, -COOR 18 , -CH 2 COOR 18 , -CONH 2 , -CN, -CONH (R 18 ), -CON (R 18 ) (R 19 ), -SO 2 NH 2 , -SO 2 NH (R 18 ), -SO 2 N (R 18 ) (R 19 ), -NO 2 , -NH 2 , -NHR 18 , -N (R 18 ) (R 19 ), -CH 2 -NH 2 , -CH 2 N
  • R 10 represents one of the following radicals: -R 15 ,
  • R 15 represents one of the following radicals: -NHR 18 , -N (R 18 ) (R 19 ), -CH 2 -NH 2 , -CH 2 NHR 18 or -CH 2 N (R 18 ) (R 19 ).
  • radical R 10 is one of the following radicals: -R 15 ,
  • R 15 is one of the following radicals: -NHR 18 or -N (R 18 ) (R 19 ), and even more preferably R 15 is -NHR 18 ,
  • X, Y, R 18 - R 24 have their meaning as defined herein.
  • radical R 10 is one of the following radicals:
  • R 15 means the following residue: -NHR 18 ,
  • R 16 , R 18 , R 20 - R 24 have their meaning as defined herein.
  • Preferred radicals R 9 and R 11 are furthermore the following: -H, -NH 2 , -NHR 18 , -N (R 18 ) (R 19 ), -CH 2 -NH 2 , -CH 2 -NHR 18 , -CH 2 -N (R 18 ) (R 19 ) and -OR 18 ; more preferably -H, -CH 2 -NHR 18 , -CH 2 -N (R 18 ) (R 19 ), and most preferably -H, wherein R 18 and R 19 are as defined herein.
  • the present invention relates to the compounds of the general formulas (II), (III), (IV), (V) and (VI):
  • the compounds of the general formulas (II), (III), (IV), (V) and (VI) are particularly suitable for the treatment of inflammatory processes, inflammations, cell differentiation processes or proliferative diseases.
  • R 1 is one of the following radicals:
  • R 2 is one of the following radicals: -H, C 1 -C 10 -alkyl, C 1 -C 10 -haloalkyl, C 1 -C 10 -fluoroalkyl, C 1 -C 10 -perfluoroalkyl, C 3 -C 10 -cycloalkyl, C 1 -C 6 -heterocyclyl, C 2 -C 10 -alkenyl, C 5 - C 10 -C 10 cycloalkenyl, C 2 -C 12 alkynyl, aryl, -CN or heteroaryl;
  • R 3 - R 9 , R 11 , R 12 independently of one another represent the following radicals:
  • R and R independently of one another represent the following radicals:
  • R 15 represents one of the following radicals -NH 2 , -NHR 18 , -N (R 18 ) (R 19 ), -CH 2 -NHR 18 or -CH 2 -N (R 18 ) (R 19 ),
  • R 18 and R 19 independently of one another represent the following radicals:
  • Ci-Cio-alkyl C 3 -C 0 cycloalkyl, Ci-C 6 heterocyclyl, C 2 -C 0 alkenyl, C5-C10 cycloalkenyl, C 2 -Cio-alkynyl, aryl, heteroaryl;
  • R 20 - R 24 independently of one another represent the following radicals:
  • X stands for: -O-, -S- or -N (R 16 ) -
  • Y stands for: -O-, -S- or -N (R 17 ) -
  • R 16 , R 17 , R 25 and R 26 independently of one another represent the following radicals:
  • Ci-Cio-alkyl C 3 -C 0 cycloalkyl, C 2 -C 0 alkenyl, C 5 -C 0 cycloalkenyl, C 2 -Cio-alkynyl, aryl, heteroaryl, aralkyl; and their metal complexes, salts, enantiomers, enantiomer mixtures, diastereomers, diastereomer mixtures, tautomers, hydrates, solvates, and racemates of the abovementioned compounds.
  • the present invention relates to the compounds of the general structures (III), (IV), (V) and (VI) and their use as defined herein, wherein in structure (IV) the radical R 1 has one of the meanings described herein, and wherein R 3 - R 9 , R 11 , R 12 independently of one another are the following radicals:
  • R 10 represents one of the following radicals: -R 15 ,
  • R and R independently of one another represent the following radicals:
  • R 15 represents one of the following radicals -NH 2 , -NHR 18 , -N (R 18 ) (R 19 ), -CH 2 -NHR 18 or -CH 2 -N (R 18 ) (R 19 ),
  • R 18 and R 19 independently of one another represent the following radicals:
  • Ci-Cio-alkyl C 3 -C 0 cycloalkyl, Ci-C 6 heterocyclyl, C 2 -C 0 alkenyl, C5-C10
  • R 20 - R 24 independently of one another represent the following radicals:
  • X stands for: -O-, -S- or -N (R) -;
  • Y stands for: -O-, -S- or -N (R 17 ) -; R 16 , R 17 , R 25 and R 26 independently of one another represent the following radicals:
  • a particularly preferred embodiment of the present invention relates to compounds of the general formulas (IV), (V) and (VI) and their use as defined herein,
  • R 10 is one of the following radicals: -R 15 ,
  • R 15 is the following radical: -NHR 18 , and X, Y, R 18 and R 20 - R 24 and R 1 and R 3 - R 7 have the meanings described herein.
  • a particularly preferred embodiment relates to the compounds of general formula (V) and their use as defined herein
  • R 3 represents one of the following radicals: -Cl, -Br or -CF 3 ,
  • R 10 represents one of the following radicals: -R 15 ,
  • R 16 represents one of the following radicals: -H, C 1 -C 10 -alkyl, aryl or aralkyl;
  • R 18 aryl or C 3 -C represents 0 cycloalkyl
  • R 20 - R 24 independently represent the following radicals: -H, Ci-Cio-alkyl.
  • Preferred C 1 -C 10 -alkyl radicals for R 16 are the following: -CH 3 , -C 2 H 5 , -C 3 H 7 , -C 4 Hg, -C 5 H 11, -C 6 H 13, -CH 2 -CH (CH 3) 2, - C2H 4 - CH (CH3) 2, - C3H6- CH (CH3) 2,
  • Preferred aralkyl radicals for R 16 are the following: -CH 2 -C 6 H 5 , -C 2 H -C 6 H 5 .
  • Preferred C 3 -C 10 cycloalkyl radicals for R 18 are: cyclopentyl and cyclohexyl.
  • Preferred aryl radical for R 18 is the following: -C 6 H 5 .
  • the present invention relates to the use of the aforementioned compounds (I), (II), (III), (IV), (V) and (VI) in medicine, i. as pharmacologically active agents for the treatment of diseases.
  • the abovementioned compounds (I), (II), (III), (IV), (V) and (VI) are to be used as inhibitors of a receptor of the type PPAR beta / delta and thus for the treatment of diseases associated with a Receptor of the type PPAR beta / delta in connection.
  • R 10 is a group attached via a nitrogen atom to the rest of the molecule. More preferably, R 10 is one
  • Nitrogen heterocycle and most preferably a nitrogen-linked nitrogen heterocycle.
  • the aryl radical as radical R 18 is phenyl.
  • the present invention relates to the use of the compounds (I), (II), (III), (IV), (V) and (VI) for the treatment of inflammatory processes, inflammations, cell differentiation processes or proliferative diseases.
  • the present invention further relates to the compounds (I), (II), (III), (IV), (V) and (VI) for use in the treatment of inflammatory processes, inflammations, cell differentiation processes or proliferative diseases.
  • the present invention furthermore relates to the compounds (I), (II), (III), (IV), (V) and (VI) for the treatment of inflammatory processes, inflammations, cell differentiation processes or proliferative diseases.
  • the proliferative diseases are preferably tumors, metastases and / or cancer.
  • the present invention relates to the use of the compounds of general formula (I), (II), (III), (IV), (V) and (VI) disclosed herein for the treatment of diseases of fatty acid metabolism and glucose metabolism, in which Insulin resistance is involved.
  • C 1 -C 10 -alkyl preferably denotes the following radicals:
  • d-Cio-fluoroalkyl preferably denotes the following radicals:
  • C 1 -C 10 -perfluoroalkyl preferably denotes the following radicals:
  • C 1 -C 10 -haloalkyl preferably denotes the following radicals:
  • C 3 -C 10 cycloalkyl preferably denotes the following radicals:
  • C 1 -C 6 heterocyclyl preferably denotes the following radicals:
  • C 2 -C 10 alkenyl preferably denotes the following radicals:
  • -CH C (CH 3)
  • -CH CH 2
  • -C 2 H 4 -C (CH 3 ) CH 2 ,
  • -CH C (CH 3 ) -C 2 H 5
  • -C (CH 3 ) CH-C 2 H 5
  • -C (CH 3 ) C (CH 3 ) 2
  • -C (CH 3 ) 2 -CH CH 2
  • -CH (CH 3 ) -C (CH 3 ) CH 2
  • -C (C 3 H 7 ) CH-CH 3
  • -C (C 2 H 5 ) CH-C 2 H 5
  • -C (C 2 H 5 ) C (CH 3 ) 2
  • C 2 -Cio-fluoroalkenyl preferably denotes the following radicals:
  • -CH CH 2
  • -C 2 H 4 -C (CH 3 ) CH 2
  • -CH C (CH 3 ) -C 2 H 5
  • -C (CH 3 ) CH-C 2 H 5
  • -C (CH 3 ) C (CH 3 ) 2
  • -C (C 3 H 7 ) CH-CH 3
  • -C (C 2 H 5 ) CH-C 2 H 5
  • -C (C 2 H 5 ) C (CH 3 ) 2
  • -CH CH 2
  • -C 2 H 4 -C (CH 3 ) CH 2
  • -CH C (CH 3 ) -C 2 H 5
  • -C (CH 3 ) CH-C 2 H 5
  • -C (CH 3 ) C (CH 3 ) 2
  • -C (C 3 H 7 ) CH-CH 3
  • -C (C 2 H 5 ) CH-C 2 H 5
  • -C (C 2 H 5 ) C (CH 3 ) 2
  • C 5 -C 10 -fluorocycloalkenyl preferably denotes the following radicals:
  • C 5 -Cio perfluorocycloalkenyl preferably denotes the following radicals:
  • C 2 -C 10 -alkynyl preferably denotes the following radicals:
  • aryl preferably denotes aromatic radicals having 6, 10 or 14 carbon atoms and more preferably phenyl and naphthyl.
  • aralkyl is a shorthand to “arylalkyl” and refers to an alkyl radical, preferably a "C 1 -C 10 -alkyl” as defined herein, wherein one or more or all of the hydrogen atoms are substituted by an "aryl.” Common aralkyls are The term “aralkyl” preferably means -CH 2 -C 6 H 5 , -C 2 H 4 -C 6 H 5 , -C 3 H 6 - ⁇ ⁇ , -CH (CH 3) - ⁇ ⁇ , -C 4 Hs- ⁇ ⁇ , -CH 2 -CH (CH3) - ⁇ ⁇ , -CH (CH3) -C2H 5i -C (CH 3) 2 C 6 H 5, -C5H10- C6H 5, -CH (CH (CH)
  • heteroaryl preferably denotes the following radicals:
  • the aromatic carbonyl component can be easily prepared by reacting the aromatic carbonyl component with a CH-acid benzyl derivative.
  • the aromatic carbonyl moiety may be either an R 2 -substituted phenyl ketone or an R 2 -substituted phenylpropenyl ketone.
  • the substances of the general formulas (I), (II), (III), (IV), (V) and (VI) according to the invention bind in vitro to the ligand binding domain of the PPAR beta / delta receptor .
  • the substances in the TR-FRET ligand binding assay show one specific subtype-specific significant Kompetitionseffizienz against the fluorescent ligand Fluormone ® pan-PPAR Green.
  • the compounds of the general formulas (I), (II), (III), (IV), (V) and (VI) according to the invention bind selectively to the ligand binding domain of the PPAR beta / delta protein.
  • the compounds of the general formulas (I), (II), (III), (IV), (V) and (VI) according to the invention induce in vitro the interaction of the ligand-binding domain of the PPAR beta / delta receptor with a synthetic peptide fragment of the known corepressor SMRT (SMRT-ID2).
  • SMRT-ID2 synthetic peptide fragment of the known corepressor SMRT
  • the expression of the angiopoietin-like protein 4 (ANGPTL4) encoding gene ANGPTL4 is induced by PPAR beta / delta or other stimuli.
  • ANGPTL4 is thought to be involved in tumor growth, tumor progression and tumor metastasis. With the aid of the substances of the general formulas (I), (II), (III), (IV), (V) and (VI) according to the invention, the basal expression of ANGPTL4 can be significantly increased, for example, in murine C2C12 myoblasts and peritoneal macrophages by at least 50% % be lowered.
  • (V) and (VI) are preferably between 10 and 75 nM.
  • the induction of / 4 / VGPTL4 expression by the tumor growth factor-beta stimulus (TGF-beta1, TGF-beta2) known to the person skilled in the art in human fibroblasts can furthermore be achieved by the substances of the general formulas (I), (II), (II) according to the invention. III), (IV), (V) and
  • the present invention thus further relates to compounds according to the general formula of general formulas (I), (II), (III), (IV), (V) and (VI) for use as Inhibitors or antagonists, particularly preferred as inverse agonists, a receptor of the type PPAR beta / delta.
  • an agonist is a compound which activates signal transduction in the associated cell by occupying a receptor.
  • Inverse agonists herein are compounds that bind to a receptor with constitutive activity and decrease its activity.
  • An inverse agonist in contrast to a full agonist thus leads to a negative effect, or a pharmacological effect, which is opposite to that of the agonist.
  • these are preferably those compounds which effect or promote the binding of a corepressor.
  • the present invention relates to pharmaceutical compositions prepared by using at least one compound represented by the general formulas (I), (II), (III), (IV), (V) and (VI) or a salt thereof.
  • the pharmaceutical compositions contain a pharmacologically acceptable carrier, excipient and / or solvent.
  • acids for such acid addition salt formation are hydrochloric, hydrobromic, sulfuric, phosphoric, acetic, citric, oxalic, malic, salicylic, p-aminosalicylic, malonic, fumaric, succinic, ascorbic, maleic, sulfonic, phosphonic, perchloric, nitric, formic , Propionic, gluconic, lactic, tartaric, hydroxymaleic, pyruvic, phenylacetic, benzoic, p-aminobenzoic, p-hydroxybenzoic, methanesulfonic, ethanesulfonic, nitrous, hydroxyethanesulfonic, ethylene sulfonic, p-toluenesulfonic, naphthylsulfonic, s
  • the compounds of general formulas (I), (II), (III), (IV), (V) and (VI) may also be used in the form of their pharmaceutically active salts, optionally using substantially non-toxic pharmaceutically acceptable carriers, excipients or Thinners are administered.
  • the medications of the present invention are prepared in a conventional solid or liquid carrier or diluent and a conventional pharmaceutically-produced excipient at a suitable dose level in a known manner.
  • the preferred preparations are in an administrable form suitable for oral use. These administrable forms include, for example, pills, tablets, coated tablets, coated tablets, coated tablets, capsules, powders and deposits.
  • the preferred administrable forms are tablets, film-coated tablets, coated tablets, gelatin capsules and opaque capsules.
  • Each pharmaceutical composition contains at least one compound of the general formulas (I), (II), (III), (IV), (V) and (VI) and / or pharmaceutically acceptable salts thereof in an amount of 50 mg to 150 mg, preferably 80 mg to 120 mg, and most preferably in an amount of 100 mg per formulation.
  • the subject of the present invention also includes pharmaceutical preparations for parenteral, including dermal, intradermal, intragastric, intracutaneous, intravascular, intravenous, intramuscular, intraperitoneal, intranasal, intravaginal, intrabuccal, percutaneous, rectal, subcutaneous, sublingual, topical or transdermal application, which contain, in addition to typical vehicles and diluents, a compound d of the general formulas (I), (II), (III), (IV), (V) and (VI) and / or a pharmaceutically acceptable salt thereof as an active ingredient.
  • compositions of the present invention containing compounds of general formulas (I), (II), (III), (IV), (V) and (VI) as active ingredients are typically in admixture with suitable carrier materials selected with regard to the intended form of administration, ie oral Tablets, capsules (either solid-filled, semi-solid or liquid-filled), powders for compositions, oral gels, elixirs, dispersible granules, syrups, suspensions and the like and in accordance with conventional pharmaceutical practices.
  • suitable carrier materials selected with regard to the intended form of administration, ie oral Tablets, capsules (either solid-filled, semi-solid or liquid-filled), powders for compositions, oral gels, elixirs, dispersible granules, syrups, suspensions and the like and in accordance with conventional pharmaceutical practices.
  • the active drug component may be combined with any oral non-toxic pharmaceutically acceptable inert carrier such as lactose, starch, sucrose, cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, talc, mannitol, ethyl alcohol (liquid Forms) and the like.
  • suitable binders, lubricants, disintegrants and colorants may also be added to the mixture.
  • Powders and tablets may be comprised of from about 5 to about 95 percent of the inventive composition.
  • Suitable binders include starch, gelatin, natural sugars, corn sweeteners, natural and synthetic gums such as acacia, sodium alginate, carboxymethyl cellulose, polyethylene glycol and waxes.
  • lubricants boric acid, sodium benzoate, sodium acetate, sodium chloride and the like may be mentioned for use in these dosage forms.
  • Disintegrants include starch, methyl cellulose, guar gum and the like. Sweeteners and flavorings and preservatives may also be included, if appropriate.
  • compositions of the present invention may be formulated in a sustained release form to facilitate the rate controlled release of one or more compounds of general formulas (I), (II), (III), (IV), (V) and (VI) to facilitate and to optimize their therapeutic effect.
  • Suitable sustained release dosage forms include coated tablets containing layers of varying degradation rates or controlled release polymeric matrices impregnated with the active components and shaped into tablet form or capsules incorporating such impregnated or encapsulated porous polymeric matrices.
  • Preparations in liquid form include solutions, suspensions and emulsions.
  • Preparations in liquid form may further include solutions for intranasal administration.
  • Aerosol preparations suitable for inhalation may include solutions and solids in powder form which may be in combination with a pharmaceutically acceptable carrier such as a compressed inert gas, eg, nitrogen.
  • a low melting wax e.g. a mixture of fatty acid glycerides, e.g. Cocoa butter
  • the active ingredient is homogeneously dispersed therein by stirring or similar mixing.
  • the molten homogeneous mixture is then poured into appropriately sized molds, allowed to cool and thereby solidified.
  • preparations in solid form intended to be converted shortly before use to liquid form preparations for either oral or parenteral administration.
  • liquid forms include solutions, suspensions and emulsions.
  • transdermal compositions may take the form of creams, lotions, aerosols and / or emulsions and may be included in a transdermal label of the matrix or reservoir type as commonly used in the art for this purpose.
  • capsule refers to a particular container or housing made of methyl cellulose, polyvinyl alcohols or denatured gelatins or starch for holding or containing compositions comprising the active ingredients.
  • Hard shell capsules are typically made from blends of bone and porcine gelatin of relatively high gel strength.
  • the capsule itself may contain small amounts of dyes, opacifiers, emollients, and preservatives.
  • Tablet means compressed or poured solid dosage form containing the active ingredients with suitable diluents.
  • the tablet may be prepared by compressing mixtures or granules obtained by wet granulation, dry granulation or compaction known to one skilled in the art.
  • Oral gels refer to the active ingredients that are dispersed or solubilized in a hydrophilic semi-solid matrix.
  • Powders for compositions refer to powder mixtures that include the active ingredients and suitable diluents that can be suspended in water or juices.
  • Suitable diluents are substances that usually make up the majority of the composition or dosage form. Suitable diluents include sugars such as lactose, sucrose, mannitol and sorbitol, starches derived from wheat, corn, rice and potatoes, and celluloses such as microcrystalline cellulose.
  • the amount of diluents in the composition can range from about 5 to about 95 weight percent of the total composition, preferably from about 25 to about 75 weight percent, and more preferably from about 30 to about 60 weight percent.
  • disintegrants refers to materials that have been added to the composition to aid in breaking up and releasing the drugs.
  • Suitable disintegrants include starches, "cold water-soluble" modified starches such as sodium carboxymethyl starch, natural and synthetic gums such as locust bean gum, karaya, guar, tragacanth and agar, cellulose derivatives such as methyl cellulose and sodium carboxymethyl cellulose, microcrystalline celluloses and cross-linked microcrystalline celluloses. such as sodium croscarmellose, alginates such as alginic acid and sodium alginate, clays such as bentonites, and effervescent mixtures.
  • the amount of disintegrant in the composition can range from about 2 to 20% by weight of the composition, and more preferably from about 5 to about 10% by weight.
  • Binders characterize substances that bind or "stick together” powders and make them coagulate through the formation of granules and thus serve as the "glue” in the formulation. Binders add a cohesive strength that is already available in the thinners or the grafting agent. Suitable binders include sugars such as sucrose, starches derived from wheat, corn, rice and potatoes, natural gums such as acacia, gelatin and tragacanth, kelp derivatives such as alginic acid, sodium alginate and ammonium calcium alginate, cellulosic materials such as methyl cellulose and sodium Carboxymethyl cellulose and hydroxypropyl methyl cellulose, polyvinyl pyrrolidone and inorganic compounds such as magnesium aluminum silicate.
  • sugars such as sucrose, starches derived from wheat, corn, rice and potatoes, natural gums such as acacia, gelatin and tragacanth
  • kelp derivatives such as alginic acid, sodium alginate and ammonium
  • the amount of binder in the composition can range from about 2 to about 20 weight percent of the composition, more preferably from about 3 to about 10 weight percent, and even more preferably from about 3 to about 6 weight percent.
  • Lubricant refers to a substance added to the dosage form to allow the tablet, granules, etc., after being compressed, to be released from the mold or die by reducing friction or friction.
  • Suitable lubricants include metallic stearates such as magnesium stearate, calcium stearate or potassium stearate, stearic acid, high melting waxes, and water-soluble lubricants such as sodium chloride, sodium benzoate, sodium acetate, sodium oleate, polyethylene glycols and D, L-leucine.
  • Lubricants are usually added at the last step before compression because they must be present on the surfaces of the granules and between them and the parts of the tablet press.
  • the amount of lubricant in the composition can range from about 0.2 to about 5 weight percent of the composition, preferably from about 0.5 to about 2 weight percent, and more preferably from about 0.3 to about 1.5 Wt .-% extend.
  • Lubricants are materials that prevent caking and improve the flow characteristics of granules so that the flow is smooth and uniform. Suitable lubricants include silica and talc. The amount of lubricant in the composition can range from 0.1 to about 5 weight percent of the total composition, and preferably from about 0.5 to about 2 weight percent.
  • Colorants are adjuvants that provide color to the composition or dosage form.
  • Such adjuvants may include food grade dyes adsorbed on a suitable adsorbent such as alumina or alumina.
  • the amount of colorant may vary from about 0.1 to about 5 weight percent of the composition, and preferably from about 0.1 to about 1 weight percent.
  • a "pharmaceutically effective amount" of an inhibitor is an amount effective to achieve the desired physiological result in either in vitro treated cells or in an in vivo treated patient.
  • a pharmaceutically effective amount is an amount sufficient to inhibit and / or activate, for a period of time, one or more of the clinically defined pathological processes associated with a PPAR beta / delta receptor.
  • the effective amount may vary depending on the specific inhibitor and is further dependent on a variety of factors and conditions related to the subject to be treated and the severity of the disease. For example, if an inhibitor is to be administered in vivo, then factors such as age, weight and age would be Patient health as well as dose response curves and toxicity data obtained from preclinical work among the factors considered.
  • the inhibitor is to be contacted with the cells in vivo, one would design a variety of preclinical in vitro studies to determine such parameters as uptake, half-life, dose, toxicity, and so on.
  • the determination of a pharmaceutically effective amount for a given pharmaceutically active agent is entirely within the ability of one skilled in the art.
  • the present invention furthermore relates to pharmaceutical compositions comprising at least one compound of the general formulas (I), (II), (III), (IV), (V) and (VI) for the treatment of inflammatory processes, inflammations, cell differentiation processes, proliferative disorders, Tumors, metastases, cancer, liver diseases, and fatty acid metabolism and glucose metabolism disorders involving insulin resistance.
  • the compounds of the general formulas (I), (II), (III), (IV), (V) and (VI) and the pharmaceutical compositions disclosed herein comprising at least one compound of the general formulas (I), (II), ( III), (IV), (V) and (VI) can thus be used for the treatment and / or prevention of diseases in which inflammatory processes, inflammation or cell differentiation processes are involved as well as for the treatment of proliferative diseases.
  • diseases include, but are not limited to, arteriosclerosis such as coronary sclerosis including angina pectoris or myocardial infarction, stroke, vascular restenosis or reocclusion, chronic inflammatory bowel disease such as Crohn's disease and ulcerative colitis, pancreatitis, other inflammatory conditions such as retinopathy.
  • inflammatory diseases that are influenced by PPAR beta / delta include, for example, polycystic ovarian syndrome, asthma, osteoarthritis, lupus erythematosus (LE) or inflammatory rheumatic diseases such as rheumatoid arthritis, vasculitis, cachexia, gout, ischemia, reperfusion syndrome and acute respiratory respiratory distress syndrome.
  • Erythematosquamous dermatoses such as psoriasis and acne vulgaris.
  • eczema and atopic dermatitis are: eczema and atopic dermatitis, dermatitis such as seborrheic dermatitis or photodermatitis, keratitis and keratoses such as, for example seborrheic keratoses, senile keratosis, actinic keratosis, light-induced keratosis, keratosis follicular ulcers, warts including condylomata or condylomata acuminata, infections with the human papillomavirus (HPV) such as genital papillomas, viral warts such as molluscum contagiosum, leukoplakapapular dermatoses such as lichen , Skin cancers such as basal cell carcinomas, me
  • the proliferative diseases are predominantly tumors, e.g. benign tumors, cancer and metastases and inflammatory diseases such. As arthritis or psoriasis.
  • the tumors may be selected from the group consisting of or consisting of: sarcomas (such as liposarcomas), carcinomas (such as the gastrointestinal tract, the liver, the biliary tract and pancreas, the lung, the urogenital tract, the mammary gland, etc.), endocrine tumors , acute and chronic leukemias and other myeloproliferative disorders and lymphomas.
  • the compounds of the general formulas (I), (II), (III), (IV), (V) and (VI) according to the invention are also suitable for the treatment of liver diseases such as steatosis, steatohepatitis and hepatitis.
  • liver diseases such as steatosis, steatohepatitis and hepatitis.
  • the compounds of the general formulas (I), (II), (III), (IV), (V) and (VI) according to the invention are furthermore suitable for the treatment of diseases of the fatty acid metabolism and the glucose metabolism, in which insulin resistance is involved. These include hyperlipidemia, hypertriglyceridemia, hypercholesterolemia.
  • Diabetes mellitus especially type 2 diabetes, including the prevention of associated sequelae, such as hyperglycemia, increase in insulin resistance, impaired glucose homeostasis, protection of pancreatic beta cells, prevention of macrovascular and microvascular disease. It also includes dyslipidemias and their consequences, such as arteriosclerosis, coronary heart disease, cerebrovascular diseases, especially those characterized by the following factors: high plasma triglyceride concentrations, high postprandial plasma triglyceride concentrations, low HDL cholesterol concentrations , low apoA lipoprotein concentrations, high LDL cholesterol concentrations, LDL Low-density cholesterol particles, high apoB lipoprotein concentrations.
  • Various other disorders may be associated with the metabolic syndrome: obesity, thrombosis, hypercoagulation and prothrombotic stages (arterial and venous), high blood pressure, heart failure such as but not limited to myocardial infarction, hypertensive heart disease or cardiomyopathy.
  • FIG. 1 Competitive in vitro ligand binding to PPAR beta / delta.
  • the displacement of the ligand Fluormone® Pan-PPAR Green from the recombinant GST-PPAR beta / delta ligand binding domain (LBD) by the substances GSK0660, SCH138 (A), SCH149 (B), and SCH172 (C) according to the invention is determined by TR-FRET investigations certainly. Shown is the ratio of fluorescence intensity at 520 nm (fluorescein emission excited by terbium emission) and 495 nm (terbium emission). All data points represent averages of triplicates (+/- standard deviation).
  • FIG. 2 Induction of the Korepressor-peptide bond to the GST-PPAR-beta / delta
  • Ligand binding domain in vitro as a function of the concentration of the substances GSK0660, SCH138 (A), SCH149 (B) and SCH172 (C) according to the invention.
  • the interaction of the fluorescein-labeled SMRT-ID2 peptide and the recombinant GST-PPAR beta / delta LBD bound by a terbium-labeled anti-GST antibody is determined by TR-FRET. Shown is the ratio of fluorescence intensity at 520 nm (fluorescein emission excited by terbium emission) and 495 nm (terbium emission). All data points represent averages of triplicates (+/- standard deviation).
  • FIG. 3 Competitive in vitro ligand binding to the PPAR subtypes alpha, beta / delta and gamma.
  • the displacement of the ligand Fluormone® Pan-PPAR Green from the recombinant GST-PPAR alpha (A), beta / delta (B) and gamma (C) ligand binding domains (LBD) by the substances GSK0660, SCH138 (3.1), SCH149 (3.2 ), and SCH172 (3.3) is determined by TR-FRET studies. Shown is the ratio of fluorescence intensity at 520 nm (fluorescein emission excited by terbium emission) and 495 nm (terbium emission). All data points represent averages of triplicates (+/- standard deviation).
  • FIG. 4 Influence of the substances GSK0660, SCH138, SCH149 and SCH172 according to the invention on the expression of the
  • A, B, C Human myofibroblasts (WPMY-1) are treated for 24 hours with different concentrations of the substances according to the invention and isolated for 6 hours with L165.041, RNA, the cDNA is synthesized and analyzed by qPCR with L27 as normalizing gene.
  • D, E, F Peritoneal mouse macrophages are treated for 24 h with the substances according to the invention, and a part of the cells for 6 hours with L165.041.
  • G Murine myoblasts (C2C12) are treated for 24 hours with different concentrations of the substances according to the invention. This is followed by RNA isolation, cDNA synthesis and qPCR as in (A, B, C). The relative expression is calculated in relation to DMSO-treated cells.
  • FIG. 5 Influence of the substances according to the invention on the induction of
  • TGF-beta2 in the breast cancer cell line MDA-MB-231.
  • the human breast cancer cell line MDA-MB-231 is pretreated for 24 hours with 1 ⁇ of the substances according to the invention SCH138, SCH149 or SCH172 and then stimulated for 6 hours with TGF-beta2 (2 ng / ml). Relative / 4 / VGP7L4 expression is determined by qPCR.
  • FIG. 6 Induction of the Korepressor-peptide bond to the GST-PPAR-beta / delta
  • Ligand binding domain by the indicated compounds.
  • the interaction of the fluorescein-labeled SMRT-ID2 peptide and the recombinant GST-PPAR beta / delta LBD bound by one Terbium-labeled anti-GST antibody is determined by TR-FRET. Shown is the ratio of fluorescence intensity at 520 nm (fluorescein emission excited by terbium emission) and 495 nm (terbium emission). All data points represent averages of triplicates (+/- standard deviation).
  • FIG. 7 Competitive in vitro ligand binding to PPAR beta / delta.
  • the displacement of the ligand Fluormone® Pan-PPAR Green from the recombinant GST-PPAR beta / delta ligand binding domain (LBD) by the substances according to the invention SCH 1 17, 136, 144, 143, 178, 174, 175, 151, 131, 169, and 133 is determined by TR-FRET investigations. Shown is the ratio of fluorescence intensity at 520 nm (fluorescein emission excited by terbium emission) and 495 nm (terbium emission). All data points represent averages of triplicates (+/- standard deviation).
  • FIG. 8 Competitive in vitro ligand binding to PPAR beta / delta.
  • the displacement of the ligand Fluormone® Pan-PPAR Green from the recombinant GST-PPAR beta / delta ligand binding domain (LBD) by the substances according to the invention SCH 1 17, 140, 141, 199, 139, 138, 179, 149, 148, 150, 158 , 177, STI 055 and STI 108 is determined by TR-FRET studies. Shown is the ratio of fluorescence intensity at 520 nm (fluorescein emission excited by terbium emission) and 495 nm (terbium emission). All data points represent averages of triplicates (+/- standard deviation).
  • FIG. 9 Influence on the agonist-induced transcriptional activity of LexA-PPARa
  • NIH3T3 were transfected with a luciferase reporter plasmid containing multiple LexA binding sites.
  • the inhibitory ligands SCH138 and SCH172 were then added (1 ⁇ for 48 h), followed by the respective PPAR agonists (PPARa agonist GW7647 (300 nM), PPAR ⁇ / ⁇ agonist L165,041 (1 ⁇ ), PPARY agonist GW1929 (300 nM). ).
  • Figure 10 Korepressor connection to PPARß / ⁇ .
  • Immunoprecipitates were calculated in comparison with 1% of the DNA used.
  • FIG. 11 Pharmacological kinetics in mice.
  • SCH138 and SCH172 were administered both intravenously (A, dose 1 mg / kg) and orally (B, dose 5 mg / kg) and the blood samples were analyzed by HPLC-MS / MS. The drug content in plasma is shown over time after administration. Both compounds were no longer detectable after 24 hours.
  • FIG. 12 Inverse PPAR ⁇ / ⁇ agonists have no influence on the amount of integrin ⁇ 1 and ⁇ 5 on the surface of MDA-MB-231 cells.
  • the cells were treated with solvent (black) or SCH172 (gray line) (1 ⁇ , 6 h) and analyzed by FACS using antibodies specific for integrin ⁇ 1 and ⁇ 5.
  • FIG. 13 Influence of the substance SCH172 according to the invention on the induction of
  • / 4 / VGP7L4 expression by TGF-beta2 in WPMY-1 myofibroblasts The human breast cancer cell line MDA-MB-231 is pretreated for 24 hours with 1 ⁇ of the substances according to the invention SCH138, SCH149 or SCH172 and then stimulated for 6 hours with TGF-beta2 (2 ng / ml). Relative / 4 / VGP7L4 expression is determined by qPCR.
  • GKS3787 4-chloro- / V- [2 - [[5- (trifluoromethyl) -2-pyridinyl] sulfonyl] ethyl] benzamide
  • Figure 14 Invasion of MDA-MB-231 cancer cells into a three-dimensional
  • Matrigelmatrix A The compound of the invention SCH172 inhibits the invasion of MDA-MB-231 breast cancer cells into a three-dimensional Matrigel matrix. Shown is the comparison to invasion when no inverse PPAR ⁇ / ⁇ agonist is attached to the system (nothing). Examples
  • the examples of the present invention serve to illustrate the effect and preparation of the compounds of the invention. Some examples have been carried out in parallel with comparative compounds.
  • a commonly used comparative compound is GSK0660, which is not included among the compounds of the invention and has the following chemical structure:
  • the measurement is carried out in 100 mM KCl, 20 mM Tris pH 7.9, 0.01% Triton X100 and 1 pg / pL bovine serum albumin.
  • GST is known to those skilled in the art as a suitable fusion partner for proteins.
  • the ratio of the fluorescence intensities at 520 nm (fluorescein emission excited by terbium emission) and at 495 nm (terbium emission) is determined.
  • Fig. 1 A - C shows for the substances according to the invention SCH138, SCH149 and SCH172 a significant competition efficiency.
  • FIG. 2 A - C clearly shows the interaction between SMRT-ID2 and GST-PPAR beta / delta LBD for the substances SCH138, SCH149 and SCH172 according to the invention as a function of the concentration used.
  • FIG. 6 clearly shows the interaction between SMRT-ID2 and GST-PPAR beta / delta LBD for the substances SCH1 17 and SCH172 according to the invention as a function of the concentration used, in contrast to the comparative compounds shown that no appreciable Korepressor induction at GST PPAR beta / delta.
  • the measurement is carried out in 100 mM KCl, 20 mM Tris pH 7.9, 0.01% Triton X100 and 1 pg / pL bovine serum albumin.
  • 3.1 A-C to 3.3 A-C show for the substances according to the invention SCH138, SCH149 and SCH172 a significant competition efficiency exclusively for the PPAR subtype beta / delta.
  • ANGPTL4 which encodes the Angiopoietin-like protein ANGPTL4
  • WPMY-1 human myofibroblasts
  • C2C12 murine myoblasts
  • mouse peritoneal macrophages or cells of the human breast cancer cell line MDA-MB-231 are treated with the substances according to the invention for 24 hours.
  • the cells of the breast cancer cell line are additionally stimulated for 6 hours with TGF-beta2 (2 ng / ml), which is commercially available.
  • RNA is isolated from the cells using methods known to those skilled in the art and analyzed in a quantitative PCR (qPCR, real-time qPCR, RT-qPCR) likewise known to the person skilled in the art.
  • qPCR quantitative PCR
  • RT-qPCR real-time qPCR
  • cDNA is synthesized from 0.25 g to 1 g of RNA using oligo (dT) primers and a commercially available cDNA synthesis kit.
  • the qPCR is then probed in a Mx3000P RT-qPCR system (Stratagene, La Jolla, California, USA) according to the manufacturer with 40 cycles and an annealing temperature of 60 ° C with, for example, human ANGPTL4 primers (fg: G ATG GCTCAGTG G ACTTCAACC; rv: CCCGTGATGCTATGCACCTTC) and ribosomal 127 known to those skilled in the art (fw: AAAGCCGTCATCGTGAAGAAC; rv: GCTGTCACTTTCCG GGG ATAG) as normalization gene.
  • FIGS. 4A-G show that the relative expression of the is reduced by the substances according to the invention SCH138, SCH149 and SCH172 in comparison with the control (DMSO-treated cells).
  • the corresponding IC 5 o value (mean inhibitory concentration) for the substances of the invention is a maximum of 75 nM in C2C12 cells.
  • Figure 5 shows that treatment of the breast cancer cell line MDA-MB-231 with the compounds of the present invention are the inverse agonists of PPAR-beta / delta, leading to loss of induction of / 4 / VGP7L4 expression by TGF-beta2.
  • Luciferase reporter assays were performed and evaluated as previously described. (FEBS J. 2006, 273, 170-179, Hum. Gene Ther., 1998, 9, 2653-2659, Mol Pharmacol 201 201, 828-838, J. Biol. Chem., 2010, 285, 29469- 29479. Nucleic Acids Res. 201 1, 39, 1 19-131.)
  • Phamacological in vivo kinetic studies were performed by formulating the compounds tested in DMSO / Solutol HS 15 / PBS, pH 7.4 (5/5/90, v / v / v) and intravenously (1 mg / kg, injection into tail vein )) or orally (5 mg / kg, gastric feeding) were administered to male CD-1 mice. Blood samples were taken at eight time points after injection by parallel decrease (three mice each). Plasma samples were processed by acetonitrile precipitation and analyzed by HPLS-MS / MS, followed by common procedures.
  • MDA-MB-231 cells were treated with SCH172 for 48 hours (1 ⁇ ) or with DMSO (1: 10,000) as solvent control.
  • Transwell inserts (Thincerts, Greiner Bio-One) were coated with 50 ⁇ growth promoter-reduced Matrigel (BD Biosciences) at 5 g / ⁇ and cell invasion was essentially analyzed. Cells were harvested for this and 15,000 cells were seeded on the bottom of the Transwell inserts and allowed to grow for one hour.
  • the transwell inserts were inverted and medium added with SCH172 or DMSO as described above in the upper compartment (with 10% FCS) and in the lower compartment (with 0.5% FCS).
  • ANGPTL4 peptides (Enzo Life Science) were embedded in the matrix at 100 ⁇ and TGF ⁇ 2 (2 ng / ml) was added to the upper chamber of the Transwell inserts as indicated.
  • the starting materials used are commercially available aromatic aldehydes and ketones which can be prepared by known syntheses, as well as benzyl derivatives, and R 1 is preferably nitrites.
  • Preferred bases are potassium hydroxide or pyrrolidine whose catalysis is carried out at room temperature or 60 ° C. in suitable solvents (preferably methanol) for 1-48 hours. Further, with a suitable leaving group (preferably bromine in position R 9 -R 11 ) amines can be introduced via a Buchwald-Hartwig reaction at position R 9 -R 11 (Ex .: 151, 169, 174, 175, 178).
  • Preferred catalyst system is
  • Ths (Dibenzylideneacetone) dipalladium (0) and tri-tert-butylphosphine and 2,2 '- bis (diphenylphosphino) -1, 1-binaphthyl and sodium tert-butoxide in toluene at 80 ° C and a reaction time of two hours.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft Substanzen, die als selektive Liganden von nukleären Rezeptoren des PPAR beta/delta-Subtyps wirken und für die Behandlung von PPAR beta/delta-vermittelten Erkrankungen verwendet werden können. Die erfindungsgemäßen Substanzen wirken als Inhibitoren des PPAR beta/delta Rezeptors.

Description

Stilben-Verbindungen als PPAR beta/delta Inhibitoren für die Behandlung von PPAR beta/delta-vermittelten Erkrankungen
Beschreibung
Die vorliegende Erfindung betrifft Substanzen, die als selektive Liganden von nuklearen Rezeptoren des PPAR beta/delta-Subtyps wirken und für die Behandlung von PPAR beta/delta-vermittelten Erkrankungen verwendet werden können. Die erfindungsgemäßen Substanzen wirken als Inhibitoren des PPAR beta/delta Rezeptors.
Peroxisom-Proliferator-aktivierte Rezeptoren (PPAR) sind nukleare Rezeptoren, die als Liganden-induzierbare Transkriptionsfaktoren wirken. Die drei bekannten PPAR- Subtypen PPAR alpha, PPAR beta/delta und PPAR gamma bilden dabei mit Mitgliedern der Retinoid X-Rezeptorfamilie (RXR) Heterodimere, welche dann an PPAR Response Elemente (PPRE) der DNA binden und so die Aktivität ihrer Zielgene regulieren. PPARs fungieren als Sensoren für Fettsäuren und Eicosanoid- Metabolite, die - wie zum Beispiel bestimmte Prostaglandine, Leukotriene oder Hydroxyeicosatetraensäuren - eine Funktion bei der Immunregulation haben. Diese Eigenschaft verleiht den PPAR Rezeptoren eine zentrale Funktion im Fettstoffwechsel und bei inflammatorischen Vorgängen. Dadurch bedingt kommt den PPAR Rezeptoren auch eine wichtige Rolle bei Erkrankungen wie zum Beispiel Hyperlipidämie, Diabetes, Fibrose, inflammatorischen Erkrankungen und Krebs zu. Zu den inflammatorischen Erkrankungen gehören unter anderem Alzheimer, Arthritis, Asthma, Artheriosklerose, Morbus Crohn, Colitis, Dermatitis, Divertikulitis, Hepatitis, Reizdarm, Lupus erythematosus, Nephritis, Parkinson und Colitis ulcerosa.
Rezeptoren des PPAR beta/delta-Subtyps erfüllen essentielle Funktionen im Lipid- und Glukose-Metabolismus sowie anderen krankheitsassoziierten biologischen Prozessen wie zum Beispiel Zelldifferenzierung, Proliferation, Apoptose und Immunregulation. Darüber hinaus kommt PPAR beta/delta eine Rolle bei der Tumorigenese zu. Ferner manifestiert sich die Beteiligung von PPAR beta/delta Rezeptoren an Inflammations-assoziierten Prozessen in verschiedenen Funktionen.
Endogene Liganden für PPAR beta/delta Rezeptoren sind Fettsäuren wie Arachidon- säure, sowie deren Metabolite, wie 15-Hydroxyeicosatetraensäure (15-HETE) und Prostaglandin 12 (PGI2, Prostacyclin). In Abwesenheit eines Liganden liegt PPAR beta/delta häufig im Komplex mit Korepressoren wie SMRT oder SHARP ("SMRT/HDAC l-associated repressor protein") vor. Substanzen, die als Agonisten der PPAR beta/delta Rezeptoren wirken, induzieren eine Konformationsänderung von PPAR beta/delta, welche zur Dissoziation von Korepressoren, wie zum Beispiel SMRT, führt und/oder eine Interaktion mit spezifischen Koaktivatoren, wie zum Beispiel Histon-Acetylasen, mit anschließender transkriptioneller Aktivierung von Genen bewirkt.
Des Weiteren kann PPAR beta/delta Gene auch unabhängig von der Bindung an DNA regulieren. PPAR beta/delta interagiert in Abwesenheit eines Liganden beispielsweise mit BCL6 in Makrophagen und unterdrückt so die Repression (pro-) inflammatorischer Gene durch BCL6, wie beispielsweise mcpl, IL1b und mmp9. PPAR beta/delta hat auch eine Schlüsselfunktion bei Differenzierung, Polarisation und/oder Funktion spezifischer Immunzellen, wie zum Beispiel Makrophagen und T- Helferzellen, und ist mit den pro-inflammatorischen Mechanismen bei der Psoriasis assoziiert.
PPAR beta/delta Agonisten modulieren unter anderem auch die Wirkung von TGF- beta (Transforming growth factor beta) und können dabei zur Repression von Genen mit Funktionen in der Immunregulation beitragen. TGF-beta ist zudem ein in Tumoren häufig vorkommendes Cytokin. Die TGF-beta-vermittelten SMAD-Proteine induzieren unter anderem die Transkription des Gens für das Angiopoietin-ähnliche Protein ANGPTL4, das neben seiner Funktion in der Regulation des Lipid- Metabolismus vermutlich auch an der Angiogenese und an der Tumorprogression beteiligt ist. Es ist bekannt, dass die Expression des
Figure imgf000004_0001
auch durch die PPAR-Rezeptoren reguliert wird.
Der Stand der Technik kennt Substanzen, die als spezifische, hochaffine und bioverfügbare Agonisten für den beta/delta-Subtyp der PPAR-Rezeptoren wirken, wie GW501516, L165041 , cPGI („Carbaprostazyklin") und GW2433. Klinische Relevanz besitzt vor allem GW501516, das bereits in einer klinischen Studie (Phase II) bei der Behandlung von Dyslipidämie eingesetzt wird (GlaxoSmithKline, Studiennummer: NCT00158899). Es sind jedoch keine spezifischen und hochaffinen inhibitorischen Substanzen bekannt, die als bioverfügbare und reversible bzw. kompetitive Antagonisten oder inverse Agonisten für PPAR beta/delta verwendet werden können. US 2004/0180892 beschreibt Sulfonamide, die als Urotensin-Il oder CCR-9 Antagonisten wirken. DE 60215145 T2 offenbart Sulfonamide, die ebenfalls als Urotensin-Il Antagonisten wirken.
Weiterhin kennt der Stand der Technik Antagonisten für den alpha- bzw. gamma- Subtyp der PPAR Rezeptoren. So werden in WO 2010/013071 A2 Sulfonamide beschrieben, die als PPAR alpha/gamma Antagonisten wirken. Nachteilig ist jedoch, dass diese nicht als PPAR beta/delta Inhibitoren, d.h. als Antagonisten oder als inverse PPAR beta/delta Agonisten wirken. Diese Wirkungen sind für die Behandlung von inflammatorischen Erkrankungen, Tumorerkrankungen und Leukämien relevant.
Aufgabe der vorliegenden Erfindung ist es, die Nachteile des Standes der Technik mittels neuer Verbindungen zu beseitigen.
Diese Aufgabe wird erfindungsgemäß durch die technische Lehre der unabhängigen Ansprüche gelöst. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen, der Beschreibung, den Figuren sowie den Beispielen.
Überraschend wurde gefunden, dass die Verbindungengemäß allgemeiner Formel (I) bessere Inhibitoren von PPAR beta/delta für die Behandlung von PPAR beta/delta- vermittelten Erkrankungen sind, als die literaturbekannte Verbindung GSK0660, welche eine inhibitorische Wirkung zeigt.
Somit betrifft die vorliegende Erfindung die Verwendung der Verbindungen der allgemeinen Formel (I)
Figure imgf000005_0001
(I) worin
Z für eines der folgenden Molekulfragmente steht:
Figure imgf000006_0001
R1 für einen der folgenden Reste steht:
-H, -CN, -NC, -CF3, -CHO, -COOH, -CH^COOH, -COOR13, -CH^COOR13, -OH, -CH2OH, -OR13, -CH2OR13, -CONH2, -CONH(R13), -CON(R13)(R14), -COR14, -SO2NH2, -SO2NH(R13), -SO2N(R13)(R14), -NO2, -NH2, -NHR13, -N(R13)(R14), -CH2-NH2, -CH2-NHR13, -CH2-N(R13)(R14), Ci-Ci0-Alkyl, Ci-Cio-Fluoralkyl,
Ci-Cio-Perfluoralkyl, C3-Cio-Cycloalkyl, C2-Cio-Alkenyl, C5-Cio-Cycloalkenyl, C2-Cio-Fluoralkenyl, C5-Cio-Fluorcycloalkenyl, C2-Cio-Perfluoralkenyl,
C5-Cio-Perfluorcycloalkenyl, C2-Cio-alkinyl, C2-Cio-Fluoralkinyl oder C2-Cio-Perfluoralkinyl;
R2 für einen der folgenden Reste steht:
-H, Ci-Cio-Alkyl, d-Cio-Halogenalkyl, Ci-Cio-Fluoralkyl, Ci-Cio-Perfluoralkyl, C3-Cio-Cycloalkyl, Ci-C6-Heterocyclyl, C2-Cio-Alkenyl, C5-Cio-Cycloalkenyl, C2-Cio-Alkinyl, Aryl, -CN oder Heteroaryl;
R3 - R8, R12, R15, R27, R28 unabhängig voneinander folgende Reste bedeuten:
-H, -OH, -CH2OH, -OR18, -CH2OR18, -CF3, -OCF3, -F, -Cl, -Br, -I, -COR18, -COOH, -CH2-COOH, -COOR18, -CH2-COOR18, -CONH2, -CN, -CONH(R18), -CON(R18)(R19), -SO2NH2, -SO2NH(R18), -SO2N(R18)(R19), -NO2, -NH2, -NHR18, -N(R18)(R19), -CH2-NH2, -CH^NHR18,
-CH2-N(R18)(R19), -O-CO-R18, -NHCO-R18, -N(R18)-CO-R19, Ci-Ci0-Alkyl, Ci-Cio-Fluoralkyl, Ci-Cio-Perfluoralkyl, C3-Cio-Cycloalkyl, C2-Cio-Alkenyl, C5-Cio-Cycloalkenyl, C2-Cio-Fluoralkenyl, C5-Cio-Fluorcycloalkenyl,
C2-Ci o-Perfl uoral kenyl , C5-C1 o-Perfl uorcycloal kenyl , C2-Ci o-AI kinyl ,
C2-Cio-Fluoralkinyl oder C2-Cio-Perfluoralkinyl; R9 - 11 unabhängig voneinander folgende Reste bedeuten: -R15, -R27, -R'
Figure imgf000007_0001
R und R unabhängig voneinander folgende Reste bedeuten:
Ci-Cio-Alkyl, d-Cio-Halogenalkyl, d-Cio-Fluoralkyl, Ci-Cio-Perfluoralkyl,
C3-Cio-Cycloalkyl, C2-Cio-Alkenyl, C5-Cio-Cycloalkenyl, C2-Cio-Alkinyl, Aryl oder
Heteroaryl; R18 und R19 unabhängig voneinander folgende Reste bedeuten:
d-Cio-Alkyl, C3-Ci0-Cycloalkyl, Ci-C6-Heterocyclyl, C2-Ci0-Alkenyl, C5-C10-
Cycloalkenyl, C2-Cio-Alkinyl, Aryl oder Heteroaryl;
X steht für: -O-, -S- oder -N(R16)-
Y steht für: -O-, -S- oder -N(R17)-
R20 - R24 unabhängig voneinander folgende Reste bedeuten:
-H, -OH, -OR25, -CF3, -OCF3, -F, -Cl, -Br, -I, -COR25, -COOH, -COOR25, -CONH2, -CONH(R25), -CON(R25)(R26), -NH2, -NHR25, -N(R25)(R26), -O-CO-R25, -NHCO-R25, -N(R25)-CO-R26, -SO2NH2, -SO2NH(R25), -SO2N(R25)(R26) oder Ci-Cio-Alkyl;
R16, R17, R25 und R26 unabhängig voneinander folgende Reste bedeuten:
-H, Ci-Cio-Alkyl, C3-Ci0-Cycloalkyl, C2-Ci0-Alkenyl, C5-Ci0-Cycloalkenyl, C2-Ci0-
Alkinyl, Aryl, Heteroaryl oder Aralkyl; sowie deren Metallkomplexe, Salze, Enantiomere, Enantiomerengemische, Diastereomere, Diastereomerengemische, Tautomere, Hydrate, Solvate, und Racemate der vorgenannten Verbindungen zur Behandlung von inflammatorischen Prozessen, Entzündungen, Zelldifferenzierungsprozessen oder proliferativen Erkrankungen.
Ein bevorzugter Rest R1 bedeutet:
-CN, -NC, -CHO, -COOH, -CH2-COOH, -COOR13, -CH2-COOR13, -OH, -CH2OH, -OR13, -CH2OR13, -CONH2, -CONH(R13), -CON(R13)(R14), -COR14, -NO2, -NH2, -NHR13, -N(R13)(R14), -CH2-NH2, -CH2-NHR13, -CH2-N(R13)(R14), Ci-Cio-Alkyl, C2-Ci0-Alkenyl oder C2-Ci0-Alkinyl, wobei R13 und R14 die hierin definierte Bedeutung haben. Ein weiter bevorzugter Rest R1 bedeutet: -CN, -NC, -CHO, -COOR13, -CH2OH, -NO2, Ci-Cio-Alkyl, C2-Cio-Alkenyl, C2-Cio-Alkinyl. Der am meisten bevorzugte Rest R1 ist: -CN.
Ein bevorzugter Rest R2 bedeutet:
-H, Ci-Cio-Alkyl oder -CN. Der am meisten bevorzugte Rest R2 ist: -H.
Bevorzugte Reste R3 - R7 bedeuten unabhängig voneinander:
-H, -OH, -CH2OH, -OR18, -CH2OR18, -CF3, -OCF3, -F, -Cl, -Br, -I,
-COR18, -COOH, -CH2-COOH, -COOR18, -CH2-COOR18, -CONH2, -CONH(R18), -CON(R18)(R19), -SO2NH2, -SO2NH(R18), -SO2N(R18)(R19), -O-CO-R18, -NHCO-R18, -N(R18)-CO-R19, d-do-Alkyl,
Ci-Cio-Fluoralkyl, Ci-Cio-Perfluoralkyl, d-Cio-Cycloalkyl, C2-Cio-Alkenyl, C5-Cio-Cycloalkenyl, C2-Cio-Fluoralkenyl, C5-Cio-Fluorcycloalkenyl,
C2-Ci o-Perfl uoral kenyl , C5-C1 o-Perfl uorcycloal kenyl , C2-Ci o-AI kinyl ,
C2-Cio-Fluoralkinyl, C2-Cio-Perfluoralkinyl. Weiter bevorzugt sind -H, -OH, -CH2OH, -CH2OR18, -F, -Cl, -Br, -I, -Ch COOH, -CH2-COOR18, Ci-Cio-Alkyl, Ci-Cio-Fluoralkyl, C3-Ci0-Cycloalkyl oder C2-C10-AI kenyl.
Des weiteren sind Verbindungen der allgenneinen Formel (I) bevorzugt, worin die Reste R9 - R11 unabhän ig voneinander für die Reste stehen: -R15, -R27, -R28,
Figure imgf000009_0001
worin
R15, R16, R20 - R24 sowie R27 und R28 die hierin definierte Bedeutung haben.
Eine bevorzugte Ausführungsform der vorliegenden Erfindung betrifft die Verwendung der Verbindungen der allgemeinen Formel (I)
Figure imgf000009_0002
worin
Z, X, Y, R1, R2, R13, R14 und R16 - R26 ihre hierin definierte Bedeutung haben und
R3 - R8, R12 unabhängig voneinander folgende Reste bedeuten:
-H, -OH, -CH2OH, -OR18, -CH2OR18, -CF3, -OCF3, -F, -Cl, -Br, -I, -COR18, -COOH, -CH2-COOH, -COOR18, -CH^COOR18, -CONH2, -CN, -CONH(R18), -CON(R18)(R19), -SO2NH2, -SO2NH(R18), -SO2N(R18)(R19) , -NO2, -NH2, -NHR18, -N(R18)(R19), -CH2-NH2, -CH^NHR18,
-CH2-N(R18)(R19), -O-CO-R18, -NHCO-R18, -N(R18)-CO-R19, Ci-Cio-Alkyl, Ci-Cio-Fluoralkyl, Ci-Cio-Perfluoralkyl, C3-Cio-Cycloalkyl, C2-Cio-Alkenyl, C5-Cio-Cycloalkenyl, C2-Cio-Fluoralkenyl, C5-Cio-Fluorcycloalkenyl,
C2-Ci o-Perfl uoral kenyl , C5-C1 o-Perfl uorcycloal kenyl , C2-Ci o-AI kinyl ,
C2-Cio-Fluoralkinyl oder C2-Cio-Perfluoralkinyl;
R9 - R11 unabhängig voneinander folgende Reste bedeuten: -R15, -R27, -R28,
Figure imgf000010_0001
Figure imgf000011_0001
R15 einen der folgenden Reste bedeutet:
-NH2, -NHR18, -N(R18)(R19), -CH2-NH2, -CH2-NHR18 oder -CH2-N(R18)(R19); R27 und R28 unabhängig voneinander folgende Reste bedeuten:
-H, -IMH2, -NHR18, -N(R18)(R19), -CH^NH2, -CH2-NHR18, -CH2-N(R18)(R19) oder -OR18.
Eine weiter bevorzugte Ausführungsform der vorliegenden Erfindung betrifft die Verwendung der Verbindungen der llgemeinen Formel (I)
Figure imgf000011_0002
worin
Z, X, Y und R18 - R24 ihre hierin definierte Bedeutung haben und R3 - R9, R11, R12 unabhängig voneinander folgende Reste bedeuten: -H, -OH, -CH2OH, -OR18, -CH2OR18, -CF3, -OCF3, -F, -Cl, -Br, -I, -COR18, -COOH, -CH2-COOH, -COOR18, -CH^COOR18, -CONH2, -CN, -CONH(R18), -CON(R18)(R19), -SO2NH2, -SO2NH(R18), -SO2N(R18)(R19) , -NO2, -NH2, -NHR18, -N(R18)(R19), -CH2-NH2, -CH^NHR18,
-CH2-N(R18)(R19), -O-CO-R18, -NHCO-R18, -N(R18)-CO-R19, Ci-Cio-Alkyl, Ci-Cio-Fluoralkyl, Ci-Cio-Perfluoralkyl, C3-Cio-Cycloalkyl, C2-Cio-Alkenyl, C5-Cio-Cycloalkenyl, C2-Cio-Fluoralkenyl, C5-Cio-Fluorcycloalkenyl,
C2-Ci o-Perfl uoral kenyl , C5-C1 o-Perfl uorcycloal kenyl , C2-Ci o-AI kinyl ,
C2-Cio-Fluoralkinyl oder C2-Cio-Perfluoralkinyl;
R10 einen der folgenden Reste bedeutet: -R15,
Figure imgf000012_0001
Figure imgf000013_0001
R15 einen der folgenden Reste bedeutet: -NHR18, -N(R18)(R19), -CH2-NH2, -CH^NHR18 oder -CH^N(R18)(R19).
Weiter bevorzugt bedeutet der Rest R10 einen der folgenden Reste: -R15,
Figure imgf000013_0002
Figure imgf000014_0001
und
R15 bedeutet einen der folgenden Reste: -NHR18 oder -N(R18)(R19), und noch weiter bevorzugt bedeutet R15: -NHR18,
worin
X, Y, R18 - R24 ihre hierin definierte Bedeutung haben.
Noch weiter bevorzugt bedeutet der Rest R10 einen der folgenden Reste:
Figure imgf000014_0002
Figure imgf000015_0001
und
R15 bedeutet den folgenden Rest: -NHR18,
worin
R16, R18, R20 - R24 ihre hierin definierte Bedeutung haben.
Bevorzugte Reste R9 und R11 sind ferner die Folgenden: -H, -NH2, -NHR18, -N(R18)(R19), -CH2-NH2, -CH2-NHR18, -CH2-N(R18)(R19) und -OR18; weiter bevorzugt -H, -CH2-NHR18, -CH2-N(R18)(R19), und am meisten bevorzugt -H, wobei die Reste R18 und R19 die hierin definierten Bedeutungen haben.
In weiter bevorzugten Ausführungsformen betrifft die vorliegende Erfindung die Verbindun en der allgemeinen Formeln (II), (III), (IV), (V) und (VI):
Figure imgf000016_0001
(VI),
(V) und wobei die Reste Z und R1 bis R12 eine der hierin beschriebenen Bedeutungen haben, sowie deren Metallkomplexe, Salze, Enantiomere, Enantiomerengemische, Diastereomere, Diastereomerengemische, Tautomere, Hydrate, Solvate, und Racemate der vorgenannten Verbindungen.
Die Verbindungen der allgenneinen Formeln (II), (III), (IV), (V) und (VI) eignen sich insbesondere zur Behandlung von inflammatorischen Prozessen, Entzündungen, Zelldifferenzierungsprozessen oder proliferativen Erkrankungen.
Ferner betrifft die vorliegende Erfindung die Verbindungen der allgemeinen Strukturen (II) und deren Verwendung wie hierin definiert
Figure imgf000017_0001
(II).
worin
R1 für einen der folgenden Reste steht:
-H, -CN, -NC, -CF3, -CHO, -COOH, -CH2-COOH, -COOR13, -CH2-COOR13, -OH, -CH2OH, -OR13, -CH2OR13, -CONH2, -CONH(R13), -CON(R13)(R14), -COR14, -SO2NH2, -SO2NH(R13), -SO2N(R13)(R14) , -NO2, -NH2, -NHR13, -N(R13)(R14), -CH2-NH2, -CH2-NHR13, -CH2-N(R13)(R14), d-Cio-Alkyl, Ci-Cio-Fluoralkyl, Ci-Cio-Perfluoralkyl, C3-Cio-Cycloalkyl, C2-Cio-Alkenyl, C5-Cio-Cycloalkenyl, C2-Cio-Fluoralkenyl, C5- Cio-Fluorcycloalkenyl, C2-Cio-Perfluoralkenyl, C5-Cio-Perfluorcycloalkenyl, C2-C10- Alkinyl, C2-Cio-Fluoralkinyl oder C2-Cio-Perfluoralkinyl;
R2 für einen der folgenden Reste steht: -H, d-Cio-Alkyl, Ci-Cio-Halogenalkyl, Ci-Cio-Fluoralkyl, Ci-Ci0-Perfluoralkyl, C3- Cio-Cycloalkyl, Ci-C6-Heterocyclyl, C2-Cio-Alkenyl, C5-Cio-Cycloalkenyl, C2-Cio- Alkinyl, Aryl, -CN oder Heteroaryl;
R3 - R9, R11, R12 unabhängig voneinander folgende Reste bedeuten:
-H, -OH, -CH2OH, -OR18, -CH2OR18, -CF3, -OCF3, -F, -Cl, -Br, -I, -COR18, -COOH, -CH2-COOH, -COOR18, -CH2-COOR18, -CONH2, -CN, -CONH(R18), -CON(R18)(R19), -SO2NH2, -SO2NH(R18), -SO2N(R18)(R19) , -NO2, -NH2, -NHR18, -N(R18)(R19), -CH2-NH2, -CH^NHR18, -CH2-N(R18)(R19), -O-CO-R18, -NHCO-R18, -N(R18)-CO-R19, Ci-Cio-Alkyl, Ci-Cio-Fluoralkyl, Ci-Cio-Perfluoralkyl, C3-Cio-Cycloalkyl, C2-Cio-Alkenyl, C5-Cio-Cycloalkenyl, C2-Cio-Fluoralkenyl, C5-Cio-Fluorcycloalkenyl,
C2-Ci o-Perfl uoral kenyl , C5-C1 o-Perfl uorcycloal kenyl , C2-Ci o-AI kinyl ,
C2-Cio-Fluoralkinyl, C2-Cio-Perfluoralkinyl; einen der folgenden Reste bedeutet
Figure imgf000018_0001
Figure imgf000019_0001
R und R unabhängig voneinander folgende Reste bedeuten:
Ci-Cio-Alkyl, d-Cio-Halogenalkyl, d-Cio-Fluoralkyl, Ci-Cio-Perfluoralkyl,
C3-Cio-Cycloalkyl, C2-Ci0-Alkenyl, C5-Ci0-Cycloalkenyl, C2-Ci0-Alkinyl, Aryl,
Heteroaryl;
R15 einen der folgenden Rest bedeutet -NH2, -NHR18, -N(R18)(R19), -CH2- NHR18 oder -CH2-N(R18)(R19),
R18 und R19 unabhängig voneinander folgende Reste bedeutet:
Ci-Cio-Alkyl, C3-Ci0-Cycloalkyl, Ci-C6-Heterocyclyl, C2-Ci0-Alkenyl, C5-C10- Cycloalkenyl, C2-Cio-Alkinyl, Aryl, Heteroaryl;
R20 - R24 unabhängig voneinander folgende Reste bedeuten:
-H, -OH, -OR25, -CF3, -OCF3, -F, -Cl, -Br, -I, -COR25 -COOH, -COOR25, -CONH2, -CONH(R25), -CON(R25)(R26) , -NH2, -NHR25, -N(R25)(R26), -O-CO-R25, -NHCO-R25, -N(R25)-CO-R26, -SO2NH2, -SO2NH(R25), -SO2N(R25)(R26), Ci-Cio-Alkyl;
X steht für: -O-, -S- oder -N(R16)-
Y steht für: -O-, -S- oder -N(R17)-
R16, R17, R25 und R26 unabhängig voneinander folgende Reste bedeuten:
-H, Ci-Cio-Alkyl, C3-Ci0-Cycloalkyl, C2-Ci0-Alkenyl, C5-Ci0-Cycloalkenyl, C2-Cio-Alkinyl, Aryl, Heteroaryl, Aralkyl; sowie deren Metallkomplexe, Salze, Enantiomere, Enantiomerengemische, Diastereomere, Diastereomerengemische, Tautomere, Hydrate, Solvate, und Racemate der vorgenannten Verbindungen.
Ferner betrifft die vorliegende Erfindung die Verbindungen der allgemeinen Strukturen (III), (IV), (V) und (VI) und deren Verwendung wie hierin definiert, worin in Struktur (IV) der Rest R1 eine der hierin beschriebenen Bedeutungen hat, und worin R3 - R9, R11, R12 unabhängig voneinander folgende Reste bedeuten:
-H, -OH, -CH2OH, -OR18, -CH2OR18, -CF3, -OCF3, -F, -Cl, -Br, -I, -COR18, -COOH, -CH2-COOH, -COOR18, -CH2-COOR18, -CONH2, -CN, -CONH(R18), -CON(R18)(R19), -SO2NH2, -SO2NH(R18), -SO2N(R18)(R19) , -NO2, -NH2, -NHR18, -N(R18)(R19), -CH2-NH2, -CH^NHR18, -CH2-N(R18)(R19), -O-CO-R18, -NHCO-R18, -N(R18)-CO-R19, Ci-Cio-Alkyl, Ci-Cio-Fluoralkyl, Ci-Ci0-Perfluoralkyl, C3-Ci0-Cycloalkyl, C2-Ci0-Alkenyl, C5-C10- Cycloalkenyl, C2-Cio-Fluoralkenyl, C5-Cio-Fluorcycloalkenyl, C2-Cio-Perfluoralkenyl, C5-Cio-Perfluorcycloalkenyl, C2-Cio-Alkinyl, C2-Cio-Fluoralkinyl, C2-Cio- Perfluoralkinyl;
R10 einen der folgenden Reste bedeutet: -R15,
Figure imgf000020_0001
Figure imgf000021_0001
R und R unabhängig voneinander folgende Reste bedeuten:
Ci-Cio-Alkyl, d-Cio-Halogenalkyl, d-Cio-Fluoralkyl, Ci-Cio-Perfluoralkyl,
C3-Cio-Cycloalkyl, C2-Ci0-Alkenyl, C5-Ci0-Cycloalkenyl, C2-Ci0-Alkinyl, Aryl,
Heteroaryl;
R15 einen der folgenden Reste bedeutet -NH2, -NHR18, -N(R18)(R19), -CH2-NHR18 oder -CH2-N(R18)(R19),
R18 und R19 unabhängig voneinander folgende Reste bedeutet:
Ci-Cio-Alkyl, C3-Ci0-Cycloalkyl, Ci-C6-Heterocyclyl, C2-Ci0-Alkenyl, C5-C10-
Cycloalkenyl, C2-Cio-Alkinyl, Aryl, Heteroaryl;
R20 - R24 unabhängig voneinander folgende Reste bedeuten:
-H, -OH, -OR25, -CF3, -OCF3, -F, -Cl, -Br, -I, -COR25, -COOH, -COOR25, -CONH2, -CONH(R25), -CON(R25)(R26) , -NH2, -NHR25, -N(R25)(R26), -O-CO-R25, -NHCO-R25, -N(R25)-CO-R26, -SO2NH2, -SO2NH(R25), -SO2N(R25)(R26), Ci-Cio-Alkyl;
X steht für: -O-, -S- oder -N(R )-;
Y steht für: -O-, -S- oder -N(R17)-; R16, R17, R25 und R26 unabhängig voneinander folgende Reste bedeuten:
-H, d-Cio-Alkyl, C3-Ci0-Cycloalkyl, C2-Ci0-Alkenyl, C5-Ci0-Cycloalkenyl, C2-Ci0-
Alkinyl, Aryl, Heteroaryl, Aralkyl; sowie deren Metallkomplexe, Salze, Enantiomere, Enantiomerengemische, Diastereomere, Diastereomerengemische, Tautomere, Hydrate, Solvate, und Racemate der vorgenannten Verbindungen.
Eine besonders bevorzugte Ausführungsform der vorliegenden Erfindung betrifft Verbindungen der allgenneinen Formel (IV), (V) und (VI) und deren Verwendung wie hierin definiert,
wobei R10 einen der folgenden Reste bedeutet: -R15,
Figure imgf000022_0001
Figure imgf000023_0001
R15 den folgenden Rest bedeutet: -NHR18, und X, Y, R18 und R20 - R24 sowie R1 und R3 - R7 die hierin beschriebenen Bedeutungen haben.
Eine besonders bevorzugte Ausführungsform betrifft die Verbindungen der allgenneinen Formel (V) und deren Verwendung wie hierin definiert
Figure imgf000023_0002
(V)
worin
R3 einen der folgenden Reste bedeutet: -Cl, -Br oder -CF3,
R4 bis R7 -H, bedeuten, und
R10 einen der folgende Reste bedeutet: -R15,
Figure imgf000024_0001
worin
R15 folgenden Rest bedeutet -NHR18;
R16 einen der folgenden Reste bedeutet: -H, d-Cio-Alkyl, Aryl oder Aralkyl;
R18 Aryl oder C3-Ci0-Cycloalkyl bedeutet;
R20 - R24 unabhängig voneinander folgende Reste bedeuten: -H, Ci-Cio-Alkyl.
Bevorzugte Ci-Cio-Alkyl Reste für R16 sind die Folgenden: -CH3, -C2H5, -C3H7, -C4Hg, -C5H11, -C6H13, -CH2-CH(CH3)2, — C2H4— CH(CH3)2, — C3H6— CH(CH3)2,
Figure imgf000024_0002
Bevorzugte Aralkyl Reste für R16 sind die Folgenden: -CH2-C6H5, -C2H -C6H5. Bevorzugte C3-Cio-Cycloalkyl-Reste für R18 sind: cyclopentyl and cyclohexyl.
Bevorzugter Aryl-Rest für R18 ist der Folgende: -C6H5.
Ferner betrifft die vorliegende Erfindung die Verwendung der vorgenannten Verbindungen (I), (II), (III), (IV), (V) und (VI) in der Medizin, d.h. als pharmakologisch aktive Wirkstoffe zur Behandlung von Krankheiten. Insbesondere sind die vorgenannten Verbindungen (I), (II), (III), (IV), (V) und (VI) als Inhibitor eines Rezeptors des Typs PPAR beta/delta zu verwenden und damit zur Behandlung von Krankheiten, welche mit einem Rezeptor des Typs PPAR beta/delta in Verbindung stehen.
Bevorzugt ist die Verwendung der Verbindungen gemäß allgemeiner Formel (I), (II) oder (III), worin mindestens einer der Reste R8 - R12 ungleich Wasserstoff ist.
Ferner sind solche Verbindungen gemäß allgemeiner Formel (I), (II) oder (III) bevorzugt, worin R8 oder R9 oder R10 oder R8 und R10 oder R9 und R10 ungleich Wasserstoff sind und insbesondere solche Verbindungen, worin R ungleich Wasserstoff ist.
Ferner ist vorzugsweise der Rest R10 über ein Stickstoffatom an den Rest des Moleküls angebundener Rest. Insbesondere bevorzugt ist R10 ein
Stickstoffheterocyclus und am meisten bevorzugt ein über ein Stickstoffatom angebundener Stickstoffheterocyclus.
Vorzugsweise steht der Arylrest als Rest R18 für Phenyl.
Die vorliegende Erfindung betrifft wie oben beschrieben die Verwendung der Verbindungen (I), (II), (III), (IV), (V) und (VI) zur Behandlung von inflammatorischen Prozessen, Entzündungen, Zelldifferenzierungsprozessen oder proliferativen Erkrankungen.
Die vorliegende Erfindung betrifft ferner die Verbindungen (I), (II), (III), (IV), (V) und (VI) zur Verwendung in der Behandlung von inflammatorischen Prozessen, Entzündungen, Zelldifferenzierungsprozessen oder proliferativen Erkrankungen.
Die vorliegende Erfindung betrifft ferner die Verbindungen (I), (II), (III), (IV), (V) und (VI) zur Behandlung von inflammatorischen Prozessen, Entzündungen, Zelldifferenzierungsprozessen oder proliferativen Erkrankungen.
Bei den proliferativen Erkrankungen handelt es sich vorzugsweise um Tumoren, Metastasen und/oder Krebs.
Die hierin offenbarten Verbindungen der allgemeinen Formel (I), (II), (III), (IV), (V) und (VI) sind aber auch sehr gut zur Behandlung von Lebererkrankungen einzusetzen.
Des Weiteren betrifft die vorliegende Erfindung die Verwendung der hierin offenbarten Verbindungen der allgemeinen Formel (I), (II), (III), (IV), (V) und (VI) zur Behandlung von Erkrankungen des Fettsäurestoffwechsels und des Glukosestoffwechsels, bei denen Insulinresistenz involviert ist.
Der Begriff "CrCio-Alkyl" bezeichnet vorzugsweise die folgenden Reste:
-CH3, -C2H5, -C3H7, -CH(CH3)2, -C4Hg, -CH2-CH(CH3)2, -CH(CH3)-C2H5i -C(CH3)3, -C5H11 , -CH(CH3)-C3H7, -CH2-CH(CH3)-C2H5, -CH(CH3)- CH(CH3)2, — C(CH3)2— C2H5, — CH2— C(CH3)3, — CH(C2H5)2, — C2H4— CH(CH3)2, -C6H13, — C3H6— CH(CH3)2, — C2H4— CH(CH3)— C2H5, — CH(CH3)— C4Hg, -CH2-CH(CH3)-C3H7, -CH(CH3)-CH2-CH(CH3)2, -CH(CH3)-CH(CH3)-C2H5, — CH2— CH(CH3)— CH(CH3)2, — CH2— C(CHs)2— C2H5, — C(CHs)2— C3H7,
— C(CHs)2— CH(CH3)2, — C2H4— C(CH3)3, — CH(CH3)— C(CH3)3, -C7H15, -CsHi7,
Figure imgf000026_0001
Bevorzugt sind davon die folgenden Reste: -CH3, -C2H5, -C3H7, -CH(CH3)2, -C4H9, -CH2-CH(CH3)2, -CH(CH3)-C2H5, -C(CH3)3 und -C5Hn. Insbesondere bevorzugt sind: -CH3, -C2H5, -C3H7 und -CH(CH3)2.
Der Begriff "d-Cio-Fluoralkyl" bezeichnet vorzugsweise die folgenden Reste:
-CH3, -C2H5, -C3H7, -CH(CH3)2, -C4Hg, -CH2-CH(CH3)2, -CH(CH3)-C2H5i -C(CH3)3, -CsH , -CH(CH3)-C3H7, -CH2-CH(CH3)-C2H5, -CH(CH3)- CH(CH3)2, — C(CH3)2— C2H5, — CH2— C(CH3)3, — CH(C2H5)2, — C2H4— CH(CH3)2, -C6H13, — C3H6— CH(CH3)2, — C2H4— CH(CH3)— C2H5, — CH(CH3)— C4Hg, -CH2-CH(CH3)-C3H7j -CH(CH3)-CH2-CH(CH3)2, -CH(CH3)-CH(CH3)-C2H5, — CH2— CH(CH3)— CH(CH3)2, — CH2— C(CH3)2— C2H5, — C(CH3)2— C3H7,
— C(CH3)2— CH(CH3)2, — C2H4— C(CH3)3, — CH(CH3)— C(CH3)3, -C7H15, -CsHi7, -C9H19 und -C10H21, worin ein oder mehrere Wasserstoffatome durch Fluoratome ersetzt sind. Bevorzugt sind davon die folgenden Reste: -CH2F, -CHF2, -CH2- CH2F, -CH2-CHF2, -CH2-CF3, -C2H4-CH2F, -C2H4-CHF2, -C2H4-CF3, und -CH(CF3)2.
Der Begriff "Ci-Cio-Perfluoralkyl" bezeichnet vorzugsweise die folgenden Reste:
-CH3, -C2H5, -C3H7, -CH(CH3)2, -C4Hg, -CH2-CH(CH3)2, -CH(CH3)-C2H5i -C(CH3)3, -CsH , -CH(CH3)-C3H7j -CH2-CH(CH3)-C2H5j -CH(CH3)- CH(CH3)2, — C(CH3)2— C2H5, — CH2— C(CH3)3, — CH(C2H5)2, — C2H4— CH(CH3)2, -C6H13, — C3H6— CH(CH3)2, — C2H4— CH(CH3)— C2H5, — CH(CH3)— C4Hg, -CH2-CH(CH3)-C3H7j -CH(CH3)-CH2-CH(CH3)2, -CH(CH3)-CH(CH3)-C2H5j — CH2— CH(CH3)— CH(CH3)2, — CH2— C(CH3)2— C2H5, — C(CH3)2— C3H7,
— C(CH3)2— CH(CH3)2, — C2H4— C(CH3)3, — CH(CH3)— C(CH3)3, -C7H15, -CsHi7, -C9H19 und -C10H21 , worin sämtliche Wasserstoffatome durch Fluoratome ersetzt sind. Bevorzugt sind davon die folgenden Reste: -CF3, -C2F5, -C3F7, -CF(CF3)2, -C4F9, -CF2-CF(CF3)2, -CF(CF3)-C2F5, -C(CF3)3 und -C5Fn.
Der Begriff "d-Cio-Halogenalkyl" bezeichnet vorzugsweise die folgenden Reste:
-CH3, -C2H5, -C3H7, -CH(CH3)2, -C4Hg, -CH2-CH(CH3)2, -CH(CH3)-C2H5i -C(CH3)3> -CsHn, -CH(CH3)-C3H7j -CH2-CH(CH3)-C2H5j -CH(CH3)- CH(CH3)2, — C(CH3)2— C2H5, — CH2— C(CH3)3, — CH(C2H5)2, — C2H4— CH(CH3)2, -C6H13, — C3H6— CH(CH3)2, — C2H4— CH(CH3)— C2H5, — CH(CH3)— C4Hg, -CH2-CH(CH3)-C3H7j -CH(CH3)-CH2-CH(CH3)2, -CH(CH3)-CH(CH3)-C2H5j — CH2— CH(CH3)— CH(CH3)2, — CH2— C(CH3)2— C2H5, — C(CH3)2— C3H7, — C(CHs)2— CH(CH3)2, — C2H4— C(CH3)3, — CH(CH3)— C(CH3)3, -C7H15, -CsHi7, -C9H19 und -C10H21 , wohn ein oder mehrere Wasserstoffatome durch Halogenatome ersetzt sind. Bevorzugt sind davon die folgenden Reste: -CH2F, — CHF2, — CH2— CH2F, — CH2— CHF2, — CH2— CF3, — C2H4— CH2F, — C2H4— CHF2, — C2H4— CF3, — CH2Br, — CH2CI, — CH2I, — CH2— CH2CI, — CH2— CH2Br, — CH2— CH2I, -C2H4-CH2CI, -C2H4-CH2Br, -C2H4-CH2I und -CH(CF3)2.
Der Begriff "C3-Cio-Cycloalkyl" bezeichnet vorzugsweise die folgenden Reste:
Figure imgf000027_0001
Der Begriff "Ci-C6-Heterocyclyl" bezeichnet vorzugsweise die folgenden Reste:
Figure imgf000027_0002
Figure imgf000028_0001
Der Begriff "C2-Cio-Alkenyl" bezeichnet vorzugsweise die folgenden Reste:
-CH=CH2, -CH=CH-Ph, -CH2-CH=CH2,
-C(CH3)=CH2, -CH=CH-CH3, -C2H4-CH=CH2, -CH2-CH=CH-CH3, -CH=CH-C2H5, -CH2-C(CH3)=CH2, -CH(CH3)-CH=CH, -CH=C(CH3)2, -C(CH3)=CH-CH3, -CH=CH-CH=CH2, -C3H6-CH=CH2, -C2H4-CH=CH-CH3, — CH2— CH=CH— C2H5, — CH=CH— C3H7, — CH2— CH=CH— CH=CH2,
-CH=CH-CH=CH-CH3, -CH=CH-CH2-CH=CH2, -C(CH3)=CH-CH=CH2, -CH=C(CH3)-CH=CH2, -CH=CH-C(CH3)=CH2, -C2H4-C(CH3)=CH2,
-CH2-CH(CH3)-CH=CH2, -CH(CH3)-CH2-CH=CH2, -CH2-CH=C(CH3)2, -CH2-C(CH3)=CH-CH3, -CH(CH3)-CH=CH-CH3, -CH=CH-CH(CH3)2,
-CH=C(CH3)-C2H5, -C(CH3)=CH-C2H5, -C(CH3)=C(CH3)2, -C(CH3)2-CH=CH2, -CH(CH3)-C(CH3)=CH2, -C(CH3)=CH-CH=CH2,
-CH=C(CH3)-CH=CH2, -CH=CH-C(CH3)=CH2, -C4H8-CH=CH2,
— C3H6_ CH=CH— CH3, — C2H4— CH=CH— C2Hs, — CH2— CH=CH— C3H7,
— CH=CH— C4Hg, — C3H6_ C(CH3)=CH2, — C2H4— CH(CH3)— CH=CH2,
-CH2-CH(CH3)-CH2-CH=CH2, -CH(CH3)-C2H4-CH=CH2, -C2H4-CH=C(CH3)2, -C2H4-C(CH3)=CH-CH3, -CH2-CH(CH3)-CH=CH-CH3, -CH(CH3)-CH2-CH=CH-CH3, -CH2-CH=CH-CH(CH3)2, -CH2-CH=C(CH3)-C2H5, -CH2-C(CH3)=CH-C2H5, -CH(CH3)-CH=CH-C2H5, -CH=CH-CH2-CH(CH3)2, -CH=CH-CH(CH3)-C2H5, -CH=C(CH3)-C3H7, -C(CH3)=CH-C3H7, -CH2-CH(CH3)-C(CH3)=CH2, -CH(CH3)-CH2-C(CH3)=CH2, -CH(CH3)-CH(CH3)-CH=CH2, -CH2-C(CH3)2-CH=CH2, -C(CH3)2-CH2-CH=CH2, -CH2-C(CH3)=C(CH3)2, -CH(CH3)-CH=C(CH3)2, -C(CH3)2-CH=CH-CH3, -CH(CH3)-C(CH3)=CH-CH3, -CH=C(CH3)-CH(CH3)2, -C(CH3)=CH-CH(CH3)2, -C(CH3)=C(CH3)-C2H5, -CH=CH-C(CH3)3, -C(CH3)2-C(CH3)=CH2, -CH(C2H5)-C(CH3)=CH2,
-C(CH3)(C2H5)-CH=CH2, -CH(CH3)-C(C2H5)=CH2, -CH2-C(C3H7)=CH2, -CH2-C(C2H5)=CH-CH3, -CH(C2H5)-CH=CH-CH3, -C(C4H9)=CH2,
-C(C3H7)=CH-CH3, -C(C2H5)=CH-C2H5, -C(C2H5)=C(CH3)2,
-C[C(CH3)3]=CH2, -C[CH(CH3)(C2H5)]=CH2, -C[CH2-CH(CH3)2]=CH2,
— C2H4— CH=CH— CH=CH2, — CH2— CH=CH— CH2— CH=CH2, — CH=CH— C2H4— CH=CH2, -CH2-CH=CH-CH=CH-CH3, -CH=CH-CH2-CH=CH-CH3, -CH=CH-CH=CH-C2H5, -CH2-CH=CH-C(CH3)=CH2, -CH2-CH=C(CH3)-CH=CH2, -CH2-C(CH3)=CH- CH=CH2, -CH(CH3)-CH=CH-CH=CH2, -CH=CH-CH2-C(CH3)=CH2, -CH=CH- CH(CH3)-CH=CH2, -CH=C(CH3)-CH2-CH=CH2, -C(CH3)=CH-CH2-CH=CH2, -CH=CH-CH=C(CH3)2, -CH=CH-C(CH3)=CH-CH3, -CH=C(CH3)-CH=CH-CH3, -C(CH3)=CH-CH=CH-CH3, -CH=C(CH3)-C(CH3)=CH2, -C(CH3)=CH-C(CH3)=CH2, -C(CH3)=C(CH3)-CH=CH2 und -CH=CH-CH=CH-CH=CH2. Bevorzugt sind davon die folgenden Reste: -CH=CH2, -CH2-CH=CH2, -C(CH3)=CH2, -CH=CH- CH3, -C2H4-CH=CH2 und -CH2-CH=CH-CH3. Insbesondere bevorzugt sind -CH=CH2, -CH2-CH=CH2 und -CH=CH-CH3.
Figure imgf000029_0001
Der Begriff "C2-Cio-Fluoralkenyl" bezeichnet vorzugsweise die folgenden Reste:
-CH=CH2, -CH=CH-Ph, -CH2-CH=CH2,
-C(CH3)=CH2, -CH=CH-CH3, -C2H4-CH=CH2, -CH2-CH=CH-CH3, -CH=CH-C2H5, -CH2-C(CH3)=CH2, -CH(CH3)-CH=CH, -CH=C(CH3)2 -C(CH3)=CH-CH3, -CH=CH-CH=CH2, -C3H6-CH=CH2, -C2H4-CH=CH-CH3 — CH2— CH=CH— C2H5, — CH=CH— C3H7, — CH2— CH=CH— CH=CH2
-CH=CH-CH=CH-CH3, -CH=CH-CH2-CH=CH2, -C(CH3)=CH-CH=CH2 -CH=C(CH3)-CH=CH2, -CH=CH-C(CH3)=CH2, -C2H4-C(CH3)=CH2
-CH2-CH(CH3)-CH=CH2, -CH(CH3)-CH2-CH=CH2, -CH2-CH=C(CH3)2 -CH2-C(CH3)=CH-CH3, -CH(CH3)-CH=CH-CH3, -CH=CH-CH(CH3)2
-CH=C(CH3)-C2H5, -C(CH3)=CH-C2H5, -C(CH3)=C(CH3)2
-C(CH3)2-CH=CH2, -CH(CH3)-C(CH3)=CH2, -C(CH3)=CH-CH=CH2
-CH=C(CH3)-CH=CH2, -CH=CH-C(CH3)=CH2, -C4H8-CH=CH2
— C3H6_ CH=CH— CH3, — C2H4— CH=CH— C2Hs, — CH2— CH=CH— C3H7
— CH=CH— C4H9, — C3H6_ C(CH3)=CH2, — C2H4— CH(CH3)— CH=CH2
-CH2-CH(CH3)-CH2-CH=CH2, -CH(CH3)-C2H4-CH=CH2 -C2H4-CH=C(CH3)2, -C2H4-C(CH3)=CH-CH3, -CH2-CH(CH3)-CH=CH-CH3 -CH(CH3)-CH2-CH=CH-CH3, -CH2-CH=CH-CH(CH3)2 -CH2-CH=C(CH3)-C2H5, -CH2-C(CH3)=CH-C2H5, -CH(CH3)-CH=CH-C2H5 -CH=CH-CH2-CH(CH3)2, -CH=CH-CH(CH3)-C2H5, -CH=C(CH3)-C3H7 -C(CH3)=CH-C3H7, -CH2-CH(CH3)-C(CH3)=CH2 -CH(CH3)-CH2-C(CH3)=CH2, -CH(CH3)-CH(CH3)-CH=CH2 -CH2-C(CH3)2-CH=CH2, -C(CH3)2-CH2-CH=CH2, -CH2-C(CH3)=C(CH3)2 -CH(CH3)-CH=C(CH3)2, -C(CH3)2-CH=CH-CH3, -CH(CH3)-C(CH3)=CH-CH3 -CH=C(CH3)-CH(CH3)2, -C(CH3)=CH-CH(CH3)2, -C(CH3)=C(CH3)-C2H5 -CH=CH-C(CH3)3, -C(CH3)2-C(CH3)=CH2, -CH(C2H5)-C(CH3)=CH2
-C(CH3)(C2H5)-CH=CH2, -CH(CH3)-C(C2H5)=CH2, -CH2-C(C3H7)=CH2 -CH2-C(C2H5)=CH-CH3, -CH(C2H5)-CH=CH-CH3, -C(C4H9)=CH2
-C(C3H7)=CH-CH3, -C(C2H5)=CH-C2H5, -C(C2H5)=C(CH3)2
-C[C(CH3)3]=CH2, -C[CH(CH3)(C2H5)]=CH2, -C[CH2-CH(CH3)2]=CH2
— C2H4— CH=CH— CH=CH2, — CH2— CH=CH— CH2— CH=CH2, — CH=CH— C2H4— CH=CH2 -CH2-CH=CH-CH=CH-CH3, -CH=CH-CH2-CH=CH-CH3, -CH=CH-CH=CH-C2H5 -CH2-CH=CH-C(CH3)=CH2, -CH2-CH=C(CH3)-CH=CH2, -CH2-C(CH3)=CH- CH=CH2, -CH(CH3)-CH=CH-CH=CH2, -CH=CH-CH2-C(CH3)=CH2, -CH=CH- CH(CH3)-CH=CH2, -CH=C(CH3)-CH2-CH=CH2, -C(CH3)=CH-CH2-CH=CH2, -CH=CH-CH=C(CH3)2, -CH=CH-C(CH3)=CH-CH3, -CH=C(CH3)-CH=CH-CH3, -C(CH3)=CH-CH=CH-CH3, -CH=C(CH3)-C(CH3)=CH2, -C(CH3)=CH-C(CH3)=CH2, -C(CH3)=C(CH3)-CH=CH2 und -CH=CH-CH=CH-CH=CH2, wohn ein oder mehrere Wasserstoffatome durch Fluoratome ersetzt sind. Bevorzugt sind davon die folgenden Reste: -CF=CH2, -CH=CHF, -CH=CF2, -CF2-CH=CH2, -CH2- CF=CH2, -CH2-CH=CHF, -CH2-CH=CF2, -CF=CH-CH3, -CH=CF-CH3, -CF=CF-CH3, -CH=CH-CF3, -CF2-CH=CH-CH3, -CH2-CF=CH-CH3, -CH2- CH=CF-CH3, -CH2-CF=CF-CH3 und -CH2-CH=CH-CF3.
Der Begriff "C2-Cio-Perfluoralkenyl" bezeichnet vorzugsweise die folgenden Reste: -CH=CH2, -CH=CH-Ph, -CH2-CH=CH2
-C(CH3)=CH2, -CH=CH-CH3, -C2H4-CH=CH2, -CH2-CH=CH-CH3 -CH=CH-C2H5, -CH2-C(CH3)=CH2, -CH(CH3)-CH=CH , -CH=C(CH3)2 -C(CH3)=CH-CH3, -CH=CH-CH=CH2, -C3H6-CH=CH2, -C2H4-CH=CH-CH3 — CH2— CH=CH— C2H5, — CH=CH— C3H7, — CH2— CH=CH— CH=CH2
-CH=CH-CH=CH-CH3, -CH=CH-CH2-CH=CH2, -C(CH3)=CH-CH=CH2 -CH=C(CH3)-CH=CH2, -CH=CH-C(CH3)=CH2, -C2H4-C(CH3)=CH2
-CH2-CH(CH3)-CH=CH2, -CH(CH3)-CH2-CH=CH2, -CH2-CH=C(CH3)2 -CH2-C(CH3)=CH-CH3, -CH(CH3)-CH=CH-CH3, -CH=CH-CH(CH3)2
-CH=C(CH3)-C2H5, -C(CH3)=CH-C2H5, -C(CH3)=C(CH3)2
-C(CH3)2-CH=CH2, -CH(CH3)-C(CH3)=CH2, -C(CH3)=CH-CH=CH2
-CH=C(CH3)-CH=CH2, -CH=CH-C(CH3)=CH2, -C4H8-CH=CH2
— C3H6_ CH=CH— CH3, — C2H4— CH=CH— C2Hs, — CH2— CH=CH— C3H7
— CH=CH— C4H9, — C3H6_ C(CH3)=CH2, — C2H4— CH(CH3)— CH=CH2
-CH2-CH(CH3)-CH2-CH=CH2, -CH(CH3)-C2H4-CH=CH2 -C2H4-CH=C(CH3)2, -C2H4-C(CH3)=CH-CH3, -CH2-CH(CH3)-CH=CH-CH3 -CH(CH3)-CH2-CH=CH-CH3, -CH2-CH=CH-CH(CH3)2 -CH2-CH=C(CH3)-C2H5, -CH2-C(CH3)=CH-C2H5, -CH(CH3)-CH=CH-C2H5 -CH=CH-CH2-CH(CH3)2, -CH=CH-CH (CH3)-C2H5, -CH=C(CH3)-C3H7 -C(CH3)=CH-C3H7, -CH2-CH(CH3)-C(CH3)=CH2 -CH(CH3)-CH2-C(CH3)=CH2, -CH(CH3)-CH(CH3)-CH=CH2 -CH2-C(CH3)2-CH=CH2, -C(CH3)2-CH2-CH=CH2, -CH2-C(CH3)=C(CH3)2 -CH(CH3)-CH=C(CH3)2, -C(CH3)2-CH=CH-CH3, -CH(CH3)-C(CH3)=CH-CH3 -CH=C(CH3)-CH(CH3)2, -C(CH3)=CH-CH(CH3)2, -C(CH3)=C(CH3)-C2H5 -CH=CH-C(CH3)3, -C(CH3)2-C(CH3)=CH2, -CH(C2H5)-C(CH3)=CH2
-C(CH3)(C2H5)-CH=CH2, -CH(CH3)-C(C2H5)=CH2, -CH2-C(C3H7)=CH2 -CH2-C(C2H5)=CH-CH3, -CH(C2H5)-CH=CH-CH3, -C(C4H9)=CH2
-C(C3H7)=CH-CH3, -C(C2H5)=CH-C2H5, -C(C2H5)=C(CH3)2
-C[C(CH3)3]=CH2, -C[CH(CH3)(C2H5)]=CH2, -C[CH2-CH(CH3)2]=CH2
— C2H4— CH=CH— CH=CH2, — CH2— CH=CH— CH2— CH=CH2, — CH=CH— C2H4— CH=CH2 -CH2-CH=CH-CH=CH-CH3, -CH=CH-CH2-CH=CH-CH3, -CH=CH-CH=CH-C2H5 -CH2-CH=CH-C(CH3)=CH2, -CH2-CH =C(CH3)-CH=CH2, -CH2-C(CH3)=CH- CH=CH2, -CH(CH3)-CH=CH-CH=CH2, -CH=CH-CH2-C(CH3)=CH2, -CH=CH- CH(CH3)-CH=CH2, -CH=C(CH3)-CH2-CH=CH2, -C(CH3)=CH-CH2-CH=CH2, -CH=CH-CH=C(CH3)2, -CH=CH-C(CH3)=CH-CH3, -CH=C(CH3)-CH=CH-CH3, -C(CH3)=CH-CH=CH-CH3, -CH=C(CH3)-C(CH3)=CH2, -C(CH3)=CH-C(CH3)=CH2, -C(CH3)=C(CH3)-CH=CH2 und -CH=CH-CH=CH-CH=CH2, wohn sämtliche Wasserstoffatome durch Fluoratome ersetzt sind. Bevorzugt sind davon die folgenden Reste: -CF=CF2, -CF2-CF=CF2, -C(CF3)=CF2, -CF=CF-CF3, -C2F4-CF=CF2 und -CF2-CF=CF-CF3. Insbesondere bevorzugt sind
-CF=CF2, -CF2-CF=CF2 und -CF=CF-CF3.
Der Begriff "C5-Cio-Fluorcycloalkenyl" bezeichnet vorzugsweise die folgenden Reste:
Figure imgf000032_0001
worin ein oder mehrere Wasserstoffatome durch Fluoratome ersetzt sind.
Der Begriff "C5-Cio-Perfluorcycloalkeny1" bezeichnet vorzugsweise die folgenden Reste:
Figure imgf000032_0002
Figure imgf000033_0001
worin sämtliche Wasserstoffatome durch Fluoratome ersetzt sind.
Der Begriff "C2-Cio-Alkinyl" bezeichnet vorzugsweise die folgenden Reste:
— C=CH, — C=C— CH3, — CH2-C=CH, — C2H4— C=CH , — CH2— C=C— CH3, — C=C— C2H5, — C3H6— C=CH, — C2H4— C=C— CH3, — CH2— C=C— C2H5, — C=C— C3H7, — CH(CH3)— C=CH, -CH2-CH(CH3)-C^CH, -CH(CH3)-CH2-C^CH, -CH(CH3)-C^C-CH3, — C4H8_ C=CH, — C3H6— C=C— CH3, — C2H4— C=C— C2H5, — CH2— C=C— C3H7, -C^C-C4H9, -C2H4-CH(CH3)-C^CH, -CH2-CH(CH3)-CH2-C^CH,
-CH(CH3)-C2H4-C^CH, -CH2-CH(CH3)-C^C-CH3, -CH(CH3)-CH2-C^C-CH3,
-CH(CH3)-C^C-C2H5, -CH2-C^C-CH(CH3)2, -C^C-CH(CH3)-C2H5, -C^C-CH2-CH(CH3)2, -C C-C(CH3)3, -CH(C2H5)-C^C-CH3, -C(CH3)2-C C-CH3, -CH(C2H5)-CH2-C^CH, -CH2-CH(C2H5)-C^CH, -C(CH3)2-CH2-C^CH, -CH2-C(CH3)2-C^CH, -CH(CH3)-CH(CH3)-C^CH, -CH(C3H7)-C^CH, -C(CH3)(C2H5)-C^CH, -C^C-C^CH, -CH2-C^C-C^CH, -C^C-C^C-CHs, -CH(C^CH)2, -C2H4-C^C-C^CH, -CH2-C^C-CH2-C^CH, -C^C-C2H4-C^CH, -CH2-C^C-C^C-CH3, -C^C-CH2-C^C-CH3, -C^C-C^C- C2H5, -C^C-CH(CH3)-C^CH, -CH(CH3)-C^C-C^CH, -CH(C^CH)-CH2-C^CH, -C(C^CH)2-CH3, -CH2-CH(C^CH)2, -C^C-cyclo-C3H5 und -CH(C^CH)-C^C- CH3. Bevorzugt sind davon die folgenden Reste: -C^CH und -C^C-CH3.
Der Begriff "C2-Cio-Fluoralkinyl" bezeichnet vorzugsweise die folgenden Reste: — C=CH, — C=C— CH3, — CH2-C=CH, — C2H4— C=CH , — CH2— C=C— CH3, — C=C— C2H5, — C3H6— C=CH, — C2H4— C=C— CH3, — CH2— C=C— C2H5, — C=C— C3H7, — CH(CH3)— C=CH, -CH2-CH(CH3)-C^CH, -CH(CH3)-CH2-C^CH, -CH(CH3)-C^C-CH3, — C4H8_ C=CH, — C3H6— C=C— CH3, — C2H4— C=C— C2H5, — CH2— C=C— C3H7,
-C^C-C4H9, -C2H4-CH(CH3)-C^CH, -CH2-CH(CH3)-CH2-C^CH, -CH(CH3)-C2H4-C^CH, -CH2-CH(CH3)-C^C-CH3, -CH(CH3)-CH2-C^C-CH3,
-CH(CH3)-C^C-C2H5, -CH2-C^C-CH(CH3)2, -C^C-CH(CH3)-C2H5, -C^C-CH2-CH(CH3)2, -C C-C(CH3)3, -CH(C2H5)-C^C-CH3, -C(CH3)2-C C-CH3J -CH(C2H5)-CH2-C^CH, -CH2-CH(C2H5)-C^CH, -C(CH3)2-CH2-C^CH , -CH2-C(CH3)2-C^CH, -CH(CH3)-CH(CH3)-C^CH, -CH(C3H7)-C^CH, -C(CH3)(C2H5)-C^CH, -C^C-C^CH, -CH2-C^C-C^CH, -C^C-C^C-CHs, -CH(C^CH)2, -C2H4-C^C-C^CH, -CH2-C^C-CH2-C^CH, -C^C-C2H4-C^CH, -CH2-C^C-C^C-CH3, -C^C-CH2-C^C-CH3, -C^C-C^C- C2H5, -C^C-CH(CH3)-C^CH, -CH(CH3)-C^C-C^CH, -CH(C^CH)-CH2-C^CH, -C(C^CH)2-CH3, -CH2-CH(C^CH)2, -C^C-cyclo-C3H5 und -CH(C^CH)-C^C- CH3, worin ein oder mehrere Wasserstoffatome durch Fluoratome ersetzt sind.
Der Begriff "C2-Cio-Perfluoralkinyl" bezeichnet vorzugsweise die folgenden Reste: — C=CH, — C=C— CH3, — CH2-C=CH, — C2H4— C=CH , — CH2— C=C— CH3, — C=C— C2H5, — CßHe— C=CH , — C2H4— C=C— CH3, — CH2— C=C— C2H5, — C=C— C3H7, — CH(CH3)— C=CH, -CH2-CH(CH3)-C^CH, -CH(CH3)-CH2-C^CH, -CH(CH3)-C^C-CH3, — C4H3— C=CH, — C3H6_ C=C— CH3, — C2H4— C=C— C2H5, — CH2— C=C— C3H7, -C^C-C4H9, -C2H4-CH(CH3)-C^CH, -CH2-CH(CH3)-CH2-C^CH,
-CH(CH3)-C2H4-C^CH, -CH2-CH(CH3)-C^C-CH3, -CH(CH3)-CH2-C^C-CH3,
-CH(CH3)-C^C-C2H5, -CH2-C^C-CH(CH3)2, -C^C-CH(CH3)-C2H5, -C^C-CH2-CH(CH3)2, -C C-C(CH3)3, -CH(C2H5)-C^C-CH3, -C(CH3)2-C C-CH3, -CH(C2H5)-CH2-C^CH, -CH2-CH(C2H5)-C^CH, -C(CH3)2-CH2-C^CH, -CH2-C(CH3)2-C^CH, -CH(CH3)-CH(CH3)-C^CH, -CH(C3H7)-C^CH, -C(CH3)(C2H5)-C^CH, -C^C-C^CH, -CH2-C^C-C^CH, -C^C-C^C-CH3, -CH(C^CH)2, -C2H4-C^C-C^CH, -CH2-C^C-CH2-C^CH, -C^C-C2H4-C^CH, -CH2-C^C-C^C-CH3, -C^C-CH2-C^C-CH3, -C^C-C^C- C2H5, -C^C-CH(CH3)-C^CH, -CH(CH3)-C^C-C^CH, -CH(C^CH)-CH2-C^CH, -C(C^CH)2-CH3, -CH2-CH(C^CH)2, -C^C-cyclo-C3H5 und -CH(C^CH)-C^C- CH3, worin sämtliche Wasserstoffatome durch Fluoratome ersetzt sind. Bevorzugt sind davon die folgenden Reste: -C^CF und -C^C-CF3.
Der Begriff "Aryl" bezeichnet vorzugsweise aromatische Reste mit 6, 10 oder 14 Kohlenstoffatomen und weiter bevorzugt Phenyl und Naphthyl. Der Begriff „Aralkyl" ist eine Kurzform zu„Arylalkyl" und bezeichnet einen Alkylrest, vorzugsweise ein "CrCio-Alkyl" wie hierin definiert, bei dem ein oder mehrere oder alle Wasserstoffatom (e) durch ein „Aryl" substituiert sind. Gängige Aralkyle sind Benzyl oder Tritylreste. Der Begriff „Aralkyl" bedeutet vorzugsweise -CH2-C6H5, -C2H4— C6H5, -C3H6— ΟβΗδ, -CH(CH3)— ΟβΗδ, -C4Hs— ΟβΗδ, -CH2-CH(CH3)— ΟβΗδ, -CH(CH3)-C2H5i -C(CH3)2— C6H5, -C5H10— C6H5, -CH(CH3)— C3H6— C6H5, — CH2— CH(CH3)— C2H4— C6H5, — CH(CH3)— CH(CH3)— ΟβΗδ, — C(CH3)2— C2H4— ΟβΗδ, — CH2— C(CH3)2— ΟβΗδ, — CH(C2Hs)— ΟβΗδ, — C2H4— CH(CH3)— ΟβΗδ,
-CeHi2— ΟβΗδ, — C3H6— CH(CH3)— ΟβΗδ, — C2H4— CH(CH3)— C2H4— ΟβΗδ,
— CH(CH3)— C4H8— ΟβΗδ, — CH2— CH(CH3)— C3H6— ΟβΗδ,
-CH(CH3)-CH2-CH(CH3)-C6H5, -CH(CH3)-CH(CH3)-C2H4-C6H5, — CH2— CH(CH3)— CH(CH3)— C6H5, — CH2— C(CH3)2— C2H4— C6H5,
— C(CH3)2— C3H6— C6H5, — C(CH3)2— CH(CH3)— C6H5, — C2H4— C(CH3)2— C6H5,
— CH(CH3)— C(CH3)2— C6H5, -C7Hi4— C6H5, -CsHi6— C6H5, -C9H18— C6H5, -C10H20— C6H5, -C(C6Hs)3, -CH(C6Hs)— CsH7, — CH2— CH(C6Hs)— C2H5, -CH(C6H5)-CH(CH3)2, -C(CH3)C6H5-C2H5, -CHC6H5-C(CH3)3,
Figure imgf000035_0001
— C2H4— CH(C6Hs)— C2H5, — CH(C6Hs)— C4Hg, — CH2— CH(C6Hs)— CsH7,
-CH(C6H5)-CH2-CH(CH3)2, -CH(C6H5)-CH(CH3)-C2H5, — CH2— CH(C6Hs)— CH(CH3)2, — CH2— C(C6Hs)2— C2H5, — C(C6Hs)2— CsH7,
-C(CH3)C6H5-CH(CH3)2, -CH(CH3)-C(C6H5)3, -CH2-C(C6H5)3, -C2H4-C(C6H5)3, -C3H6-C(C6H5)3, -C4H8-C(C6H5)3, -C5Hio-C(C6H5)3, -C6Hi2-C(C6Hs)3.
Bevorzugt sind davon die folgenden Reste: -CH2-C6H5, -C2H4-C6H5, -C3H6-C6H5, -C4H8— C6H5, -C5H10— C6H5, -C6H12— C6H5, -C(C6Hs)3, -CH2-C(C6H5)3, -C2H4-C(C6H5)3 und -C3H6-C(C6H5)3- Insbesondere bevorzugt sind: -CH2-C6H5, -C2H4— C6H5, -C3H6— C6H5.
Der Begriff "Heteroaryl" bezeichnet vorzugsweise die folgenden Reste:
Figure imgf000035_0002
Figure imgf000036_0001

Figure imgf000037_0001
Figure imgf000038_0001
es Weiteren sind die folgenden Verbindungen bevorzugt:
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
CI \=/ ^ / \ hexylpiperazin-1 -yl)phenyl)acrylnitril ie hierin offenbarten Verbindungen der allgenneinen Formel (I)
Figure imgf000044_0002
können in einfacher Weise hergestellt werden, indem die aromatische Carbonylkomponente mit einem CH-aziden Benzylderivat umgesetzt wird. Bei der aromatischen Carbonylkomponente kann es sich entweder um ein R2-substituiertes Phenylketon oder um ein R2-substituiertes Phenylpropenylketon handeln.
In einer bevorzugten Ausführungsform werden die Verbindungen der allgemeinen Formel (I), (II), (III), (IV), (V) und (VI), wobei in der allgemeinen Formel (I) das Molekülfragment Z die folgende Formel bedeutet:
Figure imgf000045_0001
nach dem folgenden Reaktionsschema 1 hergestellt, wobei die aromatische Carbonylkomponente mit einem CH-aziden Benzylderivat umgesetzt wird:
Figure imgf000045_0002
Die Reste R1 bis R12 dieser Verbindungen haben die hierin beschriebene Bedeutung.
Überraschender Weise wurde gefunden, dass die erfindungsgemäßen Substanzen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) in vitro an die Liganden- Bindedomäne des PPAR beta/delta-Rezeptors binden. Dabei zeigen die Substanzen im TR-FRET-Ligandenbindungstest eine spezielle Subtyp-spezifische signifikante Kompetitionseffizienz gegenüber dem fluoreszierenden Liganden Fluormone® Pan-PPAR-Green. In besonders vorteilhafter Weise binden die erfindungsgemäßen Verbindungen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) dabei selektiv an die Liganden-Bindedomäne des PPAR beta/delta- Rezeptors und interagieren dabei nicht oder in zu vernachlässigender Weise mit den beiden anderen Liganden-Bindedomänen des PPAR alpha und gamma. Weiter konnte gezeigt werden, dass die erfindungsgemäßen Verbindungen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) als effiziente Antagonisten für die Aktivierung des PPAR beta/delta-Rezeptors wirken können.
Ferner induzieren die erfindungsgemäßen Substanzen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) in vitro die Interaktion der Liganden-Bindedomäne des PPAR beta/delta-Rezeptors mit einem synthetischen Peptidfragment des bekannten Korepressors SMRT (SMRT-ID2). Die Expression des für das Angiopoietin-ähnliche Protein 4 (ANGPTL4) kodierenden Gens ANGPTL4 wird durch PPAR beta/delta oder andere Stimuli induziert.
ANGPTL4 ist wiederum vermutlich an Tumorwachstum, Tumorprogression und Tumormetastasierung beteiligt. Mit Hilfe der erfindungsgemäßen Substanzen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) kann die basale Expression von ANGPTL4 beispielsweise in murinen C2C12 Myoblasten und Peritoneal- Makrophagen signifikant um mindestens 50% gesenkt werden.
Es konnte gezeigt werden, dass die Werte der mittleren inhibitorischen Konzentration (IC5o) der erfindungsgemäßen Substanzen der allgemeinen Formeln (I), (II), (III), (IV),
(V) und (VI) vorzugsweise dabei zwischen 10 bis 75 nM betragen. Die Induktion der /4/VGPTL4-Expression durch den dem Fachmann bekannten Stimulus Tumor Growth Factor-beta (TGF-beta1 , TGF-beta2) in humanen Fibroblasten kann ferner durch die erfindungsgemäßen Substanzen der allgemeinen Formeln (I), (II), (III), (IV), (V) und
(VI) signifikant herabgesetzt werden. Werden Zellen der Brustkrebs-Zelllinie MDA- MB-231 -Iuc21 H4 mit den erfindungsgemäßen Substanzen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) behandelt, führt dies ebenfalls zu einer drastischen Reduktion der /4/VGPTL4-Expression. Diese Eigenschaften klassifizieren die erfindungsgemäßen Substanzen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) als Inhibitor und insbesondere als inverse Agonisten des PPAR beta/delta- Rezeptors.
Des Weiteren haben die erfindungsgemäßen Verbindungen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) gezeigt, dass sie die serum- oder TGFß2- ausgelöste Invasion von Krebszellen inhibieren können.
Die vorliegende Erfindung betrifft also ferner Verbindungen gemäß der allgemeinen Formel der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) zur Verwendung als Inhibitoren oder Antagonisten, insbesondere bevorzugt als inverse Agonisten, eines Rezeptors des Typs PPAR beta/delta.
Als ein Agonist im Sinne der vorliegenden Erfindung wird eine Verbindung bezeichnet, die durch Besetzung eines Rezeptors die Signaltransduktion in der zugehörigen Zelle aktiviert.
Inverse Agonisten sind hierin Verbindungen, die an einen Rezeptor mit konstitutiver Aktivität binden und dessen Aktivität herabsetzen. Ein inverser Agonist führt im Gegensatz zu einem vollen Agonisten somit zu einem negativen Effekt, bzw. einem pharmakologischen Effekt, welcher dem des Agonisten entgegengesetzt ist. Im Fall der vorliegenden Erfindung sind dies bevorzugt solche Verbindungen, die die Bindung eines Korepressors bewirken bzw. fördern.
Ferner betrifft die vorliegende Erfindung pharmazeutische Zusammensetzungen, welche unter Verwendung mindestens einer Verbindung gemäß der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) oder eines Salzes davon hergestellt wurden. Neben mindestens einer Verbindung der der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) enthalten die pharmazeutischen Zusammensetzungen einen pharmakologisch verträglichen Träger, Hilfsstoff und/oder Lösungsmittel.
Abhängig von den Substituenten (z.B. Aminogruppe oder Stickstoffheterocyclus) an den Verbindungen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) bilden diese auch mit organischen und anorganischen Basen pharmazeutisch verträgliche Salze. Beispiele für geeignete Basen für eine derartige Salzbildung sind wie zum Beispiel NaOH, KOH, NH OH, Tetraalkylammoniumhydroxid und dergleichen, die dem Fachmann bekannt sind.
Etliche der Verbindungen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) sind basisch und können mit Säuren Salze bilden. Beispiele für geeignete Säuren für eine derartige Säureadditionssalzbildung sind Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Essigsäure, Zitronensäure, Oxalsäure, Äpfelsäure, Salicylsäure, p-Aminosalicylsäure, Malonsäure, Fumarsäure, Bernsteinsäure, Ascorbinsäure, Maleinsäure, Sulfonsäure, Phosphonsäure, Perchlorsäure, Salpetersäure, Ameisensäure, Propionsäure, Gluconsäure, Milchsäure, Weinsäure, Hydroxymaleinsäure, Brenztraubensäure, Phenylessigsäure, Benzoesäure, p-Aminobenzoesäure, p-Hydroxybenzoesäure, Methansulfonsäure, Ethansulfonsäure, salpetrige Säure, Hydroxyethansulfonsäure, Ethylensulfonsäure, p-Toluolsulfonsäure, Naphthylsulfonsäure, Sulfanilsäure, Camphersulfonsäure, Chinasäure, Mandelsäure, o-Methylmandelsäure, Hydrogenbenzolsulfonsäure, Pikrinsäure, Adipinsäure, d-o-Tolylweinsäure, Tartronsäure, α-Toluylsäure, (o-, m-, p-) Toluylsäure, Naphthylaminsulfonsäure und andere mineralische oder carboxylische Säuren, die dem Fachmann bekannt sind. Es ist auch möglich, Säureadditionssalze von den Verbindungen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) mit Aminosäuren, wie Methionin, Tryptophan, Lysin oder Arginin zu bilden.
Die Verbindungen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) können ferner in Form ihrer pharmazeutisch aktiven Salze optional unter Verwendung von im Wesentlichen nicht toxischen pharmazeutisch verträglichen Trägern, Hilfsstoffen oder Verdünnern verabreicht werden. Die Medikationen der vorliegenden Erfindung werden in einem herkömmlichen festen oder flüssigen Träger oder Verdünnern und einem herkömmlichen pharmazeutisch hergestellten Hilfsstoff mit einem geeigneten Dosisgrad in einer bekannten Weise hergestellt. Die bevorzugten Präparationen sind in einer verabreichbaren Form, die für orale Anwendung geeignet ist. Diese verabreichbaren Formen schließen zum Beispiel Pillen, Tabletten, Schichttabletten, Filmtabletten, beschichtete Tabletten, Kapseln, Pulver und Deposits ein.
Die bevorzugten verabreichbaren Formen sind Tabletten, Filmtabletten, beschichtete Tabletten, Gelatinkapseln und opake Kapseln. Jede pharmazeutische Zusammensetzung enthält mindestens eine Verbindung der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) und/oder pharmazeutisch verträgliche Salze davon in einer Menge von 50 mg bis 150 mg, bevorzugt 80 mg bis 120 mg und am meisten bevorzugt in einer Menge von 100 mg pro Formulierung.
Außerdem schließt der Gegenstand der vorliegenden Erfindung auch pharmazeutische Präparationen für parenterale, einschließlich dermale, intradermale, intragastrale, intrakutane, intravasale, intravenöse, intramuskuläre, intraperitoneale, intranasale, intravaginale, intrabuccale, perkutane, rektale, subkutane, sublinguale, topische oder transdermale Anwendung ein, die zusätzlich zu typischen Vehikeln und Verdünnern eine Verbindung d der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) und/oder ein pharmazeutisch verträgliches Salz davon als einen aktiven Bestandteil enthalten.
Innerhalb der offenbarten Verfahren werden die pharmazeutischen Zusammensetzungen der vorliegenden Erfindung, die Verbindungen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) als aktive Bestandteile enthalten, typischerweise in einer Mischung mit geeigneten Trägermaterialien verabreicht, ausgewählt im Hinblick auf die beabsichtigte Form der Verabreichung, d.h. orale Tabletten, Kapseln (entweder fest gefüllt, halbfest gefüllt oder flüssig gefüllt), Pulver für Zusannnnensetzungen, orale Gele, Elixiere, dispergierbare Granulate, Sirups, Suspensionen und dergleichen und in Übereinstimmung mit herkömmlichen pharmazeutischen Praktiken. Zum Beispiel kann für die orale Verabreichung in der Form von Tabletten oder Kapseln die aktive Wirkstoffkomponente mit einem beliebigen oralen nicht toxischen pharmazeutisch verträglichen inerten Träger, wie Laktose, Stärke, Sucrose, Zellulose, Magnesiumstearat, Dikalziumphosphat, Kalziumsulfat, Talkum, Mannitol, Ethylalkohol (flüssige Formen) und dergleichen kombiniert werden. Außerdem können bei Wunsch oder Bedarf geeignete Bindemittel, Gleitmittel, Sprengmittel und Färbemittel ebenfalls der Mischung beigefügt werden. Pulver und Tabletten können aus von etwa 5 bis zu etwa 95 Prozent der erfinderischen Zusammensetzung umfasst sein.
Geeignete Bindemittel schließen Stärke, Gelatine, natürliche Zucker, Maissüßstoffe, natürliche und synthetische Gummis, wie Akaziengummi, Natriumalginat, Carboxymethyl-Cellulose, Polyethylenglycol und Wachse ein. Unter den Gleitmitteln können für die Verwendung in diesen Dosierungsformen Borsäure, Natriumbenzoat, Natriumacetat, Natriumchlorid und dergleichen erwähnt werden. Sprengmittel schließen Stärke, Methylcellulose, Guargummi und dergleichen ein. Süßstoffe und Geschmacksstoffe und Konservierungsstoffe können, falls dienlich, ebenfalls eingeschlossen sein. Einige der oben angeführten Ausdrücke, nämlich Sprengmittel, Verdünner, Gleitmittel, Bindemittel und dergleichen werden unten genauer diskutiert. Zusätzlich können die Zusammensetzungen der vorliegenden Erfindung in einer Form mit verzögerter Freisetzung formuliert werden, um die geschwindigkeitsgesteuerte Freisetzung einer oder mehrerer Verbindungen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) zu ermöglichen und deren therapeutische Wirkung zu optimieren. Geeignete Dosierungsformen für eine verzögerte Freisetzung schließen Schichttabletten ein, die Schichten mit variierenden Abbaugeschwindigkeiten oder polymere Matrizen mit gesteuerter Freisetzung enthalten, die mit den aktiven Komponenten imprägniert sind, und in Tablettenform oder Kapseln gestaltet sind, die derartige imprägnierte oder verkapselte poröse polymere Matrizen beinhalten.
Präparationen in flüssiger Form schließen Lösungen, Suspensionen und Emulsionen ein. Als ein Beispiel können Wasser oder Wasser-Propylenglycol-Lösungen für parenterale Injektionen oder der Zusatz von Süßstoffen und Trübungsmitteln für orale Lösungen, Suspensionen und Emulsionen erwähnt werden. Präparationen in flüssiger Form können ferner Lösungen für intranasale Verabreichung einschließen. Zur Inhalation geeignete Aerosol-Präparationen können Lösungen und Feststoffe in Pulverform einschließen, die mit einem pharmazeutisch verträglichen Träger, wie ein komprimiertes Inertgas, z.B. Stickstoff, in Kombination sein können.
Für die Zubereitung von Suppositorien wird zuerst ein niedrig schmelzendes Wachs, wie z.B. eine Mischung von Fettsäureglyceriden, wie z.B. Kakaobutter, geschmolzen und der aktive Bestandteil wird darin durch Rühren oder ähnliches Vermischen homogen dispergiert. Die geschmolzene homogene Mischung wird dann in passend bemessene Formen gegossen, man lässt abkühlen und dadurch verfestigen.
Ferner eingeschlossen sind Präparationen in fester Form, die kurz vor der Verwendung zu Präparationen in flüssiger Form für entweder orale oder parenterale Verabreichung umgewandelt werden sollen. Solche flüssigen Formen schließen Lösungen, Suspensionen und Emulsionen ein.
Die Verbindungen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) können ferner transdermal verabreichbar sein. Die transdermalen Zusammensetzungen können die Form von Cremes, Lotionen, Aerosolen und/oder Emulsionen annehmen und können in einen transdermalen Aufkleber des Matrix- oder Reservoir-Typs eingeschlossen werden, wie sie in der Technik für diesen Zweck gebräuchlich sind.
Der Ausdruck Kapsel bezieht sich auf einen speziellen Behälter oder Gehäuse, das aus Methylzellulose, Polyvinylalkoholen oder denaturierten Gelatinen oder Stärke hergestellt ist, zum Halten oder Beinhalten von Zusammensetzungen, die die aktiven Bestandteile umfassen. Hartmantelkapseln sind typischerweise aus Mischungen von Knochen und Schweinehautgelatinen relativ hoher Gelstärke hergestellt. Die Kapsel selbst kann kleine Mengen von Farbstoffen, Trübungsmitteln, Weichmachern und Konservierungsstoffen enthalten.
Tablette bedeutet komprimierte oder gegossene feste Dosierungsform, die die aktiven Bestandteile mit geeigneten Verdünnern enthält. Die Tablette kann durch Komprimieren von Mischungen oder Granulaten hergestellt werden, die durch Nassgranulierung, Trockengranulierung oder durch Kompaktierung erhalten wurden, die einem Fachmann bekannt sind.
Orale Gele beziehen sich auf die aktiven Bestandteile, die in einer hydrophilen halbfesten Matrix dispergiert oder solubilisiert sind. Pulver für Zusammensetzungen beziehen sich auf Pulvermischungen, die die aktiven Bestandteile und geeignete Verdünner beinhalten, die in Wasser oder Säften suspendiert werden können.
Geeignete Verdünner sind Substanzen, die für gewöhnlich den Großteil der Zusammensetzung oder Dosierungsform ausmachen. Geeignete Verdünner schließen Zucker, wie Lactose, Sucrose, Mannitol und Sorbitol, von Weizen, Mais, Reis und Kartoffeln abgeleitete Stärken, und Zellulosen, wie mikrokristalline Zellulose ein. Die Menge an Verdünnern in der Zusammensetzung kann sich von etwa 5 bis etwa 95 Gew.-% der gesamten Zusammensetzung, bevorzugt von etwa 25 bis etwa 75 Gew.-% und weiter bevorzugt von etwa 30 bis etwa 60 Gew.-% erstrecken.
Der Ausdruck Sprengmittel bezieht sich auf Materialien, die der Zusammensetzung hinzugefügt wurden, um sie beim Aufbrechen (Zersprengen) und Freigeben der Medikamente zu unterstützen. Geeignete Sprengmittel schließen Stärken, "Kaltwasser-lösliche" modifizierte Stärken, wie Natrium-Carboxymethylstärke, natürliche und synthetische Gummis, wie Johannisbrotkernmehl, Karaya, Guar, Tragacanth und Agar, Cellulosederivate, wie Methylcellulose und Natrium- Carboxymethylcellulose, mikrokristalline Cellulosen und quervernetzte mikrokristalline Cellulosen, wie Natrium-Croscarmellose, Alginate, wie Alginsäure und Natriumalginat, Tonerden, wie Bentonite, und schäumende Mischungen. Die Menge an Sprengmittel in der Zusammensetzung kann sich von etwa 2 bis 20 Gew.- % der Zusammensetzung und weiter bevorzugt von etwa 5 bis etwa 10 Gew.-% erstrecken.
Bindemittel charakterisieren Substanzen, die Pulver miteinander binden oder "verkleben" und sie durch Bildung von Granulaten bindig machen und somit als der "Kleber" in der Formulierung dienen. Bindemittel fügen eine Kohäsionsstärke hinzu, die in den Verdünnern oder dem Aufgehmittel bereits verfügbar ist. Geeignete Bindemittel schließen Zucker, wie Sucrose, von Weizen, Mais, Reis und Kartoffeln abgeleitete Stärken, natürliche Gummis, wie Akaziengummi, Gelatine und Tragacanth, Derivate von Seetang, wie Alginsäure, Natriumalginat und Ammonium- Calcium-Alginat, Zellulosematerialien, wie Methylcellulose und Natrium- Carboxymethylcellulose und Hydroxypropyl-methylcellulose, Polyvinylpyrrolidon und anorganische Verbindungen, wie Magnesium-Aluminium-Silicat ein. Die Menge der Bindemittel in der Zusammensetzung kann sich von etwa 2 bis etwa 20 Gew.-% der Zusammensetzung, weiter bevorzugt von etwa 3 bis etwa 10 Gew.-% und noch weiter bevorzugt von etwa 3 bis etwa 6 Gew.-% erstrecken. Gleitmittel bezieht sich auf eine der Dosierungsform hinzugefügte Substanz, um zu ermöglichen, dass die Tablette, Granulat usw., nachdem sie komprimiert wurden, aus der Gießform oder Pressform durch Verringern der Friktion oder Reibung freigegeben werden. Geeignete Gleitmittel schließen metallische Stearate, wie Magnesiumstearat, Calciumstearat oder Kaliumstearat, Stearinsäure, Wachse mit hohem Schmelzpunkt, und wasserlösliche Gleitmittel, wie Natriumchlorid, Natriumbenzoat, Natriumacetat, Natriumoleat, Polyethylenglycole und D,L-Leucin ein. Gleitmittel werden gewöhnlich bei dem letzten Schritt vor dem Komprimieren hinzugefügt, da sie auf den Oberflächen der Granulate und zwischen ihnen und den Teilen der Tablettenpresse vorhanden sein müssen. Die Menge an Gleitmittel in der Zusammensetzung kann sich von etwa 0,2 bis etwa 5 Gew.-% der Zusammensetzung, bevorzugt von etwa 0,5 bis etwa 2 Gew.-% und weiter bevorzugt von etwa 0,3 bis etwa 1 ,5 Gew.-% erstrecken.
Gleitmittel sind Materialien, die eine Anbackung verhindern und die Fließcharakteristika von Granulaten verbessern, so dass der Fluss glatt und einheitlich ist. Geeignete Gleitmittel schließen Siliziumdioxid und Talkum ein. Die Menge von Gleitmittel in der Zusammensetzung kann sich von 0,1 bis etwa 5 Gew.- % der gesamten Zusammensetzung und bevorzugt von etwa 0,5 bis etwa 2 Gew.-% erstrecken.
Färbemittel sind Hilfsstoffe, die der Zusammensetzung oder der Dosierungsform eine Färbung bereitstellen. Derartige Hilfsstoffe können Farbstoffe mit Lebensmittelqualität einschließen, die auf einem geeigneten Adsorptionsmittel, wie Tonerde oder Aluminiumoxid adsorbiert sind. Die Menge des Färbemittels kann von etwa 0,1 bis etwa 5 Gew.-% der Zusammensetzung und bevorzugt von etwa 0,1 bis etwa 1 Gew.-% variieren.
Wie hierin verwendet ist eine "pharmazeutisch wirksame Menge" eines Inhibitors eine Menge, die wirksam ist, um das erwünschte physiologische Ergebnis entweder in in vitro behandelten Zellen oder in einem in vivo behandelten Patienten zu erreichen. Spezifisch ist eine pharmazeutisch wirksame Menge eine Menge, die ausreichend ist, um für eine gewisse Zeitspanne ein oder mehrere der klinisch definierten pathologischen Prozesse, die mit einem PPAR beta/delta Rezeptor assoziiert sind, zu inhibieren und/oder zu aktivieren. Die wirksame Menge kann in Abhängigkeit des spezifischen Inhibitors variieren und ist ferner von einer Vielfalt von Faktoren und Zuständen abhängig, die mit dem zu behandelnden Subjekt und der Schwere der Erkrankung in Beziehung stehen. Wenn zum Beispiel ein Inhibitor in vivo verabreicht werden soll, dann wären Faktoren, wie das Alter, Gewicht und die Gesundheit des Patienten als auch Dosisreaktionskurven und Toxizitätsdaten, die aus vorklinischen Arbeiten erhalten wurden, unter den berücksichtigten Faktoren. Falls der Inhibitor mit den Zellen in vivo in Kontakt gebracht werden soll, würde man ferner eine Vielfalt von vorklinischen in vitro Studien entwerfen, um solche Parameter, wie Aufnahme, Halbwertszeit, Dosis, Toxizität, usw. zu bestimmen. Die Bestimmung einer pharmazeutisch wirksamen Menge für einen gegebenen pharmazeutisch aktiven Wirkstoff liegt völlig in der Fähigkeit eines Fachmanns.
Es ist für einen Fachmann leicht ersichtlich, dass andere geeignete Modifikationen und Adaptationen der hierin beschriebenen Zusammensetzungen offensichtlich sind und ohne Abweichung von dem hierin offenbarten Schutzumfang der Erfindung oder den Ausführungsformen vorgenommen werden können.
Ferner betrifft die vorliegende Erfindung pharmazeutische Zusammensetzungen enthaltend mindestens eine Verbindung der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) zur Behandlung von inflammatorischen Prozessen, Entzündungen, Zelldifferenzierungsprozessen, proliferativen Erkrankungen, Tumoren, Metastasen, Krebs, Lebererkrankungen sowie Erkrankungen des Fettsäurestoffwechsels und des Glukosestoffwechsels, bei denen Insulinresistenz involviert ist.
Die Verbindungen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) sowie die hierin offenbarten pharmazeutischen Zusammensetzungen enthaltend mindestens eine Verbindung der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) können somit zur Behandlung und/oder Prävention von Erkrankungen verwendet werden, bei denen inflammatorische Prozesse, Entzündungen, oder Zelldifferenzierungsprozesse beteiligt sind sowie zur Behandlung proliferativer Erkrankungen. Diese Erkrankungen sind zum Beispiel, aber nicht erschöpfend: Arteriosklerose, wie beispielsweise Koronarsklerose inklusive Angina pectoris oder Myokardinfarkt, Schlaganfall, vaskuläre Restenose oder Reokklusion, chronische inflammatorische Darmerkrankungen wie zum Beispiel Morbus Crohn und ulzerative Kolitis, Pankreatitis, andere inflammatorische Zustände wie, Retinopathie. Weitere endzündliche Erkrankungen, die durch PPAR beta/delta beeinflusst werden, sind zum Beispiel, polyzystisches Ovarialsyndrom, Asthma, Osteoarthritis, Lupus erythematosus (LE) oder inflammatorische rheumatische Erkrankungen wie zum Beispiel rheumatoide Arthritis, Vaskulitis, Kachexie, Gicht, Ischämie, Reperfusionssyndrom und akutes respiratorisches Atemnotsyndrom. Erythematosquamöse Dermatosen wie zum Beispiel Psoriasis und Akne vulgaris. Weitere Hauterkrankungen, die durch PPAR-beta/delta beeinflusst werden, und daher mögliche Erkrankungen sind die unter Verwendung der Verbindungen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) behandelt werden können, sind: Ekzeme und Neurodermitis, Dermatitis wie zum Beispiel seborrhoische Dermatitis oder Photodermatitis, Keratitis und Keratosen wie zum Beispiel seborrhoische Keratosen, Alterskeratose, aktinische Keratose, lichtinduzierte Keratose, Keratosis follicularis Geschwüre, Warzen inklusive Condylomata oder Condylomata acuminata, Infektionen mit dem humanen Papillomvirus (HPV) wie beispielsweise Papillome der Geschlechtsorgane, virale Warzen wie zum Beispiel Molluscum contagiosum, leukoplakiapapulöse Dermatosen wie zum Beispiel Flechten, Hautkrebs wie beispielsweise Basalzellkarzinome, Melanome oder kutane T-Zell-Lymphome, lokale gutartige epidermale Tumoren wie zum Beispiel Keratoderma, epidermaler Nävus und Beulen, Pannikulitis, Konjunktivitis, Balanitis, Intertrigo, Vaginitis, Cheilitis, Sonnenbrand, Alopecia areata.
Bei den proliferativen Erkrankungen handelt es sich vorwiegend um Tumore wie z.B. benigne Tumore, Krebs und Metastasen sowie entzündungsbedingte Krankheiten wie z. B. Arthritis oder Psoriasis. Die Tumorerkrankungen können ausgewählt werden aus der Gruppe enthaltend oder bestehend aus: Sarkome (wie z.B. Liposarkome), Karzinome (wie z.B des Gastrointestinaltrakts, der Leber, des Gallentrakts und der Bauchspeicheldrüse, der Lunge, des Uorgenitaltrakts, der Brustdrüse usw.), endokrine Tumoren, akute und chronische Leukämien und andere myeloproliferative Erkrankungen und Lymphome.
Die erfindungsgemäßen Verbindungen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) sind auch zur Behandlung von Lebererkrankungen wie Steatosis, Steatohepatitis und Hepatitis geeignet. Die erfindungsgemäßen Verbindungen der allgemeinen Formeln (I), (II), (III), (IV), (V) und (VI) sind weiterhin geeignet für die Behandlung von Erkrankungen des Fettsäurestoffwechsels und des Glukosestoffwechsels, bei denen Insulinresistenz involviert ist. Dazu gehören Hyperlipidämie, Hypertriglyceridämie, Hypercholesterinämie. Zu diesen
Erkrankungen gehören weiterhin Diabetes mellitus, insbesondere Typ 2 Diabetes, inklusive der Prävention assoziierter Folgeerscheinungen, wie beispielsweise Hyperglykämie, Zunahme der Insulinresistenz, gestörte Glukosehomöostase, Schutz der beta-Zellen des Pankreas, Verhinderung makro- und mikrovaskulärer Erkrankungen. Weiterhin gehören dazu Dyslipidämien und ihre Folgen, wie zum Beispiel Arteriosklerose, koronare Herzerkrankungen, zerebrovaskuläre Erkrankungen, insbesondere, solche, die durch folgende Faktoren charakterisiert sind: hohe Plasma-Triglycerid-Konzentrationen, hohe postprandiale Plasma- Triglycerid-Konzentrationen, niedrige HDL Cholesterol-Konzentrationen, niedrige ApoA Lipoprotein-Konzentrationen, hohe LDL Cholesterol-Konzentrationen, LDL Cholesterol-Partikel mit geringer Dichte, hohe ApoB Lipoprotein-Konzentrationen. Verschiedene andere Erkrankungen können mit dem metabolischen Syndrom assoziiert sein: Übergewicht, Thrombosen, Hyperkoagulations- und prothrombotische Stadien (arteriell und venös), hoher Blutdruck, Herzversagen wie zum Beispiel, aber nicht beschränkt auf Myokardinfarkt, hypertensive Herzerkrankung oder Kardiomyopathie.
Bevorzugte erfindungsgemäße Ausführungen sind nachfolgend erläutert, wobei die Erfindung alle nachfolgend aufgeführten bevorzugten Ausführungsformen einzeln und in Kombination umfasst.
Figurenbeschreibung
Figur 1 : Kompetitive in vitro-Ligandenbindung an PPAR beta/delta.
Die Verdrängung des Liganden Fluormone® Pan-PPAR Green von der rekombinanten GST-PPAR beta/delta Ligandenbindedomäne (LBD) durch die erfindungsgemäßen Substanzen GSK0660, SCH138 (A), SCH149 (B), und SCH172 (C) wird durch TR-FRET Untersuchungen bestimmt. Dargestellt ist das Verhältnis der Fluoreszenzintensität bei 520 nm (Fluorescein-Emission angeregt durch Terbium-Emission) und 495 nm (Terbium-Emission). Alle Datenpunkte repräsentieren Durchschnittswerte von Triplikaten (+/- Standardabweichung).
Figur 2: Induktion der Korepressor-Peptid-Bindung an die GST-PPAR-beta/delta
Ligandenbindedomäne (LBD) in vitro in Abhängigkeit von der Konzentration der erfindungsgemäßen Substanzen GSK0660, SCH138 (A), SCH149 (B) und SCH172 (C). Die Interaktion des Fluorescein- markierten SMRT-ID2 Peptids und der rekombinanten GST-PPAR beta/delta LBD gebunden durch einen Terbium-markierten anti-GST Antikörper wird durch TR-FRET bestimmt. Dargestellt ist das Verhältnis der Fluoreszenzintensität bei 520 nm (Fluorescein-Emission angeregt durch Terbium-Emission) und 495 nm (Terbium-Emission). Alle Datenpunkte repräsentieren Durchschnittswerte von Triplikaten (+/- Standardabweichung).
Figur 3: Kompetitive in vitro-Ligandenbindung an die PPAR-Subtypen alpha, beta/delta und gamma. Die Verdrängung des Liganden Fluormone® Pan-PPAR Green von den rekombinanten GST-PPAR alpha (A), beta/delta (B) und gamma (C) Ligandenbindedomänen (LBD) durch die erfindungsgemäßen Substanzen GSK0660, SCH138 (3.1 ), SCH149 (3.2), und SCH172 (3.3) wird durch TR-FRET Untersuchungen bestimmt. Dargestellt ist das Verhältnis der Fluoreszenzintensität bei 520 nm (Fluorescein-Emission angeregt durch Terbium-Emission) und 495 nm (Terbium-Emission). Alle Datenpunkte repräsentieren Durchschnittswerte von Triplikaten (+/- Standardabweichung).
Figur 4: Einfluss der erfindungsgemäßen Substanzen GSK0660, SCH138, SCH149 und SCH172 auf die Expression des
Figure imgf000056_0001
(A, B, C) Humane Myofibroblasten (WPMY-1 ) werden für 24 Stunden mit unterschiedlichen Konzentrationen der erfindungsgemäßen Substanzen behandelt sowie für 6 Stunden mit L165,041 , RNA isoliert, die cDNA wird synthetisiert und analysiert durch qPCR mit L27 als Normalisierungsgen. (D, E, F) Peritoneale Mausmakrophagen werden für 24h mit den erfindungsgemäßen Substanzen behandelt, sowie ein Teil der Zellen für 6 Stunden mit L165,041 . (G) Murine Myoblasten (C2C12) werden für 24 Stunden mit unterschiedlichen Konzentrationen der erfindungsgemäßen Substanzen behandelt. Im Anschluss erfolgt die RNA-Isolation, cDNA Synthese und qPCR wie bei (A, B, C). Die relative Expression wird kalkuliert in Relation zu DMSO-behandelten Zellen. Alle Werte sind Durchschnittswerte von Triplikaten (+/- Standardabweichung). Sterne (***, **, *) repräsentieren signifikante Unterschiede zu DMSO-behandelten Zellen (***: p < 0,001 nach t-Test; *: p < 0.05).
Figur 5: Einfluss der erfindungsgemäßen Substanzen auf die Induktion der
/A/VGPTL4-Expression durch TGF-beta2 in der Brustkrebszelllinie MDA- MB-231 .
Die humane Brustkrebszelllinie MDA-MB-231 wird für 24 Stunden mit 1 μΜ der erfindungsgemäßen Substanzen SCH138, SCH149 oder SCH172 vorbehandelt und anschließend für 6 Stunden mit TGF-beta2 (2 ng/ml) stimuliert. Die relative /4/VGP7L4-Expression wird mit qPCR bestimmt.
Figur 6: Induktion der Korepressor-Peptid-Bindung an die GST-PPAR-beta/delta
Ligandenbindedomäne (LBD) durch die angegebenen Verbindungen. Die Interaktion des Fluorescein-markierten SMRT-ID2 Peptids und der rekombinanten GST-PPAR beta/delta LBD gebunden durch einen Terbium-markierten anti-GST Antikörper wird durch TR-FRET bestimmt. Dargestellt ist das Verhältnis der Fluoreszenzintensität bei 520 nm (Fluorescein-Emission angeregt durch Terbium-Emission) und 495 nm (Terbium-Emission). Alle Datenpunkte repräsentieren Durchschnittswerte von Triplikaten (+/- Standardabweichung).
Figur 7: Kompetitive in vitro-Ligandenbindung an PPAR beta/delta.
Die Verdrängung des Liganden Fluormone® Pan-PPAR Green von der rekombinanten GST-PPAR beta/delta Ligandenbindedomäne (LBD) durch die erfindungsgemäßen Substanzen SCH 1 17, 136, 144, 143, 178, 174, 175, 151 , 131 , 169, und 133 wird durch TR-FRET Untersuchungen bestimmt. Dargestellt ist das Verhältnis der Fluoreszenzintensität bei 520 nm (Fluorescein-Emission angeregt durch Terbium-Emission) und 495 nm (Terbium-Emission). Alle Datenpunkte repräsentieren Durchschnittswerte von Triplikaten (+/- Standardabweichung).
Figur 8: Kompetitive in vitro-Ligandenbindung an PPAR beta/delta.
Die Verdrängung des Liganden Fluormone® Pan-PPAR Green von der rekombinanten GST-PPAR beta/delta Ligandenbindedomäne (LBD) durch die erfindungsgemäßen Substanzen SCH 1 17, 140, 141 , 199, 139, 138, 179, 149, 148, 150, 158, 177, STI 055 und STI 108 wird durch TR-FRET Untersuchungen bestimmt. Dargestellt ist das Verhältnis der Fluoreszenzintensität bei 520 nm (Fluorescein-Emission angeregt durch Terbium-Emission) und 495 nm (Terbium-Emission). Alle Datenpunkte repräsentieren Durchschnittswerte von Triplikaten (+/- Standardabweichung).
Figur 9: Einfluss auf die Agonist induzierte Transkriptionsaktivität von LexA-PPARa
(A), LexA-PPARß/δ (B) und LexA-PPARy (C).
NIH3T3 wurden mit einem Luciferasereporterplasmid transfiziert, das mehrere LexA Bindungsstellen enthält. Die inhibitorischen Liganden SCH138 und SCH172 anschließend hinzugegeben (1 μΜ für 48 h), gefolgt von den jeweiligen PPAR Agonisten (PPARa Agonist GW7647 (300 nM), PPARß/δ Agonist L165,041 (1 μΜ), PPARY Agonist GW1929 (300 nM)). Dargestellt sind die Induktionswerte, die die Luciferaseaktivität wiedergeben von Zellen, die mit Agonist behandelt wurden und solchen, die nur mit Lösungsmittel behandelt wurden. Figur 10: Korepressor Anbindung an PPARß/δ.
Dargestellt ist der Einfluss von SCH172 auf die Rekrutierung von HDAC3 an den ANGPTL4 Promoter in WPMY-1 Myofibroblasten bestimmt durch ChlP. Zellen wurden mit SCH172, Lösungsmittel oder der Vergleichsverbindung behnadelt (1 μΜ, 30 min), wurde vervielfältigt mit Primern, die ANGPTL4 PPREs (A) oder einen Kontrollbereich umfassen (B). Die relative Menge der vervielfältigten DNA in den
Immunopräzipitaten wurde im Vergleich mit 1 % der eingesetzten DNA berechnet.
Figur 11 : Pharmokologische Kinetik in Mäusen. SCH138 und SCH172 wurden sowohl intravenös (A, Dosis 1 mg/kg) als auch oral (B, Dosis 5 mg/kg) verabreicht und die Blutproben wurden über HPLC-MS/MS analysiert. Dargestellt ist der Wirkstoffgehalt im Plasma über die Zeit nach der Verabreichung. Beide Verbindungen waren nach 24 Stunden nicht mehr nachweisbar.
Figur 12: Inverse PPARß/δ Agonisten haben keinen Einfluss die Menge an Integrin ß1 und ß5 auf der Oberfläche von MDA-MB-231 Zellen.
Die Zellen wurden mit Lösungsmittel (schwarz) oder SCH172 (graue Linie) behandelt (1 μΜ, 6 h) und unter Verwendung von Antikörpern spezifisch für Integrin ß1 und ß5 durch FACS analysiert.
Figur 13: Einfluss der erfindungsgemäßen Substanz SCH172 auf die Induktion der
/4/VGP7L4-Expression durch TGF-beta2 in WPMY-1 Myofibroblasten. Die humane Brustkrebszelllinie MDA-MB-231 wird für 24 Stunden mit 1 μΜ der erfindungsgemäßen Substanzen SCH138, SCH149 oder SCH172 vorbehandelt und anschließend für 6 Stunden mit TGF-beta2 (2 ng/ml) stimuliert. Die relative /4/VGP7L4-Expression wird mit qPCR bestimmt. Als Vergleichsverbindung wurde GKS3787 (4-Chlor-/V-[2-[[5-(trifluormethyl)-2- pyridinyl]sulfonyl]ethyl]benzamid) verwendet.
Figur 14: Invasion von MDA-MB-231 Krebszellen in eine dreidimensionale
Matrigelmatrix. A Die erfindungsgemäße Verbindung SCH172 inhibiert die Invasion von MDA-MB-231 Brustkrebszellen in eine dreidimensionale Matrigelmatrix. Dargestellt ist der vergleich zur Invasion wenn kein inverser PPARß/δ Agonist dem System beigefügt ist (nichts). Beispiele
Die Beispiele der vorliegenden Erfindung dienen dazu die Wirkung und die Herstellung der erfindungsgemäßen Verbindungen zu veranschaulichen. Einige Beispiele sind dabei paralell mit Vergleichsverbindungen durchgeführt worden.
Eine häufig verwendete Vergleichsverbindung ist GSK0660, die nicht zu den erfindungsgemäßen Verbindungen zu zählen ist und die folgende chemische Struktur aufweist:
Figure imgf000059_0001
Beispiel 1 : Charakterisierung der erfindungsgemäßen Substanzen
PPAR beta/delta Subtyp-spezifische Bindung der erfindungsgemäßen Substanzen
A) Die kompetitive Ligandenbindung der erfindungsgemäßen Substanzen wurde in vitro mit Hilfe von zeitaufgelöstem Fluoreszenz-Resonanz-Energietransfer (TR- FRET) durch Kompetition mit dem kommerziell erhältlichen fluoreszierenden Fluormone® Pan-PPAR-Green um die Bindung an das Fusionsprotein GST-PPAR beta/delta LBD (GST=Glutathion S-Transferase; LBD=Liganden-Bindungsdomäne) (Invitrogen, Darmstadt, Deutschland) in einem VICTOR3V Multilabel Counter (WALLAC 1420; PerkinElmer Life and Analytical Sciences, Rodgau, Deutschland) gemessen. Die Messung erfolgt in 100 mM KCl, 20 mM Tris pH 7.9, 0.01 % Triton X100 and 1 pg/pL bovinem Serumalbumin. GST ist dem Fachmann als geeigneter Fusionspartner für Proteine bekannt. Dazu wird das Verhältnis der Fluoreszenzintensitäten bei 520 nm (Fluorescein-Emission angeregt durch Terbium- Emission) und bei 495 nm (Terbium-Emission) bestimmt. Fig. 1 A - C zeigt für die erfindungsgemäßen Substanzen SCH138, SCH149 und SCH172 eine signifikante Kompetitionseffizienz.
B) Die Liganden-induzierte Bindung des kommerziell erhältlichen Fluorescein- markierten Korepressor-Peptids SMRT-ID2 (HASTNMGLEAIIRKALMGKYDQW) (Invitrogen, Darmstadt, Deutschland) an GST-PPAR beta/delta wird beispielsweise im TR-FRET-Verfahren mit Hilfe eines Terbium-markierten anti-GST-Antikörpers in einem VICTOR3V Multilabel Counter (WALLAC 1420; PerkinElmer Life and Analytical Sciences, Rodgau, Deutschland) gemessen. Die Messung erfolgt in einem Puffer aus 100 mM KCl, 20 mM Tris pH 7.9, 0.01 % Triton X100 and 1 pg/pL bovinem Serumalbumin. Fig. 2 A - C zeigt deutlich die Interaktion zwischen SMRT-ID2 und GST-PPAR beta/delta LBD für die erfindungsgemäßen Substanzen SCH138, SCH149 und SCH172 in Abhängigkeit von der eingesetzten Konzentration. Gleichfalls zeigt Fig. 6 deutlich die Interaktion zwischen SMRT-ID2 und GST-PPAR beta/delta LBD für die erfindungsgemäßen Substanzen SCH1 17 und SCH172 in Abhängigkeit von der eingesetzten Konzentration ganz im Gegensatz zu den dargestellten Vergleichsverbindungen die keine nennenswerte Korepressor-Induktion an GST-PPAR beta/delta aufweisen.
C) Die Subtyp-Spezifität der erfindungsgemäßen Substanzen für den PPAR-Subtyp beta/delta wurde in vitro anhand von TR-FRET Messungen durch Kompetition mit dem fluoreszierenden Fluormone® Pan-PPAR-Green um die Bindung an die Fusionsproteine GST-PPAR alpha, beta/delta oder gamma LBD (GST=Glutathion S- Transferase; LBD=Liganden-Bindungsdomäne) (Invitrogen, Darmstadt, Deutschland) in einem VICTOR3V Multilabel Counter (WALLAC 1420; PerkinElmer Life and Analytical Sciences, Rodgau, Deutschland) bestimmt. Die Messung erfolgt in 100 mM KCl, 20 mM Tris pH 7.9, 0.01 % Triton X100 and 1 pg/pL bovinem Serumalbumin. Fig. 3.1 A - C bis 3.3 A - C zeigen für die erfindungsgemäßen Substanzen SCH138, SCH149 und SCH172 eine signifikante Kompetitionseffizienz ausschließlich für den PPAR-Subtyp beta/delta.
Einfluss der erfindungsgemäßen Substanzen auf die Transkription von PPAR beta/delta-Zielgenen
Der Einfluss der erfindungsgemäßen Substanzen auf durch PPAR-beta/delta regulierte Gene wie beispielsweise ANGPTL4, welches für das Angiopoietin-ähnliche Protein ANGPTL4 kodiert, wird in verschiedenen Zellen mit einer Konfluenz von 70% bis 80% in einer 6-well-Zell kulturplatte getestet. Dazu werden kultivierte humane Myofibroblasten (WPMY-1 ), murine Myoblasten (C2C12), peritoneale Makrophagen der Maus oder Zellen der humanen Brustkrebszelllinie MDA-MB-231 mit den erfindungsgemäßen Substanzen für 24 Stunden behandelt. Die Zellen der Brustkrebszelllinie werden zusätzlich für 6 Stunden mit TGF-beta2 (2 ng/ml), welches kommerziell erhältlich ist, stimuliert. Die humanen Myofibroblasten werden zusätzlich für 6 Stunden mit L165,041 (500 nM) stimuliert. Anschließend wird aus den Zellen RNA mit dem Fachmann bekannten Methoden isoliert und in einer dem Fachmann ebenfalls bekannten quantitativen PCR (qPCR, Realtime qPCR, RT- qPCR) analysiert. Dazu wird cDNA von 0,25 g bis 1 g RNA mit Hilfe von oligo(dT)- Primern und einem kommerziell erhältlichen cDNA-Synthese-Kit synthetisiert. Die qPCR wird anschließend in einem Mx3000P RT-qPCR System (Stratagene, La Jolla, Kalifornien, USA) nach Angaben des Herstellers mit 40 Zyklen und einer Annealing- Temperatur von 60°C mit beispielsweise humanen ANGPTL4 Primern (fw: G ATG GCTCAGTG G ACTTCAACC ; rv: CCCGTGATGCTATGCACCTTC) und dem dem Fachmann bekannten ribosomalen 127 (fw: AAAGCCGTCATCGTGAAGAAC; rv: GCTGTCACTTTCCG G G G ATAG ) als Normalisierungsgen durchgeführt. Fig. 4 A - G zeigen, dass die relative Expression des
Figure imgf000061_0001
durch die erfindungsgemäßen Substanzen SCH138, SCH149 und SCH172 im Vergleich zur Kontrolle (DMSO-behandelte Zellen) reduziert wird. Der entsprechende IC5o-Wert (mittlere inhibitorische Konzentration) für die erfindungsgemäßen Substanzen beträgt maximal 75 nM in C2C12 Zellen. Fig. 5 zeigt, dass die Behandlung der Brustkrebszelllinie MDA-MB-231 mit den erfindungsgemäßen Substanzen die inverse Agonisten von PPAR-beta/delta darstellen, zu einem Verlust der Induktion der /4/VGP7L4-Expression durch TGF-beta2 führt.
Transkription, Genexpression und Chromatin Analyse
Luziferasereporter-Assays wurden durchgeführt und bewertet wie bereits beschrieben. (FEBS J. 2006, 273, 170-179. Hum. Gene Ther. 1998, 9, 2653-2659. Mol. Pharmacol. 201 1 , 80, 828-838. J. Biol. Chem. 2010, 285, 29469-29479. Nucleic Acids Res. 201 1 , 39, 1 19-131 .)
Phamakologische Kinetikstudien in Mäusen
Phamakologische in vivo Kinetikstudienwurden in der Weise durchgeführt, dass die untersuchten Verbindungen in DMSO/Solutol HS 15/PBS, pH 7.4 (5/5/90, v/v/v) formuliert wurden und intravenös (1 mg/kg, Injektion in Schwanzvene)) bzw. oral (5 mg/kg, Magensondenernährung) an männliche CD-1 Mäuse verabreicht wurden. Blutproben wurden zu acht Zeitpunkten nach Injektion durch parallele Abnahme genommen (jeweils drei Mäuse). Plasmaproben wurden durch Acetonitrilpräzipitation weiterverarbeitet und über HPLS-MS/MS analysiert, gefolgt von üblichen Verfahren.
Dreidimensionaler Matrigelinvasionsassay
MDA-MB-231 Zellen wurden für 48 Stunden mit SCH172 behandelt (1 μΜ) oder mit DMSO (1 :10.000) als Lösungsmittelkontrolle. Transwell inserts (Thincerts, Greiner Bio-One) wurden mit 50 μΙ Wachstumsförderer-reduziertem Matrigel (BD Biosciences) bei 5 g/μΙ beschichtet und die Zellinvasion wurde essentiell analysiert. Zellen wurden dafür geerntet und 15000 Zellen wurden auf dem Boden der Transwell inserts gesät und für eine Stunde anwachsen gelassen. Die Transwell inserts wurden invertiert und Medium mit SCH172 oder DMSO wie oben beschrieben in das obere Kompartment (mit 10% FCS) und in das untere Kompartment (mit 0,5% FCS) zugegeben. Zellen wurden nach 24 Stunden mit 8% Formaldehyd fixiert, gefärbt wie angedeutet und die invasierten Zellen wurden von 6 zufällig ausgewählten Bereichen von den Transwell inserts unter Verwendung eines konfokalem Mikroskops (Zeiss LSM 700) quantifiziert. ANGPTL4 Peptide (Enzo Life Science) wurden bei 100 μΜ in die Matrix eingebettet und TGFß2 (2 ng/ml) wurde zu der oberen Kammer der Transwell inserts wie angedeutet zugegeben.
Beispiel 2: Allgemeine Synthesebeschreibung
Als Ausgangsmaterialien dienen kommerziell erhältliche sowie nach bekannten Synthesen darstellbare aromatische Aldehyde und Ketone sowie Benzylderivate, bevorzugt für R1 sind Nitrile. Bevorzugte Basen sind Kaliumhydroxid oder Pyrrolidin unter deren Katalyse die Umsetzung bei Raumtemperatur oder 60 °C in geeigneten Lösungsmitteln (bevorzugt Methanol) 1-48 Stunden erfolgt. Ferner können bei geeigneter Abgangsgruppe (bevorzugt Brom in Position R9-R11) Amine über eine Buchwald-Hartwig-Reaktion an Position R9-R11 eingeführt werden (Bsp.: 151 , 169, 174, 175, 178). Bevorzugtes Katalysatorsystem ist
Ths(dibenzylideneacetone)dipalladium(0) mit tri-terf-Butylphosphin bzw. 2,2'- Bis(diphenylphosphino)-1 ,1 '-binaphthyl und Natrium terf-butanolat in Toluol bei 80 °C und einer Reaktionszeit von zwei Stunden.
Weitere Modifikationen beinhalten die Reduktion von Nitrogruppen mit Zinn(ll)chlorid (Bsp.: 125) zu primären Aminen, Hydrierung der zentralen Doppelbindung mit Palladiumkatalysatoren (Bsp.: 127) und Cyclisierungen mit geeigneten Reagenzien wie Triethylphosphit (Bsp.: 161 ).
Beispiel 3: (Z)-3-[4-(Dimethylamino)phenyl]-2-phenylacrylnitril (SCH1 17):
Zu einer Lösung von Benzylcyanid (0.400 ml, 3.47 mmol, 1 eq.) und 4- Dimethylaminobenzaldehyd (517 mg, 3.47 mmol, 1 eq.) in MeOH (5 ml) wurde Kaliumhydroxid (194 mg, 3.47 mmol, 1 eq) zugegeben. Nach einer Stunde wurde der ausgefallene Feststoff abfiltriert, mit Wasser und Cyclohexan gewaschen und im Vakuum getrocknet um die Titelverbindung (555 mg, 2.24 mmol, 65 % Ausbeute) als gelben Feststoff zu erhalten.
1H-NMR (CDCIs, 21 °C, 400 MHz): <5H (ppm) = 3.06 (s, 6H; CH3), 6.73 (psd, 2H; 3J + 5J = 9.2 Hz; H-8), 7.32 (dt, 1 H; 3J = 7.3, 4J = 1 .2 Hz; H-1 ), 7.38-7.44 (m, 2H; H-2), 7.41 (s, 1 H; H-5), 7.62-7.65 (m, 2H; H- 3), 7.86 (psd, 2H; 3J + 5J = 8.9 Hz; H-7). MS (EI+): m/z (%) = 248 (100, M+ ). HRMS (EI+): berechnet: 248.131349, gefunden 248.131279. EA: berechnet: 82.22 % C, 6.49 % H; 1 1 .28 % N gefunden 82.14 % C, 6.54 % H; 1 1 .22 % N. Schmelzpunkt (nicht
Figure imgf000062_0001
korrigiert): 138 °C. Beispiel 4: Herstellung von SCH151
(Z)-3-[4-(4-Methylpiperidin-1 -yl)phenyl]-2-phenylacrylnitril (SCH151 ):
(Z)-3-(4-Bromphenyl)-2-phenylacrylnitril (SCH102, 200 mg, 0.70 mmol, 1 eq.), 2,2'- Bis(diphenylphosphino)-1 ,1 '-binaphthyl (32.9 mg, 0.053 mmol, 0.075 eq.), Natrium terf-butanolat (101 mg, 1 .06 mmol, 1 .5 eq.) und Ths(dibenzylideneacetone)dipalladium(0) (32.2 mg, 0.035 mmol, 0.05 eq.) wurden unter Argon Atmosphäre in trockenem Toluol (4 ml) suspendiert und nach Zugabe von 4-Methylpiperidin (166 μΙ, 1 .41 mmol, 2 eq.) für 17 Stunden bei 80 °C in einem geschlossenem Druckgefäß gerührt. Anschließend wurde die Suspension über Celite abfiltriert und das Filtrat auf Kieselgel absorbiert. Säulenchromatographie (/'soHexan:Dichlormethan = 5:2) ergab die Titelverbindung (195 mg, 0.65 mmol, 92% Ausbeute) als gelben Feststoff.
Figure imgf000063_0001
Beispiel 5: Herstellung von SCH 195
(Z)-2-(2-Chlorphenyl)-3-[4-(4-methylpiperazin-1 -yl)phenyl]acrylnitril (SCH 195)
(dihydrochlorid)
Zu einer Lösung von 4-(4-Methylpiperazin-1 -yl)benzaldehyd (200 mg, 1 .96 mol, 1 eq.) und 2-(2-Chlorphenyl)acetonitril (297 mg, 125 μί, 1 .96 mmol, 1 eq) in Methanol (1 .5 mL) wurde Pyrrolidin (139 mg, 81 μί, 1 .96 mmol, 1 eq.) gegeben und für 50 h auf 60 °C erhitzt. Die Lösung wurde auf Kieselgel absorbiert und säulenchromatographisch (Dichlormethan/Methanol = 0-25 % über 10 min) getrennt. Fällen mit Salzsäure (5-6 M in Isopropanol) aus Ethylacetat ergab die Titelverbindung (181 mg, 0.81 mmol, 41 % Ausbeute) als leicht gelben Feststoff. 1H-NMR (c/e-DMSO, 30 °C, 400 MHz): <5H (ppm) = 2.77 (d, 3H; J = 4.8 Hz; CH3), 3.03-3.15 (sm, 2H; H-12), 3.22-3.31 (sm, 2H; H-12), 3.41- 3.49 (sm, 2H; H-1 1 ), 4.00-4.08 (sm, 2H; H-1 1 ), 7.12 (psd, 2H; 3J + 5J = 9.2 Hz; H-9), 7.41-7.47 (m, 3H; H-2+3+6), 7.52-7.58 (m, 2H; H- 1 +4), 7.86 (psd, 2H; 3J + 5J = 9.2 Hz; H-8), 1 1 .20 (bs, 1 H; HCl). MS (EI+): m/z (%) = 337 (100, M+ ). HRMS (EI+): berechnet: 337.134576, gefunden 337.134666.
Figure imgf000064_0001
Beispiel e: Herstellung von SCH 181
(Z)-3-(4-(Dimethylamino)phenyl)-2-phenylacrylaldehyd (SCH 181 )
Zu einer Lösung von (Z)-3-[4-(Dimethylamino)phenyl]-2-phenylacrylnitril (SCH1 17, 500 mg, 2.02 mmol, 1 eq.) in wasserfreiem Toluol (20 ml_) wurde bei -78 °C Diisobutylaluminiumhydrid (1 .5 M in Toluol, 2.73 ml_, 4.03 mmol, 2eq.) über eine Stunde zugetropft. Nach weiteren zwei Stunden bei -78 °C wurde über eine Stunde auf 0 °C erwärmt und mit ges. Natrium-Kaliumtartrat-Lösung gequencht. Es wurde mit Diethylether verdünnt und die organische Phase mit ges. Kochsalzlösung gewaschen, über Magnesiumsulfat getrocknet, filtiriert und auf Kieselgel absorbiert. Säulenchromatographie (/'soHexan/Dichlormethan = 1 :1 ) ergab die Titelverbindung (263 mg, 1 .5 mmol, 52 % Ausbeute) als orangegelben Feststoff.
1H-NMR (c/6-DMSO, 30 °C, 400 MHz): <5H (ppm) = 2.89 (s, 3H, CH3), 6.52 (psd, 2H, 3J + 5J = 8.9 Hz; H-8), 7.02 (psd, 2H, 3J + 5J = 8.9 Hz; H-7), 7.08-7.1 1 (m, 2H, H-3), 7.33-7.43 (m, 3H, H-1 +2), 7.45 (s, 1 H, H-5), 9.56 (s, 1 H, CHO). MS (ESI+): m/z (%) = 274 (100, [M+Na]+).
Figure imgf000064_0002
Beispiel 7: Herstellung von SCH 187
(Z)-3-(4-(Dimethylamino)phenyl)-2-phenylprop-2-en-1 -ol (SCH187)
Zu einer Lösung von (Z)-3-(4-(Dimethylamino)phenyl)-2-phenylacrylaldehyd (SCH181 , 100 mg, 0.40 mol, 1 eq.) und Cer(lll)chlorid (98 mg, 0.40 mg, 1 eq.) in Methanol (3 mL) wurde bei 0 °C Natriumborhydrid (15.1 mg, 0.40 mmol, 1 eq.) zugegeben. Nach 30 min bei 0 °C wurde mit Ethylacetat verdünnt und die organische Phase erst mit ges. Natriumhydrogencarbonat-Lösung, dann mit ges. Kochsalzlösung gewaschen und anschließend über Magnesiumsulfat getrocknet. Säulenchromatographie des Filtrats (Dichlormethan/Methanol = 19:1 ) ergab die Titelverbindung (85 mg, 0.33 mmol, 83 % Ausbeute) als weißen Feststoff. °C, 400 MHz): <5H (ppm) = 2.89 (s, 6H; CH3), CH2), 6.48-6.56 (m, 2H, H-9), 6.57 (s, 1 H, H- 5J = 8.9 Hz; H-8), 7.25-7.32 (m, 3H, H-1 +2),
Figure imgf000065_0001
Beispiel e: Herstellung von SCH 194
(Z)-3-[4-(Dimethylamino)-2-methoxyphenyl]-2-phenylacrylnitril (SCH194)
Zu einer Lösung von Benzylcyanid (163 mg, 161 μΙ_, 1 .40 mmol, 1 eq.) und 4- (Dimethylamino)-2-methoxybenzaldehyd (250 mg, 1 .40 mmol, 1 eq.) in Methanol (2 mL) wurde Pyrrolidin (198 mg, 231 μί, 2.79 mmol, 2 eq.) gegeben. Nach 24 h wurde der ausgefallene Feststoff abfiltriert, mit Wasser und Cyclohexan gewaschen und im Vakuum getrocknet um die Titelverbindung (308 mg, 1 .1 1 mmol, 79 % Ausbeute) als gelben Feststoff zu erhalten.
1H-NMR (CDCIs, 21 °C, 400 MHz): <5H (ppm) = 3.07 (s, 6H; NCH3), 3.88 (s, 3H; OCH3), 6.18 (s, 1 H; H-7), 6.40 (dd, 1 H; 3J = 8.9, 4J = 1 .8 Hz; H-8), 7.27-7.32 (sm, 1 H; H-1 ), 7.37-7.42 (m, 2H; H-2), 7.63- 7.67 (m, 2H; H-3), 7.93 (s, 1 H; H-5), 8.26 (d, 1 H; 3J = 8.9 Hz; H-9). MS (EI+): m/z (%) = 278 (100, M+ ). HRMS (EI+): berechnet: 278.141913, gefunden 278.138746. EA: berechnet: 77.67 % C, 6.52
Figure imgf000065_0002
% H; 10.06 % N, gefunden: 77.52 % C, 6.51 % H; 9.88 % N.
Beispiele 9 - 67: Charakterisierung der Verbindungen
(Z)-2,3-Diphenylacrylnitril (SCH101 )
Figure imgf000065_0003
9 -Bromphenyl)-2-phenylacrylnitril (SCH102)
1H-NMR (CDCI3, 21 °C, 400 MHz): <5H (ppm) = 7.39-7.48 (m, 4H; H- 1 +2+5), 7.60 (psd, 2H; 3J + 5J = 8.7 Hz; H-8), 7.65-7.68 (m, 2H; H- 3), 7.76 (psd, 2H; 3J + 5J = 8.5 Hz; H-7). MS (EI+): m/z (%) = 283/285 (95, M+ ), 204 (100, [M-Br] + ). HRMS (EI+): berechnet: 284.997614, gefunden 284.997165. EA: berechnet: 63.40 % C, 3.55 % H; 4.93 % N, gefunden: 63.44 % C, 3.79 % H; 4.91 % N.
Figure imgf000066_0001
(Z)-3-(2-Bromphenyl)-2-phenylacrylnitril (SCH107) 1H-NMR (CDCI3, 21 °C, 400 MHz): <5H (ppm) = 7.30 (dt, 1 H; 3J = 7.6, 4J = 1 .6 Hz; H-1 ), 7.41-7.50 (m, 4H; H-2+H-3), 7.67 (dd, 1 H; 3J = 8.0, 4J = 1 .1 Hz; H-7), 7.71-7.74 (m, 2H; H-8+H-9), 7.84 (s, 1 H; H-5), 8.07 (dd, 1 H; 3J = 7.8, 4J = 1 .6 Hz; H-10). MS (EI+): m/z (%) = 283/285 (42, M+ ), 204 (100, [M-Br]+ ). HRMS (EI+): berechnet:
Figure imgf000066_0002
282.999661 , gefunden 283.000236. EA: berechnet: 63.40 % C, 3.55
9 % H; 4.93 % N, gefunden: 63.27 % C, 3.66 % H; 5.1 1 % N.
(Z)-3-(4-Methoxyphenyl)-2-phenylacrylnitril ( SCH108) <5H (ppm) = 3.86 (s, 3H; CH3), 6.98 36- 7.39 (sm, 1 H; H-1 ), 7.41-7.45 .63-7.66 (m, 2H; H-3), 7.89 (psd, ): m/z (%) = 235 (100, M+ ). HRMS gefunden 235.103443. EA: 5.95 % N, gefunden: 81 .58 % C,
Figure imgf000066_0003
(Z)-3-(4-Chlorphenyl)-2-phenylacrylnitril ( SCH109)
1H-NMR (CDCI3, 21 °C, 400 MHz): <5H (ppm) = 7.38-7.47 (m, 5H; H- 1 +H-2+H-3), 7.48 (s, 1 H; H5), 7.65-7.68 (m, 2H; H-8), 7.83 (psd, 2H; 3J + 5J = 8.5 Hz; H-7). MS (EI+): m/z (%) = 239 (93, M+ ), 204 (100, [M-Cl]+ ). HRMS (EI+): berechnet: 241 .047227, gefunden 241 .047909. EA: berechnet: 75.16 % C, 4.21 % H; 5.84 % N, gefunden: 75.07 % C, 4.49 % H; 5.87 % N.
Figure imgf000066_0004
(Z-2-Phenyl-3-[4-(trifluormethyl)phenyl]acrylnitril (SCH110) CI3j 21 °C, 400 MHz): <5H (ppm) = 7.41-7.50 (m, 3H; H- (s, 1H; H-5), 7.68-7.74 (m, 4H; H-3+H-8), 7.98 (psd, 8.5 Hz; H-7). MS (EI+): m/z (%) = 273 (100, M+ ), 204 + )- HRMS (EI+): berechnet: 273.076534, gefunden EA: berechnet: 70.33 % C, 3.69 % H; 5.13 % N, .50 % C, 4.09 % H; 5.11 % N.
Figure imgf000067_0001
-Bromphenyl)-2-phenylacrylnitril (SCH114)
1H-NMR (CDCI3, 21 °C, 400 MHz): <5H (ppm) = 7.35 (t, 1H; 3J = 7.9 Hz; H-8), 7.40-7.49 (m, 4H; H-1+H-2+H-5), 7.56 (dq, 1H; 3J = 8.0, 4J = 0.9 Hz; H-9), 7.65-7.68 (m, 2H; H-3), 7.89 (dq, 1H; 3J = 7.8, 4J = 0.9 Hz; H-7), 7.93 (t, 1H; 4J = 1.8 Hz; H-10). MS (EI+): m/z (%) = 283/285 (71, M+), 204 (100, [M-Br]+). HRMS (EI+): berechnet: 284.997614, gefunden 284.001532.
Figure imgf000067_0002
SCH117 siehe oben
(Z-3-[3-(Dimethylamino)phenyl]-2-phenylacrylnitril (SCH122)
Figure imgf000067_0003
(Z-3-(4-Aminophenyl)-2-phenylacrylnitril (SCH125) 97 (s, 2H; NH2), 1H; H-1), 7.39- , 1H; H-5), 7.71 220 (100> M+)- 099022.
Figure imgf000067_0004
3-[4-(Dimethylamino)phenyl]-2-phenylpropannitril (SCH127)
1H-NMR (CDCI3j 21 °C, 400 MHz): <5H (ppm) = 2.93 (s, 6H; CH3), 3.07 (sm, 2H; H-5), 3.94 (dd, 1 H; 3J = 6.4, 3J = 8.2 Hz; CH-CN), 6.67 (psd, 2H; 3J + 5J = 7.3 Hz; H-8), 7.01 (psd, 2H; 3J + 5J = 8.7 Hz; H-7), 7.25-7.39 (m, 5H; H-1 +2+3). MS (EI+): m/z (%) = 250 (7, M+ ), 134 (100, [CH2PhNMe2]+ ). HRMS (EI+): berechnet: 250.146999, gefunden 250.148003. EA: berechnet: 81 .56 % C, 7.25 % H; 1 1 .19 %
Figure imgf000068_0001
N, gefunden: 81 .39 % C, 7.10 % H; 1 1 .03 % N
(Z)-3-[4-(Dimethylamino)phenyl]-2-(pyridin-2-yl)acrylnitril (SCH129)
1H-NMR (CDCIs, 21 °C, 400 MHz): <5H (ppm) = 3.07 (s, 6H; CH3), 6.72 (psd, 2H; 3J + 5J = 9.2 Hz; H-9), 7.18 (ddd, 1 H; 3J = 7.1 3J = 4.8, 4J = 1 .4 Hz; H-2), 7.68 (dt, 1 H; 3J = 8.0, 5 J = 1 .1 Hz; H-4), 7.72 (ddd, 1 H; 3J = 8.0 3J = 7.3, 4J = 1 .8 Hz; H-3), 7.97 (psd, 2H; 3J + 5J = 8.9 Hz; H- 8), 8.33 (s, 1 H; H-6), 8.59 (dq, 1 H; 3J = 4.8, 5J = 0.9 Hz; H-1 ). MS (EI+): m/z (%) = 249 (100, M+ ), 249 (96, [M-H] + ), 232 (20, [M-CH4H] + ). HRMS (EI+): berechnet: 249.126598, gefunden 249.128778. EA:
Figure imgf000068_0002
berechnet: 77.08 % C, 6.06 % H; 16.85 % N, gefunden: 76.81 % C,
6.10 % H; 16.79 % N.
(Z)-3-(4-Morpholinphenyl)-2-phenylacrylnitril (SCH131 ) 21 °C, 400 MHz): <5H (ppm) = 3.29 (dd, 4H; 3J = 5.0, 0), 3.87 (dd, 4H; 3J = 5.0, 3J = 4.8 Hz; H-1 1 ), 6.92 = 8.9 Hz; H-8), 7.32-7.38 (m, 1 H; H-1 ), 7.42 (s, 1 H m, 2H; H-2), 7.62-7.66 (m, 2H; H-3), 7.87 (psd, 2H H-7). MS (EI+): m/z (%) = 290 (100, M+ ), 232 (71 ] + ), 204 (29, [M-N(CH2CH2)2O] + ). HRMS (EI+) 41913, gefunden 290.144040. EA: berechnet: C % H; 9.65 % N, gefunden: 78.39 % C, 6.33 % H
Figure imgf000068_0003
(Z)-3-[4-(4-Methylpiperazin-1 -yl)phenyl]-2-phenylacrylnitril (SCH132) <5H (ppm) = 2.19 (s, 3H; CH3),
, 4H; 3J = 5.0 Hz; H-1 1 ), 7.02 7.37 (sm, 1 H; H-1 ), 7.41-7.47 7.81 (s, 1 H; H-5), 7.84 (psd, ): m/z (%) = 303 (100, M+ ). gefunden 303.171852. EA: 5 % N, gefunden: 78.95 % C,
Figure imgf000069_0001
(Z)-3-{4-[(Dimethylamino)methyl]phenyl}-2-phenylacrylnitril (SCH136) (Hydrochlorid)
1H-NMR (c/e-DMSO, 30 °C, 400 MHz): <5H (ppm) = 2.68 (s, 6H; CH3), 4.31 (s, 2H; CH2), 7.42-7.47 (sm, 1 H; H-1 ), 7.48-7.54 (m, 2H; H-2), 7.71-7.78 (m, 4H; H-3+8), 7.97 (psd, 2H; 3J + 5J = 8.2 Hz; H-7), 8.07 (s, 1 H; H-5), 1 1 .04 (bs, 1 H; HCl). MS (EI+): m/z (%) = 262 (100, M+ ), 218 (60, [M-N(CH3)2 Γ). HRMS (EI+): berechnet: 262.146999, gefunden 262.145737.
Figure imgf000069_0002
(Z)-2-(2-Chlorphenyl)-3-[4-(dimethylamino)phenyl]acrylnitril (SCH138)
1H-NMR (CDCIs, 21 °C, 400 MHz): <5H (ppm) = 3.06 (s, 6H; CH3), 6.73 (psd, 2H; 3J + 5J = 8.9 Hz; H-9), 7.12 (s, 1 H; H-6), 7.26-7.33 (m, 2H; H-2+3), 7.40-7.46 (m, 2H; H-1 +4), 7.85 (psd, 2H; 3J + 5J = 8.9 Hz; H- 8). MS (EI+): m/z (%) = 282 (100, M+ ), 203 (27, [M-Cl- N(CH3)2] + ). HRMS (EI+): berechnet: 282.092376, gefunden 282.094431 . EA: berechnet: 72.21 % C, 5.35 % H; 9.91 % N, gefunden: 72.43 % C,
Figure imgf000069_0003
5.53 % H; 10.00 % N. Schmelzpunkt (nicht korrigiert): 99 °C.
(Z -2-(4-Chlorphenyl)-3-[4-(dimethylamino)phenyl]acrylnitril (SCH139)
1H-NMR (CDCI3, 21 °C, 400 MHz): <5H (ppm) = 3.06 (s, 6H; CH3), 6.74 (psd, 2H; 3J + 5J = 8.9 Hz; H-7), 7.35-7.38 (m, 3H; H2+4), 7.55 (psd, 2H; 3J + 5J = 8.7 Hz; H-1 ), 7.85 (psd, 2H; 3J + 5J = 8.9 Hz; H-6). MS (EI+): m/z (%) = 282 (100, M+ ), 203 (18, [M-CI-N(CH3)2] + ). HRMS (EI+): berechnet: 282.092376, gefunden 282.093166. EA: berechnet: 72.21 % C, 5.35 % H; 9.91 % N, gefunden: 72.06 % C, 5.37 % H; 9.85 % N.
Figure imgf000069_0004
(Z) ethylamino)phenyl]-2-(4-nitrophenyl)acrylnitril (SCH140)
1H-NMR (CDCI3, 21 °C, 400 MHz): <5H (ppm) = 3.10 (s, 6H; CH3), 6.73 (psd, 2H; 3J + 5J = 8.9 Hz; H-7), 7.54 (s, 1 H; H-4), 7.77 (psd, 2H; 3J + 5J = 9.2 Hz; H-2), 7.91 (psd, 2H; 3J + 5J = 8.9 Hz; H-6), 8.25 (psd, 2H; 3J + 5J = 9.2 Hz; H-1 ). MS (EI+): m/z (%) = 293 (100, M+ ), 263 (77, [M- (CH3)2 ] + ), 247 (29, [M-NO2]+ ). HRMS (EI+): berechnet: 293.1 16427, gefunden 293.1 15855. EA: berechnet: 69.61 % C, 5.15 % H; 14.33 % N, gefunden: 69.34 % C, 5.24 % H; 14.38 % N.
(Z) ethylannino)phenyl]-2-(4-nnethoxyphenyl)acrylnithl (SCH141 )
1H-NMR (CDCIs, 21 °C, 400 MHz): <5H (ppm) = 3.05 (s, 6H; NCH3), 3.84 (s, 3H; OCH3), 6.74 (psd, 2H; 3J + 5J = 7.3 Hz; H-7), 6.93 (psd, 2H; 3J + 5J = 8.9 Hz; H-1 ), 7.30 (s, 1 H; H-4), 7.56 (psd, 2H; 3J + 5J = 8.9 Hz; H-2), 7.83 (psd, 2H; 3J + 5J = 8.9 Hz; H-6). MS (EI+): m/z (%) = 278 (100, M+ ), 263 (27, [M-CH3]+ ). HRMS (EI+): berechnet: 278.141913, gefunden 278.144148. EA: berechnet: 77.67 % C, 6.52 % H; 10.06 % N, gefunden: 77.76 % C, 6.61 % H; 10.05 % N.
Figure imgf000070_0001
(Z)-2-(2,6-Dichlorphenyl)-3-[4-(dimethylamino)phenyl]acrylnitril (SCH142)
(s, 6H; CH3), 6.72 7.24 (dd, 1 H; 3J = 2), 7.86 (psd, 2H; 00, M+ ), 246 (24, (EI+): berechnet: t (nicht korrigiert):
Figure imgf000070_0002
(Z)-2-Phenyl-3-[4-(piperidin-1 -yl)phenyl]acrylnitril (SCH143)
1H-NMR (CDCI3, 21 °C, 400 MHz): <5H (ppm) = 1 .6-1 .76 (m, 6H; H- 1 1 +12), 3.31-3.37 (m, 4H; H-10), 6.92 (psd, 2H; 3J + 5J = 7.8 Hz; H- 8), 7.30-7.35 (m, 1 H; H-1 ), 7.38-7.44 (m, 3H; H-2+5), 7.61-7.66 (m, 2H; H-3), 7.84 (psd, 2H; 3J + 5J = 8.9 Hz; H-7). MS (EI+): m/z (%) = 288 (100, M+ ). HRMS (EI+): berechnet: 288.162649, gefunden 288.164001 . EA: berechnet: 83.30 % C, 6.99 % H; 9.71 % N, gefunden: 83.23 % C, 7.14 % H; 9.81 % N.
Figure imgf000070_0003
12 (Z)-2-Phenyl-3-[4-(pyrrolidin-1 -yl)phenyl]acrylnitril (SCH144) 01-2.07 (sm, 4H; H- + 5J = 8.9 Hz; H-8), 2+5), 7.61-7.65 (m, MS (EI+): m/z (%) = 146999, gefunden
Figure imgf000071_0001
10 10'
-Chlorphenyl)-3-[4-(piperidin-1 -yl)phenyl]acrylnitril (SCH145) °C, 400 MHz):
(m, 6H, H-12+13), 1 .32-1 .37 (m, 4H, H-1 1 ), 9.2 Hz; H-9), 7.33 (s, 1 H, H-6), 7.40-7.44 (m, (m, 2H, H-1 +4), 7.80 (psd, 2H, 3J + 5J = 8.9 m/z (%) = 323 (100, [M+H]+), 345 (19,
Figure imgf000071_0002
(Z)-3-[4-(Dimethylamino)phenyl]-2-(2-methoxyphenyl)acrylnitril (SCH148)
1H-NMR (CDCI3, 21 °C, 400 MHz): <5H (ppm) = 3.05 (s, 6H; NCH3), 3.91 (s, 3H; OCH3), 6.76 (psd, 2H; 3J + 5J = 7.1 Hz; H-9), 6.94 (dd, 1 H; 3J = 8.2, 4J = 0.7 Hz; H-1 ), 6.99 (td, 1 H; 3J = 7.6, 4 J = 1 .1 Hz; H- 3), 7.28 (s, 1 H; H-6), 7.32 (ddd, 1 H; 3J = 8.2, 3J = 7.4, 4J = 1 .6 Hz; H- 2), 7.38 (dd, 1 H; 3J = 7.6, 4J = 1 .6 Hz; H-4), 7.84 (psd, 2H; 3J + 5J = 8.7 Hz; H-8). MS (EI+): m/z (%) = 278 (100, M+ ), 248 (13, [M-OCH3- 2CH3] + ), 235 (10, [M-3CH3] + ), 147 (38, [Ph(OCH3)CCN]+ ). HRMS
Figure imgf000071_0003
(EI+): berechnet: 278.141913, gefunden 278.140550.
-Bromphenyl)-3-[4-(dimethylamino)phenyl]acrylnitril (SCH149) 1H-NMR (CDCI3, 21 °C, 400 MHz): <5H (ppm) = 3.06 (s, 6H; CH3), 6.72 (psd, 2H; 3J + 5J = 9.2 Hz; H-9), 7.07 (s, 1 H; H-6), 7.21 (ddd, 1 H; 3J = 7.6, 4J = 1 .8, 5J = 0.5 Hz; H-4), 7.35 (td, 1 H; 3J = 7.6, 4J = 1 .4 Hz; H- 3), 7.41 (dd, 1 H; 3J = 7.6, 4J = 1 .8 Hz; H-2), 7.64 (dd, 1 H; 3J = 8.0, 4J = 1 .1 Hz; H-1 ), 7.85 (psd, 2H; 3J + 5J = 8.9 Hz; H-8). MS (EI+): m/z (%) = 326/328 (100, M+ ), 203 (40, [M-Br-N(CH3)2] + ). HRMS (EI+): berechnet: 326.041860, gefunden 326.042488. EA: berechnet:
Figure imgf000072_0001
62.40 % C, 4.62 % H; 8.56 % N, gefunden: 62.34 % C, 4.79 % H;
8.44 % N. Schmelzpunkt (nicht korrigiert): 140 °C.
(Z)-3-[4-(Dimethylamino)phenyl]-2-[2-(trifluormethyl)phenyl]acrylnitril (SCH150)
1H-NMR (CDCIs, 21 °C, 400 MHz): <5H (ppm) = 3.07 (s, 6H; CH3), 6.80 (psd, 2H; 3J + 5J = 8.2 Hz; H-9), 6.98 (s, 1 H; H-6), 7.46-7.52 (m, 2H; H-2+4), 7.56-7.61 (m, 1 H; H-3), 7.72-7.76 (m, 1 H; H-1 ), 7.82 (psd, 2H; 3J + 5J = 8.9 Hz; H-8). MS (EI+): m/z (%) = 316 (100, M+ ). HRMS (EI+): berechnet: 316.1 18733, gefunden 316.1 17731 . Schmelzpunkt (nicht korrigiert): 1 10 °C.
Figure imgf000072_0002
SCH151 siehe oben
(E)-2-[4-(Dimethylamino)phenyl]-3-phenylacrylnitril (SCH156)
2 1H-NMR (CDCI3, 21 °C, 400 MHz): <5H (ppm) = 3.03 (s, 6H; CH3), 7.76 3, (psd, 2H; 3J + 5J = 8.0 Hz; H-8), 7.35-7.47 (m, 4H; H-1 +2+5), 7.57 (psd, 2H; 3J + 5J = 8.9 Hz; H-7), 7.82-7.86 (m, 2H; H-3). MS (EI+): m/z (%) = 248 (100, M+ ), 204 (13, [M-N(CH3)2]+ )■ HRMS (EI+): berechnet: 248.131349, gefunden 248.131605.
Figure imgf000072_0003
(Z)-3-[4-(Dimethylamino)phenyl]-2-(2-fluorphenyl)acrylnitril (SCH158)
2 1H-NMR (CDCI3, 21 °C, 400 MHz): <5H (ppm) = 3.06 (s, 6H; CH3), 6.71
(pas, 2H; 3J + 5J = 9.2 Hz; H-9), 7.12 (ddd, 1 H; 3JH,F = 1 1 .2, 3J = 8.2, 4J = 1 .1 Hz; H-1 ), 7.19 (td, 1 H; 3J = 7.6, 4J = 1 .1 Hz; H-3), 7.26-7.32 (sm, 1 H; H-4), 7.42 (s, 1 H; H-6), 7.54 (td, 1 H; 3J = 7.8, 4J = 1 .8 Hz; H-2), 7.86 (psd, 2H; 3J + 5J = 8.9 Hz; H-8). MS (EI+): m/z (%) = 266 (100, M+ ). HRMS (EI+): berechnet: 266.121927, gefunden 266.123324. EA: berechnet: 76.67 % C, 5.68 % H; 10.52 % N,
Figure imgf000072_0004
gefunden: 76.57 % C, 5.73 % H; 10.50 % N. (Z)-2-(2-Chlor-6-fluorphenyl)-3-[4-(dimethylamino)phenyl]acrylnitril (SCH159)
3.07 (s, 6H; CH3), 6.74 H-5), 7.08 (sm, 1 H; H- 3J + 5J = 8.9 Hz; H-7). (21 ' [M-N(CH3)2-CI] +i nden 300.081259. EA: gefunden: 67.70 % C,
Figure imgf000073_0001
(2Z,4E)-5-[4-(Dimethylamino)phenyl]-2-phenylpenta-2,4-diennitril (SCH166)
MHz): <5H (ppm) = 3.03 (s, 6H; CH3), 6.70 H-10), 6.94 (d, 1 H; ä 3J / = _ 15.1 Hz; H-7), 1 1 .2 Hz; H-6), 7.28-7.34 (sm, 1 H; H-1 ), 7.45 (psd, 2H; 3J + 5J = 8.7 Hz; H-9), (EI+): m/z (%) = 274 (100, M+ ), 197 (31 , berechnet: 274.146999, gefunden
Figure imgf000073_0002
(Z)-3-[4-(Dimethylamino)phenyl]-2-(pyridin-4-yl)acrylnitril (SCH167)
1H-NMR (CDCI3, 21 °C, 400 MHz): <5H (ppm) = 3.08 (s, 6H; CH3), 6.71 (psd, 2H; 3J + 5J = 8.9 Hz; H-7), 7.52 (dd, 2H; 3J = 6.4, 4J = 1 .8 Hz; H-2), 7.58 (s, 1 H; H-4), 7.90 (psd, 2H; 3J + 5J = 8.9 Hz; H-6), 8.59- 8.62 (sm, 2H; H-1 ). MS (EI+): m/z (%) = 249 (100, M+ ), 234 (19, [M- CH3]+ ), 206 (16, [M-N(CH3)2]+ ). HRMS (EI+): berechnet: 249.126598, gefunden 249.128587. EA: berechnet: 77.08 % C, 6.06
Figure imgf000073_0003
% H; 16.85 % N, gefunden: 76.82 % C, 6.15 % H; 16.91 % N.
(Z)-3-[4-(Dimethylamino)phenyl]-2-(pyridin-3-yl)acrylnitril (SCH168)
1H-NMR (CDCI3, 21 °C, 400 MHz): <5H (ppm) = 3.08 (s, 6H; CH3), 6.72 (psd, 2H; 3J + 5J = 9.2 Hz; H-9), 7.37 (dd, 1 H; 3J = 8.0, 3J = 4.8 Hz; H-2), 7.43 (s, 1 H; H-6), 7.88 (psd, 2H; 3J + 5J = 9.2 Hz; H-8), 7.95 (ddd, 1 H; 3J = 8.0, 4J = 2.3, 4J = 1 .8 Hz; H-3), 8.54 (dd, 1 H; 3J = 4.8, 4J = 1 .4 Hz; H-1 ), 8.88 (d, 1 H; 4J = 2.5 Hz; H-5). MS (EI+): m/z (%) = 249 (100, M+ ), 234 (31 , [M-CH3]+ ), 206 (22, [M-N(CH3)2]+ ). HRMS (EI+): berechnet: 249.126598, gefunden 249.123689. EA:
Figure imgf000073_0004
berechnet: 77.08 % C, 6.06 % H; 16.85 % N, gefunden: 76.93 % C,
6.14 % H; 16.75 % N. (Z)-2-Phenyl-3-[4-(piperazin-1 -yl)phenyl]acrylnitril (SCH169)
1H-NMR (c/e-DMSO, 30 °C, 400 MHz): <5H (ppm) = 2.77-2.81 (sm, 4H; H-1 1 ), 3.19-3.23 (sm, 4H; H-12), 6.99 (psd, 2H; 3J + 5J = 9.2 Hz; H- 8), 7.31-7.37 (sm, 1 H; H-1 ), 7.41-7.47 (m, 2H; H-2), 7.64-7.68 (m, 2H; H-3), 7.80 (s, 1 H; H-5), 7.84 (psd, 2H; 3J + 5J = 9.2 Hz; H-7). MS (EI+): m/z (%) = 289 (38, M+ ), 247 (100, [M-N(CH2)2]+ ) HRMS (EI+): berechnet: 289.157898, gefunden 289.155945.
Figure imgf000074_0001
(Z)-2-(2-Bromphenyl)-3-[4-(piperidin-1 -yl)phenyl]acrylnitril (SCH171 )
Figure imgf000074_0002
N, gefunden: 59.37 % C, 5.17 % H; 6.84 % N.
(Z)-2-(2-Bromphenyl)-3-[4-(4-methylpiperazin-1 -yl)phenyl]acrylnitril (SCH172)
(dihydrochlorid)
1H-NMR (c/6-DMSO, 80 °C, 500 MHz): <5H (ppm) = 2.77 (s, 3H; CH3), 3.05-3.18 (m, 2H; H-12), 3.29-3.49 (m, 4H; H-1 1 +12), 3.95-4.05 (m, 2H; H-1 1 ), 7.10 (psd, 2H; 3J + 5J = 8.9 Hz; H-9), 7.32 (s, 1 H; H-6), 7.33-7.37 (sm, 1 H; H-2), 7.45-7.48 (sm, 1 H; H-3), 7.51 (dd, 1 H; 3J = 7.7, 4J = 1 .7 Hz; H-4), 7.71 (d, 1 H; 3J = 8.0 Hz; H-1 ), 7.85 (psd, 2H; 3J + 5J = 8.9 Hz; H-8 ), 9.96 (bs, 1 H; HCl), 1 1 .46 (bs, 1 H; HCl). MS (EI+): m/z (%) = 381/383 (100, M+ ), 203 (72, [M-Br- N(CH2CH2)2NCH3]+ ). HRMS (EI+): berechnet: 381 .084059, gefunden 381 .087401 . EA: berechnet: 52.77 % C, 4.87 % H; 9.23 %
Figure imgf000074_0003
N, gefunden: 52.68 % C, 4.97 % H; 9.18 % N. (Z)-3-[4-(Cyclohexylamino)phenyl]-2-phenylacrylnitril (SCH174)
1H-NMR (c/e-DMSO, 30 °C, 400 MHz): <5H (ppm) = 1.10-1.21 (m, 3H; H-11+12), 1.27-1.39 (sm, 2H; H-11), 1.53-1.61 (sm, 1H; H-12), 1.65-1.74 (sm, 2H; H-10), 1.86-1.93 (sm, 2H; H-10), 3.23-3.33 (sm, 1H; H-9), 6.40 (d, 1H; 3J = 7.8 Hz; NH), 6.64 (psd, 2H; 3J + 5J = 8.7 Hz; H-8), 7.28-7.33 (sm, 1H; H-1), 7.39-7.45 (m, 2H; H-2), 7.60- 7.64 (m, 2H; H-3), 7.69 (s, 1 H; H-5), 7.74 (psd, 2H; 3J + 5J = 8.7 Hz; H-7). MS (EI+): m/z (%) = 302 (100, M+), 259 (59, [M- CH2CH2CH2]+). HRMS (EI+): berechnet: 302.178299, gefunden 302.178004. EA: berechnet: 83.40 % C, 7.33 % H; 9.26 % N,
Figure imgf000075_0001
gefunden: 83.27 % C, 7.26 % H; 9.10 % N.
(Z)-2-Phenyl-3-[4-(phenylamino)phenyl]acrylnitril (SCH175)
Figure imgf000075_0002
(Z)-2-{1 -Cyano-2-[4-(dimethylamino)phenyl]vinyl}benzonitril (SCH177)
Figure imgf000075_0003
(Z)-3-[4-(Azepan-1 -yl)phenyl]-2-phenylacrylnitril (SCH178)
1H-NMR (c/e-DMSO, 30 °C, 400 MHz): <5H (ppm) = 1 .41-1 .47 (sm, 4H; H-12), 1 .67-1 .74 (m, 4H; H-1 1 ), 3.49-3.54 (sm, 4H; H-10), 6.78 (psd, 2H; 3J + 5J = 9.2 Hz; H-8), 7.29-7.34 (sm, 1 H; H-1 ), 7.40-7.45 (m, 2H; H-2), 7.62-7.66 (m, 2H; H-3), 7.74 (s, 1 H; H-5), 7.83 (psd, 2H; 3J
5J = 8.9 Hz; H-7). MS (EI+): m/z (%) = 302 (100, M+ ), 273 (55, [M- (CH2)2]+ ), 259 (28, [M-(CH2)3]+ ), 231 (14, [M-(CH2)5]+ ), 218 (16, [M- (CH2)6]+ ), 203 (26, [M-N(CH2CH2CH2)2]+ ). HRMS (EI+): berechnet: 302.178299, gefunden 302.177334.
Figure imgf000076_0001
12 12'
(Z)-3-[4-(Dimethylamino)phenyl]-2-(2-iodphenyl)acrylnitril (SCH179)
1H-NMR (CDCIs, 21 °C, 400 MHz): <5H (ppm) = 3.06 (s, 6H; CH3), 6.73 (psd, 2H; 3J + 5J = 9.2 Hz; H-9), 6.99 (s, 1 H; H-6), 7.04 (ddd, 1 H; 3J = 7.7, 3J = 6.6, 4J = 2.5 Hz; H-3), 7.36-7.42 (m, 2H; H-2+4), 7.85 (psd, 2H; 3J + 5J = 8.9 Hz; H-8), 7.91-7.94 (m, 1 H; H-1 ). MS (EI+): m/z (%) = 347 (100, M+ ). HRMS (EI+): berechnet: 374.028001 , gefunden 374.024834. Schmelzpunkt (nicht korrigiert): 134 °C.
Figure imgf000076_0002
(Z)-3-[4-(4-Methylpiperazin-1 -yl)phenyl]-2-[2-(trifluormethyl)phenyl]acrylnitril
(SCH191 ) (dihydrochlorid)
1H-NMR (c/6-DMSO, 30 °C, 400 MHz): <5H (ppm) = 2.75 (d, 3H; J = 4.6 Hz; CH3), 3.03-3.14 (sm, 2H; H-12), 3.25-3.34 (sm, 2H; H-12), 3.40- 3.47 (sm, 2H; H-1 1 ), 3.99-4.06 (sm, 2H; H-1 1 ), 7.1 1 (psd, 2H; 3J + 5J = 8.9 Hz; H-9), 7.30 (s, 1 H; H-6), 7.60-7.68 (sm, 2H; H-3+4), 7.73- 7.78 (sm 1 H; H-2), 7.80-7.85 (m, 3H; H-1 +8), 1 1 .02 (bs, 1 H; HCl), 1 1 .52 (s, 1 H; HCl). MS (EI+): m/z (%) = 371 (100, M+ ). HRMS (EI+): berechnet: 371 .160933, gefunden 371 .157714.
Figure imgf000076_0003
(Z)-3-[4-(Dimethylamino)-3-methoxyphenyl]-2-phenylacrylnitril (SCH193)
1H-NMR (c/e-DMSO, 30 °C, 400 MHz): <5H (ppm) = 2.81 (s, 6H; NCH3), 3.82 (s, 3H; OCH3), 6.90 (d, 1 H; 3J = 8.2 Hz; H-8), 7.34-7.39 (sm, 1 H; H-1 ), 7.43-7.51 (m, 3H; H-2+9), 7.62 (d, 1 H; 4J = 1 .8 Hz; H-7), 7.67-7.71 (m, 2H; H-3), 7.87 (s, 1 H; H-5). MS (EI+): m/z (%) = 278 (100, M+ ), 263 (41 , [M-CH3]+ ). HRMS (EI+): berechnet: 278.141913, gefunden 278.141310. EA: berechnet: 77.67 % C, 6.52 % H; 10.06
Figure imgf000077_0001
% N, gefunden: 77.34 % C, 6.46 % H; 9.85 % N.
(Z)-3-[4-(Dimethylamino)phenyl]-2-(4-fluorphenyl)acrylnitril (SCH199)
1H-NMR (CDCIs, 21 °C, 400 MHz): <5H (ppm) = 3.06 (s, 6H; CH3), 6.73 (psd, 2H; 3J + 5J = 8.9 Hz; H-7), 7.06-7.13 (sm, 2H; H-1 ), 7.32 (s, 1 H; H-4), 7.56-7.61 (sm, 2H; H-2), 7.84 (psd, 2H; 3J + 5J = 8.7 Hz; H- 6). MS (EI+): m/z (%) = 266 (100, M+ ). HRMS (EI+): berechnet: 266.121927, gefunden 266.120746. EA: berechnet: 76.67 % C, 5.68 % H; 10.52 % N, gefunden: 76.31 % C, 5.75 % H; 10.55 % N.
Figure imgf000077_0002
(Z)-2-(2-Chlor-4-fluorphenyl)-3-[4-(dimethylamino)phenyl]acrylnitril (SCH200)
1H-NMR (CDCI3, 21 °C, 400 MHz): <5H (ppm) = 3.06 (s, 6H, CH3), 6.73 (psd, 2H, 3J + 5J = 8.9 Hz; H-8), 7.02 (ddd, 1 H, 3J = 8.5, 3J h,F = 7.8, 4J = 2.5 Hz; H-2), 7.07 (s, 1 H, H-5), 7.19 (dd, 1 H, 3J H,F = 8.5, 4J = 2.5 Hz; H-1 ), 7.39 (dd, 1 H, 3J = 8.7, 4J H,F = 5.6 Hz; H-3), 7.84 (psd, 2H, 3J + 5J = 8.9 Hz; H-7). MS (EI+): m/z (%) = 300 (100, M+ ), 265 (17, [M-Cl] + ), 221 (28, [M-CI-N(CH3)2]+ ). HRMS (EI+): berechnet: 300.082955, gefunden 300.081995.
Figure imgf000077_0003
A/,/V-Dimethyl-4-(2-phenylbut-1 -en-1 -yl)anilin (STI026) (%) = 251 (62, M+ ), 236 (100, [M-Me]+ ). : berechnet: 251 .167400 gefunden:
Figure imgf000077_0004
(Z)-Ethyl 3-(4-(dimethylamino)phenyl)-2-phenylacrylat (STI033)
1H-NMR (CDCI3, 21 °C, 400 MHz): <5H (ppm) = 1 .26 (t, 3H, 3J = 7.1 Hz), 2.93 (s, 6H), 4.23 (q, 2H, 3J = 7.1 Hz), 6.46 (psd, 2H, 3J + 5J = 7.3 Hz), 6.92 (psd, 2H, 3J + 5J = 8.9 Hz), 7.22-7.29 (m, 2H), 7.31-7.43 (m, 3H), 7.77 (s, 1 H). MS (ESI+): m/z (%) = 296 (100, [M+H]+). EA: berechnet: C: 77.26 % H: 7.17 % N: 4.74 %; gefunden: C: 77.25 % H: 7.03 % N: 4.71 %.
Figure imgf000078_0001
(Z)-3-(4-(Dimethylamino)phenyl)-2-(2-nitrophenyl)acrylnitril (STI055) z): <5H (ppm) = 3.07 (s, 6H), 6.74 (s, 1 H), 7.49-7.55 (m, 2H), 7.62- 5J = 8.9 Hz), 7.99-8.03 (sm, 1 H). M+ ), 148 (100, [Ph(NO2)CCH]+ ). 3.1 16427, gefunden: 293.1 18392. % N: 14.33 %; gefunden: C: 69.26
Figure imgf000078_0002
A/,/V-Dimethyl-4-(2-phenyl-3-oxoprop-1 -en-1 -yl)anilin (STI081 ) (100, [M+H]+), 236 [[M+H-
Figure imgf000078_0003
A/,/V-Dimethyl-4-(2-phenylbutadien-1 -yl)anilin (STI083)
MS (ESI+): m/z (%) = 249 (100 [M+H]+), 234 [[M+H- CH3]+, 205 [[M+H-N(CH3)2]+.
Figure imgf000078_0004
A/,/V-Dimethyl-4-(2-phenylbut-1 -en-2-in-1 -yl)anilin (STI84)
MS (ESI+): m/z (%) = 247 (100 [M+H]+), 222 [[M+H- CCH]+, 203 [[M+H-N(CH3)2]+.
Figure imgf000078_0005
(Z)-Methyl 3-(4-(dimethylamino)phenyl)-2-phenylacrylat (STI085)
1H-NMR (CDCI3, 21 °C, 400 MHz): <5H (ppm) = 2.93 (s, 6H), 3.75 (s, 3H), 6.46 (psd, 2H, 3J + 5J = 8.5 Hz), 6.92 (psd, 2H, 3J + 5J = 8.9 Hz), 7.23-7.26 (m, 2H), 7.33-7.42 (m, 3H), 7.79 (s, 1 H). MS (ESI+): m/z (%) = 282 (100, [M+H]+).
Figure imgf000079_0001
(Z)-3-(4-(Dimethylamino)phenyl)-2-phenylprop-2-en-1 -ol (STI087)
1H-NMR (CDCIs, 21 °C, 400 MHz): <5H (ppm) = 2.88 (s, 6H), 4.43 (dd, 2H, 3J = 6.2, 4J = 0.9 Hz), 6.47 (psd, 2H, 3J + 5J = 8.9 Hz), 6.57 (s, 1 H), 6.88 (psd, 2H, 3J + 5J = 8.7 Hz), 7.26-7.31 (m, 2H), 7.33-7.37 (m, 3H). MS (ESI+): m/z (%) = 254 (100, [M+H]+), 276 (23, [M+Na]+).
Figure imgf000079_0002
A/,/V-Dimethyl-4-(2-phenyl-2-nitroethen-1 -yl)anilin (STI089) /z (%) = 269 (100, [M+H]+), 223
Figure imgf000079_0003
2-(2-Chlorphenyl)-3-(4-(4-isobutylpiperazin-1 -yl)phenyl)acrylnitril (STI101 )
MS (ESI+): m/z (%) = 380 (100, [M+H]+), 346 (32, [M-Cl+H]+). HRMS (EI+): m/z
berechnet: 79.181526; gefunden: 379.184022..
Figure imgf000079_0004
2-(2-Chlorphenyl)-3-(4-(4-isopentylpiperazin-1 -yl)phenyl)acrylnitril (STI105)
MS (ESI+): m/z (%) = 394 (100, [M+H]+). HRMS (EI+): m/z berechnet: 393.197176; gefunden: 393.196349.
Figure imgf000079_0005
-(2-Chlorphenyl)-3-(4-(4-(4-methylpentyl)piperazin-1 -yl)phenyl)acrylnitril (STI106)
MS (ESI+): m/z (%) = 408 (100, [M+H]+). HRMS (EI+): m/z berechnet: 407.212826; gefunden: 407.210154.
Figure imgf000080_0001
-(2-Chlorphenyl)-3-(4-(4-(5-methylhexyl)piperazin-1 -yl)phenyl)acrylnitril (STI107)
MS (ESI+): m/z (%) = 422 ([M+H]+), 388 (30, [M-Cl+H]+). HRMS (EI+): m/z berechnet: 421 .228476; gefunden: 421 .230266.
Figure imgf000080_0002
-Chlorphenyl)-3-(4-(dimethylamino)phenyl)acrylnitril (STI108) MHz): <5H (ppm) = 3.06 (s, 6H), 6.71 .26-7.28 (m, 1 H), 7.33 (t, 1 H, 3J = 7.8 m, 1 H), 7.60 (t, 1 H, 4J = 2.0 Hz), 7.86 MS (EI+): m/z (%) = 283 (100, M+ ). 282.092376; gefunden: 282.090917. 5.35 % N: 9.91 %; gefunden: C: 72.29
Figure imgf000080_0003
-(2-Chlorphenyl)-3-(4-(4-phenethylpiperazin-1 -yl)phenyl)acrylnitril (STI
MS (ESI+): m/z (%) = 428 (100, [M+H]+), 394 (29, [M-Cl+H]+). HRMS (EI+): m/z berechnet: 427.181526; gefunden: 427.181267.
Figure imgf000080_0004
-(4-(4-Benzylpiperazin-1 -yl)phenyl)-2-(2-chlorphenyl)acrylnitril (STI1 1 1 )
MS (ESI+): m/z (%) = 414 (100, [M+H]+), 346 (33, [M-Cl+H]+). HRMS (EI+): m/z berechnet: 413.165876; gefunden: 413.164577.
Figure imgf000080_0005
-(2-Chlorphenyl)-3-(4-(4-ethylpiperazin-1 -yl)phenyl)acrylnitril (STI1 12) = 352 (100, [M+H]+). HRMS net: 351 .150225; gefunden:
Figure imgf000081_0001
-(2-Chlorphenyl)-3-(4-(4-propylpiperazin-1 -yl)phenyl)acrylnitril (STI1 13)
MS (ESI+): m/z (%) = 366 (100, [M+H]+). HRMS (EI+): m/z berechnet: 365.165876; gefunden: 365.163388.
Figure imgf000081_0002
-(2-Chlorphenyl)-3-(4-(4-butylpiperazin-1 -yl)phenyl)acrylnitril (STI1 14)
MS (ESI+): m/z (%) = 380 (100, [M+H]+). HRMS (EI+): m/z berechnet: 379.181526; gefunden: 379.183797.
Figure imgf000081_0003
-(2-Chlorphenyl)-3-(4-(4-pentylpiperazin-1 -yl)phenyl)acrylnitril (STI1 15)
MS (ESI+): m/z (%) = 394 (100, [M+H]+). HRMS (EI+): m/z berechnet: 393.197176; gefunden: 393.198493.
Figure imgf000081_0004
-(2-Chlorphenyl)-3-(4-(4-hexylpiperazin-1 -yl)phenyl)acrylnitril (STI1 16)
MS (ESI+): m/z (%) = 408 (100, [M+H]+). HRMS (EI+): m/z berechnet: 407.212826; gefunden: 407.210785.
Figure imgf000081_0005

Claims

Patentansprüche Verbindungen der allgemeinen Formel (II)
Figure imgf000082_0001
(II)
worin
R1 für einen der folgenden Reste steht:
-H, -CN, -NC, -CF3, -CHO, -COOH, -CH2-COOH, -COOR13, -CH2-COOR13, -OH, -CH2OH, -OR13, -CH2OR13, -CONH2, -CONH(R13),
-CON(R13)(R14), -COR14, -SO2NH2, -SO2NH(R13), -SO2N(R13)(R14) , -NO2, -NH2, -NHR13, -N(R13)(R14), -CH2-NH2, -CH2-NHR13, -CH2-N(R13)(R14), d-Cio-Alkyl, Ci-Ci0-Fluoralkyl, Ci-Ci0-Perfluoralkyl, C3-Cio-Cycloalkyl, C2-Cio-Alkenyl, C5-Cio-Cycloalkenyl, C2-Cio-Fluoralkenyl, C5-Cio-Fluorcycloalkenyl, C2-Cio-Perfluoralkenyl, C5-Cio-Perfluorcycloalkenyl, C2-Cio-Alkinyl, C2-Cio-Fluoralkinyl, C2-Cio-Perfluoralkinyl;
R2 für einen der folgenden Reste steht:
-H, Ci-Cio-Alkyl, d-Cio-Halogenalkyl, Ci-Cio-Fluoralkyl, Ci-Cio-Perfluoralkyl, C3-Cio-Cycloalkyl, Ci-C6-Heterocyclyl, C2-Cio-Alkenyl, C5-Cio-Cycloalkenyl, C2-Cio-Alkinyl, Aryl, -CN, Heteroaryl;
R3 - R9, R11, R12 unabhängig voneinander folgende Reste bedeuten:
-H, -OH, -CH2OH, -OR18, -CH2OR18, -CF3, -OCF3, -F, -Cl, -Br, -I,
-COR18, -COOH, -CH2-COOH, -COOR18, -CH2-COOR18, -CONH2, -CN, -CONH(R18), -CON(R18)(R19), -SO2NH2, -SO2NH(R18), -SO2N(R18)(R19) , -NO2, -NH2, -NHR18, -N(R18)(R19), -CH2-NH2, -CH^NHR18, -CH2-N(R18)(R19), -O-CO-R18, -NHCO-R18, -N(R18)-CO-R19, C1-C10- Alkyl, Ci-Cio-Fluoralkyl, Ci-Ci0-Perfluoralkyl, C3-Ci0-Cycloalkyl, C2-Ci0- Alkenyl, C5-Cio-Cycloalkenyl, C2-Cio-Fluoralkenyl, C5-Cio-Fluorcycloalkenyl, C2-Cio-Perfluoralkenyl, C5-Cio-Perfluorcycloalkenyl, C2-Cio-Alkinyl, C2-Cio- Fluoralkinyl, C2-Cio-Perfluoralkinyl;
R10 einen der folgenden Reste bedeutet: -R15,
Figure imgf000083_0001
Figure imgf000084_0001
R und R unabhängig voneinander folgende Reste bedeuten:
Ci-Cio-Alkyl, d-Cio-Halogenalkyl, d-Cio-Fluoralkyl, Ci-Cio-Perfluoralkyl, C3-Cio-Cycloalkyl, C2-Ci0-Alkenyl, C5-Ci0-Cycloalkenyl, C2-Ci0-Alkinyl, Aryl, Heteroaryl;
R15 einen der folgenden Reste bedeutet -NH2, -NHR18, -N(R18)(R19), - CH2-NHR18 oder -CH2-N(R18)(R19),
R18 und R19 unabhängig voneinander folgende Reste bedeutet:
Ci-Cio-Alkyl, C3-Ci0-Cycloalkyl, Ci-C6-Heterocyclyl, C2-Ci0-Alkenyl, C5-C10-
Cycloalkenyl, C2-Cio-Alkinyl, Aryl, Heteroaryl;
R20 - R24 unabhängig voneinander folgende Reste bedeuten:
-H, -OH, -OR25, -CF3, -OCF3, -F, -Cl, -Br, -I, -COR25, -COOH, -COOR25, -CONH2, -CONH(R25), -CON(R25)(R26) , -NH2, -NHR25, -N(R25)(R26), -O-CO-R25, -NHCO-R25, -N(R25)-CO-R26, -SO2NH2, -SO2NH(R25), -SO2N(R25)(R26), Ci-Ci0-Alkyl;
X steht für: -O-, -S- oder -N(R16)-
Y steht für: -O-, -S- oder -N(R17)-
R16, R17, R25 und R26 unabhängig voneinander folgende Reste bedeuten:
-H, Ci-Cio-Alkyl, C3-Ci0-Cycloalkyl, C2-Ci0-Alkenyl, C5-Ci0-Cycloalkenyl, C2-
Cio-Alkinyl, Aryl, Heteroaryl, Aralkyl; sowie deren Metallkomplexe, Salze, Enantiomere, Enantiomerengemische, Diastereomere, Diastereomerengemische, Tautomere, Hydrate, Solvate, und Racemate der vorgenannten Verbindungen.
Verbindungen gemäß Anspruch 1 , wobei R1 für -CN steht.
Verbindungen gemäß Anspruch 1 oder 2 zur Verwendung in der Medizin. Verbindungen gemäß Anspruch 1 oder 2 zur Verwendung als Inhibitor Rezeptors des Typs PPAR beta/delta.
Verwendung der Verbindungen gemäß allgemeiner Formel (I)
Figure imgf000085_0001
(l)worin
Z für eines der folgenden Molekülfragmente steht:
Figure imgf000085_0002
R1 für einen der folgenden Reste steht:
-H, -CN, -NC, -CF3, -CHO, -COOH, -CH2-COOH, -COOR13,
1 3
-CH2-COOR -OH, -CH2OH, -OR13, CH2OR13, -CONH2,
-CONH(R13),
Figure imgf000085_0003
-SO2NH2, -SO2NH(R13),
13 > 1 3 D 14
-SO2N(R1 J)(R14), -NO2, -NH2, -NHRi a, -N(R1 ;J)(R14), -CH2-NH2,
-CH2-NHR13, -CH2-N(R13)(R14), d-Cio-Alkyl, Ci-Cio-Fluoralkyl,
Ci-Cio-Perfluoralkyl, C3-Ci0-Cycloalkyl, C2-Ci0-Alkenyl, C5-Ci0-Cycloalkenyl, C2-Cio-Fluoralkenyl, C5-Ci0-Fluorcycloalkenyl, C2-Ci0-Perfluoralkenyl, C5-C10- Perfluorcycloalkenyl, C2-Ci0-alkinyl, C2-Ci0-Fluoralkinyl, C2-Ci0-Perfluoralkinyl; R2 für einen der folgenden Reste steht:
-H, Ci-Cio-Alkyl, d-Cio-Halogenalkyl, d-Cio-Fluoralkyl, Ci-Cio-Perfluoralkyl, C3-Cio-Cycloalkyl, Ci-C6-Heterocyclyl, C2-Cio-Alkenyl, C5-Cio-Cycloalkenyl, C2-Cio-Alkinyl, Aryl, -CN, Heteroaryl;
R3 - R8, R12, R15, R27, R28 unabhängig voneinander folgende Reste bedeuten: -H, -OH, -CH2OH, -OR18, -CH2OR18, -CF3, -OCF3, -F, -Cl, -Br, -I, -COR18, -COOH, -CH2-COOH, -COOR18, -CH2-COOR18, -CONH2, -CN, -CONH(R18), -CON(R18)(R19), -SO2NH2, -SO2NH(R18), -SO2N(R18)(R19), -NO2, -NH2, -NHR18, -N(R18)(R19), -CH2-NH2, -CH^NHR18, -CH2-N(R18)(R19), -O-CO-R18, -NHCO-R18, -N(R18)-CO-R19, C1-C10- Alkyl, Ci-Cio-Fluoralkyl, Ci-Ci0-Perfluoralkyl, C3-Ci0-Cycloalkyl, C2-Ci0- Alkenyl, C5-Cio-Cycloalkenyl, C2-Cio-Fluoralkenyl, C5-Cio-Fluorcycloalkenyl, C2-Cio-Perfluoralkenyl, C5-Cio-Perfluorcycloalkenyl, C2-Cio-Alkinyl, C2-Cio- Fluoralkinyl, C2-Cio-Perfluoralkinyl;
R9 - R11 unabhängig voneinander folgende Reste bedeuten: -R15, -R27, -R28,
Figure imgf000086_0001
Figure imgf000087_0001
R und R unabhängig voneinander folgende Reste bedeuten:
Ci-Cio-Alkyl, d-Cio-Halogenalkyl, d-Cio-Fluoralkyl, Ci-Cio-Perfluoralkyl, C3-Cio-Cycloalkyl, C2-Ci0-Alkenyl, C5-Ci0-Cycloalkenyl, C2-Ci0-Alkinyl, Aryl, Heteroaryl;
R18 und R19 unabhängig voneinander folgende Reste bedeuten:
Ci-Cio-Alkyl, C3-Ci0-Cycloalkyl, Ci-C6-Heterocyclyl, C2-Ci0-Alkenyl, C5-C10-
Cycloalkenyl, C2-Cio-Alkinyl, Aryl, Heteroaryl;
X steht für: -O-, -S- oder -N(R16)-
Y steht für: -O-, -S- oder -N(R17)-
R20 - R24 unabhängig voneinander folgende Reste bedeuten:
-H, -OH, -OR25, -CF3, -OCF3, -F, -Cl, -Br, -I, -COR25, -COOH, -COOR25, -CONH2, -CONH(R25), -CON(R25)(R26), -NH2, -NHR25, -N(R25)(R26), -O-CO-R25, -NHCO-R25, -N(R25)-CO-R26, -SO2NH2, -SO2NH(R25), -SO2N(R25)(R26), Ci-Cio-Alkyl;
R16, R17, R25 und R26 unabhängig voneinander folgende Reste bedeuten: -H, d-Cio-Alkyl, C3-Ci0-Cycloalkyl, C2-Ci0-Alkenyl, C5-Ci0-Cycloalkenyl, C2- Cio-Alkinyl, Aryl, Heteroaryl, Aralkyl; zur Behandlung von inflammatorischen Prozessen, Entzündungen, Zelldifferenzierungsprozessen oder proliferativen Erkrankungen.
6. Verwendung gemäß Anspruch 5, wobei es sich bei den proliferativen Erkrankungen um Tumoren, Metastasen oder Krebs handelt.
7. Verwendung der Verbindungen gemäß Anspruch 5 zur Behandlung von Lebererkrankungen.
8. Verwendung der Verbindungen gemäß Anspruch 5 zur Behandlung von Erkrankungen des Fettsäurestoffwechsels und des Glukosestoffwechsels, bei denen Insulinresistenz involviert ist.
9. Pharmazeutische Zusammensetzung enthaltend mindestens eine Verbindung gemäß Anspruch 1 und mindestens einen pharmakologisch verträglichen Hilfsstoff, Träger und/oder mindestens ein Lösungsmittel.
10. Pharmazeutische Zusammensetzung gemäß Anspruch 9 zur Behandlung von inflammatorischen Prozessen, Entzündungen, Zelldifferenzierungsprozessen, proliferativen Erkrankungen, Tumoren, Metastasen, Krebs, Lebererkrankungen sowie Erkrankungen des Fettsäurestoffwechsels und des Glukosestoffwechsels, bei denen Insulinresistenz involviert ist.
PCT/EP2012/072655 2011-11-15 2012-11-14 Stilben-verbindungen als ppar beta/delta inhibitoren für die behandlung von ppar beta/delta-vermittelten erkrankungen WO2013072390A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011118606.2 2011-11-15
DE102011118606A DE102011118606A1 (de) 2011-11-15 2011-11-15 Stilben-Verbindungen als PPAR beta/delta Inhibitoren für die Behandlung von PPAR beta/delta-vermittelten Erkrankungen

Publications (2)

Publication Number Publication Date
WO2013072390A2 true WO2013072390A2 (de) 2013-05-23
WO2013072390A3 WO2013072390A3 (de) 2013-09-26

Family

ID=47215544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/072655 WO2013072390A2 (de) 2011-11-15 2012-11-14 Stilben-verbindungen als ppar beta/delta inhibitoren für die behandlung von ppar beta/delta-vermittelten erkrankungen

Country Status (2)

Country Link
DE (1) DE102011118606A1 (de)
WO (1) WO2013072390A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015144688A1 (en) * 2014-03-25 2015-10-01 Ruprecht-Karls-Universität Heidelberg Host dependency factors as targets for antiviral therapy
JP2019531299A (ja) * 2016-09-30 2019-10-31 オシェラ インコーポレイテッドOzchela Inc. スチルベン誘導体及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040180892A1 (en) 2003-02-20 2004-09-16 Encysive Pharmaceuticals Inc. Phenylenediamine urotensin-II receptor antagonists and CCR-9 antagonists
DE60215145T2 (de) 2001-05-07 2007-08-23 Smithkline Beecham Corp. Sulfonamide
WO2010013071A2 (en) 2008-08-01 2010-02-04 University Court Of The University Of Dundee Methods concerning ppar delta and antagonists thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1793261A1 (de) * 1968-08-23 1971-07-01 Bayer Ag ss-Phenyl-acrylsaeurenitrile
US5302606A (en) * 1990-04-16 1994-04-12 Rhone-Poulenc Rorer Pharmaceuticals Inc. Styryl-substituted pyridyl compounds which inhibit EGF receptor tyrosine kinase
GB9304919D0 (en) * 1993-03-10 1993-04-28 Celltech Ltd Chemical compounds
US8501889B2 (en) * 2008-06-26 2013-08-06 Commonwealth Scientific And Industrial Research Organisation Conducting and semiconducting organic materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60215145T2 (de) 2001-05-07 2007-08-23 Smithkline Beecham Corp. Sulfonamide
US20040180892A1 (en) 2003-02-20 2004-09-16 Encysive Pharmaceuticals Inc. Phenylenediamine urotensin-II receptor antagonists and CCR-9 antagonists
WO2010013071A2 (en) 2008-08-01 2010-02-04 University Court Of The University Of Dundee Methods concerning ppar delta and antagonists thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FEBS J., vol. 273, 2006, pages 170 - 179
HUM. GENE THER., vol. 9, 1998, pages 2653 - 2659
J. BIOL. CHEM., vol. 285, 2010, pages 29469 - 29479
MOL. PHARMACOL., vol. 80, 2011, pages 828 - 838
NUCLEIC ACIDS RES., vol. 39, 2011, pages 119 - 131

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015144688A1 (en) * 2014-03-25 2015-10-01 Ruprecht-Karls-Universität Heidelberg Host dependency factors as targets for antiviral therapy
JP2019531299A (ja) * 2016-09-30 2019-10-31 オシェラ インコーポレイテッドOzchela Inc. スチルベン誘導体及びその製造方法
US11286228B2 (en) 2016-09-30 2022-03-29 Ozchela Inc. Stilbene derivative and method for preparing same
US11401231B2 (en) 2016-09-30 2022-08-02 Ozchela Inc. Stilbene derivative and method for preparing same
JP7324706B2 (ja) 2016-09-30 2023-08-10 オシェラ インコーポレイテッド スチルベン誘導体及びその製造方法

Also Published As

Publication number Publication date
DE102011118606A1 (de) 2013-05-16
WO2013072390A3 (de) 2013-09-26

Similar Documents

Publication Publication Date Title
DE69730345T2 (de) Triarylethanderivate als pde iv hemmer
KR100748380B1 (ko) 카나비노이드-1 수용체에서 활성인 치환된 아미드
DE69532808T2 (de) Tri-substituierte phenyl-derivate verwendbar als pde iv hemmer
DE60225316T2 (de) Cyanoalkylamino-derivate als protease-hemmer
DE69526080T2 (de) Tri-substituierte phenyl-derivate verwendbar als pde iv hemmer
EP0934311B1 (de) Neue heterocyclylmethyl-substituierte pyrazolderivate und ihre verwendung in der behandlung von herz-kreislauf-erkrankungen
DE602004012969T2 (de) Phenylacetamide und ihre verwendung als glukokinase-modulatoren
DE69428080T2 (de) Optisch aktive 2-Imidazoline-5-one-Derivate als Fungizide
DE69428650T2 (de) Dreisubstituirte phenylderivate als phosphodiesterasehemmer und verfahren zur ihre herstellung
DE69814431T2 (de) 3,3-diarylpropylamine , ihre verwendung und herstellung
DE60029235T2 (de) Fab-i-hemmer
DE69721134T2 (de) Verfahren zur Herstellung von 4-(2-(2-Pyridyl)Ethoxy)Benzaldehyd-Derivate
DE60111498T2 (de) Kondensierte imidazolderivate
JP2009538358A (ja) 脂肪酸アミド加水分解酵素のオキサゾリルピペリジン・モジュレーター
CA2510785A1 (en) Substituted amides
US20080096937A1 (en) Novel hexafluoroisopropanol derivatives
AT391694B (de) Verfahren zur herstellung von neuen ethylendiaminmonoamid-derivaten
EP2107054A1 (de) Antiproliferative Verbindungen und therapeutische Verwendungen dafür
DE60009911T2 (de) Aminothiazolderivate und ihre verwendung als crf-rezeptor-liganden
WO2006082107A1 (de) Thiazolidinone als inhibitoren der polo like kinase (plk) als arzneimittel
EP0673369A1 (de) Substituierte benzazepinone
DE60112090T2 (de) Verfahren zur herstellung von arylacetylaminothiazolen
DE68925933T2 (de) Arylalkylamine und -amide mit krampflösender und nervenschützender Wirkung
EP1963278A1 (de) Substituierte imidazolin-derivate
WO2013072390A2 (de) Stilben-verbindungen als ppar beta/delta inhibitoren für die behandlung von ppar beta/delta-vermittelten erkrankungen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12788185

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12788185

Country of ref document: EP

Kind code of ref document: A2