WO2013069456A1 - 給湯装置および設置構造 - Google Patents
給湯装置および設置構造 Download PDFInfo
- Publication number
- WO2013069456A1 WO2013069456A1 PCT/JP2012/077423 JP2012077423W WO2013069456A1 WO 2013069456 A1 WO2013069456 A1 WO 2013069456A1 JP 2012077423 W JP2012077423 W JP 2012077423W WO 2013069456 A1 WO2013069456 A1 WO 2013069456A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hot water
- heat
- heat exchanger
- circuit
- refrigerant
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B7/00—Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D17/00—Domestic hot-water supply systems
- F24D17/02—Domestic hot-water supply systems using heat pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/02741—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/047—Water-cooled condensers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/40—Geothermal heat-pumps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Definitions
- the present invention relates to a hot water supply device using a heat pump and its installation structure.
- a hot water supply apparatus having two refrigerant circuits capable of performing refrigeration cycles with two different refrigerants has been proposed as a hot water supply apparatus that supplies hot water obtained using a heat pump to the user side (for example, see Patent Document 1).
- the hot water supply tank is individually heated by the refrigerant circuit and the engine waste heat, and the hot water supply cannot be efficiently performed.
- the first heat exchanger and the indoor heat exchanger share the heat of condensation during heating. Therefore, in the first heat exchanger of the first refrigerant circuit, Sufficient heat of condensation cannot be obtained, and hot water with sufficient temperature cannot be produced.
- the condenser in the refrigeration cycle uses a fan coil unit that uses air as a heat source. Therefore, when it is used in a cold region, it cannot be used due to frost formation. For this reason, it is conceivable to install a fan coil unit in the facility. In this case, it is necessary to secure an air supply / exhaust duct in the facility. Can not be secured.
- the present invention has been made in view of such circumstances, and can be easily constructed even in a cold district or an existing building, and a hot water supply apparatus that can efficiently obtain high-temperature water, and its installation structure.
- the purpose is to provide.
- a hot water supply apparatus of the present invention for solving the above-mentioned problems is a hot water supply apparatus for supplying hot water obtained in a hot water circuit to a user side, a compressor for compressing a first refrigerant, a four-way valve, the first refrigerant and a heat medium.
- a first heat exchanger that exchanges heat with the first refrigerant circuit provided with a second heat exchanger that exchanges heat between the first refrigerant and the second refrigerant, a compressor that compresses the second refrigerant, Heat exchange between the second heat exchanger, the second refrigerant circuit provided with the third heat exchanger for exchanging heat between the second refrigerant and water, the third heat exchanger, and the engine waste heat and water
- a hot water circuit provided with a fourth heat exchanger, and having a first heat medium circuit for supplying a heat medium from a heat source to the first heat exchanger.
- the first refrigerant circuit is provided with a fifth heat exchanger for exchanging heat between the first refrigerant and water in series with the second heat exchanger, and the hot water circuit has a fifth heat exchanger. It is provided in parallel with the third heat exchanger, and the hot water may be switched to the third heat exchanger or the fifth heat exchanger by a three-way valve.
- the critical temperature of the second refrigerant in the second refrigerant circuit may be equal to or higher than the critical temperature of the first refrigerant in the first refrigerant circuit.
- the operation of the second refrigerant circuit may be able to be operated or stopped depending on the required water temperature and the temperature difference between the heat source.
- the hot water circuit may be connected to a hot water tank and a hot water use device, and may be provided with a three-way valve for switching hot water to the hot water tank and / or hot water use device. .
- the first heat medium circuit is provided with a sixth heat exchanger for exchanging heat with engine waste heat in series with the heat source and the first heat exchanger, and the sixth heat exchanger,
- the four heat exchanger may have an engine coolant circuit that can be switched by a three-way valve.
- a fan coil unit is used as a heat source, a high temperature first refrigerant is supplied to the first heat exchanger by switching the four-way valve, and an engine is switched to the sixth heat exchanger by switching the three-way valve. Waste heat may be supplied and the fan coil unit may be defrosted.
- the installation structure of the hot water supply apparatus of the present invention for solving the above-described problem is that a pipe embedded in the ground is connected to the first heat medium circuit to form a closed circuit, and the heat absorbed by the heat medium from the geothermal heat is the first heat exchange. It is installed so as to circulate the heat medium by supplying it to the vessel.
- the installation structure of the hot water supply apparatus of the present invention is such that a pipe for drawing river water or ground water is connected to the first heat medium circuit to form an open circuit, and the river water or ground water is used as a heat source and heat medium as a first heat exchange. It may be installed so as to be supplied to the vessel.
- or (d) is the partial schematic which shows the other installation structure of the hot-water supply apparatus which concerns on this invention. It is a refrigerant circuit figure which shows the state at the time of the heating hot-water supply driving
- FIGS. 1 to 5 show states of the hot water supply device 1 during each operation.
- the hot water supply device 1 includes a first refrigerant circuit 2 provided with a compressor 21, a four-way valve 22, a first heat exchanger 11, and a second heat exchanger 12, a compressor 31, a second heat exchanger 12, A hot water supply apparatus 1 including a second refrigerant circuit 3 provided with a three heat exchanger 13, a hot water circuit 4 provided with a third heat exchanger 13 and a fourth heat exchanger 15, and the first heat exchange
- the first heat medium circuit 5 that exchanges heat with the vessel 11 is provided.
- the first refrigerant from the compressor 21 passes through the fifth heat exchanger 14 and the second heat exchanger 12 from the four-way valve 22 and condenses, and then the expansion valve 23
- the first heat exchanger 11 evaporates, and returns to the compressor 21 via the four-way valve 22 again.
- the four-way valve 22 is switched, and the first refrigerant from the compressor 21 passes through the first heat exchanger 11 from the four-way valve 22 and condenses, and then passes through the expansion valve 23 to generate the second heat. It evaporates in the exchanger 12 and the fifth heat exchanger 14 and returns to the compressor 21 through the four-way valve 22 again.
- the first heat exchanger 11 exchanges heat between the coolant flowing through the first heat medium circuit 5 and the first refrigerant.
- the second heat exchanger 12 is configured to exchange heat between the second refrigerant and the first refrigerant in the second refrigerant circuit 3.
- the fifth heat exchanger 14 is configured to exchange heat between the water in the hot water circuit 4 and the first refrigerant.
- the second heat exchanger 12 and the fifth heat exchanger 14 are connected in series, and the first refrigerant flows from the fifth heat exchanger 14 to the second heat exchanger 12 during the heating operation, and during the cooling operation. It flows from the second heat exchanger 12 to the fifth heat exchanger 14.
- the second refrigerant from the compressor 31 condenses in the third heat exchanger 13 passes through the expansion valve 32, evaporates in the second heat exchanger 12, and returns to the compressor 3. It is configured as follows.
- the hot water circuit 4 supplies hot water heated through the third heat exchanger 13 and the fourth heat exchanger 15 to the upper part of the hot water tank 41 via the pump 41a, and from the lower part of the hot water tank 41 to the first It returns to the three heat exchanger 13, and it is comprised so that it can circulate until it becomes predetermined
- the hot water circuit 4 is connected to a hot water use device 42 in parallel with the hot water tank 41. That is, the hot water tank 41 and the hot water use device 42 branch to a path between the hot water tank 41 and the hot water use device 42 at a branch point A upstream of the hot water tank 41 after the hot water passes through the fourth heat exchanger 15. Are merged at a branch point B on the downstream side after passing through.
- the fifth heat exchanger 14 is connected in parallel with the third heat exchanger 13 by the three-way valve 43 provided on the downstream side of the branch point B on the downstream side.
- the third heat exchanger 13 and the fifth heat exchanger 14 branch to the third heat exchanger 13 and the fifth heat exchanger 14 at the position of the three-way valve 43, It joins at the branch point C on the downstream side after passing through the fifth heat exchanger 14.
- the hot water circuit 4 can switch to the path
- the user can switch to the hot water tank 41 or the hot water use device 42 on the use side. Switching of the heat supply side is performed by a three-way valve 43.
- the heat utilization side is switched by opening and closing valves 41b and 41c provided in the inlet and outlet paths of the hot water tank 41 and opening and closing valves 42b and 42c provided in the inlet and outlet paths of the hot water utilization device 42. Is called. Circulation on the heat utilization side is performed by pumps 41a and 42a provided respectively.
- the first heat medium circuit 5 is configured such that the coolant that has passed through the fan coil unit 51 by the pump 51a circulates again from the first heat exchanger 11 through the sixth heat exchanger 16 to the pump 51a. Yes.
- the coolant absorbs heat by the fan coil unit 51 and radiates heat by the first heat exchanger 11.
- the sixth heat exchanger 16 is used to heat the coolant by exchanging heat with the waste heat of the engine 61 when the fan coil unit 51 is defrosted and needs to be defrosted.
- the sixth heat exchanger 16 is incorporated in the coolant circulation circuit 6 of the engine 61, and the coolant that has passed through the sixth heat exchanger 16 through the three-way valve 62 after passing through the engine 61 passes through the pump 63.
- the engine 61 is configured to return to the engine 61 again.
- the fourth heat exchanger 15 is connected to the other side of the three-way valve 62. That is, in the coolant circulation circuit 6, the fourth heat exchanger 15 and the sixth heat exchanger 16 are connected in parallel via the three-way valve 62, and the fourth heat exchanger 15 or the The waste heat of the engine 61 can be supplied to the sixth heat exchanger 16.
- the engine 61 serves as a drive source for driving the compressor 21 of the first refrigerant circuit 2 and the compressor 31 of the second refrigerant circuit 3.
- the compressors 21 and 31 may be mechanically connected to the engine 61 and configured to be driven by the engine 61, or may be driven using electricity generated by the engine 61. It may be configured to do so.
- the engine 61 may be configured to cover the output power of the entire hot water supply device 1 other than the compressors 21 and 31, or may be configured to cover other electricity. It may be a thing.
- the first refrigerant from the compressor 21 passes from the four-way valve 22 through the fifth heat exchanger 14 and the second heat exchanger 12. Then, after radiating and condensing in the second heat exchanger 12, it passes through the expansion valve 23, evaporates in the first heat exchanger 11, returns to the compressor 21 through the four-way valve 22, and repeats circulation. .
- the first heat medium circuit 5 circulates the coolant and absorbs it from the fan coil unit 51. The heat is sequentially circulated to the first heat exchanger 11 to exchange heat.
- the second refrigerant from the compressor 31 passes through the third heat exchanger 13, dissipates heat in the third heat exchanger 13, condenses, and then passes through the expansion valve 32. It evaporates with the 2nd heat exchanger 12, returns to the compressor 31 again, and repeats circulation.
- the second refrigerant flowing through the second refrigerant circuit 3 evaporates in the second heat exchanger 12 due to the condensation heat of the first refrigerant and evaporates in the third heat exchanger 13, and thus is more critical than the first refrigerant. It is more preferable to use a refrigerant having a higher temperature than to use the same refrigerant. In this way, by performing two-stage heating with the first refrigerant and the second refrigerant, the third heat exchanger 13 can be set to a higher temperature than the second heat exchanger 12, and thus far It can be used even in a cold district where the hot water supply device 1 cannot be used.
- the third heat exchanger 13 exchanges heat between the high-temperature second refrigerant and the water flowing through the hot water circuit 4 to form hot water.
- This hot water is further heated by engine waste heat in the fourth heat exchanger 15 and then used for heating in the hot water utilization device 42.
- the hot water utilization device 42 may be a panel heater, hot water floor heating, or a warm air heating device.
- the hot water of the hot water circuit 4 is connected to the hot water tank 41 side instead of the hot water using device 42, and the hot water is circulated until the hot water tank 41 reaches the required temperature. Do.
- the second refrigerant circuit 3 is stopped and the three-way valve 43 of the hot water circuit 4 is switched from the third heat exchanger 13 to the fourth heat exchanger 14 as shown in FIG. Do the driving.
- the first refrigerant from the compressor 21 passes through the fifth heat exchanger 14 and the second heat exchanger 12 from the four-way valve 22 and dissipates heat in the fifth heat exchanger 14 to condense. Then, it passes through the expansion valve 23, evaporates in the first heat exchanger 11, returns to the compressor 21 through the four-way valve 22, and repeats the circulation.
- the first refrigerant of the fifth heat exchanger 14 and the water flowing through the hot water circuit 4 exchange heat to become hot water.
- This hot water is further heated by engine waste heat in the fourth heat exchanger 15 and then used for heating in the hot water utilization device 42.
- the obtained hot water is not obtained by exchanging heat with the second refrigerant of the third heat exchanger 13 that has been heated in two stages, as in the above-described heating operation, but instead of the fifth heat exchanger 14. Since it is obtained by exchanging heat with the first refrigerant, it becomes hot water having a temperature lower than that in the heating operation described above. Therefore, it is preferable to perform this operation when the hot water use device 42 requires relatively medium / low temperature hot water such as hot water floor heating.
- the four-way valve 22 is switched from the heating operation as shown in FIG. Further, the three-way valve 62 of the coolant circulation circuit 6 is switched to the sixth heat exchanger 16 side so that engine waste heat does not go to the fourth heat exchanger 15.
- the second refrigerant circuit 3 is stopped, and the three-way valve 43 of the hot water circuit 4 is switched from the third heat exchanger 13 to the fifth heat exchanger 14 for operation.
- the first refrigerant from the compressor 21 dissipates heat from the four-way valve 22 and condenses in the first heat exchanger 11, then passes through the expansion valve 23, the second heat exchanger 12, It passes through the five heat exchanger 14, evaporates in the fifth heat exchanger 14, returns to the compressor 21 through the four-way valve 22 again, and repeats the circulation.
- the first heat medium circuit 5 circulates the coolant to circulate the first heat exchanger 11.
- the heat recovered in step S is radiated from the fan coil unit 51.
- the hot water circuit 4 the first refrigerant that absorbs heat in the fifth heat exchanger 14 and the water flowing through the hot water circuit 4 exchange heat to become cold water.
- the cold water passes through the fourth heat exchanger 15, and the cooling water circulation circuit 6 is switched so that engine waste heat does not come to the fourth heat exchanger 15, so that the cold water is the hot water utilization device 42. It is used for cooling.
- the hot water utilization device 42 may be a cooling device using radiant cooling heat or a cooling device configured to blow this radiant cooling heat as cold air.
- the first heat medium circuit 5 is configured so that the first heat exchanger 11 is caused by evaporation of the first refrigerant in the first heat exchanger 11. Since the coolant is cooled, the heat absorbed from the fan coil unit 51 by circulating the coolant is sequentially circulated to the first heat exchanger 11 for heat exchange. Accordingly, the fan coil unit 51 may be frosted and deteriorated in function over time. Therefore, when the fan coil unit 51 is frosted in this way, a defrosting operation is performed. As shown in FIG. 5, this defrosting operation is performed in the same manner as the cooling operation. However, in the hot water circuit 4, the hot water stored in the hot water tank 41 is circulated instead of circulating the water to the hot water utilization device 42.
- the hot water circulating in the hot water circuit 4 is heat-exchanged with the first refrigerant in the fifth heat exchanger 14. Therefore, the condensation temperature in the first heat exchanger 11 in the first refrigerant circuit 2 is increased, and the coolant flowing through the first heat medium circuit 5 is sufficiently heated. Also, in the sixth heat exchanger 16, this coolant absorbs heat from engine waste heat to increase the temperature, so that frost adhering to the fan coil unit 51 can be melted.
- the hot water supply apparatus 1 of the present invention is provided with the fan coil unit 51 outside the package 10, when installing the hot water supply apparatus 1, the fan coil unit 51 may be provided at a position away from the package 10. it can.
- the pipe 53 through which the coolant circulates is connected to a heat exchanger 53a provided inside the sewage pipe S or a heat exchanger 53b provided outside. Then, the heat recovered from the sewage may be used. Further, the coolant is circulated by using the first heat medium circuit 5 as a closed circuit, but river water, groundwater, or the like may be drawn into the open circuit. That is, the portion corresponding to the fan coil unit 51 outside the package 10 of the first heat medium circuit 5 is changed to a pipe 54 for drawing river water or groundwater as shown in FIG.
- An inlet 54a and an outlet 54b of the pipe 54 are provided in the groundwater flow path F to make the first heat medium circuit 5 an open circuit, and the first heat medium circuit 5 using the river water and groundwater as a heat source and a heat medium. May be supplied.
- river water or groundwater may be drawn using a flow, or may be drawn using a pump P.
- the portion corresponding to the first heat exchanger 11 is constituted by a fan coil unit, the entire package 10 of the hot water supply device 1 is enlarged, and the piping of the supply / exhaust duct for the fan coil unit can be secured.
- the package 10 includes only the piping that constitutes the first heat medium circuit 5, so that the package 10 as a whole can be compactly designed.
- the fan coil unit 51 provided outside the package 10 can also be omitted, and only piping that draws in geothermal, river water, groundwater, etc. can be constructed. Even if it is installed in an existing building where space cannot be secured, it can be easily and easily installed. That is, when the hot water supply apparatus 1 is introduced into an existing building by renovation, the degree of freedom in design increases.
- FIGS. 7 and 8 show an embodiment of another hot water supply apparatus 1a according to the present invention.
- This hot water supply device 1a is configured so that the hot water circuit 4 of the hot water supply device 1 shown in FIGS. 1 to 5 is provided with three three-way valves 44, 45, 46 so that the hot water circuit 4 can be divided into two different flows. It is. Since this hot water supply device 1a is obtained by adding a new function to the hot water supply device 1 shown in FIGS. 1 to 5, all the functions and effects that are possible with this hot water supply device 1 can be achieved.
- the three-way valve 44 is provided on a downstream outlet under the hot water tank 41 and a path from the outlet to the branch point B between the hot water using device 42 and the fourth heat from the third heat exchanger 13.
- a new path from the three-way valve 44 to the branch point D is provided at the branch point D leading to the exchanger 15. Thereby, the hot water from the hot water tank 41 can be made to flow to the branch point B side or the branch point D side by switching the three-way valve 44.
- the three-way valve 45 is provided to be branched into a route from the outlet of the fifth heat exchanger 14 to the inlet of the hot water using device 42 and a route to the branch point C. Thereby, the hot water from the 5th heat exchanger 14 can be made to flow to the hot-water utilization apparatus 42 side or the 4th heat exchanger 15 side by switching of the three-way valve 45.
- FIG. 45 is provided to be branched into a route from the outlet of the fifth heat exchanger 14 to the inlet of the hot water using device 42 and a route to the branch point C.
- the three-way valve 46 is provided so as to be branched into a route from the three-way valve 45 to the inlet of the hot water use device 42 and a route from the branch point A to the inlet of the hot water use device 42. Thereby, the hot water flowing into the inlet of the hot water tank 41 can flow from the fifth heat exchanger 14 side or from the fourth heat exchanger 15 side by switching the three-way valve 46.
- the first refrigerant from the compressor 21 passes through the fifth heat exchanger 14 and the second heat exchanger 12 from the four-way valve 22 and dissipates heat in the fifth heat exchanger 14 to condense. Then, it passes through the expansion valve 23, evaporates in the first heat exchanger 11, returns to the compressor 21 through the four-way valve 22, and repeats the circulation.
- the first refrigerant of the fourth heat exchanger 14 and the water flowing through the hot water circuit 4 exchange heat to become hot water.
- This hot water passes through the three-way valves 45 and 46, is used for heating by the hot water use device 42, passes through the three-way valve 43, returns to the fifth heat exchanger 14, and then circulates.
- the water in the hot water tank 41 flows through the three-way valve 44 to the fourth heat exchanger 15, is heated by engine waste heat to become hot water, and is again heated. It is made to return to 41.
- the first refrigerant from the compressor 21 radiates and condenses from the four-way valve 22 in the first heat exchanger 11, then passes through the expansion valve 23, the fifth heat exchanger 14, It passes through the two heat exchangers 12, evaporates in the fifth heat exchanger 14, returns to the compressor 21 through the four-way valve 22, and repeats the circulation.
- the first refrigerant of the fifth heat exchanger 14 and the water flowing through the hot water circuit 4 exchange heat to become cooling water.
- the cooling water passes through the three-way valves 45 and 46, is used for cooling by the hot water use device 42, passes through the three-way valve 43, returns to the fifth heat exchanger 14, and then circulates.
- the water in the hot water tank 41 flows through the three-way valve 44 to the fourth heat exchanger 15 and is heated by engine waste heat to become hot water, as in the case of the heating hot water supply operation. Return to the hot water tank 41 again.
- the cooling hot water supply operation two flows can be formed in the hot water circuit 4, so that the cooling water used for cooling in the hot water utilization device 42 is generated using the fifth heat exchanger 14, and the hot water tank 41 is used.
- the hot water used for hot water supply is produced using the fourth heat exchanger 15, and the cooling operation and the hot water supply operation can be performed simultaneously in parallel.
- this hot water supply apparatus 1a can perform similarly about each driving
- hot water supply apparatus 1a shown in FIG. 7 and FIG. 8 may be installed in each installation structure shown in FIG.
- the hot water supply apparatus according to the present invention is used in various hot water supply facilities.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
【課題】 寒冷地であったり、既設の建物であっても容易に施工でき、効率良く高温水を得ることができる給湯装置と、その設置構造を提供する。 【解決手段】温水回路4で得られた温水を利用側へ供給する給湯装置1において、第一冷媒を圧縮する圧縮機21、四方弁22、前記第一冷媒と熱媒体とを熱交換する第一熱交換器11、および前記第一冷媒と第二冷媒とを熱交換する第二熱交換器12が設けられた第一冷媒回路2と、第二冷媒を圧縮する圧縮機31、前記第二熱交換器12、および前記第二冷媒と水とを熱交換する第三熱交換器13が設けられた第二冷媒回路3と、前記第三熱交換器13、およびエンジン廃熱と水とを熱交換する第四熱交換器15が設けられた温水回路4と、を具備し、熱源から熱媒体が吸収した熱を前記第一熱交換器11に供給する第一熱媒体回路5を有するものである。
Description
本発明は、ヒートポンプを利用した給湯装置と、その設置構造に関するものである。
従来より、ヒートポンプを利用して得られた温水を利用側へ供給する給湯装置として、異なった二つの冷媒による冷凍サイクルをそれぞれ行うことができる二つの冷媒回路を有する給湯装置が提案されている(例えば、特許文献1参照)。
また、圧縮機を駆動するエンジン廃熱を利用する給湯装置も提案されている(例えば、特許文献2参照)。
しかし、上記従来の特許文献1記載の給湯装置の場合、二つの冷媒回路の間に中温度の熱媒体通路を形成しているため、床暖房などの比較的中低温の循環水に対応することができるが、設置場所が寒冷地であったり、パネルヒータなどの比較的温度の高い循環水が必要な場合に、この熱媒体通路では十分な温度の循環水を確保することができない。
また、上記従来の特許文献2記載の給湯装置の場合、給湯タンクの加熱を、冷媒回路とエンジン廃熱とで個別に行う構成となっており、給湯時に効率よく給湯することができない。
さらに、上記従来の特許文献1記載の給湯装置の場合、暖房時に、第一熱交換器と室内熱交換器とが凝縮熱を分け合うことになるため、第一冷媒回路の第一熱交換器では十分な凝縮熱が得られず、十分な温度の温水を作り出すことができない。
さらに、上記従来の給湯装置の場合、冷凍サイクルにおける凝縮器は、空気を熱源とするファンコイルユニットを用いているため、寒冷地で使用するような場合には、着霜して使用できなくなる。そのため、ファンコイルユニットを施設内に設置することが考えられるが、この場合は施設内に給排気ダクトを確保する必要があり、既設の建物に設置するような場合は、この給排気ダクトのスペースを確保することができない。
本発明は、かかる実情に鑑みてなされたものであって、寒冷地であったり、既設の建物であっても容易に施工でき、効率良く高温水を得ることができる給湯装置と、その設置構造を提供することを目的としている。
上記課題を解決するための本発明の給湯装置は、温水回路で得られた温水を利用側へ供給する給湯装置において、第一冷媒を圧縮する圧縮機、四方弁、前記第一冷媒と熱媒体とを熱交換する第一熱交換器、および前記第一冷媒と第二冷媒とを熱交換する第二熱交換器が設けられた第一冷媒回路と、第二冷媒を圧縮する圧縮機、前記第二熱交換器、および前記第二冷媒と水とを熱交換する第三熱交換器が設けられた第二冷媒回路と、前記第三熱交換器、およびエンジン廃熱と水とを熱交換する第四熱交換器が設けられた温水回路と、を具備し、熱源からの熱媒体を前記第一熱交換器に供給する第一熱媒体回路を有するものである。
上記給湯装置において、第一冷媒回路には、第一冷媒と水とを熱交換する第五熱交換器が第二熱交換器と直列に設けられ、温水回路には、第五熱交換器が第三熱交換器と並列に設けられ、温水は、三方弁により、第三熱交換器または第五熱交換器に切替可能となされたものであってもよい。
上記給湯装置において、第二冷媒回路の第二冷媒の臨界温度が、第一冷媒回路の第一冷媒の臨界温度以上であってもよい。
上記給湯装置において、要求される水温と、熱源との温度差に応じて第二冷媒回路の運転が運転または停止可能となされたものであってもよい。
上記給湯装置において、温水回路には、温水タンクと、温水利用機器とが接続されるとともに、温水タンクおよび/または湯水利用機器に温水を切替供給する三方弁が設けられたものであってもよい。
上記給湯装置において、第一熱媒体回路には、熱源と第一熱交換器と直列に、エンジン廃熱と熱交換を行う第六熱交換器が設けられ、当該第六熱交換器と、第四熱交換器とが、三方弁により切替可能となされたエンジン冷却水回路を有するものであってもよい。
上記給湯装置において、熱源にファンコイルユニットが用いられ、第一熱交換器には、四方弁の切替により高温の第一冷媒が供給され、第六熱交換器には、三方弁の切替によりエンジン廃熱が供給されて、ファンコイルユニットの除霜運転が可能となされたものであってもよい。
上記課題を解決するための本発明の給湯装置の設置構造は、地中に埋設した配管を第一熱媒体回路に接続して閉鎖回路とし、地熱から熱媒体が吸収した熱を第一熱交換器に供給して熱媒体を循環させるように設置されたものである。
また、本発明の給湯装置の設置構造は、河川水または地下水を引き込む配管を第一熱媒体回路に接続して開放回路とし、この河川水または地下水を熱源、かつ、熱媒体として第一熱交換器に供給するように設置されたものであってもよい。
以上述べたように、本発明によると、寒冷地や既設の建物であっても、容易に取り付けることができ、効率良く高温水を得ることができる。
以下、本発明の実施の形態を図面を参照して説明する。
図1ないし図5は給湯装置1の各運転動作時の状態を示している。
この給湯装置1は、圧縮機21、四方弁22、第一熱交換器11、および第二熱交換器12を設けた第一冷媒回路2と、圧縮機31、第二熱交換器12、第三熱交換器13を設けた第二冷媒回路3と、第三熱交換器13、および第四熱交換器15を設けた温水回路4とを具備する給湯装置1であって、第一熱交換器11と熱交換する第一熱媒体回路5を有するものである。
第一冷媒回路2は、暖房運転時において、圧縮機21からの第一冷媒が、四方弁22から第五熱交換器14、第二熱交換器12を通過して凝縮した後、膨張弁23を通過して第一熱交換器11で蒸発し、再度四方弁22を介して圧縮機21へと戻るように構成されている。冷房運転時は、四方弁22が切り替えられ、圧縮機21からの第一冷媒が、四方弁22から第一熱交換器11を通過して凝縮した後、膨張弁23を通過して第二熱交換器12、第五熱交換器14で蒸発し、再度四方弁22を介して圧縮機21へと戻ることとなる。
この際、第一熱交換器11は、第一熱媒体回路5を流れるクーラントと第一冷媒とを熱交換するようになされている。第二熱交換器12は、第二冷媒回路3の第二冷媒と第一冷媒とを熱交換するようになされている。第五熱交換器14は、温水回路4の水と第一冷媒とを熱交換するようになされている。第二熱交換器12と第五熱交換器14とは直列に接続されており、第一冷媒は、暖房運転時に第五熱交換器14から第二熱交換器12へと流れ、冷房運転時に第二熱交換器12から第五熱交換器14へと流れる。
第二冷媒回路3は、圧縮機31からの第二冷媒が、第三熱交換器13で凝縮した後、膨張弁32を通過して第二熱交換器12で蒸発し、圧縮機3へ戻るように構成されている。
温水回路4は、第三熱交換器13、第四熱交換器15を通過して暖められた温水を、ポンプ41aを介して温水タンク41の上部へ供給し、当該温水タンク41の下部から第三熱交換器13へと戻って所定の温度になるまで循環することができるように構成されている。また、温水回路4は、温水タンク41と並列に温水利用機器42が接続されている。すなわち、第四熱交換器15を温水が通過した後の温水タンク41の上流の分岐ポイントAで温水タンク41と温水利用機器42との経路に分岐し、これら温水タンク41と温水利用機器42とを通過後の下流側の分岐ポイントBで合流するようになされている。さらに、温水回路4は、前記した下流側の分岐ポイントBよりも下流側に設けられた三方弁43によって、第三熱交換器13と並列に第五熱交換器14が接続されている。この第三熱交換器13と第五熱交換器14とは、前記三方弁43の位置で第三熱交換器13と第五熱交換器14とに分岐し、これら第三熱交換器13と第五熱交換器14とを通過後の下流側の分岐ポイントCで合流するようになされている。
これにより、温水回路4は、熱供給側では、第三熱交換器13および第四熱交換器15の経路、または第五熱交換器14および第四熱交換器15の経路、に切り替えることができるようになされており、利用側では、温水タンク41または温水利用機器42に切り替えることができる。熱供給側の切替は、三方弁43によって行われる。熱利用側の切替は、温水タンク41の入口および出口の経路に設けられたバルブ41b,41cの開閉と、温水利用機器42の入口および出口の経路に設けられたバルブ42b,42cの開閉によって行われる。熱利用側の循環は、それぞれに設けられたポンプ41a,42aによって行われる。
第一熱媒体回路5は、ポンプ51aによってファンコイルユニット51を通過したクーラントが、第一熱交換器11から第六熱交換器16を経て再度ポンプ51aへと戻って循環するように構成されている。この第一熱媒体回路5において、クーラントは、ファンコイルユニット51で吸熱し、第一熱交換器11で放熱する。第六熱交換器16は、ファンコイルユニット51に着霜して除霜の必要が生じた場合に、エンジン61の廃熱と熱交換してクーラントを加熱する際に用いられる。
この第六熱交換器16は、エンジン61の冷却水循環回路6に組み込まれており、エンジン61を通過後、三方弁62を介して第六熱交換器16を通過した冷却水がポンプ63を介して再度エンジン61に戻るように構成されている。三方弁62の他方には前記第四熱交換器15が接続されている。つまり、冷却水循環回路6は、三方弁62を介して第四熱交換器15と第六熱交換器16とが並列に接続されており、三方弁62の選択により、第四熱交換器15または第六熱交換器16へとエンジン61の廃熱を供給できるようになされている。
なお、エンジン61は、第一冷媒回路2の圧縮機21および第二冷媒回路3の圧縮機31を駆動する駆動源となる。この際、圧縮機21,31は、エンジン61と機械的に接続され、当該エンジン61によって駆動するように構成されたものであってもよいし、エンジン61によって発電された電気を利用して駆動するように構成されたものであってもよい。後者の場合、エンジン61は、圧縮機21,31以外に、この給湯装置1全体の出力電力をまかなうように構成されたものであってもよいし、それ以外の電気をまかなうように構成されたものであってもよい。
次に、このようにして構成される給湯装置1の各運転動作について説明する。
まず、暖房運転の場合、図1に示すように、第一冷媒回路2では、圧縮機21からの第一冷媒が、四方弁22から第五熱交換器14、第二熱交換器12を通過して第二熱交換器12で放熱して凝縮した後、膨張弁23を通過して第一熱交換器11で蒸発し、再度四方弁22を介して圧縮機21へと戻って循環を繰り返す。
この際、第一熱媒体回路5は、第一熱交換器11での第一冷媒の蒸発により、当該第一熱交換器11が冷却されるので、クーラントを循環させてファンコイルユニット51から吸収した熱を順次第一熱交換器11へ循環させて熱交換する。
また、第二冷媒回路3では、圧縮機31からの第二冷媒が第三熱交換器13を通過し、当該第三熱交換器13で放熱して凝縮した後、膨張弁32を通過して第二熱交換器12で蒸発し、再度圧縮機31へと戻って循環を繰り返す。
この際、第二冷媒回路3を流れる第二冷媒は、第二熱交換器12において、第一冷媒の凝縮熱で蒸発し、第三熱交換器13で蒸発するため、第一冷媒よりも臨界温度が高い冷媒を用いることが、同一の冷媒を使用するよりもより好ましい。このように、第一冷媒と第二冷媒とによって二段加熱することで、第三熱交換器13は、第二熱交換器12よりも、より高温とすることができ、今までこの種の給湯装置1が使用不可能であった寒冷地であっても使用することができることとなる。
そして、温水回路4では、上記第三熱交換器13で高温の第二冷媒と、温水回路4を流れる水とが熱交換して温水となる。この温水は、第四熱交換器15でエンジン廃熱によってさらに加熱された後、温水利用機器42で暖房に利用される。この際、温水利用機器42としては、パネルヒータや温水床暖房であっても良いし、温風暖房装置であってもよい。
給湯運転の場合は、図2に示すように、温水回路4の温水を温水利用機器42では無く、温水タンク41側に接続し、温水タンク41が必要温度になるまで温水を循環させて運転を行う。
必要温度が低い暖房運転の場合は、図3に示すように、第二冷媒回路3を停止させ、温水回路4の三方弁43を第三熱交換器13から第四熱交換器14に切り替えて運転を行う。
第一冷媒回路2では、圧縮機21からの第一冷媒が、四方弁22から第五熱交換器14、第二熱交換器12を通過して第五熱交換器14で放熱して凝縮した後、膨張弁23を通過して第一熱交換器11で蒸発し、再度四方弁22を介して圧縮機21へと戻って循環を繰り返す。
温水回路4では、上記第五熱交換器14の第一冷媒と、温水回路4を流れる水とが熱交換して温水となる。この温水は、第四熱交換器15でエンジン廃熱によってさらに加熱された後、温水利用機器42で暖房に利用される。
この際、得られる温水は、前記した暖房運転の時のように、二段加熱した第三熱交換器13の第二冷媒と熱交換して得られるのでは無く、第五熱交換器14の第一冷媒と熱交換して得られるものであるため、前記した暖房運転の場合よりも低い温度の温水となる。したがって、温水利用機器42として温水床暖房のように比較的中低温の温水を必要とするような場合には、この運転を行うことが好ましい。
冷房運転の場合は、図4に示すように、前記暖房運転から四方弁22を切り替える。また、冷却水循環回路6の三方弁62を第六熱交換器16側へと切り替えて、エンジン廃熱が第四熱交換器15へ行かないようにしておく。第二冷媒回路3は停止させ、温水回路4の三方弁43を第三熱交換器13から第五熱交換器14に切り替えて運転を行う。
第一冷媒回路2では、圧縮機21からの第一冷媒が、四方弁22から第一熱交換器11で放熱して凝縮した後、膨張弁23を通過して第二熱交換器12、第五熱交換器14を通過し、第五熱交換器14で蒸発し、再度四方弁22を介して圧縮機21へと戻って循環を繰り返す。
この際、第一熱媒体回路5は、第一熱交換器11での第一冷媒の放熱により、当該第一熱交換器11が過熱されるので、クーラントを循環させて第一熱交換器11で回収した熱を、ファンコイルユニット51から放熱させる。
温水回路4では、上記第五熱交換器14で吸熱する第一冷媒と、温水回路4を流れる水とが熱交換して冷水となる。この冷水は、第四熱交換器15を通過するが、この第四熱交換器15にはエンジン廃熱が来ないように冷却水循環回路6を切り替えているので、前記冷水は、温水利用機器42で冷房に利用される。この際、温水利用機器42としては、輻射冷熱による冷却装置や、この輻射冷熱を冷風にして送風するように構成された冷房装置であってもよい。
この給湯装置1において、上記した冷房運転を除く他の運転動作の際、第一熱媒体回路5は、第一熱交換器11での第一冷媒の蒸発により、当該第一熱交換器11が冷却されるので、クーラントを循環させてファンコイルユニット51から吸収した熱を順次第一熱交換器11へ循環させて熱交換することとなる。したがって、ファンコイルユニット51は、経時的使用により着霜し、機能低下する場合がある。したがって、このようにファンコイルユニット51に着霜した場合には、除霜運転を行う。この除霜運転は、図5に示すように、前記冷房運転と同じようにして運転を行う。ただし、温水回路4では、温水利用機器42に水を循環させるのではなく、温水タンク41に貯められた温水を循環させる。
これにより、温水回路4を循環する温水は、第五熱交換器14において、第一冷媒と熱交換される。したがって、第一冷媒回路2における第一熱交換器11での凝縮温度は高くなり、第一熱媒体回路5を流れるクーラントは十分に加熱されることとなる。また、このクーラントは、第六熱交換器16においても、エンジン廃熱から熱を吸収して温度が高くなるため、ファンコイルユニット51に付着した霜を溶かすことができる。
本発明の給湯装置1は、パッケージ10の外にファンコイルユニット51を設けているため、当該給湯装置1を設置する際、パッケージ10から離れた位置にファンコイルユニット51を設けて設置することができる。
なお、本実施の形態では、第一熱媒体回路5の熱源としてファンコイルユニット51によって熱交換される空気を利用しているため、除霜運転が必要となる。したがって、この熱源として、除霜運転の必要がない他のものを使用してもよい。具体的には、図6(a)に示すように、第一熱媒体回路5のパッケージ10の外のファンコイルユニット51に相当する部分を、地中に埋設した配管52に変更し、この配管52内にクーラントを循環させて、当該配管52に設けられて地中に埋設された熱交換器52aの部分から地熱を回収して利用するように構成してもよい。この場合、地熱は年間を通して温度が安定しているので、寒冷地であっても、除霜の心配をすることなく有効に使用することができる。また、図6(b)および(c)に示すように、このクーラントが循環する配管53を、下水管Sの内側に設けた熱交換器53aや外側に設けた熱交換器53bに接続したりして下水から回収した熱を利用するように構成してもよい。さらに、第一熱媒体回路5を閉鎖回路にしてクーラントを循環させているが、開放回路にして河川水や地下水などを引き込むようにしてもよい。すなわち、第一熱媒体回路5のパッケージ10の外のファンコイルユニット51に相当する部分を、図6(d)に示すように、河川水や地下水を引き込む配管54に変更し、これら河川水や地下水の流路Fに、配管54の流入口54aおよび流出口54bを設けて第一熱媒体回路5を開放回路とし、この河川水や地下水を熱源、かつ、熱媒体として第一熱媒体回路5に供給してもよい。この場合、河川水や地下水は、流れを利用して引き込むものであってもよいし、ポンプPを利用して引き込むものであってもよい。
通常の場合、第一熱交換器11に相当する部分がファンコイルユニットで構成されており、給湯装置1のパッケージ10全体が大型化し、このファンコイルユニットのための給排気ダクトの配管が確保できるか否かが懸念されるが、本発明の給湯装置1の場合は、パッケージ10には第一熱媒体回路5を構成する配管だけとなるため、パッケージ10全体のコンパクト設計が可能となる。特に、上記したように地熱や河川水や地下水などを使用する場合は、パッケージ10外に設けるファンコイルユニット51も省略でき、地熱や河川水、地下水などを引き込む配管だけ施工できるので、十分な配管スペースが確保できない既設の建物に設置する場合でも、簡単に無理なく施工することができる。すなわち、リフォームによって既設の建物に給湯装置1を導入するような場合には、設計の自由度が高くなる。
図7および図8は、本発明に係る他の給湯装置1aの実施の形態を示している。この給湯装置1aにおいて、図1ないし図5に示す給湯装置1と同部材には同符号を付して説明を省略する。この給湯装置1aは、図1ないし図5に示す給湯装置1の温水回路4に3つの三方弁44,45,46を設けて温水回路4を異なった二つの流れに分流できるように構成したものである。この給湯装置1aは、図1ないし図5に示す給湯装置1に新たな機能が付加されたものであるため、この給湯装置1で可能な作用効果は、全て果たすことができる。
温水回路4の追加の変更点について説明する。
三方弁44は、温水タンク41の下側にある下流側の出口と、当該出口から温水利用機器42との分岐ポイントBにいたる経路に設けられており、第三熱交換器13から第四熱交換器15にいたる分岐ポイントDに、この三方弁44から分岐ポイントDにいたる新たな経路が設けられている。これにより、温水タンク41からの温水は、三方弁44の切り替えによって、分岐ポイントB側または分岐ポイントD側へと流すことができるようになされている。
三方弁45は、第五熱交換器14の出口から温水利用機器42の入口にいたる経路と、分岐ポイントCにいたる経路とに分岐して設けられている。これにより、第五熱交換器14からの温水は、三方弁45の切り替えによって、温水利用機器42側または第四熱交換器15側へと流すことができるようになされている。
三方弁46は、上記三方弁45から温水利用機器42の入口にいたる経路と、分岐ポイントAから温水利用機器42の入口にいたる経路とに分岐して設けられている。これにより、温水タンク41の入口へ流入する温水は、三方弁46の切り替えによって、第五熱交換器14側から、または第四熱交換器15側から流れるようにすることができる。
次に、この給湯装置1の運転動作について説明する。
必要温度が低い暖房運転で、かつ、給湯を行う暖房給湯運転の場合、図7に太線で示すような経路で運転が行われる。
第一冷媒回路2では、圧縮機21からの第一冷媒が、四方弁22から第五熱交換器14、第二熱交換器12を通過して第五熱交換器14で放熱して凝縮した後、膨張弁23を通過して第一熱交換器11で蒸発し、再度四方弁22を介して圧縮機21へと戻って循環を繰り返す。
温水回路4では、上記第四熱交換器14の第一冷媒と、温水回路4を流れる水とが熱交換して温水となる。この温水は、三方弁45,46を通過して、温水利用機器42で暖房に利用された後、三方弁43を通過して再度第五熱交換器14へと戻り、その後、循環する。
また、この循環とは別に、温水回路4では、温水タンク41の水が、三方弁44を通過して第四熱交換器15へと流れ、エンジン廃熱により加熱されて温水となり、再度温水タンク41へと戻るようになされている。
つまり、この暖房給湯運転では、温水回路4に二つの流れを形成することができるので、温水利用機器42で暖房に使用する温水は第五熱交換器14を利用して作り出し、温水タンク41で給湯に使用する温水は第四熱交換器15を利用して作り出し、暖房運転と給湯運転とを同時に並行して行うことができる。
冷房運転で、かつ、給湯を行う冷房給湯運転の場合、図8に太線で示すような経路で運転が行われる。
第一冷媒回路2では、圧縮機21からの第一冷媒が、四方弁22から第一熱交換器11で放熱して凝縮した後、膨張弁23を通過して第五熱交換器14、第二熱交換器12を通過して第五熱交換器14で蒸発し、再度四方弁22を介して圧縮機21へと戻って循環を繰り返す。
温水回路4では、上記第五熱交換器14の第一冷媒と、温水回路4を流れる水とが熱交換して冷却水となる。この冷却水は、三方弁45,46を通過して、温水利用機器42で冷房に利用された後、三方弁43を通過して再度第五熱交換器14へと戻り、その後、循環する。
温水タンク41には、上記暖房給湯運転の場合と同様に、温水タンク41の水が、三方弁44を通過して第四熱交換器15へと流れ、エンジン廃熱により加熱されて温水となり、再度温水タンク41へと戻る。
これにより、冷房給湯運転では、温水回路4に二つの流れを形成することができるので、温水利用機器42で冷房に使用する冷却水は第五熱交換器14を利用して作り出し、温水タンク41で給湯に使用する温水は第四熱交換器15を利用して作り出し、冷房運転と給湯運転とを同時に並行して行うことができる。
なお、この給湯装置1aは、上記した図1ないし図5に示す給湯装置1の各運転動作についても、同様に行うことができる。
また、図7および図8に示す給湯装置1aは、上記した図6に示す各設置構造で設置されるのであってもよい。
なお、本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で例示に過ぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲に属する変形や変更は、全て本発明の範囲内のものである。
本発明に係る給湯装置は、各種給湯設備に用いられる。
1 給湯装置
1a 給湯装置
11 第一熱交換器
12 第二熱交換器
13 第三熱交換器
14 第五熱交換器
15 第四熱交換器
16 第六熱交換器
2 第一冷媒回路
21 圧縮機
22 四方弁
3 第二冷媒回路
31 圧縮機
4 温水回路
41 温水タンク
42 温水利用機器
43 三方弁
44 三方弁
45 三方弁
46 三方弁
5 第一熱媒体回路
51 ファンコイルユニット
6 エンジン冷却水回路
61 エンジン
62 三方弁
1a 給湯装置
11 第一熱交換器
12 第二熱交換器
13 第三熱交換器
14 第五熱交換器
15 第四熱交換器
16 第六熱交換器
2 第一冷媒回路
21 圧縮機
22 四方弁
3 第二冷媒回路
31 圧縮機
4 温水回路
41 温水タンク
42 温水利用機器
43 三方弁
44 三方弁
45 三方弁
46 三方弁
5 第一熱媒体回路
51 ファンコイルユニット
6 エンジン冷却水回路
61 エンジン
62 三方弁
Claims (9)
- 温水回路で得られた温水を利用側へ供給する給湯装置において、
第一冷媒を圧縮する圧縮機、四方弁、前記第一冷媒と熱媒体とを熱交換する第一熱交換器、および前記第一冷媒と第二冷媒とを熱交換する第二熱交換器が設けられた第一冷媒回路と、
第二冷媒を圧縮する圧縮機、前記第二熱交換器、および前記第二冷媒と水とを熱交換する第三熱交換器が設けられた第二冷媒回路と、
前記第三熱交換器、およびエンジン廃熱と水とを熱交換する第四熱交換器が設けられた温水回路と、を具備し、
熱源から熱媒体が吸収した熱を前記第一熱交換器に供給する第一熱媒体回路を有することを特徴とする給湯装置。 - 第一冷媒回路には、第一冷媒と水とを熱交換する第五熱交換器が第二熱交換器と直列に設けられ、
温水回路には、第五熱交換器が第三熱交換器と並列に設けられ、温水は、三方弁により、第三熱交換器または第五熱交換器に切替可能となされた請求項1記載の給湯装置。 - 第二冷媒回路の第二冷媒の臨界温度が、第一冷媒回路の第一冷媒の臨界温度以上である請求項1記載の給湯装置。
- 要求される水温と、熱源との温度差に応じて第二冷媒回路の運転が運転または停止可能となされた請求項1記載の給湯装置。
- 温水回路には、温水タンクと、温水利用機器とが接続されるとともに、温水タンクおよび/または湯水利用機器に温水を切替供給する三方弁が設けられた請求項1記載の給湯装置。
- 第一熱媒体回路には、熱源と第一熱交換器と直列に、エンジン廃熱と熱交換を行う第六熱交換器が設けられ、当該第六熱交換器と、第四熱交換器とが、三方弁により切替可能となされたエンジン冷却水回路を有する請求項1記載の給湯装置。
- 熱源にファンコイルユニットが用いられ、第一熱交換器には、四方弁の切替により高温の第一冷媒が供給され、第六熱交換器には、三方弁の切替によりエンジン廃熱が供給されて、ファンコイルユニットの除霜運転が可能となされた請求項6記載の給湯装置。
- 地中に埋設した配管を第一熱媒体回路に接続して閉鎖回路とし、地熱から熱媒体が吸収した熱を第一熱交換器に供給して熱媒体を循環させるように設置された請求項1ないし6の何れか一に記載の給湯装置の設置構造。
- 河川水または地下水を引き込む配管を第一熱媒体回路に接続して開放回路とし、この河川水または地下水を熱源、かつ、熱媒体として第一熱交換器に供給するように設置された請求項1ないし6の何れか一に記載の給湯装置の設置構造。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-247461 | 2011-11-11 | ||
JP2011247461A JP2013104590A (ja) | 2011-11-11 | 2011-11-11 | 給湯装置および設置構造 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013069456A1 true WO2013069456A1 (ja) | 2013-05-16 |
Family
ID=48289839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/077423 WO2013069456A1 (ja) | 2011-11-11 | 2012-10-24 | 給湯装置および設置構造 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013104590A (ja) |
WO (1) | WO2013069456A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104792196A (zh) * | 2015-04-22 | 2015-07-22 | 杜卫卫 | 一种化工生产中利用余热的热水循环交换装置 |
CN108317591A (zh) * | 2018-02-08 | 2018-07-24 | 燕山大学 | 一种利用组合式热泵回收废水余热制备热水的系统 |
JP7019212B1 (ja) | 2020-09-11 | 2022-02-15 | オリオン機械株式会社 | 冷温同時温度調整装置 |
JP7019214B1 (ja) | 2020-09-11 | 2022-02-15 | オリオン機械株式会社 | 冷温同時温度調整装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6122691B2 (ja) * | 2013-05-10 | 2017-04-26 | 本田技研工業株式会社 | コージェネレーション装置 |
JP2015068333A (ja) * | 2013-10-01 | 2015-04-13 | ヤンマー株式会社 | コージェネレーション装置 |
JP6319651B2 (ja) * | 2014-03-06 | 2018-05-09 | 本田技研工業株式会社 | コージェネレーション装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH024158A (ja) * | 1988-06-20 | 1990-01-09 | Fujitsu General Ltd | 給湯システム |
JP2001324240A (ja) * | 2000-05-18 | 2001-11-22 | Sanyo Electric Co Ltd | マルチエネルギーシステム |
JP2003130490A (ja) * | 2001-10-18 | 2003-05-08 | Jmc Geothermal Engineering Co Ltd | 水熱源ヒートポンプを用いた空調・給湯方法およびその装置 |
JP2004132647A (ja) * | 2002-10-11 | 2004-04-30 | Daikin Ind Ltd | 給湯装置、空調給湯システム、及び給湯システム |
JP2004218943A (ja) * | 2003-01-15 | 2004-08-05 | Matsushita Electric Ind Co Ltd | 冷暖房給湯装置 |
JP2007113897A (ja) * | 2005-10-24 | 2007-05-10 | Denso Corp | ヒートポンプ式給湯装置 |
JP2011069529A (ja) * | 2009-09-25 | 2011-04-07 | Hitachi Ltd | 空調給湯システム及びヒートポンプユニット |
WO2011045976A1 (ja) * | 2009-10-16 | 2011-04-21 | 株式会社 日立製作所 | 空調給湯システム |
-
2011
- 2011-11-11 JP JP2011247461A patent/JP2013104590A/ja active Pending
-
2012
- 2012-10-24 WO PCT/JP2012/077423 patent/WO2013069456A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH024158A (ja) * | 1988-06-20 | 1990-01-09 | Fujitsu General Ltd | 給湯システム |
JP2001324240A (ja) * | 2000-05-18 | 2001-11-22 | Sanyo Electric Co Ltd | マルチエネルギーシステム |
JP2003130490A (ja) * | 2001-10-18 | 2003-05-08 | Jmc Geothermal Engineering Co Ltd | 水熱源ヒートポンプを用いた空調・給湯方法およびその装置 |
JP2004132647A (ja) * | 2002-10-11 | 2004-04-30 | Daikin Ind Ltd | 給湯装置、空調給湯システム、及び給湯システム |
JP2004218943A (ja) * | 2003-01-15 | 2004-08-05 | Matsushita Electric Ind Co Ltd | 冷暖房給湯装置 |
JP2007113897A (ja) * | 2005-10-24 | 2007-05-10 | Denso Corp | ヒートポンプ式給湯装置 |
JP2011069529A (ja) * | 2009-09-25 | 2011-04-07 | Hitachi Ltd | 空調給湯システム及びヒートポンプユニット |
WO2011045976A1 (ja) * | 2009-10-16 | 2011-04-21 | 株式会社 日立製作所 | 空調給湯システム |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104792196A (zh) * | 2015-04-22 | 2015-07-22 | 杜卫卫 | 一种化工生产中利用余热的热水循环交换装置 |
CN108317591A (zh) * | 2018-02-08 | 2018-07-24 | 燕山大学 | 一种利用组合式热泵回收废水余热制备热水的系统 |
JP7019212B1 (ja) | 2020-09-11 | 2022-02-15 | オリオン機械株式会社 | 冷温同時温度調整装置 |
JP7019214B1 (ja) | 2020-09-11 | 2022-02-15 | オリオン機械株式会社 | 冷温同時温度調整装置 |
JP2022046847A (ja) * | 2020-09-11 | 2022-03-24 | オリオン機械株式会社 | 冷温同時温度調整装置 |
JP2022046849A (ja) * | 2020-09-11 | 2022-03-24 | オリオン機械株式会社 | 冷温同時温度調整装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2013104590A (ja) | 2013-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013069456A1 (ja) | 給湯装置および設置構造 | |
JP3925383B2 (ja) | 給湯装置、空調給湯システム、及び給湯システム | |
KR101147268B1 (ko) | 냉난방 및 급탕용 히트펌프시스템 및 그 제어방법 | |
JP5395950B2 (ja) | 空気調和装置および空調給湯システム | |
CN100443826C (zh) | 多功能地源热泵辐射空调及热水系统 | |
JP5373964B2 (ja) | 空調給湯システム | |
JP5455521B2 (ja) | 空調給湯システム | |
JP5490245B2 (ja) | 空気調和装置 | |
KR100998483B1 (ko) | 지열히트펌프를 이용한 모듈멀티형 냉난방시스템 | |
WO2013008278A1 (ja) | 空気調和装置 | |
JP2005195313A (ja) | 複合冷暖房システム | |
US20110138839A1 (en) | Water circulation apparatus associated with refrigerant system | |
CN105008823A (zh) | 热泵热水器 | |
JP5335131B2 (ja) | 空調給湯システム | |
JP2012207882A (ja) | 温水暖房機 | |
JP2003172523A (ja) | ヒートポンプ床暖房空調装置 | |
WO2012114461A1 (ja) | 空調給湯システム及び空調給湯システムの制御方法 | |
KR200400682Y1 (ko) | 보일러의 순환수를 이용한 냉방장치 | |
JP2004218943A (ja) | 冷暖房給湯装置 | |
JP5312616B2 (ja) | 空気調和装置 | |
JP2011163617A (ja) | 給湯装置および給湯システム | |
KR100599854B1 (ko) | 지열을 이용한 축열식 히트펌프 유닛 | |
JP5499153B2 (ja) | 空気調和装置 | |
KR100877056B1 (ko) | 하이브리드 히트펌프 시스템 | |
JPWO2011052050A1 (ja) | 空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12848237 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12848237 Country of ref document: EP Kind code of ref document: A1 |