WO2013072183A2 - Verfahren zum betrieb einer gas- und dampfturbinenanlage für die frequenzstützung - Google Patents

Verfahren zum betrieb einer gas- und dampfturbinenanlage für die frequenzstützung Download PDF

Info

Publication number
WO2013072183A2
WO2013072183A2 PCT/EP2012/071478 EP2012071478W WO2013072183A2 WO 2013072183 A2 WO2013072183 A2 WO 2013072183A2 EP 2012071478 W EP2012071478 W EP 2012071478W WO 2013072183 A2 WO2013072183 A2 WO 2013072183A2
Authority
WO
WIPO (PCT)
Prior art keywords
steam
turbine
steam turbine
pressure
gas
Prior art date
Application number
PCT/EP2012/071478
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2013072183A3 (de
Inventor
Andreas Pickard
Erich Schmid
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to KR1020147012600A priority Critical patent/KR20140088145A/ko
Priority to IN869KON2014 priority patent/IN2014KN00869A/en
Priority to US14/356,158 priority patent/US20140345278A1/en
Priority to CN201280055971.5A priority patent/CN104246151B/zh
Priority to RU2014124127/06A priority patent/RU2014124127A/ru
Priority to EP12780192.6A priority patent/EP2798164A2/de
Publication of WO2013072183A2 publication Critical patent/WO2013072183A2/de
Publication of WO2013072183A3 publication Critical patent/WO2013072183A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/02Use of accumulators and specific engine types; Control thereof
    • F01K3/04Use of accumulators and specific engine types; Control thereof the engine being of multiple-inlet-pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor

Definitions

  • the invention relates to the frequency support operation of a gas and steam turbine plant.
  • this also includes the ability to release additional power in the event of high power consumption (so-called peak load operation).
  • peak load operation In the future, it is expected that power plants operating at their nominal point will also participate in peak load coverage and frequency support.
  • Today's solutions rely on the use of power reserves within the components or are based on technologies that can provide only a very low power reserve.
  • the gas turbine can be overfired for both frequency support and peak load coverage, the compressor vanes can be opened beyond the base load position, or water can be injected into the intake air duct.
  • Requirements relating only to peak load coverage can be met by steam injection into the gas turbine combustion chamber, by cooling the gas turbine intake air, for example with evaporative coolers or chillers, or by the waste heat steam generator (AHDE) with additional firing equipped to raise the steam turbine power.
  • AHDE waste heat steam generator
  • the live steam or the steam from the reheat can be accumulated and the turbine control valves are then opened quickly.
  • EP 1 164 254 B1 describes a gas and steam turbine plant with steam diversions for peak load coverage, ie for additional power at full load.
  • the object of the invention is to provide a method for the frequency-supporting operation of a gas and steam turbine plant, which provides an improved power reserve.
  • the invention solves this problem by providing that in the operation of a gas and steam turbine plant with a gas turbine, a steam turbine and a Abhitzedampferzeu- ger, in the heat exchange with exhaust gas from the gas turbine steam for the steam turbine can be generated for frequency support in the power grid From a steady state operation, the absorption capacity of the steam turbine can be increased and the pressure in the heat recovery steam generator lowered to utilize storage reserves in the waste steam generator for increased steam generation, and heat energy is supplied to the waste heat steam generator so quickly that a performance curve of the gas and steam turbine plant in Consequence of increasing the absorption capacity of the steam turbine and the pressure reduction in the heat recovery steam generator is greater than or equal to a previously existing stationary operation.
  • the invention is therefore based on the idea to use storage reserves in the heat recovery steam generator to generate additional steam at sudden opening of the valves.
  • Pressure drop in the heat recovery steam generator is additionally generated steam and a sufficiently large and fast supply of heat energy should the usual dent in the performance curve prevent. This method can provide control power at partial and full load.
  • the flexibility and efficiency of the power plant can be significantly increased, since at high power demand additional energy is available, which leads to increased revenue especially at high electricity revenues in electricity markets and makes the operation of the plant more economical (peak load capacity).
  • the primary frequency support or the peak load operation it is not necessary for the primary frequency support or the peak load operation to design the high-pressure or the reheat part higher in the pressure than for the nominal operation.
  • the load range of the power plant can be extended, since even the low load operation can be set more flexible.
  • At least one valve in a bypass channel for bypassing a steam turbine stage or a steam turbine module is opened.
  • the heat energy is supplied by an additional power of the gas turbine and thus an increased exhaust gas flow.
  • the heat energy is supplied via an additional firing.
  • this must be dimensioned accordingly.
  • FIG. 1 shows a simplified circuit diagram of a gas and steam turbine plant with high and medium pressure overload discharge and control wheels in the steam turbine and an additional firing in the heat recovery steam generator
  • FIG. 3 Steam turbine power curve with overload introduction into the medium-pressure turbine for various live steam pressure to inlet pressure conditions.
  • FIG. 1 shows a gas and steam turbine plant 1, which comprises a gas turbine 2 and a steam turbine 3.
  • a gas turbine 2 and a steam turbine 3.
  • a rotor of the gas turbine, a rotor of a generator 5 and a rotor of the steam turbine 3 are coupled together, wherein the rotor of the steam turbine. 3 and the rotor of the generator 4 are rotationally separable from each other and coupled via a coupling 6.
  • the runners of the generator 5 and of the gas turbine 2 are rigidly connected via the shaft 4. prevented.
  • a flue gas outlet of the gas turbine 2 is connected via an exhaust pipe 7 with a heat recovery steam generator 8, which is provided for generating the operating steam of the steam turbine 3 from waste heat of the gas turbine.
  • a compressor 9 is driven by the rotating rotor of the gas turbine 2 via the shaft 4, which sucks combustion air from the environment and a combustion chamber 10 supplies.
  • the combustion air is mixed with fuel supplied by a fuel supply 11 and burned and the hot, pressurized exhaust gases are supplied to the gas turbine 12 and there relaxed under the power of work.
  • the still about 500 to 600 ° C hot exhaust gases are then fed through the exhaust pipe 7 to the heat recovery steam generator 8 and flow through this until they pass through a chimney 13 into the environment.
  • a high pressure superheater 14 On their way through the heat recovery steam generator 8, they pass their heat to a high pressure superheater 14, then a high pressure reheater 15, a high pressure evaporator 16, a high pressure preheater 17, then a medium pressure superheater 18, a medium pressure evaporator 19, a medium pressure preheater 20, then a low pressure superheater 21 , a low pressure evaporator 22 and finally a condensate preheater 23.
  • superheated steam is supplied through a steam discharge line 24 of a high pressure stage 25 of the steam turbine 3 and there relaxed under the power of work.
  • the shaft 4 and thus the generator 5 is moved to generate electrical energy.
  • the partially relaxed in the high-pressure stage 25 hot steam is then fed to the high-pressure reheater 15, where it is reheated and fed via a derivative 26 a medium-pressure stage 27 of the steam turbine 3 and there relaxed under the power of mechanical work.
  • the there partially relaxed steam is via an overflow 28 of a low pressure stage 29th fed to the steam turbine 3 and further relaxed there with the release of mechanical energy.
  • the expanded steam is condensed in the condenser 30 of the steam turbine 3, and the resulting condensate is a condensate pump 31 directly to a low pressure stage 32 of the heat recovery steam generator 8 or via a feed 33 - and provided by the corresponding pressure - a medium-pressure stage 34 or a high-pressure stage 35th of the heat recovery steam generator 8, where the condensate evaporates.
  • the steam is supplied via the corresponding outlets 24, 26, 36 of the heat recovery steam generator 8 back to the steam turbine 3 for relaxation and performance mechanical work.
  • shut-off valves 37 and 38 are arranged. From the high-pressure stage 25 of the steam turbine 3 leading steam discharge line 24 branches off a bypass channel 39 with a shut-off valve 40 for bypassing the Hoch horrstu- 25 fe. Similarly, a bypass channel 41 branches off with a shut-off valve 42 for bypassing the intermediate-pressure stage 27.
  • a first control wheel 43 is attached to the rotor of the steam turbine 3.
  • a second control wheel 44 is attached to the rotor of the steam turbine 3.
  • a control wheel comprises valves controlled via valves, which can be acted upon by segments of a turbine. Depending on how many of the valves are opened, a more or less large amount of additional steam flows through the nozzles into the turbine.
  • Figure 1 shows an additional firing 45 at the entrance of the heat recovery steam generator 8, in which the gas turbine exhaust gas, which still contains much oxygen, fuel is added and the mixture is burned.
  • the live steam over the temperature of the gas turbine exhaust gas can be overheated or for generating process steam when the steam generation is to be decoupled from the power generation of the gas turbine 2.
  • supplemental firing 45 may be of interest to increase the output of electrical power during peak demand periods.
  • the inventive method provides that the steam mass flow is increased by the steam turbine in the short term by opening an overload valve 40, 42 and a turbine bypass 39, 41 and connected to the power of the steam turbine 3 rises rapidly (seconds range).
  • the overload introduction can be utilized both at the high-pressure turbine 25 for raising the live steam mass flow and at the medium-pressure turbine 27 for increasing the intermediate superheat steam mass flow and before each further turbine stage (for example low-pressure turbine 29).
  • the intake capacity of the steam turbine can be increased via a control wheel 43, 44 on the high-pressure turbine 25 and / or the medium-pressure turbine 27 by opening associated valves.
  • Storage reserves can be released from all pressure stages 32, 34, 35 of the heat recovery steam generator 8 (for example also medium and low pressure systems, if present).
  • the drum pressure e.g. by a pressure control valve 46 in the medium-pressure steam system 34, while the Aus Grandefil can be increased. This increase in steam mass flow rate is due to an increase in the absorption capacity of the steam turbine and an associated pressure drop in the system.
  • the decreasing storage effect either by a self-igniting additional firing 45 in the heat recovery steam generator 8, operated in continuous minimum load additional firing 45 or by existing power reserves in the gas turbine 2 (turning up the compressor vanes, Studentsfeue- tion, or Vampfeindüsung Water injection in the compressor 9 or combustion chamber 10) compensated or further increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)
PCT/EP2012/071478 2011-11-14 2012-10-30 Verfahren zum betrieb einer gas- und dampfturbinenanlage für die frequenzstützung WO2013072183A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020147012600A KR20140088145A (ko) 2011-11-14 2012-10-30 주파수 지원을 위한 가스 및 증기 터빈 설비의 작동 방법
IN869KON2014 IN2014KN00869A (zh) 2011-11-14 2012-10-30
US14/356,158 US20140345278A1 (en) 2011-11-14 2012-10-30 Method for operating a gas and steam turbine installation for frequency support
CN201280055971.5A CN104246151B (zh) 2011-11-14 2012-10-30 用于频率保持运行燃气和蒸汽涡轮机设备的方法
RU2014124127/06A RU2014124127A (ru) 2011-11-14 2012-10-30 Способ эксплуатации парогазотурбинной установки с поддержанием частоты
EP12780192.6A EP2798164A2 (de) 2011-11-14 2012-10-30 Verfahren zum betrieb einer gas- und dampfturbinenanlage für die frequenzstützung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11188956.4A EP2592241A1 (de) 2011-11-14 2011-11-14 Verfahren zum Betrieb einer Gas- und Dampfturbinenanlage für die Frequenzstützung
EP11188956.4 2011-11-14

Publications (2)

Publication Number Publication Date
WO2013072183A2 true WO2013072183A2 (de) 2013-05-23
WO2013072183A3 WO2013072183A3 (de) 2014-10-02

Family

ID=47115955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/071478 WO2013072183A2 (de) 2011-11-14 2012-10-30 Verfahren zum betrieb einer gas- und dampfturbinenanlage für die frequenzstützung

Country Status (7)

Country Link
US (1) US20140345278A1 (zh)
EP (3) EP2592241A1 (zh)
KR (1) KR20140088145A (zh)
CN (1) CN104246151B (zh)
IN (1) IN2014KN00869A (zh)
RU (1) RU2014124127A (zh)
WO (1) WO2013072183A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685055A1 (de) * 2012-07-12 2014-01-15 Siemens Aktiengesellschaft Verfahren zur Stützung einer Netzfrequenz
US9243519B2 (en) * 2012-09-06 2016-01-26 General Electric Company Systems and methods for accelerating droop response to frequency variation of an electrical grid in a combined cycle power plant
EP2918797A1 (de) * 2014-03-12 2015-09-16 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Dampfkraftanlage
EP2918796A1 (de) * 2014-03-13 2015-09-16 Siemens Aktiengesellschaft Dampfkraftanlage mit Dampferzeuger umfassend eine Trommeldruckhaltearmatur
JP2017044131A (ja) * 2015-08-26 2017-03-02 株式会社東芝 蒸気タービン設備
EP3301267A1 (de) * 2016-09-29 2018-04-04 Siemens Aktiengesellschaft Verfahren und vorrichtung zum betreiben eines turbosatzes
EP3775502B1 (de) * 2018-06-22 2022-04-13 Siemens Energy Global GmbH & Co. KG Verfahren zum betreiben einer kraftwerksanlage
CN111507011B (zh) * 2020-04-26 2020-11-17 国电南京电力试验研究有限公司 供热抽汽对汽轮机滑压运行影响量的修正方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1164254B1 (en) 2000-06-13 2009-04-15 General Electric Company Optimized steam turbine peaking cycles utilizing steam bypass and related process

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031404A (en) * 1974-08-08 1977-06-21 Westinghouse Electric Corporation Combined cycle electric power plant and a heat recovery steam generator having improved temperature control of the steam generated
ZA835029B (en) * 1982-09-27 1984-03-28 English Electric Co Ltd Power-generation plant and method
US4578944A (en) * 1984-10-25 1986-04-01 Westinghouse Electric Corp. Heat recovery steam generator outlet temperature control system for a combined cycle power plant
EP0976914B1 (de) * 1998-07-29 2003-02-26 ALSTOM (Switzerland) Ltd Vorrichtung sowie Verfahren zur schnellen Bereitstellung von Leistungsreserven bei kombinierten Gas- und Dampfturbinenanlagen
DE10042317A1 (de) * 2000-08-29 2002-03-14 Alstom Power Nv Dampfturbine und Verfahren zur Einleitung von Beipassdampf
DE10115131A1 (de) * 2001-03-27 2002-10-17 Alstom Switzerland Ltd Verfahren zur sofortigen, schnellen und temporären Erhöhung der Leistung eines Kombikraftwerkes
AR029828A1 (es) * 2001-07-13 2003-07-16 Petrobras En S A Metodo para la regulacion primaria de frecuencia en turbinas de vapor de ciclo combinado
CN101142375B (zh) * 2005-03-18 2010-05-26 西门子公司 由组合式燃气和蒸汽轮机装置提供调整功率的方法和设备
US7608938B2 (en) * 2006-10-12 2009-10-27 General Electric Company Methods and apparatus for electric power grid frequency stabilization
PL2098691T3 (pl) * 2008-03-06 2013-12-31 Ansaldo Energia Spa Sposób sterowania instalacją o cyklu kombinowanym oraz instalacja o cyklu kombinowanym
AR066539A1 (es) * 2008-05-12 2009-08-26 Petrobras En S A Metodo para la regulacion primaria de frecuencia, a traves de control conjunto en turbinas de ciclo combinado.
EP2136035A1 (de) * 2008-06-16 2009-12-23 Siemens Aktiengesellschaft Betrieb einer Gas- und Dampfturbinenanlage mittels Frequenzumrichter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1164254B1 (en) 2000-06-13 2009-04-15 General Electric Company Optimized steam turbine peaking cycles utilizing steam bypass and related process

Also Published As

Publication number Publication date
CN104246151B (zh) 2016-07-13
WO2013072183A3 (de) 2014-10-02
EP2798164A2 (de) 2014-11-05
RU2014124127A (ru) 2015-12-27
EP2592241A1 (de) 2013-05-15
KR20140088145A (ko) 2014-07-09
IN2014KN00869A (zh) 2015-10-02
EP2907980A1 (de) 2015-08-19
US20140345278A1 (en) 2014-11-27
CN104246151A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2013072183A2 (de) Verfahren zum betrieb einer gas- und dampfturbinenanlage für die frequenzstützung
EP1432889B1 (de) Verfahren und vorrichtung zum anfahren von emissionsfreien gasturbinenkraftwerken
DE10041413B4 (de) Verfahren zum Betrieb einer Kraftwerksanlage
EP2480762B1 (de) Kraftwerksanlage mit Überlast-Regelventil
EP2067940B2 (de) Verfahren zum Betrieb eines Kombikraftwerks sowie Kombikraftwerk zur Durchführung des Verfahrens
EP1866521B1 (de) Verfahren zum starten einer gas- und dampfturbinenanlage
CH700310A1 (de) Verfahren zur CO2 Abscheidung aus einem Kombikraftwerk und Kombikraftwerk mit einer Gasturbine mit Strömungsteilung und Rezirkulation.
DE1476903B2 (de) Gas-dampfturbinenanlage
EP2447506A2 (de) System zur Erzeugung mechanischer und/oder elektrischer Energie
DE102010037861A1 (de) Gasturbine mit Zwischenüberhitzung
EP2199547A1 (de) Abhitzedampferzeuger sowie ein Verfahren zum verbesserten Betrieb eines Abhitzedampferzeugers
DE102018123663A1 (de) Brennstoffvorwärmsystem für eine Verbrennungsgasturbine
CH702740B1 (de) System und Verfahren zum Hochfahren eines Wärmerückgewinnungsdampfgenerators.
EP1105624B1 (de) Gas- und dampfturbinenanlage
DE19506787A1 (de) Verfahren zum Betrieb einer Dampfturbine
EP1801363A1 (de) Kraftwerksanlage
EP1896697B1 (de) Verfahren zum hochfahren einer gas- und dampfturbinenanlage
EP1904731B1 (de) Gas- und dampfturbinenanlage sowie verfahren zu deren betrieb
EP2556218B1 (de) Verfahren zum schnellen zuschalten eines dampferzeugers
DE102012110579B4 (de) Anlage und Verfahren zur Erzeugung von Prozessdampf
EP2829691A1 (de) Verfahren zum Betreiben einer GuD-Anlage
EP3810907B1 (de) Abgasrezirkulation in gas- und dampfturbinenanlagen
DE10124492B4 (de) Verfahren zum Betrieb eines Kombikraftwerkes bei unterschiedlichen Netzanforderungen
EP1404947B1 (de) Verfahren zum betreiben einer dampfkraftanlage sowie dampfkraftanlage zur durchführung des verfahrens
DE10307606A1 (de) Krafterzeugungsanlage

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012780192

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14356158

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147012600

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014124127

Country of ref document: RU

Kind code of ref document: A