WO2013069643A1 - 非水電解液二次電池 - Google Patents

非水電解液二次電池 Download PDF

Info

Publication number
WO2013069643A1
WO2013069643A1 PCT/JP2012/078745 JP2012078745W WO2013069643A1 WO 2013069643 A1 WO2013069643 A1 WO 2013069643A1 JP 2012078745 W JP2012078745 W JP 2012078745W WO 2013069643 A1 WO2013069643 A1 WO 2013069643A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
positive electrode
secondary battery
electrolyte secondary
active material
Prior art date
Application number
PCT/JP2012/078745
Other languages
English (en)
French (fr)
Inventor
洋生 西山
伊藤 真吾
翔 檜山
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Publication of WO2013069643A1 publication Critical patent/WO2013069643A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery that uses a non-aqueous electrolyte as an electrolyte and moves lithium ions between a positive electrode and a negative electrode to perform charge and discharge as a high energy density secondary battery
  • portable information devices such as notebook computers and PDAs
  • video devices such as video cameras and digital cameras
  • electronic / communication devices such as mobile communication devices such as mobile phones.
  • applications for high-capacity applications such as mobile storage devices for automobiles and railways and stationary storage devices for power storage are advancing, and the demand for higher energy density is extremely high. It has become.
  • a non-aqueous electrolyte battery such as a lithium ion secondary battery has a high energy density, and a volatile organic solvent is used as the non-aqueous electrolyte. Therefore, when the non-aqueous electrolyte battery is placed in a high temperature environment or abnormally heated, the battery bursts or expands due to the increase in the internal pressure of the battery due to vaporization of the non-aqueous electrolyte, or the non-aqueous electrolyte or positive electrode active material. There is a problem that the battery ignites and emits smoke due to the combustion.
  • the thermal stability of the battery is lowered.
  • lithium metal is deposited in a dendritic shape on the negative electrode (dendrites), and there is a concern that the battery may be internally short-circuited.
  • the battery energy is suddenly released, which may lead to thermal runaway in some cases.
  • the method using a built-in safety device and the power generation element itself have anti-overcharge characteristics. There is a method.
  • examples of a method for imparting overcharge resistance to the power generation element itself include a separator and an overcharge additive.
  • the role played by the separator with respect to battery safety is to prevent a short circuit between the positive and negative electrodes during normal operation.
  • a function peculiar to the separator of the non-aqueous electrolyte secondary battery in the case of a porous polyolefin separator, etc., when the battery temperature is remarkably increased due to an excess current due to an external short circuit, the porous separator is softened so that it is substantially nonporous There is a so-called shutdown function that prevents the current from flowing.
  • meltdown When the battery temperature rises even after shutdown, the separator melts and opens a large hole, causing a short circuit between the positive electrode and the negative electrode (hereinafter referred to as meltdown). It can be said that the higher the temperature, the higher the safety. In order to reinforce the shutdown function, there is a conflicting phenomenon that when the heat melting property is increased, the meltdown temperature is lowered and the safety is lowered.
  • the anti-overcharge additive For example, a method for protecting the battery from overcharge by increasing the internal resistance of the battery by polymerizing the additive during overcharge or overcharge. There are a method in which gas is generated during charging and the internal current interrupting device is reliably operated at a predetermined internal pressure, a method in which a conductive polymer is generated during overcharge abuse, a short circuit is generated inside the battery, and automatic discharge is performed.
  • non-aqueous electrolyte secondary batteries have become increasingly high capacity. Although this increase in capacity has improved performance by improving the active material of the electrode, the volume of members other than the active material is reduced to increase the amount of substantial active material in the battery. Has been done. Accordingly, positive and negative current collectors and separators are becoming increasingly thinner. As the separator becomes thinner, the safety against short circuits and the like is worsened, and the amount of the active material is substantially increased, so the demand for safety is further increased.
  • Patent Document 1 proposes a technique for suppressing overcharge by dissolving diphenyl ether or biphenyl in Patent Document 2, thiophene in Patent Document 2, and cyclohexylbenzene in an electrolyte solution. This is because the overcharge inhibitor is electrolytically polymerized on the positive electrode at a high potential during overcharge, thereby consuming a charging current and suppressing the charging reaction of the battery.
  • Patent Documents 1 to 3 the compatibility between high capacity and safety has been studied, but depending on the content of the additive, the insertion / extraction reaction of lithium ions is inhibited, and the load characteristics of the battery The charging / discharging cycle characteristics may also decrease with the decrease of. For this reason, it is insufficient in terms of cycle life characteristics and high rate discharge characteristics.
  • the present invention has been made in view of the above circumstances, and its purpose is to provide a non-aqueous electrolyte secondary battery that has a high capacity and is safer, and can achieve both a discharge characteristic and a life characteristic at a high level.
  • the issue is to provide.
  • the nonaqueous electrolyte secondary battery has a positive electrode mixture layer porosity of 32 to 46% with a .75 g / cm 3 .
  • the mixed active material has a composition formula Li (1 + ⁇ ) Mn x Ni y Co (1-xyz) M z O 2 (M is Ti, Zr, Nb, Mo, W, Al, Si, Ga) , Ge and Sn, at least one element selected from the group consisting of: ⁇ 0.15 ⁇ ⁇ 0.15, 0.1 ⁇ x ⁇ 0.5, 0.6 ⁇ x + y + z ⁇ 1.0, 0 ⁇ z ⁇ 0.1) and a layered type lithium / manganese / nickel / cobalt composite oxide and a composition formula Li (1 + ⁇ ) Mn (2-W ⁇ ) M ′ W O 4 (M ′ is , Mg, Ca, Sr, Al, Ga, Zn, and Cu, and at least one element selected from the group consisting of 0 ⁇ ⁇ 0.2 and 0 ⁇ w ⁇ 0.1)
  • M x Ni y Co (1-xyz) M z O 2 a composition formula Li (1 + ⁇ )
  • the mixed active material has a ratio of the layered lithium / manganese / nickel / cobalt composite oxide to the total weight of the layered lithium / manganese / nickel / cobalt composite oxide and the spinel type lithium / manganese composite oxide.
  • the non-aqueous electrolyte secondary battery is 25 to 55% by weight.
  • non-aqueous electrolyte secondary battery whose upper limit voltage during charging is in the range of 4.0 to 4.2V.
  • the positive electrode mixture density is preferably in the range of 2.30 to 2.75 g / cm 3 , and more preferably 2.30 to 2.65 g in order to ensure discharge characteristics, life characteristics, and safety.
  • a range of / cm 3 has been shown to be more preferred.
  • the positive electrode mixture layer preferably has a porosity of 34 to 46%, and further 39 to 46% in order to ensure discharge characteristics, life characteristics, and safety. It was shown to be desirable.
  • the composition formula Li (1 + ⁇ ) Mn x Ni y Co (1-xyz) M z O 2 (M is Ti, Zr, Nb, Mo, W, Al , Si, Ga, Ge and Sn, at least one element selected from the group consisting of -0.15 ⁇ ⁇ 0.15, 0.1 ⁇ x ⁇ 0.5, 0.6 ⁇ x + y + z ⁇ 1 0.0, 0 ⁇ z ⁇ 0.1), a layered lithium-manganese-nickel-cobalt composite oxide (hereinafter sometimes simply referred to as “layered composite oxide”), and a composition formula Li (1 + ⁇ ) Mn (2-W) M ′ W O 4 (M ′ is at least one element selected from the group consisting of Mg, Ca, Sr, Al, Ga, Zn, and Cu, and 0 ⁇ ⁇ 0.2, 0 ⁇ w ⁇ 0.1) It has a positive electrode mixture layer containing
  • the stability of the positive electrode during charging is increased while maintaining a high capacity, heat generation is suppressed, and there is no risk of ignition and excellent safety.
  • the stability of the positive electrode during charging is increased while maintaining a high capacity, heat generation is suppressed, and there is no risk of ignition and excellent safety.
  • the stability of the positive electrode during charging is increased while maintaining a high capacity, heat generation is suppressed, and there is no risk of ignition and excellent safety.
  • the stability of the positive electrode during charging is increased while maintaining a high capacity, heat generation is suppressed, and there is no risk of ignition and excellent safety.
  • charge / discharge cycle characteristics and storage characteristics are examples of charge / discharge cycle characteristics and storage characteristics.
  • the spinel-type composite oxide since the spinel-type composite oxide has stable Mn in the charged state, heat generation from the positive electrode can be suppressed and the safety of the battery can be improved. Furthermore, since the elution of Mn can be reduced by adding the additive element M ′, storage characteristics and charge / discharge cycle characteristics can be improved.
  • the above known spinel type composite oxide has a small theoretical capacity and a low density, it is difficult to increase the battery capacity when a battery is formed using only the composite oxide as a positive electrode active material. there were.
  • the layered composite oxide has a capacity equivalent to, for example, LiCoO 2 , which is a lithium-containing transition metal composite oxide conventionally used as a positive electrode active material for lithium ion secondary batteries.
  • the present invention it is possible to provide a battery having a high capacity and excellent safety by increasing the density of the positive electrode mixture layer by using the spinel type composite oxide and the layered type composite oxide together. It was. Moreover, in the battery of this invention, it becomes what was excellent also in the storage characteristic and the charging / discharging cycle characteristic by employ
  • the non-aqueous electrolyte used in the battery contains cyclohexylbenzene or a derivative thereof.
  • a battery using a nonaqueous electrolytic solution containing cyclohexylbenzene for example, safety in the case of an overcharged state is further improved. This is because when the battery is overcharged and exceeds a certain voltage, polymerization of cyclohexylbenzene in the non-aqueous electrolyte occurs and a film is formed on the electrode surface. This is thought to be because the voltage rises and further voltage rise is suppressed, and the amount of charged electricity is suppressed from being accumulated.
  • the overcharge inhibitor reacts inside the battery, reducing the battery performance.
  • the reaction is a voltage higher than the operating voltage of the battery.
  • the addition amount of an overcharge inhibitor is also important in achieving both an overcharge suppression effect and battery performance.
  • the content of cyclohexylbenzene or a derivative thereof in the non-aqueous electrolyte is, for example, 0.5 parts by mass or more, more preferably 1.5 parts by mass or more with respect to 100 parts by mass of the non-aqueous solvent. In addition, it is preferably 5 parts by mass or less, more preferably 3.5 parts by mass or less. If the addition amount is within the above range, the safety of the battery is improved and the discharge characteristics and life characteristics are greatly improved. The inventor has found that there is no decrease.
  • a cyclic compound containing an unsaturated group such as vinylene carbonate (VC) in the non-aqueous electrolyte for extending the life.
  • An electrolytic solution containing a cyclic compound containing an unsaturated group such as VC can suppress side reactions such as decomposition of the solvent occurring on the negative electrode surface by covering the negative electrode surface with a film, and stabilizes the electrode surface. be able to. For this reason, a decrease in initial capacity, charge / discharge cycle characteristics, etc. are improved.
  • the negative electrode active material is not particularly limited as long as it is a material capable of occluding and releasing cations.
  • Crystalline carbon such as graphitized carbon obtained by heat treatment of natural graphite, coal / petroleum pitch, etc., coal, petroleum Amorphous carbon obtained by heat-treating pitch coke, acetylene pitch coke or the like can be used.
  • As the negative electrode current collector a known material such as copper or nickel metal foil can be appropriately used. The thickness at this time may generally be about 10 ⁇ m. Examples of the material for the current collector include metals selected from copper, nickel, iron, aluminum, zinc, gold, platinum, and the like. Of these, aluminum is preferable for the positive electrode current collector from the viewpoint of high oxidation resistance.
  • the binding material functions as a function of bonding the particles of the active material, the active material and the conductive material, and the active material and the current collector.
  • the binder for example, polyvinylidene fluoride, polyvinyl pyridine, polytetrafluoroethylene, styrene butadiene rubber, or the like can be used.
  • electrolytic solution examples include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ⁇ -butyrolactone, N, N′-dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, and m-cresol.
  • Examples of highly polar solvents that can be used as electrolytes for secondary batteries include alkali metal cations such as Li, K, and Na, ClO 4 ⁇ , BF 4 ⁇ , PF 6 ⁇ , CF 3 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (C 2 F 5 SO 2 ) 2 N ⁇ , (CF 3 SO 2 ) 3 C ⁇ , (C 2 F 5 SO 2 ) 3 C- and other salts containing halogens containing anions What was melt
  • dissolved is mentioned.
  • the solvent and electrolyte salt which consist of these basic solvents can also be used individually or in combination.
  • a lithium-containing transition metal composite oxide is used as a positive electrode active material. What is used in a kind of lithium ion secondary battery is applicable as it is.
  • the present invention can be applied to all battery shapes regardless of the structure of the lithium ion secondary battery such as the wound type and the laminated type shown in FIGS.
  • FIG. 4 is a sectional view taken along the line IB-IB in FIG. 3. It is an external view of the lithium ion secondary battery of embodiment which can apply this invention.
  • Example 1 (Preparation of positive electrode plate) A mixed positive electrode containing 30% by mass of layered lithium / manganese / nickel / cobalt composite oxide (Li 1.1 Mn 0.3 Ni 0.3 Co 0.3 O 2 ) powder and 70% by mass of spinel type lithium manganate powder The active material was used.
  • the obtained mixed positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder were mixed at a mass ratio of 90: 5: 5 and dispersed in a solvent of N-methylpyrrolidone.
  • a slurry was prepared. The slurry was applied to an aluminum foil as a positive electrode current collector and dried, followed by press working and cutting to prepare a positive electrode sheet (positive electrode) 1.
  • amorphous carbon material is prepared as a negative electrode active material.
  • This amorphous carbon material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are mixed at a mass ratio of 90: 4: 6 and dispersed in a solvent of N-methylpyrrolidone.
  • a slurry was prepared. The slurry was applied onto a copper foil as a negative electrode current collector and dried, and then subjected to press working and cutting to prepare a negative electrode sheet (negative electrode) 3.
  • a mixed solvent consisting of 30% by volume of ethylene carbonate, 40% by volume of dimethyl carbonate, and 30% by volume of diethyl carbonate was prepared. LiPF 6 was dissolved in this mixed solvent so as to have a concentration of 1.2 mol / L to prepare an electrolyte solution. Moreover, what added 0.8 wt% of VC was used as an additive.
  • FIG. 1 is a configuration diagram of a wound electrode group illustrating an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a main part of the battery illustrating an embodiment of the present invention. This will be described as follows.
  • An electrode group 8 having a wound structure in which a positive electrode (positive electrode sheet) 1 and a negative electrode (negative electrode sheet) 3 are wound in a spiral shape via a separator 2 is accommodated in a cylindrical battery can 10 together with a non-aqueous electrolyte. ing.
  • the electrode group 8 was produced by winding the positive electrode 1, the negative electrode 3, and the separator 2 so that the battery capacity was 95 Ah. Thereafter, the lead piece 9 and the pole column 5 of the positive / negative electrode portion of the electrode group 8 were ultrasonically welded, and then the open portions on both sides of the battery container were sealed with the battery lid 12. Then, a predetermined amount of electrolyte solution was injected into the battery container from the electrolyte solution injection port 11 in the battery lid 12, and the electrolyte solution injection port 11 was sealed to manufacture a cylindrical lithium ion battery.
  • the battery characteristics of the produced nonaqueous electrolyte battery were evaluated. Specifically, the discharge characteristics and charge / discharge cycle characteristics of the batteries in which the addition amount of cyclohexylbenzene, which is an overcharge inhibitor, was changed were evaluated. In addition, the addition amount of the overcharge inhibitor was 0.5 to 5.0 parts by mass with respect to 100 parts by mass of the non-aqueous solvent.
  • the evaluation results of discharge characteristics and charge / discharge cycle characteristics are shown in Table 1.
  • the initial capacity ratio in Table 1 means the capacity ratio at 0.5 C discharge with respect to the 0.5 C discharge capacity of Example 1.
  • high rate discharge characteristics were evaluated by a high rate discharge test.
  • a charge / discharge cycle with a current value of 0.5 C was repeated twice in a voltage range of 4.2 to 2.7 V in an environment of 25 ° C.
  • charging and discharging were performed by constant current discharge with a final voltage of 2.7 V at current values of 0.5 C, 1 C, and 3 C.
  • the 3C / 0.5C discharge capacity ratio means a capacity ratio in 3C discharge to 0.5C discharge capacity in each battery.
  • Example 2 Next, in the cylindrical battery, the relationship between the mixing ratio of the layered lithium / manganese / nickel / cobalt composite oxide and the spinel type lithium manganate and the safety was confirmed.
  • a positive electrode 1 was prepared in a layered lithium / manganese / nickel / cobalt composite oxide range of 25 to 65%, and then a cylindrical battery was prepared in the same manner as in Example 1 to evaluate safety.
  • the safety of the cylindrical battery was evaluated by an overcharge test.
  • the test condition was that the produced battery was discharged to the lower limit voltage and then precharged to the upper limit voltage.
  • the charge capacity obtained when precharging was defined as 100% SOC.
  • an overcharge test was performed up to an SOC of 200% with a current value of 0.5C.
  • Safety was evaluated based on the presence or absence of battery rupture / ignition. The test results are as shown in Table 2.
  • the layered composite oxide from the layered oxide mixing ratio of 25% shown in Comparative Example 3 and Examples 4 to 7 to the layered oxide mixing ratio of 55% shown in Comparative Examples 9 to 12 and Example 13 There was a tendency for the overcharge characteristics to deteriorate by increasing the mixing ratio. Since the layered complex oxide has an unstable crystal structure as compared with the spinel type lithium manganate, the crystal structure collapses during overcharge and the calorific value increases. For this reason, in order to ensure the safety of the battery, it is essential to increase the addition amount of the overcharge inhibitor.
  • Comparative Example 13 when the mixing ratio of the layered composite oxide exceeds 55%, the safety of the battery cannot be ensured even when the overcharge inhibitor is added in an amount of 3.5 wt%. Furthermore, it is possible to improve the safety by increasing the amount of addition of the overcharge inhibitor, but it is impossible to achieve both battery characteristics and cycle life characteristics. For this reason, when the mixing ratio of the layered complex oxide is within the range of 25 to 55%, the addition amount of the overcharge inhibitor is 0.5 to 3.5 wt% in order to improve the safety at the time of overcharging the battery. It can be seen that Examples 4 to 13 in the range are preferable.
  • Example 3 Next, in the cylindrical battery, the relationship between the positive electrode mixture density and safety was confirmed. A positive electrode 1 with a changed mixture density was produced, and then a cylindrical battery was produced in the same manner as in Example 1 to evaluate safety. The safety of the cylindrical battery was evaluated by an overcharge test. The test condition was that the produced battery was discharged to the lower limit voltage and then precharged to the upper limit voltage. The charge capacity obtained when precharging was defined as 100% SOC. After the preliminary charging, an overcharge test was performed up to SOC 200% with a current value of 0.5C. Safety was evaluated based on the presence or absence of battery rupture / ignition. The test results are as shown in Table 3.
  • Examples 14 to 25 in which the mixture density of the positive electrode is in the range of 2.30 to 2.75 g / cm 3 are preferable, and further higher safety is achieved. It can be seen that the range of 2.30 to 2.55 g / cm 3 shown in Examples 14 to 22 is more preferable for conversion.
  • the positive electrode mixture layer preferably has a porosity of 34 to 46%, more preferably 39 to 46%.
  • Example 4 Next, in the cylindrical battery, the relationship between the charging voltage and the cycle life characteristics was confirmed.
  • a cylindrical battery was produced in the same manner as in Example 1, and the charge / discharge cycle characteristics of the battery were evaluated.
  • the electrolytic solution used was added with an overcharge inhibitor of 3.5 wt%.
  • the upper limit voltage for charging is changed between 4.2 and 3.9V in an environment of 25 ° C, and the lower limit voltage for discharging is 2.7V.
  • the cycle was repeated.
  • the capacity retention rate at the 100th and 300th cycles was calculated with respect to the discharge capacity at the first cycle of each battery.
  • the electrode group (electrode winding group) 8 is constituted by the wound body itself.
  • a positive electrode plate 13, a negative electrode plate 14, and a separator 15 are laminated.
  • the present invention can also be applied to a laminated lithium ion secondary battery which is the electrode plate group 17.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、高容量であってより安全であり、放電特性と寿命特性とを高いレベルで両立し得る非水電解液二次電池を提供することを課題とする。当該課題は、層状型リチウム複合酸化物とスピネル型リチウム・マンガン酸化物との混合活物質を含む正極合剤層が集電体に形成された正極板と、活物質および炭素系含有物を含む負極合剤層が集電体に形成された負極板と、が多孔質セパレータを介して配置され、電解液中にシクロヘキシルベンゼンまたはその誘導体を含有し、また、正極合剤層の合剤密度を2.30~2.75g/cm、正極合剤層の空孔率を34~46%としたことにより解決した。

Description

非水電解液二次電池
 本発明は、非水電解液二次電池に関するものである。
 近年、高エネルギー密度の二次電池として、電解液に非水電解液を使用し、リチウムイオンを正極と負極との間で移動させて充放電を行わせるようにした非水電解液二次電池が、高エネルギー密度の要求される用途で利用されるようになった。例えば、ノートパソコンやPDAなどの携帯用情報機器、ビデオカメラやデジタルカメラなどの映像機器、あるいは携帯電話などの移動体通信機器などの電子・通信機器の電源として用いられるようになった。また、自動車・鉄道用などの移動用蓄電デバイスや電力貯蔵用などの定置用の蓄電デバイスなど、大容量の用途への適用が進んでおり、高エネルギー密度化への要求は非常に高いものとなっている。
 リチウムイオン二次電池のような非水電解液電池は、エネルギー密度が高く、非水電解液として揮発性の有機溶媒が用いられる。そのため、非水電解液電池が高温環境に置かれた場合や異常発熱した場合に、非水電解液の気化による電池内圧の上昇によって電池が破裂・膨張したり、非水電解液や正極活物質の燃焼によって電池が発火・発煙したりする等の問題がある。
 また、リチウムイオン二次電池が過充電されると電池の熱安定性が低下する。リチウム電池が過充電されると、負極上にリチウム金属が樹枝状に析出し(デンドライト)、電池が内部短絡する懸念がある。電池が内部短絡すると、電池のエネルギーが急激に放出されるため、場合によっては熱暴走に至る場合がある。
 電池の過充電時の安全性は蓄電エネルギー量が増大する高エネルギー密度・大容量の電池で大きく低下する。このため、近年では電池の高エネルギー密度化・高容量化と共に更なる安全性の向上が求められている。
 非水電解液二次電池が過充電時の高温環境下で安全性を保つための方法には、大きく分けて組み込まれている安全装置を用いる方法と発電要素自体に耐過充電特性を持たせる方法とがある。
 これらのうち、さらに発電要素自体に耐過充電特性を持たせる方法の例として、セパレータによるものと耐過充電添加剤によるものとがある。
 電池の安全性に関してセパレータの果す役割としては、通常時の正極、負極間の短絡防止がある。非水電解液二次電池のセパレータに特有の機能として、多孔質ポリオレフィンセパレータなどでは、外部短絡による過剰電流等により電池温度が著しく上昇した場合、多孔質セパレータが軟化することにより実質的に無孔質となり電流を流させなくする、いわゆるシャットダウン機能がある。
 シャットダウン後も電池の温度が上昇すると、セパレータが溶融して大きく穴が開き、正極、負極間が短絡してしまう(以下メルトダウンと称す)。この時の温度は高い方が安全性は高いといえる。シャットダウン機能を強化するために、熱溶融性を高めるとメルトダウン温度が低くなり安全性は逆に下がるという、相反した現象がある。
 次に、耐過充電添加剤の果す役割には様々なものがあるが、例えば、過充電時に添加剤が重合することにより電池の内部抵抗を高くし、電池を過充電から保護する方法や過充電時にガスを発生させ所定内圧で内部の電流遮断装置を確実に作動させる方法および過充電酷使時に導電性ポリマーを生成して、電池内部に短絡を発生させ自動放電させる方法等がある。
 近年の開発競争により、非水電解液二次電池はますます高容量となっている。この高容量化は電極の活物質の改良により高性能化している面もあるが、電池構成上、活物質以外の部材の容積を少なくして電池内の実質的な活物質の量を多くして行われている。したがって、正負極の集電体やセパレータは益々薄くなっていく方向である。セパレータが薄くなると短絡などに対する安全性は悪くなる方向であるうえ、実質的な活物質の量が多くなるため安全性に対する要求はさらに大きくなってくる。
 したがって、薄いセパレータを使用した時の過充電時の高温環境下では、過充電を止めるのみの方法でなく、過充電状態を解消する方法が効果的である。
 過充電に対する対策として、特許文献1ではジフェニルエーテルやビフェニル、特許文献2ではチオフェン、特許文献3ではシクロヘキシルベンゼンを電解液に溶解させて過充電を抑制する技術が提案されている。これは、過充電時に、高電位になった正極上で過充電抑制剤が電解重合することで充電電流を消費し、電池の充電反応を抑制するものである。
特開2003-022838号公報 特開平09-106835号公報 特開2006-278322号公報
 ところで、産業用途に使用される大容量の非水電解液二次電池においては高率放電特性や貯蔵特性および充放電サイクル特性等の寿命特性と共に、安全性の向上についても高く要求されており、これらの特性を満足することが必要である。
 しかしながら、上記特許文献1~3の発明では、高容量と安全性の両立は検討されているが、添加剤の含有量によっては、リチウムイオンの挿入・脱離反応が阻害され、電池の負荷特性の低下と共に充放電サイクル特性も低下することがある。このため、サイクル寿命特性・高率放電特性の面では不十分である。
 本発明は、上記事情に鑑みてなされたものであり、その目的は、高容量であってより安全であり、放電特性と寿命特性とを高いレベルで両立し得る非水電解液二次電池を提供することを課題としている。
 上記課題を解決するために、次に示すような構成が有効と考えられる。
 層状型リチウム複合酸化物とスピネル型リチウム・マンガン酸化物との混合活物質を含む正極合剤層が集電体に形成された正極板と、活物質および炭素系含有物を含む負極合剤層が集電体に形成された負極板とが多孔質セパレータを介して配置され、電解液中にシクロヘキシルベンゼンまたはその誘導体を含有し、また、正極合剤層の合剤密度が2.30~2.75g/cmであり、正極合剤層の空孔率が32~46%である非水電解液二次電池である。
 さらに、混合活物質が、組成式Li(1+δ)MnNiCo(1-x-y-z)(Mは、Ti、Zr、Nb、Mo、W、Al、Si、Ga、GeおよびSnからなる群から選ばれる少なくとも1種の元素であり、-0.15<δ<0.15、0.1<x≦0.5、0.6<x+y+z≦1.0、0≦z≦0.1である)で表される層状型リチウム・マンガン・ニッケル・コバルト複合酸化物と、組成式Li(1+η)Mn(2-W-η)M’(M’は、Mg、Ca、Sr、Al、Ga、Zn、およびCuからなる群から選ばれる少なくとも1種の元素であり、0≦η≦0.2、0≦w≦0.1である)で表されるスピネル型リチウム・マンガン複合酸化物である非水電解液二次電池である。
 また、混合活物質は、層状型リチウム・マンガン・ニッケル・コバルト複合酸化物とスピネル型リチウム・マンガン複合酸化物との合計重量に対し、層状型リチウム・マンガン・ニッケル・コバルト複合酸化物の比率が25~55重量%である非水電解液二次電池である。
 そして、電解液中に無機イオン塩が溶解されており、かつ電解液100重量部に対して、シクロヘキシルベンゼンまたはその誘導体を0.5~3.5重量%含有している非水電解液二次電池である。
 その上、充電時の上限電圧が4.0~4.2Vの範囲である非水電解液二次電池である。
 これらの構成が本発明として有効である理由として、以下の状況が考えられる。
 後述する実施例の結果から、放電特性と寿命特性、安全性を確保するには正極の合剤密度は2.30~2.75g/cm3の範囲が好ましく、さらに2.30~2.65g/cm3の範囲が更に好ましいことが示された。
 そして、同様に後述する実施例の結果から、放電特性と寿命特性、安全性を確保するには正極合剤層の空孔率が34~46%であることが望ましく、さらに39~46%であることが望ましいことが示された。
 本発明の電池では、正極活物質として、組成式Li(1+δ)MnNiCo(1-x-y-z)(Mは、Ti、Zr、Nb、Mo、W、Al、Si、Ga、GeおよびSnからなる群から選ばれる少なくとも1種の元素であり、-0.15<δ<0.15、0.1<x≦0.5、0.6<x+y+z≦1.0、0≦z≦0.1である)で表される層状型リチウム・マンガン・ニッケル・コバルト複合酸化物(以下、単に「層状型複合酸化物」という場合がある)と、組成式Li(1+η)Mn(2-W)M’(M’は、Mg、Ca、Sr、Al、Ga、Zn、およびCuからなる群から選ばれる少なくとも1種の元素であり、0≦η≦0.2、0≦w≦0.1である)で表されるスピネル型リチウム・マンガン複合酸化物(以下、単に「スピネル型複合酸化物」という場合がある)を含有する正極合剤層を有している。このような正極合剤層を有する正極を用いることで、高容量としつつ充電時の正極の安定性を高め、発熱を抑制して発火などの危険性が無く安全性に優れたものとすることができると共に、充放電サイクル特性や貯蔵特性にも優れたものとすることができる。
 すなわち、上記スピネル型複合酸化物では充電状態におけるMnが安定であるため、正極からの発熱を抑制でき、電池の安全性を高めることができる。更に、添加元素M’を加えることで、Mnの溶出を低減できるため、貯蔵特性や充放電サイクル特性を向上させることができる。しかしながら、従来公知の上記スピネル型複合酸化物は理論容量が小さく、更に密度も小さいことから、該複合酸化物のみを正極活物質として電池を構成した場合には、電池容量を高めることが困難であった。他方、上記層状型複合酸化物は、例えば、従来からリチウムイオン二次電池の正極活物質として汎用されているリチウム含有遷移金属複合酸化物であるLiCoOと同等の容量を有している。本発明では、上記スピネル型複合酸化物と上記層状型複合酸化物を併用することで、正極合剤層の密度を高めて、高容量であり、且つ安全性にも優れた電池の提供を可能としたのである。また、本発明の電池では、上記構成の採用により、貯蔵特性や充放電サイクル特性にも優れたものとなる。
 更に、電池に用いる上記非水電解質は、シクロヘキシルベンゼンまたはその誘導体を含有していることが好ましい。シクロヘキシルベンゼンを含有している非水電解液を使用した電池では、例えば、過充電状態となった場合の安全性が更に向上する。これは、電池が過充電状態となり、ある電圧以上になった時点で、非水電解液中のシクロヘキシルベンゼンの重合が生じて電極表面に皮膜が形成され、かかる皮膜が形成された部分ではインピーダンスが上昇して更なる電圧上昇が抑えられ、充電電気量が蓄積されるのが抑制されるためであると考えられる。具体的には、Li/Li基準で2V以上であり、好ましくは3V以上である。この値が小さすぎると電池内部で過充電抑制剤が反応し、電池性能を低下させる。その反応は、電池の作動電圧以上の電圧である。また、過充電抑制剤の添加量も過充電抑制効果と電池性能を両立する上で重要である。
 このため、非水電解液中のシクロヘキシルベンゼンまたはその誘導体の含有量が少なすぎると、これらを含有させることによる効果が十分に確保できず、多すぎると過充電時の電池の安全性が向上するものの、内部抵抗の上昇による高率放電特性、充放電サイクル特性、貯蔵特性が低下することがある。
 検討の結果、非水電解液中のシクロヘキシルベンゼンまたはその誘導体の含有量は、例えば、上記非水系溶媒100質量部に対して、0.5質量部以上、より好ましくは1.5質量部以上であって、5質量部以下、より好ましくは3.5質量部以下であることが好ましく、上記の範囲内の添加量であれば、電池の安全性が向上し、しかも放電特性、寿命特性が大幅に低下することがないことを発明者は見出した。
 また、長寿命化のため非水電解液中にビニレンカーボネート(VC)など不飽和基を含む環状化合物を含有することが好ましい。VCなど不飽和基を含む環状化合物を含有する電解液は、負極の表面を被膜で覆うことにより、負極表面で起こる溶媒の分解などの副反応を抑制することができ、電極表面を安定化することができる。このため、初期容量の低下、充放電サイクル特性などが改善される。
 負極活物質としては、カチオンを吸蔵・放出可能な材料であれば特に限定されず、天然黒鉛、石炭・石油ピッチ等を高温で熱処理して得られる黒鉛化炭素等の結晶質カーボン、石炭、石油ピッチコークス、アセチレンピッチコークス等を熱処理して得られる非晶質カーボンなどが使用できる。負極集電体としては銅、ニッケル等の金属箔など、周知のものを適宜用いることができる。この時の厚みは、一般的に10μm程度で良い。集電体の材質として、銅、ニッケル、鉄、アルミニウム、亜鉛、金、白金等から選択される金属が挙げられる。この内、正極集電体には耐酸化性が高いという観点からアルミニウムが好ましい。
 結着材(バインダ)は、活物質の粒子同士、活物質と導電材、さらに活物質と集電体とを接着する役割として機能させている。結着剤としては、たとえば、ポリフッ化ビニリデン、ポリビニルピリジン、ポリテトラフルオロエチレンやスチレンブタジエンゴム等を用いることができる。
 電解液としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ―ブチロラクトン、N,N’-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン、m-クレゾール等の、二次電池の電解液として利用可能な極性の高い溶媒に、LiやK、Na等のアルカリ金属のカチオンとClO4 -、BF4 -、PF6 -、CF3SO3 -、(CF3SO22-、(C25SO22-、(CF3SO23-、(C25SO23-等のハロゲンを含む化合物のアニオンからなる塩を溶解したものが挙げられる。また、これらの塩基性溶媒からなる溶剤や電解質塩を単独、あるいは複数組み合わせて用いることもできる。
 本発明の過充電抑制剤を添加したリチウムイオン二次電池において、負極材料、電解液(電解質、溶媒)、セパレータ等の構成部材としては、リチウム含有遷移金属複合酸化物を正極活物質とするこの種のリチウムイオン二次電池において使用されるものがそのまま適用できる。
 また、本発明は図1~5に示す捲回形、積層形などリチウムイオン二次電池の構造によらず、すべての電池形状において適用できる。
 本発明によれば、過充電抑制機能を備えた安全性,電池性能の高いリチウムイオン二次電池を提供することができる。
本発明の一実施例を説明する捲回電極群の構成図である。 本発明の一実施例を説明する電池要部の断面図である。 本発明が適用可能な実施形態のリチウムイオン二次電池の内部を透視した状態で示す概略図である。 図3のIB-IB断面図である。 本発明が適用可能な実施形態のリチウムイオン二次電池の外観図である。
 以下、実施例に基づいて本発明を詳細に説明する。ただし、下記実施例は、本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。
 以下、図面を参照して、本発明の実施の形態について説明する。
 (実施例1)
 (正極板の作製)
 層状型リチウム・マンガン・ニッケル・コバルト複合酸化物(Li1.1Mn0.3Ni0.3Co0.3)粉末が30質量%で、スピネル型マンガン酸リチウム粉末が70質量%となるように混合して混合正極活物質とした。
 得られた混合正極活物質と、導電剤であるアセチレンブラックと、結着剤であるポリフッ化ビニリデンとを、質量比90:5:5で混合し、これをN-メチルピロリドンの溶媒に分散させてスラリーを調製した。このスラリーを、正極集電体としてアルミニウム箔に塗布して乾燥した後、プレス加工、裁断を施して、正極シート(正極電極)1を作製した。
 (負極板の作製)
 負極活物質として、非晶質炭素材を用意する。この非晶質炭素材と、導電剤であるアセチレンブラックと、結着剤であるポリフッ化ビニリデンとを、質量比90:4:6で混合し、これをN-メチルピロリドンの溶媒に分散させてスラリーを調製した。このスラリーを、負極集電体である銅箔上に塗布して乾燥した後、プレス加工、裁断を施して、負極シート(負極電極)3を作製した。
 (非水電解液の調製)
 エチレンカーボネート30体積%、ジメチルカーボネート40体積%、ジエチルカーボネート30体積%からなる混合溶媒を調製した。この混合溶媒に、濃度が1.2mol/LになるようにLiPF6を溶解させて電解質溶液を調製した。また、添加剤としてVCを0.8wt%添加したものを使用した。
 (電池の組み立て)
 本発明の一実施例を説明する捲回電極群の構成図である図1及び本発明の一実施例を説明する電池要部の断面図である図2を用いて、電池の組み立ての概要を以下の通りに説明する。
 正極電極(正極シート)1と負極電極(負極シート)3とをセパレータ2を介して渦巻状に捲回した捲回構造の電極群8は、円筒状電池缶10に非水電解液とともに収容されている。
 電極群8は正極電極1、負極電極3およびセパレータ2を捲回して電池容量が95Ahになるように作製した。その後、電極群8の正・負極部分のリード片9と極柱5を超音波溶接した後、電池蓋12で電池容器の両側開放部分を封口した。そして、電池蓋12にある電解液注液口11より電解液を所定量電池容器内に注入し、電解液注液口11を封止することにより円筒形リチウムイオン電池を製造した。
 (電池特性の評価)
 このように作製した非水電解液電池の電池特性を、下記に示す方法で評価した。
 作製した非水電解液電池(円筒形電池)について、電池特性を評価した。具体的には、過充電抑制剤であるシクロヘキシルベンゼンの添加量を変化させた電池の放電特性・充放電サイクル特性を評価した。なお、過充電抑制剤の添加量は、上記非水系溶媒100質量部に対して、0.5質量部以上5.0質量部以下とした。
 放電特性および充放電サイクル特性の評価結果は表1に示すとおりである。表1における初期容量比は、実施例1の0.5C放電容量に対する0.5C放電での容量比を意味する。
 また、高率放電試験により高率放電特性を評価した。高率放電試験では、まず、25℃の環境下において4.2~2.7Vの電圧範囲で、0.5Cの電流値による充放電サイクルを2回繰り返した。さらに4.2Vまで電池の充電後、電流値0.5C、1C、3Cの各電流値で終止電圧2.7Vの定電流放電による充放電を行った。3C/0.5C放電容量比は各電池での0.5C放電容量に対する3C放電での容量比を意味する。
 サイクル寿命試験は25℃の環境下において4.2~2.7Vの電圧範囲で、1Cの電流値による充放電サイクルを繰り返した。それぞれの電池の1サイクル目の放電容量に対して100、300サイクル目での容量維持率を算出した。
Figure JPOXMLDOC01-appb-T000001
 
 表1の実施例1~3、比較例2に示すように、過充電抑制剤の添加量を増加することで比較例1と比べて初期の放電容量の低下および充放電サイクル寿命の低下が見られた。充電時に正極の電位が上昇し、過充電抑制剤が微量に分解していることが考えられる。分解反応での副生成物は電池内部での抵抗成分として働くため、電池容量の低下、高率放電特性の低下が起こったと考えられる。また、分解の影響は充放電サイクルを繰り返すことによってより顕著に見られた。また、充放電での過充電抑制剤の微量な分解反応により、電池の内部抵抗が上昇し高率放電特性が低下する。放電特性低下の影響は過充電抑制剤の添加量を増加することで大きくなる。特に比較例2に示す過充電抑制剤の添加量5.0wt%では初期容量、高率放電特性とともに充放電サイクル特性が比較例1に対して大幅に低下することがわかる。
 上記の結果から、添加量が3.5wt%を超えると、分解生成物の影響により放電容量、高率放電特性、充放電サイクル特性が大きく低下する。このため、電池容量、放電特性と寿命特性を両立するには、過充電抑制剤の添加量が0.5~3.5wt%の範囲にある実施例1~3が好ましいことがわかる。
 (実施例2)
 次に、円筒形電池において、層状型リチウム・マンガン・ニッケル・コバルト複合酸化物とスピネル型マンガン酸リチウムの混合比と安全性との関係を確認した。層状型リチウム・マンガン・ニッケル・コバルト複合酸化物の混合比が25~65%の範囲で正極1を作製し、その後、実施例1と同様に円筒形電池を作製し安全性を評価した。
 円筒形電池の安全性は過充電試験にて評価した。試験条件は、作製した電池を下限電圧まで放電し、その後上限電圧まで予備充電した。予備充電した際得られた充電容量をSOC100%と規定した。予備充電後、0.5Cの電流値によりSOC200%まで過充電試験を行った。その際の電池の破裂・発火の有無により安全性を評価した。試験結果は表2に示す通りである。
Figure JPOXMLDOC01-appb-T000002
 
 表2に示すように、比較例3、実施例4~7に示す層状酸化物混合比25%から比較例9~12、実施例13に示す層状酸化物混合比55%まで層状型複合酸化物の混合比を上げることで、過充電特性が悪化する傾向が見られた。層状型複合酸化物はスピネル型マンガン酸リチウムに比べて結晶構造が不安定なため、過充電時に結晶構造が崩壊し発熱量が増加する。このため、電池の安全性の確保には、過充電抑制剤の添加量を増加することが必須である。
 比較例13に示すように層状型複合酸化物の混合比が55%を超えると、過充電抑制剤の添加量が3.5wt%においても電池の安全性を確保することができない。さらに過充電抑制剤の添加量を増加することで安全性を向上させることは可能だが、電池特性、サイクル寿命特性を両立することができない。このため、層状型複合酸化物の混合比が25~55%の範囲内では電池の過充電時の安全性を向上させるには過充電抑制剤の添加量は0.5~3.5wt%の範囲にある実施例4~13であることが好ましいことがわかる。
 (実施例3)
 次に、円筒形電池において、正極の合剤密度と安全性との関係を確認した。合剤密度を変更した正極1を作製し、その後、(実施例1)と同様に円筒形電池を作製し安全性を評価した。円筒形電池の安全性は過充電試験にて評価した。試験条件は作製した電池を、下限電圧まで放電し、その後上限電圧まで予備充電した。予備充電した際得られた充電容量をSOC100%と規定した。予備充電後、0.5Cの電流値によりSOC200%まで過充電試験を行った。その際の電池の破裂・発火の有無により安全性を評価した。試験結果は表3に示す通りである。
Figure JPOXMLDOC01-appb-T000003
 表3の比較例14~19に示すように、正極の合剤密度を2.65g/cm3以上に上げることで過充電特性が悪化し、安全性が低下する傾向が見られた。正極の合剤密度を上げることで、正極の合剤内に存在する空孔が減少する。合剤内の空孔が減少することで活物質と電解液の接触面積が減少する。接触面積の減少により、電解液中に含まれる過充電抑制剤の重合反応による被膜形成の効果が小さくなる。このため、正極を高密度にし、且つ過充電時の安全性を確保しようとする場合、より多量の過充電抑制剤を添加する必要がある。しかし、多量の過充電抑制剤の添加は電池の内部抵抗を上げ、高率放電特性の低下を引き起こす。また、分解生成物の影響により充放電サイクル特性が低下する。
 以上の結果から、放電特性と寿命特性、安全性を確保するには正極の合剤密度は2.30~2.75g/cm3の範囲にある実施例14~25が好ましく、更なる高安全化には実施例14~22に示す2.30~2.55g/cm3の範囲が更に好ましいことがわかる。
 また、放電特性と寿命特性、安全性を確保するには正極合剤層の空孔率が34~46%であることが望ましく、さらに39~46%であることが望ましい。
 (実施例4)
 次に、円筒形電池において、充電電圧とサイクル寿命特性との関係を確認した。(実施例1)と同様に円筒形電池を作製し、電池の充放電サイクル特性を評価した。電解液には過充電抑制剤を3.5wt%添加したものを使用した。
 サイクル寿命試験は25℃の環境下において充電での上限電圧を4.2~3.9Vの間で変更し、放電での下限電圧が2.7Vの電圧範囲で、1Cの電流値による充放電サイクルを繰り返した。それぞれの電池の1サイクル目の放電容量に対して100、300サイクル目での容量維持率を算出した。
 試験結果は表4に示す通りである。
Figure JPOXMLDOC01-appb-T000004
 
 表4の実施例26~28に示すように、充電時の上限電圧を低く設定することで充放電サイクル寿命が向上することがわかる。過充電添加剤は通常の使用条件下においてもわずかに重合反応が進行する。過充電添加剤の重合反応が進んで、電極表面に皮膜が形成されてしまうと、電池の内部抵抗が増大し、また、シクロヘキシルベンゼンまたはその誘導体の重合に伴ってガスが発生して電池が膨らみ、正負極間の接触が悪くなるなどして、電池の充放電サイクル特性が低下する。このため、電池の上限電圧を抑えることで過充電抑制剤の分解が低減され、充放電サイクル特性が向上したと考えられる。しかし、比較例20に示すように上限電圧を下げすぎると充電容量が不足し、電池容量そのものが低下する。このため、電池容量とサイクル特性を両立するには上限電圧を4.0~4.2Vとした充電が好ましいことがわかる。
 上記の実施例では、電極群(電極捲回群)8を捲回体そのもので構成したが、本発明は、例えば図3~5に示すように正極板13、負極板14、セパレータ15を積層して極板群17とした積層形リチウムイオン二次電池にも適用することができる。
 以上、本発明の実施の形態および実施例について具体的に説明した。しかしながら、本発明は、これらの実施の形態および実施例に限定されるものではなく、本発明の技術的思想に基づく変更が可能であるのは勿論である。
1 正極電極
2 セパレータ
3 負極電極
4 軸心
5 極柱
6 スペーサ
7 開裂弁
8 電極群
9 リード片
10 円筒状電池缶
11 電解液注液口
12 電池蓋
13 正極板
14 負極板
15 セパレータ
16 非水電解液
17 極板群
18 ケース
 本発明によれば、過充電抑制機能を備えた安全性,電池性能の高いリチウムイオン二次電池を提供することができる。

Claims (5)

  1.  層状型リチウム複合酸化物とスピネル型リチウム・マンガン酸化物との混合活物質を含む正極合剤層が集電体に形成された正極板と、活物質および炭素系含有物を含む負極合剤層が集電体に形成された負極板とが多孔質セパレータを介して配置され、電解液と共に容器に収容された非水電解液二次電池であって、
     前記電解液中にシクロヘキシルベンゼンまたはその誘導体を含有し、また、前記正極合剤層の合剤密度が2.30~2.75g/cmであり、前記正極合剤層の空孔率が34~46%であることを特徴とする、非水電解液二次電池。
  2.  前記混合活物質が、組成式Li(1+δ)MnNiCo(1-x-y-z)(Mは、Ti、Zr、Nb、Mo、W、Al、Si、Ga、GeおよびSnからなる群から選ばれる少なくとも1種の元素であり、-0.15<δ<0.15、0.1<x≦0.5、0.6<x+y+z≦1.0、0≦z≦0.1である)で表される層状型リチウム・マンガン・ニッケル・コバルト複合酸化物と、組成式Li(1+η)Mn(2-W-η)M’(M’は、Mg、Ca、Sr、Al、Ga、Zn、およびCuからなる群から選ばれる少なくとも1種の元素であり、0≦η≦0.2、0≦w≦0.1である)で表されるスピネル型リチウム・マンガン複合酸化物であることを特徴とする、請求項1に記載の非水電解液二次電池。
  3.  前記混合活物質は、前記層状型リチウム・マンガン・ニッケル・コバルト複合酸化物と前記スピネル型リチウム・マンガン複合酸化物との合計重量に対し、前記層状型リチウム・マンガン・ニッケル・コバルト複合酸化物の比率が25~55重量%であることを特徴とする、請求項1または2に記載の非水電解液二次電池。
  4.  前記電解液中に無機イオン塩が溶解されており、かつ前記電解液100重量部に対して、シクロヘキシルベンゼンまたはその誘導体を0.5~3.5重量%含有していることを特徴とする、請求項1ないし請求項3のいずれか1項に記載の非水電解液二次電池。
  5.  充電時の上限電圧が4.0~4.2Vの範囲であることを特徴とする、請求項1ないし請求項4のいずれか1項に記載の非水電解液二次電池。
PCT/JP2012/078745 2011-11-09 2012-11-06 非水電解液二次電池 WO2013069643A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011245938A JP2015018599A (ja) 2011-11-09 2011-11-09 非水電解液二次電池
JP2011-245938 2011-11-09

Publications (1)

Publication Number Publication Date
WO2013069643A1 true WO2013069643A1 (ja) 2013-05-16

Family

ID=48290017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078745 WO2013069643A1 (ja) 2011-11-09 2012-11-06 非水電解液二次電池

Country Status (2)

Country Link
JP (1) JP2015018599A (ja)
WO (1) WO2013069643A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142281A1 (ja) * 2013-03-15 2014-09-18 日産自動車株式会社 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058257A (ja) * 2014-09-10 2016-04-21 三菱マテリアル株式会社 リチウムイオン二次電池用正極及びリチウムイオン二次電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006749A (ja) * 1999-06-25 2001-01-12 Toyota Central Res & Dev Lab Inc リチウム二次電池
JP2002015739A (ja) * 2000-04-26 2002-01-18 Mitsubishi Chemicals Corp リチウム二次電池用正極材料
JP2002203556A (ja) * 2000-12-28 2002-07-19 Sony Corp 非水電解質二次電池
JP2002260633A (ja) * 2001-02-28 2002-09-13 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2005158623A (ja) * 2003-11-28 2005-06-16 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2006278322A (ja) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd 非水電解質二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006749A (ja) * 1999-06-25 2001-01-12 Toyota Central Res & Dev Lab Inc リチウム二次電池
JP2002015739A (ja) * 2000-04-26 2002-01-18 Mitsubishi Chemicals Corp リチウム二次電池用正極材料
JP2002203556A (ja) * 2000-12-28 2002-07-19 Sony Corp 非水電解質二次電池
JP2002260633A (ja) * 2001-02-28 2002-09-13 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2005158623A (ja) * 2003-11-28 2005-06-16 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2006278322A (ja) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd 非水電解質二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142281A1 (ja) * 2013-03-15 2014-09-18 日産自動車株式会社 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP6070823B2 (ja) * 2013-03-15 2017-02-01 日産自動車株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
JP2015018599A (ja) 2015-01-29

Similar Documents

Publication Publication Date Title
JP4543085B2 (ja) リチウム2次電池用添加剤
JP5195499B2 (ja) 非水電解質二次電池
KR100789107B1 (ko) 비수전해액 첨가제 및 이를 이용하는 리튬 이차 전지
EP2160788B1 (en) Non-aqueous electrolyte and lithium secondary battery comprising the same
US20140295221A1 (en) Additives for non-aqueous electrolyte and secondary battery using the same
JP5109359B2 (ja) 非水電解質二次電池
JP2008198432A (ja) 電池
JP5107232B2 (ja) 機能性電解液添加剤及びこれを含む電気化学素子
JP2009026691A (ja) 負極、電池およびそれらの製造方法
JP2011204666A (ja) 非水電解質電池および非水電解質
JP2010073367A (ja) 非水電解質および非水電解質電池
JP4910303B2 (ja) 非水系電解液および非水系電解液電池
JP2006269359A (ja) 非水系電解液二次電池用セパレータおよび非水系電解液二次電池
JP2009004146A (ja) 電池
JP2008159419A (ja) 非水電解液二次電池
JP5082198B2 (ja) リチウムイオン二次電池
JP2012160345A (ja) 非水電解質二次電池
JP5879344B2 (ja) リチウム二次電池
JP5343918B2 (ja) リチウム二次電池及び非水系電解液
JP2012113841A (ja) 非水電解質二次電池及びそれを用いた電源装置
JP2007335170A (ja) 非水電解液および非水電解液電池
JP2004273448A (ja) 非水系電解液およびリチウム二次電池
JP2013062038A (ja) リチウムイオン二次電池
WO2012043733A1 (ja) 非水電解液二次電池の製造方法
WO2013069643A1 (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847194

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP