WO2013069415A1 - Power conversion apparatus, and method for disposing conductor in power conversion apparatus - Google Patents

Power conversion apparatus, and method for disposing conductor in power conversion apparatus Download PDF

Info

Publication number
WO2013069415A1
WO2013069415A1 PCT/JP2012/076671 JP2012076671W WO2013069415A1 WO 2013069415 A1 WO2013069415 A1 WO 2013069415A1 JP 2012076671 W JP2012076671 W JP 2012076671W WO 2013069415 A1 WO2013069415 A1 WO 2013069415A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
conductive portion
semiconductor package
power converter
semiconductor
Prior art date
Application number
PCT/JP2012/076671
Other languages
French (fr)
Japanese (ja)
Inventor
裕加 山本
圭一 小太刀
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Publication of WO2013069415A1 publication Critical patent/WO2013069415A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • the present invention relates to a power conversion device, and more particularly, to an arrangement of conductors constituting a circuit of the power conversion device.
  • a three-level inverter that performs PWM (Pulse ⁇ ⁇ ⁇ ⁇ Width Modulation) control is known as a power converter that performs power conversion between direct current and alternating current using a switching element and a passive element.
  • IGBT Insulated Gate Bipolar Transistor
  • Etc. Etc.
  • the surge voltage when the switching element is turned off may be high. And when this surge voltage exceeds the safe operation area
  • the conductor which is the current path is made flat and connected to each switching element (DC voltage source, AC terminal).
  • a parallel plate-like conductor arrangement structure in which conductors are arranged close to each other is employed (for example, Patent Documents 1 to 6).
  • the conductor plates arranged close to each other by arranging the directions of the currents flowing through the conductor plates to be opposite to each other, the changes in the magnetic flux due to the current flowing through the conductor plates are offset each other.
  • the change in magnetic flux is reduced (for example, Patent Documents 3 and 5).
  • the inductance between the terminals of the IGBT package is reduced by arranging the capacitors so that the distance between the capacitors connected in series is shortened (for example, Patent Document 7).
  • the size of the power conversion device is increased by the surface of the conductor, which may be a factor that hinders downsizing of the power conversion device.
  • the wiring inductance of this portion is increased and the surge voltage may be increased.
  • One aspect of the power conversion device of the present invention is a power conversion device that converts direct current to alternating current or alternating current to direct current.
  • the conductor that connects the switching element and the direct current voltage source is provided on the surface on which the switching element is provided. It has a plate-like conductive part standing upright, and a DC voltage source is connected to this conductive part.
  • a conductor that constitutes a circuit of the power conversion device in a power conversion device that converts direct current to alternating current or alternating current to direct current, includes an element package group that constitutes the circuit. It has plate-like conductive parts standing up to the surface to be provided, and conductive parts in which the currents flowing through the conductive parts of the respective conductors are in opposite directions are provided in parallel and close together to constitute a parallel laminated conductor. It is characterized by.
  • one aspect of the conductor arrangement method in the power conversion device of the present invention is a conductor arrangement method in the power conversion device that converts direct current into alternating current or alternating current into direct current, and is provided for a surface on which a switching element is provided. It is characterized by connecting a switching element and a DC voltage source with a conductor having a plate-like conductive portion standing upright.
  • Another aspect of the conductor arrangement method in the power conversion device of the present invention is a conductor arrangement method in the power conversion device that converts direct current into alternating current or alternating current into direct current, and constitutes a circuit of the power conversion device.
  • a circuit is constituted by a conductor having a plate-like conductive portion standing upright with respect to the surface on which the element package group is provided, and conductive portions of conductors in which the current flowing through the conductive portion is in the opposite direction are provided in parallel and close to each other. It is characterized by that.
  • FIG. 2 is an electric circuit diagram of the power conversion device according to the first embodiment.
  • FIG. 1 In the power converter device according to the second embodiment, an explanatory diagram for explaining the current flowing in the electric circuit in mode 1, (b) In the power converter device according to the second embodiment, the direction of the current flowing in the conductor in mode 1 It is explanatory drawing demonstrated.
  • FIG. 1 and 2 are diagrams showing a structure of one phase of a three-level inverter device 1 that is a power conversion device according to the first embodiment
  • FIG. 1 is a diagram before connecting smoothing capacitors 8 and 9.
  • FIG. 2 is a diagram in which smoothing capacitors 8 and 9 are connected.
  • FIG. 3 is an electric circuit diagram corresponding to the three-level inverter device 1 according to the first embodiment.
  • the IGBT is described as an example of the switching element, but the same effect can be obtained when other switching elements such as a MOSFET and a bipolar transistor are used (the same applies to the second embodiment).
  • the number of collectors and emitters of the semiconductor package is two. However, the number of collectors / emitters may be one or more. 1 can be configured similarly to the inverter device according to the first embodiment.
  • the three-level inverter device 1 includes element package groups 2 to 7 arranged on a substantially straight line and a first voltage source constituting a DC voltage source. 1 and smoothing capacitors 8 and 9 as second unit voltage sources.
  • Each of the element packages constituting the element package groups 2 to 7 or conductors 10 to 16 for electrically connecting the element package and the smoothing capacitor (or AC terminal) are provided.
  • the conductors 10 to 16 are plate-like erected with respect to the surface on which the element package groups 2 to 7 are arranged (hereinafter referred to as package surfaces). Conductive portions 10a to 16a.
  • the three-level inverter device 1 includes semiconductor packages 2 and 3 connected in series between the smoothing capacitor 8 and the AC terminal 17, and the semiconductor package 2 and the semiconductor package 3.
  • the coupling diode 6 connected between the series connection point and the series connection point of the smoothing capacitors 8 and 9, the semiconductor packages 4 and 5 connected in series between the AC terminal 17 and the smoothing capacitor 9, and the semiconductor package 4
  • a coupling diode 7 connected between the series connection point of the semiconductor package 5 and the series connection point of the smoothing capacitors 8 and 9.
  • Each of the element package groups 2 to 7 is disposed on the heat sink 18.
  • Each of the semiconductor packages 2 to 5 includes IGBTs 2a to 5a and diodes 2b to 5b connected in reverse parallel thereto.
  • the emitter E of the semiconductor package 2 is provided adjacent to the collector C of the semiconductor package 3, and the collector C of the semiconductor package 3 and the cathode K1 of the coupling diode 6 are adjacent.
  • a coupling diode 6 is provided.
  • the collector C of the semiconductor package 5 is provided adjacent to the emitter E of the semiconductor package 4, and the coupling diode 7 is provided so that the emitter E of the semiconductor package 4 and the anode A 2 of the coupling diode 7 are adjacent.
  • the coupling diodes 6 and 7 are integrally formed so that the anode A1 of the coupling diode 6 and the anode A2 of the coupling diode 7 are adjacent to each other, and the cathode K1 of the coupling diode 6 and the cathode K2 of the coupling diode 7 are adjacent to each other. Yes.
  • the semiconductor packages 2 to 5 and the coupling diodes 6 and 7 are arranged side by side on a substantially straight line.
  • the coupling diode 6 and the coupling diode 7 constitute an integrated package, but the shape and configuration of the coupling diode 6 and the coupling diode 7 are not particularly limited, and the coupling diode 6 and the coupling diode are not limited. 7 may be provided separately.
  • Each coupling diode 6, 7 may have a form in which a plurality of diodes are connected in series (substantially a form in which the diodes are connected in parallel) in addition to a form in which one coupling diode is provided.
  • the conductor 10 that connects the collector C of the semiconductor package 2 and the positive terminal of the smoothing capacitor 8 is a plate-like conductive portion that is erected with respect to the package surface. 10a.
  • the conductive portion 10a has a standing portion 10b standing from the semiconductor package 2, and an extending portion 10c extending from the upper end portion of the standing portion 10b toward the adjacent semiconductor package 3.
  • a connecting portion 10d such as a stud bolt connected to the positive terminal of the smoothing capacitor 8 is provided at the end of the extending portion 10c so as to protrude from the surface of the extending portion 10c.
  • the extending portion 10c is provided away from the semiconductor package 3 by a distance that is about the height of a conductive portion 12a of the conductor 12 described later.
  • the connecting portion 10d is fastened with a nut or the like (the connection between the other connecting portions and the smoothing capacitors 8 and 9 is the same). is there).
  • a well-known connection method suitably for the connection method in the connection part 10d, such as using a detachable connector.
  • the conductor 11 connecting the emitter E of the semiconductor package 5 and the negative electrode terminal of the smoothing capacitor 9 is a plate-like shape standing on the package surface. It has a conductive portion 11a.
  • the conductive portion 11a has a standing portion 11b standing from the semiconductor package 5 and an extending portion 11c extending from the upper end of the standing portion 11b toward the adjacent semiconductor package 4, and the extending portion 11c.
  • a connecting portion 11d connected to the negative electrode terminal of the smoothing capacitor 9 is provided to protrude from the surface of the extending portion 11c.
  • the extending portion 11c is provided away from the semiconductor package 4 by a distance that is about the height of a conductive portion 13a of the conductor 13 described later.
  • the conductor 12 connecting the emitter E of the semiconductor package 2, the collector C of the semiconductor package 3, and the cathode K1 of the coupling diode 6 is connected to the package surface. It has a plate-like conductive portion 12a standing upright.
  • the conductor 13 that connects the collector C of the semiconductor package 5, the emitter E of the semiconductor package 4, and the anode A2 of the coupling diode 7 has a plate-like conductive portion 13a that stands upright with respect to the package surface.
  • the conductor 14 that connects the anode A1 of the coupling diode 6, the cathode K2 of the coupling diode 7, and the connection point of the smoothing capacitors 8 and 9 is formed on the package surface.
  • the conductive portion 14a includes first and second extending portions 14b and 14c, first and second folded portions 14d and 14e, and a connecting conductor portion 14f.
  • the first extending portion 14b is a plate-like conductor standing on the package surface, and is provided extending from the anode A1 of the coupling diode 6 to the semiconductor package 3 and the semiconductor package 2.
  • the second extending portion 14 c is a plate-like conductor standing on the package surface, and is provided extending from the cathode K 2 of the coupling diode 7 to the semiconductor package 4 and the semiconductor package 5.
  • the first extending portion 14b is substantially equal to the height of the conductive portion 12a of the conductor 12 shown in FIG. 5A, and is disposed along the conductive portion 12a.
  • stretching part 14c is substantially equal to the height of the electroconductive part 13a of the conductor 13 shown to Fig.5 (a), and is arrange
  • first and second folded portions 14d and 14e are provided so as to stand upright from the end portions of the first and second extending portions 14b and 14c, respectively, with respect to the package surface.
  • the plate-like connecting conductor portion 14f is provided so as to connect the folded portion 14d and the folded portion 14e.
  • the connecting conductor portion 14f is provided at a position higher than the height of the first extending portion 14b and the second extending portion 14c.
  • the connecting conductor portion 14f is provided with a connecting portion 14g connected to the connecting point of the smoothing capacitors 8 and 9, protruding from the surface of the connecting conductor portion 14f.
  • the connecting conductor portion 14f is formed with a through hole 14h through which an AC terminal connecting portion 16e of the conductor 16 described later passes.
  • the conductor 15 that connects the semiconductor package 3 and the AC terminal 17 is formed along the conductor 14. That is, the conductor 15 includes a plate-like first conductive portion 15b arranged in parallel with the first extending portion 14b of the conductor 14, and a plate-like folded portion 15c arranged in parallel with the folded portion 14d of the conductor 14. And a plate-like second conductive portion 15d arranged in parallel with the connecting conductor portion 14f of the conductor 14. Note that a connection portion 15e for connecting to the AC terminal 17 is provided at the end of the second conductive portion 15d so as to protrude from the surface of the second conductive portion 15d.
  • the conductor 16 connecting the semiconductor package 4 and the AC terminal 17 is formed along the conductor 14. That is, the conductor 16 includes a plate-like first conductive portion 16b arranged in parallel with the second extending portion 14c of the conductor 14 and a plate-like folded portion 16c arranged in parallel with the folded portion 14e of the conductor 14. And a plate-like second conductive portion 16d disposed in parallel with the connecting conductor portion 14f of the conductor 14.
  • the connection part 16e for connecting with the alternating current terminal 17 is provided in the edge part of the 2nd electroconductive part 16d, and protrudes from the 2nd electroconductive part 16d surface.
  • FIGS. 8 to 11 are explanatory diagrams illustrating current paths in the respective operation modes (mode 1 to mode 4) of the three-level inverter device 1 according to the first embodiment.
  • the current flowing through the three-level inverter circuit is the conductor 10 ⁇ semiconductor.
  • the three-level inverter device 1 is configured so that the standing portion 10 b of the conductor 10 and the folded portion 15 c of the conductor 15 are aligned.
  • the extending portion 10c and the second conductive portion 15d of the conductor 15 are arranged in parallel so as to be along each other.
  • the conductive portion 12a of the conductor 12 and the first conductive portion 15b of the conductor 15 are arranged so as to be close to each other, so that the direction of the current flowing through the conductive portion 12a of the conductor 12 (in FIG.
  • the direction of the current flowing through the first conductive portion 15b of the conductor 15 is opposite to that of the conductor 15 and the wiring inductance is reduced.
  • the current flowing through the three-level inverter circuit is as follows: conductor 14 ⁇ coupled diode 6 ⁇ conductor 12 ⁇ semiconductor package 3 ⁇ conductor 15 ⁇ AC terminal 17
  • the direction of the current flowing through the flat conductors 12, 14, and 15 is reversed even in the mode 2.
  • the respective conductors 12, 14, 15 are arranged in close proximity. That is, the connecting conductor portion 14f of the conductor 14 (the direction of current is indicated by a thin arrow) and the second conductive portion 15d of the conductor 15 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other. .
  • the folded portion 14d of the conductor 14 (the direction of current is indicated by a thin arrow) and the folded portion 15c of the conductor 15 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other. Further, the first extending portion 14b of the conductor 14 (the direction of current is indicated by a thin arrow) and the conductive portion 12a of the conductor 12 and the first conductive portion 15b of the conductor 15 (the direction of current is indicated by a bold arrow) are close to each other.
  • the laminated conductors are arranged along the line.
  • the wiring inductance is further reduced by forming a laminated conductor structure in which the standing portion 10b of the conductor 10, the folded portion 15c of the conductor 15, and the folded portion 14d of the conductor 14 are laminated in substantially the same shape.
  • the direction of the current flowing through the flat conductors 11, 13, and 16 is reversed even in the mode 3.
  • the respective conductors 11, 13, and 16 are arranged close to each other. That is, the second conductive portion 16d of the conductor 16 (the direction of current is indicated by a thin arrow) and the extending portion 11c of the conductor 11 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other.
  • the folded portion 16c (the direction of current is indicated by a thin arrow) of the conductor 16 and the standing portion 11b (the direction of current is indicated by a bold arrow) of the conductor 11 are arranged so as to be close to each other to constitute a laminated conductor. is doing.
  • the first conductive portion 16b of the conductor 16 (the direction of current is indicated by a thin arrow) and the conductive portion 13a of the conductor 13 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other and the laminated conductor Is configured.
  • the current flowing through the three-level inverter circuit is as follows: AC terminal 17 ⁇ conductor 16 ⁇ semiconductor Package 4 ⁇ conductor 13 ⁇ coupling diode 7 ⁇ conductor 14.
  • the three-level inverter device 1 is configured so that the direction of the current flowing through the flat conductors 13, 14, 16 is reversed even in the mode 4.
  • the respective conductors 13, 14, and 16 are arranged close to each other. That is, the second conductive portion 16d of the conductor 16 (the direction of current is indicated by a thin arrow) and the connection conductor portion 14f of the conductor 14 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other and the laminated conductor Is configured.
  • the folded portion 16c of the conductor 16 (the direction of current is indicated by a thin arrow) and the folded portion 14e of the conductor 14 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other to constitute a laminated conductor. ing. Further, the first conductive portion 16b of the conductor 16 and the conductive portion 13a of the conductor 13 (the direction of current is indicated by a thin arrow) and the second extending portion 14c of the conductor 14 (the direction of current is indicated by a bold arrow) are close to each other. Accordingly, the laminated conductors are arranged.
  • the wiring inductance is further reduced by providing a laminated conductor structure in which the standing portion 11b of the conductor 11, the folded portion 14e of the conductor 14, and the folded portion 16c of the conductor 16 are laminated in substantially the same shape.
  • the circuit is configured by the conductor having the plate-like conductive portion standing on the package surface.
  • the distance between the smoothing capacitor and the terminal of the semiconductor package connected to the smoothing capacitor can be shortened.
  • the surge voltage of the power converter can be reduced.
  • the mutual wiring inductance can be reduced, and the surge voltage of the power conversion device Can be reduced.
  • the conductive portions of the conductors are erected with respect to the package surface, the work for assembling the conductors can be facilitated, and the DC voltage source can be applied from either the back surface of the laminate in which the conductive portions are stacked. Alternatively, an AC terminal can be connected. As a result, the layout design of the constituent members constituting the power conversion device is facilitated. Further, since the conductor area in the direction parallel to the package surface is reduced by standing the conductor with respect to the package surface, the power conversion device can be reduced in size. Moreover, since the flat conductor does not cover the package surface, the heat dissipation of the semiconductor package is improved.
  • Embodiment 2 A three-level inverter device that is a power converter according to Embodiment 2 of the present invention will be described with reference to the drawings.
  • the three-level inverter device according to the second embodiment of the present invention is the same as the three-level inverter device 1 according to the first embodiment except that the arrangement form of the semiconductor packages 2 to 5 is different. Therefore, the same components as those of the three-level inverter device 1 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the electric circuit diagram of the three-level inverter device according to the second embodiment is the same as the electric circuit diagram of the three-level inverter device 1 according to the first embodiment shown in FIG.
  • FIG. 12 and 13 are diagrams showing a structure of one phase of the three-level inverter device 19 according to the second embodiment.
  • FIG. 12 is a diagram before the smoothing capacitors 8 and 9 are connected, and FIG. It is the figure which connected the smoothing capacitors 8 and 9.
  • FIG. 12 is a diagram before the smoothing capacitors 8 and 9 are connected, and FIG. It is the figure which connected the smoothing capacitors 8 and 9.
  • FIG. 12 is a diagram before the smoothing capacitors 8 and 9 are connected
  • the three-level inverter device 19 includes element package groups 2 to 7 arranged in a substantially straight line and a first voltage source constituting a DC voltage source. , And smoothing capacitors 8 and 9 as second unit voltage sources.
  • Each of the device packages constituting the device package groups 2 to 7 or conductors 20 to 26 for connecting the device package and the smoothing capacitors 8 and 9 (or the AC terminal 17) are provided.
  • the conductors 20 to 26 have plate-like conductive portions 20a to 26a standing on the package surface.
  • the three-level inverter device 19 according to the second embodiment is a semiconductor connected in series between the smoothing capacitor 8 and the AC terminal 17 in the same manner as the three-level inverter device 1 according to the first embodiment.
  • the series connection point of the semiconductor package 2 and the semiconductor package 3 and the series connection point of the smoothing capacitors 8 and 9, and between the AC terminal 17 and the smoothing capacitor 9 The semiconductor packages 4 and 5 are connected in series, and the coupling diode 7 is connected between the series connection point of the semiconductor package 4 and the semiconductor package 5 and the series connection point of the smoothing capacitors 8 and 9.
  • the semiconductor package 2 is provided between the semiconductor package 3 and the coupling diode 6. At this time, the semiconductor package 2 is provided such that the emitter E of the semiconductor package 2 is adjacent to the cathode K1 of the coupling diode 6 and the collector C of the semiconductor package 3.
  • the semiconductor package 5 is provided between the semiconductor package 4 and the coupling diode 7. At this time, the semiconductor package 5 is provided so that the collector C of the semiconductor package 5 is adjacent to the anode A 2 of the coupling diode 7 and the emitter E of the semiconductor package 4.
  • the coupling diodes 6 and 7 are integrally formed so that the anode A1 of the coupling diode 6 and the anode A2 of the coupling diode 7 are adjacent to each other, and the cathode K1 of the coupling diode 6 and the cathode K2 of the coupling diode 7 are adjacent to each other. .
  • the semiconductor packages 2 to 5 and the coupling diodes 6 and 7 are arranged side by side on a substantially straight line.
  • the conductor 20 that connects the collector C of the semiconductor package 2 and the positive terminal of the smoothing capacitor 8 is a plate-like conductive portion that stands upright with respect to the package surface. 20a.
  • a connection portion 20b connected to the positive terminal of the smoothing capacitor 8 is provided at the end of the conductive portion 20a so as to protrude from the surface of the conductive portion 20a.
  • the conductor 21 that connects the emitter E of the semiconductor package 5 and the negative terminal of the smoothing capacitor 9 has a plate-like conductive portion 21a that stands upright with respect to the package surface.
  • a connecting portion 21b connected to the negative electrode terminal of the smoothing capacitor 9 is provided at the end of the conductive portion 21a so as to protrude from the surface of the conductive portion 21a.
  • the conductor 22 connecting the emitter E of the semiconductor package 2, the collector C of the semiconductor package 3, and the cathode K1 of the coupling diode 6 is connected to the package surface. It has a plate-like conductive portion 22a standing upright.
  • the conductor 23 that connects the collector C of the semiconductor package 5, the emitter E of the semiconductor package 4, and the anode A2 of the coupling diode 7 has a plate-like conductive portion 23a that stands upright with respect to the package surface.
  • the conductor 24 connecting the anode A1 of the coupling diode 6, the cathode K2 of the coupling diode 7, and the connection point of the smoothing capacitors 8 and 9 is formed on the package surface.
  • the conductive portion 24a includes first and second extending portions 24b and 24c, first and second folded portions 24d and 24e, and a connecting conductor portion 24f.
  • the first extending portion 24b is a plate-like conductor standing on the package surface, and the first extending portion 24b extends from the anode A1 of the coupling diode 6 to the semiconductor package 2.
  • the second extending portion 24 c is a plate-like conductor standing on the package surface, and the second extending portion 24 c extends from the cathode K 2 of the coupling diode 7 to the semiconductor package 5.
  • the first extending portion 14b is substantially equal to the height of the conductive portion 22a of the conductor 22 shown in FIG. 15A, and is arranged along the conductive portion 22a.
  • the second extending portion 24c is substantially equal to the height of the conductive portion 23a of the conductor 23 shown in FIG. 15A, and is arranged along the conductive portion 23a.
  • first and second folded portions 24d and 24e are provided so as to stand from the end portions of the first and second extending portions 24b and 24c, respectively, with respect to the package surface.
  • the plate-like connecting conductor portion 24f is provided so as to connect the first folded portion 24d and the second folded portion 24e.
  • the connecting conductor portion 24f is provided at a position higher than the height of the first extending portion 24b and the second extending portion 24c.
  • the connection conductor portion 24f is provided with a connection portion 24g connected to the connection point of the smoothing capacitors 8 and 9 so as to protrude from the surface of the connection conductor portion 24f.
  • the connecting conductor portion 24f is formed with a through hole 24h through which an AC terminal connecting portion 26e of the conductor 26 described later passes.
  • the conductor 25 that connects the semiconductor package 3 and the AC terminal 17 is formed along the conductor 22 and the conductor 24. That is, the conductor 25 has a conductive portion 25a standing on the package surface, and the conductive portion 25a includes a plate-like first conductive portion 25b arranged in parallel with the conductive portion 22a of the conductor 22, It has a plate-like second conductive portion 25 c arranged in parallel with the first folded portion 24 d of the conductor 24, and a plate-like connecting conductor portion 25 d arranged in parallel with the connection conductor portion 24 f of the conductor 24.
  • the connecting conductor portion 25d is provided with an AC terminal connecting portion 25e for connecting to the AC terminal 17 so as to protrude from the surface of the connecting conductor portion 25d.
  • the conductor 26 that connects the semiconductor package 4 and the AC terminal 17 is formed along the conductor 23 and the conductor 24. That is, the conductor 26 has a conductive portion 26a standing on the package surface, and the conductive portion 26a includes a plate-like first conductive portion 26b arranged in parallel with the conductive portion 23a of the conductor 23; It has a plate-like second conductive portion 26c arranged in parallel with the second folded portion 24e of the conductor 24 and a plate-like connecting conductor portion 26d arranged in parallel with the connecting conductor portion 24f of the conductor 24.
  • the connecting conductor portion 26d is provided with an AC terminal connecting portion 26e for connecting to the AC terminal 17 so as to protrude from the surface of the connecting conductor portion 26d.
  • FIGS. 18 to 21 are explanatory diagrams for explaining current paths in the respective operation modes (mode 1 to mode 4) of the three-level inverter device 19 according to the embodiment.
  • the current flowing through the three-level inverter circuit is the conductor 20 ⁇ semiconductor.
  • the three-level inverter device 19 is parallel to the conductive portion 20a of the conductor 20 and the second conductive portion 25c of the conductor 25 in close proximity. Are arranged. Further, the conductive portion 22a of the conductor 22 and the first conductive portion 25b of the conductor 25 are arranged in parallel so as to be along each other.
  • the current flowing through the three-level inverter circuit is as follows: conductor 24 ⁇ coupled diode 6 ⁇ conductor 22 ⁇ semiconductor package 3 ⁇ conductor 25 ⁇ AC terminal 17
  • connection conductor portion 24f of the conductor 24 (the direction of current is indicated by a thin arrow) and the connection conductor portion 25d of the conductor 25 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other.
  • the folded portion 24d of the conductor 24 (the direction of current is indicated by a thin arrow) and the second conductive portion 25c of the conductor 25 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other. Furthermore, the conductive portion 22a of the conductor 22 (the direction of current is indicated by a bold arrow), the first conductive portion 25b of the conductor 25 (the direction of current is indicated by a bold arrow), and the first extended portion 24b of the conductor 24 (the current direction)
  • the laminated conductors are arranged so that the directions thereof are close to each other (indicated by thin arrows).
  • the wiring inductance is further reduced by adopting a laminated conductor structure in which the conductive portion 20a of the conductor 20, the folded portion 24d of the conductor 24, and the second conductive portion 25c of the conductor 25 are laminated in substantially the same shape.
  • the three-level inverter device 19 is configured so that the direction of the current flowing through the flat conductors 21, 23, 26 is reversed even in the mode 3.
  • the respective conductors 21, 23, and 26 are arranged close to each other. That is, the second conductive portion 26c of the conductor 26 (the direction of current is indicated by a thin arrow) and the conductive portion 21a of the conductor 21 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other and the laminated conductor is It is composed.
  • the first conductive portion 26b of the conductor 26 (the direction of the current is indicated by a thin arrow) and the conductive portion 23a of the conductor 23 (the direction of the current is indicated by a bold arrow) are arranged so as to be close to each other and the laminated conductor is It is composed.
  • the magnetic field generated by the current flowing through each plate-like conductive part and the magnetic field generated by other conductive parts arranged close to those conductive parts cancel each other, reducing wiring inductance. To do.
  • the current flowing through the three-level inverter circuit is as follows: AC terminal 17 ⁇ conductor 26 ⁇ semiconductor Package 4 ⁇ conductor 23 ⁇ coupling diode 7 ⁇ conductor 24.
  • the three-level inverter device 19 is configured so that the direction of the current flowing through the flat conductors 23, 24, and 26 is reversed even in the mode 4.
  • the respective conductors 23, 24, and 26 are arranged close to each other. That is, the connection conductor portion 26d of the conductor 26 (the direction of current is indicated by a thin arrow) and the connection conductor portion 24f of the conductor 24 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other and the laminated conductor is It is composed.
  • the second conductive portion 26c of the conductor 26 (the direction of current is indicated by a thin arrow) and the folded portion 24e of the conductor 24 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other and the laminated conductor is It is composed. Furthermore, the first conductive portion 26b of the conductor 26 (the direction of current is indicated by a thin arrow), the second extension portion 24c of the conductor 24 (the direction of the current is indicated by a bold arrow), and the conductive portion 23a of the conductor 23 (the current direction) Are arranged so that their directions are close to each other and constitute a laminated conductor.
  • the wiring inductance is further reduced by adopting a laminated conductor structure in which the conductive portion 21a of the conductor 21, the folded portion 24e of the conductor 24, and the second conductive portion 26c of the conductor 26 are laminated in substantially the same shape.
  • the circuit is configured by the conductor having the flat conductive portion standing on the package surface.
  • the power conversion device 19 according to the second embodiment is different from the power conversion device 1 according to the first embodiment in that the length of the conductor connecting the smoothing capacitor 8 and the semiconductor package 2 (or the smoothing capacitor 9 and the semiconductor package 5) is the same as that of the power conversion device 1 according to the first embodiment. Since the comparison is short, in addition to the effect of the power conversion device 1 according to the first embodiment, the wiring inductance can be further reduced.
  • the power converter of the present invention and the conductor arrangement method of the power converter have been described in detail only for the specific examples described.
  • the present invention includes various modifications and variations within the scope of the technical idea of the present invention. It is obvious to those skilled in the art that the modification is possible, and it is natural that such variations and modifications belong to the power conversion device and the conductor arrangement method of the power conversion device of the present invention.
  • the conductive portions in which the flowing current is in the opposite direction are provided close to each other. Therefore, as described in the embodiment, it is preferable that all the combinations of the conductive parts are provided close to each other. However, in consideration of the configuration of the power converter, the combination of only some of the conductive parts is provided close to each other. Even in this case, the effects of the power conversion device and the conductor arrangement method for the power conversion device of the present invention can be partially obtained.
  • the three-level inverter device has been described as an example.
  • the power conversion device is not limited to the power conversion device of the embodiment, and various power conversion devices such as connection of a switching element and a DC power source (or AC power source)
  • the present invention can be applied to a conductor forming a circuit of a conversion device.
  • the structure for one phase is shown and described.
  • three sets of three-level inverter devices 1 may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

In this power conversion apparatus, a surge voltage is reduced by reducing wiring inductance of conductor sections constituting a circuit. In a three-level inverter apparatus (1) having semiconductor packages (2-5), coupled diodes (6, 7), and smoothing capacitors (8, 9), an inverter circuit is configured of conductor sections (10-16) respectively having board-like conductive portions (10a-16a) that stand on a surface where the element package groups (2-7) are disposed. A positive electrode and a negative electrode of the smoothing capacitors (8, 9), and a serial connection point of the smoothing capacitors (8, 9) are respectively connected to the conductive portions (10a, 11a, 14a) of the conductor sections (10, 11, 14). Furthermore, a laminated conductor is configured by disposing the conductive portions (10a-16a) in proximity to each other along the laminated conductor, said conductive portions respectively having the directions of currents flowing therein reverse to each other.

Description

電力変換装置及び電力変換装置における導体の配置方法Power converter and method of arranging conductor in power converter
 本発明は、電力変換装置に関するものであり、特に、電力変換装置の回路を構成する導体の配置形態に関する。 The present invention relates to a power conversion device, and more particularly, to an arrangement of conductors constituting a circuit of the power conversion device.
 スイッチング素子と受動素子とによって、直流と交流との間で電力変換を行う電力変換装置として、例えば、PWM(Pulse Width Modulation)制御を行う3レベルインバータが知られている。 For example, a three-level inverter that performs PWM (Pulse に よ っ て Width Modulation) control is known as a power converter that performs power conversion between direct current and alternating current using a switching element and a passive element.
 このような3レベルインバータにおいて、インバータ回路を構成するパワーデバイス用の素子として、小型・軽量化・低損失・高効率・低騒音・高調波・高信頼性などの観点からIGBT(Insulated Gate Bipolar Transistor)、などの半導体素子が用いられている。 In such a three-level inverter, IGBT (Insulated Gate Bipolar Transistor) is used as an element for the power device that constitutes the inverter circuit from the viewpoints of small size, light weight, low loss, high efficiency, low noise, harmonics, high reliability, etc. ), Etc. are used.
 電力変換装置の回路において、各パッケージ間の配線インダクタンスの数値が大きいと、スイッチング素子をターンオフした時のサージ電圧が高くなることがある。そして、このサージ電圧がスイッチング素子の安全動作領域を超えた場合、スイッチング素子の破損に至る可能性がある。 In the circuit of the power conversion device, if the numerical value of the wiring inductance between each package is large, the surge voltage when the switching element is turned off may be high. And when this surge voltage exceeds the safe operation area | region of a switching element, it may lead to the damage of a switching element.
 そこで、配線インダクタンスを低減し、スイッチング素子のスイッチング時のサージ電圧を低く抑える方法として、電流の経路である導体を平板状とし、各スイッチング素子(その他、直流電圧源、交流端子)とを接続する導体を近接して配置する平行平板状の導体配置構造が採用されている(例えば、特許文献1~6)。さらに、これら近接して配置される導体板において、お互いの導体板を流れる電流の方向がそれぞれ逆方向になるように配置することで、導体板を流れる電流による磁束の変化をお互いに相殺し、見かけ上磁束の変化を低減させている(例えば、特許文献3,5)。また、直列接続されるコンデンサ間の距離が短くなるようにコンデンサを配置することで、IGBTパッケージの端子間のインダクタンスを小さくしている(例えば、特許文献7)。 Therefore, as a method of reducing the wiring inductance and suppressing the surge voltage at the time of switching of the switching element, the conductor which is the current path is made flat and connected to each switching element (DC voltage source, AC terminal). A parallel plate-like conductor arrangement structure in which conductors are arranged close to each other is employed (for example, Patent Documents 1 to 6). Furthermore, in the conductor plates arranged close to each other, by arranging the directions of the currents flowing through the conductor plates to be opposite to each other, the changes in the magnetic flux due to the current flowing through the conductor plates are offset each other. Apparently, the change in magnetic flux is reduced (for example, Patent Documents 3 and 5). In addition, the inductance between the terminals of the IGBT package is reduced by arranging the capacitors so that the distance between the capacitors connected in series is shortened (for example, Patent Document 7).
 しかしながら、板状の導体をスイッチング素子が配置される面と平行に積層した場合、導体の面によって電力変換装置の寸法が大きくなってしまい、電力変換装置の小型化を妨げる要因となるおそれがある。また、コンデンサと、コンデンサと接続されるスイッチング素子との距離が長くなると、この部分の配線インダクタンスが増加して、サージ電圧が高くなるおそれがある。 However, when a plate-shaped conductor is laminated in parallel with the surface on which the switching element is disposed, the size of the power conversion device is increased by the surface of the conductor, which may be a factor that hinders downsizing of the power conversion device. . In addition, when the distance between the capacitor and the switching element connected to the capacitor is increased, the wiring inductance of this portion is increased and the surge voltage may be increased.
 また、電力変換装置から電力が供給される負荷の容量が増加すると、電力変換装置に対しても、大電流出力が要求されるようになる。そして、負荷電流の増大によって増える電力損失を低減するために、負荷電流の増加にともなって、電力変換装置の高電圧出力化が進んでいる。このように、電力変換装置の大電流化、高電圧化が進むにしたがって、スイッチング素子のスイッチ時のサージ電圧が増加することとなる。そこで、電力変換装置のスイッチング損失を低減するために、配線インダクタンスのさらなる低減が求められている。 In addition, when the capacity of a load to which power is supplied from the power converter increases, a large current output is also required for the power converter. And in order to reduce the power loss which increases with the increase in the load current, the increase in the load current has been accompanied by an increase in the output voltage of the power converter. Thus, the surge voltage at the time of switching of the switching element increases as the current of the power converter increases and the voltage increases. Therefore, in order to reduce the switching loss of the power converter, further reduction in wiring inductance is required.
特開2010-200525号公報Japanese Patent Application Laid-Open No. 2010-200525 特開2005-160248号公報JP 2005-160248 A 特開2002-153078号公報JP 2002-153078 A 特開2006-280191号公報JP 2006-280191 A 特開2005-287267号公報JP 2005-287267 A 特開平11-4584号公報Japanese Patent Laid-Open No. 11-4484 特開2010-288415号公報JP 2010-288415 A
 本発明の電力変換装置の一態様は、直流を交流、または交流を直流に変換する電力変換装置において、スイッチング素子と、直流電圧源とを接続する導体が、スイッチング素子が設けられる面に対して立設する板状の導電部を有し、この導電部に直流電圧源が接続されることを特徴としている。 One aspect of the power conversion device of the present invention is a power conversion device that converts direct current to alternating current or alternating current to direct current. The conductor that connects the switching element and the direct current voltage source is provided on the surface on which the switching element is provided. It has a plate-like conductive part standing upright, and a DC voltage source is connected to this conductive part.
 また、本発明の電力変換装置の他の態様は、直流を交流、または交流を直流に変換する電力変換装置において、電力変換装置の回路を構成する導体が、この回路を構成する素子パッケージ群が設けられる面に対して立設する板状の導電部を有し、それぞれの導体の導電部を流れる電流が逆方向となる導電部同士を並行かつ近接して設け、平行積層導体を構成することを特徴としている。 Further, according to another aspect of the power conversion device of the present invention, in a power conversion device that converts direct current to alternating current or alternating current to direct current, a conductor that constitutes a circuit of the power conversion device includes an element package group that constitutes the circuit. It has plate-like conductive parts standing up to the surface to be provided, and conductive parts in which the currents flowing through the conductive parts of the respective conductors are in opposite directions are provided in parallel and close together to constitute a parallel laminated conductor. It is characterized by.
 また、本発明の電力変換装置における導体の配置方法の一態様は、直流を交流、または交流を直流に変換する電力変換装置における導体の配置方法であって、スイッチング素子が設けられる面に対して立設する板状の導電部を有する導体で、スイッチング素子と直流電圧源とを接続することを特徴としている。 Moreover, one aspect of the conductor arrangement method in the power conversion device of the present invention is a conductor arrangement method in the power conversion device that converts direct current into alternating current or alternating current into direct current, and is provided for a surface on which a switching element is provided. It is characterized by connecting a switching element and a DC voltage source with a conductor having a plate-like conductive portion standing upright.
 また、本発明の電力変換装置における導体の配置方法の他の態様は、直流を交流、または交流を直流に変換する電力変換装置における導体の配置方法であって、電力変換装置の回路を構成する素子パッケージ群が設けられる面に対して立設する板状の導電部を有する導体で回路を構成するとともに、導電部を流れる電流が逆方向となる導体の導電部同士を並行かつ近接して設けることを特徴としている。 Another aspect of the conductor arrangement method in the power conversion device of the present invention is a conductor arrangement method in the power conversion device that converts direct current into alternating current or alternating current into direct current, and constitutes a circuit of the power conversion device. A circuit is constituted by a conductor having a plate-like conductive portion standing upright with respect to the surface on which the element package group is provided, and conductive portions of conductors in which the current flowing through the conductive portion is in the opposite direction are provided in parallel and close to each other. It is characterized by that.
(a)実施形態1に係る電力変換装置の斜視図、(b)実施形態1に係る電力変換装置の側面図、(c)実施形態1に係る電力変換装置の上面図である。(A) The perspective view of the power converter device which concerns on Embodiment 1, (b) The side view of the power converter device which concerns on Embodiment 1, (c) The top view of the power converter device which concerns on Embodiment 1. FIG. (a)直流電圧源が設けられた実施形態1に係る電力変換装置の斜視図、(b)直流電圧源が設けられた実施形態1に係る電力変換装置の側面図である。(A) The perspective view of the power converter device which concerns on Embodiment 1 provided with the DC voltage source, (b) The side view of the power converter device which concerns on Embodiment 1 provided with the DC voltage source. 実施形態1に係る電力変換装置の電気回路図である。FIG. 2 is an electric circuit diagram of the power conversion device according to the first embodiment. (a)実施形態1に係る導体の配置形態を説明する説明図、(b)実施形態1に係る導体の電気回路における位置を示す説明図である。(A) Explanatory drawing explaining the arrangement | positioning form of the conductor which concerns on Embodiment 1, (b) It is explanatory drawing which shows the position in the electric circuit of the conductor which concerns on Embodiment 1. FIG. (a)実施形態1に係る導体の配置形態を説明する説明図、(b)実施形態1に係る導体の電気回路における位置を示す説明図である。(A) Explanatory drawing explaining the arrangement | positioning form of the conductor which concerns on Embodiment 1, (b) It is explanatory drawing which shows the position in the electric circuit of the conductor which concerns on Embodiment 1. FIG. (a)実施形態1に係る導体の配置形態を説明する説明図、(b)実施形態1に係る導体の電気回路における位置を示す説明図である。(A) Explanatory drawing explaining the arrangement | positioning form of the conductor which concerns on Embodiment 1, (b) It is explanatory drawing which shows the position in the electric circuit of the conductor which concerns on Embodiment 1. FIG. (a)実施形態1に係る導体の配置形態を説明する説明図、(b)実施形態1に係る導体の電気回路における位置を示す説明図である。(A) Explanatory drawing explaining the arrangement | positioning form of the conductor which concerns on Embodiment 1, (b) It is explanatory drawing which shows the position in the electric circuit of the conductor which concerns on Embodiment 1. FIG. (a)実施形態1に係る電力変換装置において、モード1で電気回路に流れる電流を説明する説明図、(b)実施形態1に係る電力変換装置において、モード1で導体に流れる電流の方向を説明する説明図である。(A) In the power converter device according to the first embodiment, an explanatory diagram for explaining the current flowing in the electric circuit in mode 1, and (b) in the power converter device according to the first embodiment, the direction of the current flowing in the conductor in mode 1. It is explanatory drawing demonstrated. (a)実施形態1に係る電力変換装置において、モード2で電気回路に流れる電流を説明する説明図、(b)実施形態1に係る電力変換装置において、モード2で導体に流れる電流の方向を説明する説明図である。(A) In the power converter according to the first embodiment, an explanatory diagram for explaining the current flowing in the electric circuit in mode 2, (b) In the power converter according to the first embodiment, the direction of the current flowing in the conductor in mode 2 It is explanatory drawing demonstrated. (a)実施形態1に係る電力変換装置において、モード3で電気回路に流れる電流を説明する説明図、(b)実施形態1に係る電力変換装置において、モード3で導体に流れる電流の方向を説明する説明図である。(A) In the power converter device according to the first embodiment, an explanatory diagram for explaining the current flowing in the electric circuit in mode 3, and (b) in the power converter device according to the first embodiment, the direction of the current flowing in the conductor in mode 3. It is explanatory drawing demonstrated. (a)実施形態1に係る電力変換装置において、モード4で電気回路に流れる電流を説明する説明図、(b)実施形態1に係る電力変換装置において、モード4で導体に流れる電流の方向を説明する説明図である。(A) In the power converter device according to the first embodiment, an explanatory diagram for explaining the current flowing in the electric circuit in mode 4, (b) In the power converter device according to the first embodiment, the direction of the current flowing in the conductor in mode 4 It is explanatory drawing demonstrated. (a)実施形態2に係る電力変換装置の斜視図、(b)実施形態2に係る電力変換装置の側面図、(c)実施形態2に係る電力変換装置の上面図である。(A) The perspective view of the power converter device which concerns on Embodiment 2, (b) The side view of the power converter device which concerns on Embodiment 2, (c) The top view of the power converter device which concerns on Embodiment 2. FIG. (a)直流電圧源が設けられた実施形態2に係る電力変換装置の斜視図、(b)直流電圧源が設けられた実施形態2に係る電力変換装置の側面図である。(A) The perspective view of the power converter device which concerns on Embodiment 2 provided with the DC voltage source, (b) The side view of the power converter device which concerns on Embodiment 2 provided with the DC voltage source. (a)実施形態2に係る導体の配置形態を説明する説明図、(b)実施形態2に係る導体の電気回路における位置を示す説明図である。(A) Explanatory drawing explaining the arrangement | positioning form of the conductor which concerns on Embodiment 2, (b) It is explanatory drawing which shows the position in the electric circuit of the conductor concerning Embodiment 2. FIG. (a)実施形態2に係る導体の配置形態を説明する説明図、(b)実施形態2に係る導体の電気回路における位置を示す説明図である。(A) Explanatory drawing explaining the arrangement | positioning form of the conductor which concerns on Embodiment 2, (b) It is explanatory drawing which shows the position in the electric circuit of the conductor concerning Embodiment 2. FIG. (a)実施形態2に係る導体の配置形態を説明する説明図、(b)実施形態2に係る導体の電気回路における位置を示す説明図である。(A) Explanatory drawing explaining the arrangement | positioning form of the conductor which concerns on Embodiment 2, (b) It is explanatory drawing which shows the position in the electric circuit of the conductor concerning Embodiment 2. FIG. (a)実施形態2に係る導体の配置形態を説明する説明図、(b)実施形態2に係る導体の電気回路における位置を示す説明図である。(A) Explanatory drawing explaining the arrangement | positioning form of the conductor which concerns on Embodiment 2, (b) It is explanatory drawing which shows the position in the electric circuit of the conductor concerning Embodiment 2. FIG. (a)実施形態2に係る電力変換装置において、モード1で電気回路に流れる電流を説明する説明図、(b)実施形態2に係る電力変換装置において、モード1で導体に流れる電流の方向を説明する説明図である。(A) In the power converter device according to the second embodiment, an explanatory diagram for explaining the current flowing in the electric circuit in mode 1, (b) In the power converter device according to the second embodiment, the direction of the current flowing in the conductor in mode 1 It is explanatory drawing demonstrated. (a)実施形態2に係る電力変換装置において、モード2で電気回路に流れる電流を説明する説明図、(b)実施形態2に係る電力変換装置において、モード2で導体に流れる電流の方向を説明する説明図である。(A) In the power converter according to the second embodiment, an explanatory diagram for explaining the current flowing in the electric circuit in mode 2, (b) In the power converter according to the second embodiment, the direction of the current flowing in the conductor in mode 2 It is explanatory drawing demonstrated. (a)実施形態2に係る電力変換装置において、モード3で電気回路に流れる電流を説明する説明図、(b)実施形態2に係る電力変換装置において、モード3で導体に流れる電流の方向を説明する説明図である。(A) In the power converter according to the second embodiment, an explanatory diagram for explaining the current flowing in the electric circuit in mode 3, (b) In the power converter according to the second embodiment, the direction of the current flowing in the conductor in mode 3 It is explanatory drawing demonstrated. (a)実施形態2に係る電力変換装置において、モード4で電気回路に流れる電流を説明する説明図、(b)実施形態2に係る電力変換装置において、モード4で導体に流れる電流の方向を説明する説明図である。(A) In the power converter according to the second embodiment, an explanatory diagram for explaining the current flowing in the electric circuit in mode 4, (b) In the power converter according to the second embodiment, the direction of the current flowing in the conductor in mode 4 It is explanatory drawing demonstrated.
 本発明の実施形態に係る電力変換装置及び電力変換装置における導体の配置方法について、図を参照して詳細に説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A power converter according to an embodiment of the present invention and a conductor arrangement method in the power converter will be described in detail with reference to the drawings.
 (実施形態1)
 図1,2は、実施形態1に係る電力変換装置である3レベルインバータ装置1の1相分の構造を示す図であり、図1は、平滑コンデンサ8,9を接続する前の図であり、図2は、平滑コンデンサ8,9を接続した図である。また、図3は、実施形態1に係る3レベルインバータ装置1に対応する電気回路図である。実施形態の説明では、スイッチング素子として、IGBTを例にとって説明するが、MOSFET、バイポーラトランジスタなど、他のスイッチング素子を用いた場合にも同様の効果を得ることができる(実施形態2も同様である)。また、実施形態において、半導体パッケージのコレクタ、エミッタの数をそれぞれ2つ設けた例を示しているが、コレクタ・エミッタの数は、それぞれ1つであっても複数個であっても、実施形態1に係るインバータ装置と同様に構成することができる。
(Embodiment 1)
1 and 2 are diagrams showing a structure of one phase of a three-level inverter device 1 that is a power conversion device according to the first embodiment, and FIG. 1 is a diagram before connecting smoothing capacitors 8 and 9. FIG. 2 is a diagram in which smoothing capacitors 8 and 9 are connected. FIG. 3 is an electric circuit diagram corresponding to the three-level inverter device 1 according to the first embodiment. In the description of the embodiment, the IGBT is described as an example of the switching element, but the same effect can be obtained when other switching elements such as a MOSFET and a bipolar transistor are used (the same applies to the second embodiment). ). In the embodiment, an example is shown in which the number of collectors and emitters of the semiconductor package is two. However, the number of collectors / emitters may be one or more. 1 can be configured similarly to the inverter device according to the first embodiment.
 図1(a),図2(a)に示すように、実施形態1に係る3レベルインバータ装置1は、略直線上に並べられた素子パッケージ群2~7と、直流電圧源を構成する第1,第2の単位電圧源である平滑コンデンサ8,9とを備える。そして、素子パッケージ群2~7を構成する各素子パッケージ同士または、素子パッケージと平滑コンデンサ(若しくは、交流端子)を電気的に接続する導体10~16を備える。図1(b),図2(b)に示すように、この導体10~16は、素子パッケージ群2~7が配置される面(以後、パッケージ面とする)に対して立設する板状の導電部10a~16aを有する。 As shown in FIGS. 1 (a) and 2 (a), the three-level inverter device 1 according to the first embodiment includes element package groups 2 to 7 arranged on a substantially straight line and a first voltage source constituting a DC voltage source. 1 and smoothing capacitors 8 and 9 as second unit voltage sources. Each of the element packages constituting the element package groups 2 to 7 or conductors 10 to 16 for electrically connecting the element package and the smoothing capacitor (or AC terminal) are provided. As shown in FIGS. 1B and 2B, the conductors 10 to 16 are plate-like erected with respect to the surface on which the element package groups 2 to 7 are arranged (hereinafter referred to as package surfaces). Conductive portions 10a to 16a.
 まず、素子パッケージ群2~7について図1(c),図3を参照して説明する。図3に示すように、実施形態1に係る3レベルインバータ装置1は、平滑コンデンサ8と交流端子17との間に直列に接続される半導体パッケージ2,3と、半導体パッケージ2と半導体パッケージ3の直列接続点と、平滑コンデンサ8,9の直列接続点との間に接続された結合ダイオード6と、交流端子17と平滑コンデンサ9との間に直列された半導体パッケージ4,5と、半導体パッケージ4と半導体パッケージ5の直列接続点と、平滑コンデンサ8,9の直列接続点との間に接続された結合ダイオード7とから構成される。各素子パッケージ群2~7は、ヒートシンク18上に配置される。なお、各半導体パッケージ2~5は、IGBT2a~5aとそれに逆並列に接続されるダイオード2b~5bとをそれぞれ備える。 First, the element package groups 2 to 7 will be described with reference to FIGS. As illustrated in FIG. 3, the three-level inverter device 1 according to the first embodiment includes semiconductor packages 2 and 3 connected in series between the smoothing capacitor 8 and the AC terminal 17, and the semiconductor package 2 and the semiconductor package 3. The coupling diode 6 connected between the series connection point and the series connection point of the smoothing capacitors 8 and 9, the semiconductor packages 4 and 5 connected in series between the AC terminal 17 and the smoothing capacitor 9, and the semiconductor package 4 And a coupling diode 7 connected between the series connection point of the semiconductor package 5 and the series connection point of the smoothing capacitors 8 and 9. Each of the element package groups 2 to 7 is disposed on the heat sink 18. Each of the semiconductor packages 2 to 5 includes IGBTs 2a to 5a and diodes 2b to 5b connected in reverse parallel thereto.
 図1(c)に示すように、半導体パッケージ2のエミッタEが半導体パッケージ3のコレクタCと隣接するように設けられ、半導体パッケージ3のコレクタCと結合ダイオード6のカソードK1とが隣接するように結合ダイオード6が設けられる。また、半導体パッケージ5のコレクタCが半導体パッケージ4のエミッタEと隣接するように設けられ、半導体パッケージ4のエミッタEと結合ダイオード7のアノードA2とが隣接するように結合ダイオード7が設けられる。さらに、結合ダイオード6のアノードA1と結合ダイオード7のアノードA2とが隣接し、結合ダイオード6のカソードK1と結合ダイオード7のカソードK2とが隣接するように結合ダイオード6,7が一体に形成されている。その結果、半導体パッケージ2~5及び結合ダイオード6,7は、略直線上に並んだ状態で配置される。なお、実施形態では、結合ダイオード6と結合ダイオード7とが一体のパッケージを構成しているが、結合ダイオード6と結合ダイオード7の形状や構成は特に限定するものではなく、結合ダイオード6と結合ダイオード7とを個別に設けてもよい。また、それぞれの結合ダイオード6,7は、1つずつ設ける形態の他に、複数のダイオードを直列接続した形態(実質は、並列に接続した形態)であってもよい。 As shown in FIG. 1C, the emitter E of the semiconductor package 2 is provided adjacent to the collector C of the semiconductor package 3, and the collector C of the semiconductor package 3 and the cathode K1 of the coupling diode 6 are adjacent. A coupling diode 6 is provided. In addition, the collector C of the semiconductor package 5 is provided adjacent to the emitter E of the semiconductor package 4, and the coupling diode 7 is provided so that the emitter E of the semiconductor package 4 and the anode A 2 of the coupling diode 7 are adjacent. Further, the coupling diodes 6 and 7 are integrally formed so that the anode A1 of the coupling diode 6 and the anode A2 of the coupling diode 7 are adjacent to each other, and the cathode K1 of the coupling diode 6 and the cathode K2 of the coupling diode 7 are adjacent to each other. Yes. As a result, the semiconductor packages 2 to 5 and the coupling diodes 6 and 7 are arranged side by side on a substantially straight line. In the embodiment, the coupling diode 6 and the coupling diode 7 constitute an integrated package, but the shape and configuration of the coupling diode 6 and the coupling diode 7 are not particularly limited, and the coupling diode 6 and the coupling diode are not limited. 7 may be provided separately. Each coupling diode 6, 7 may have a form in which a plurality of diodes are connected in series (substantially a form in which the diodes are connected in parallel) in addition to a form in which one coupling diode is provided.
 次に、3レベルインバータ装置1を構成する導体10~16について、3レベルインバータ装置1に導体10~16を個別に設けた状態を参照して詳細に説明する。 Next, the conductors 10 to 16 constituting the three-level inverter device 1 will be described in detail with reference to the state where the conductors 10 to 16 are individually provided in the three-level inverter device 1.
 図4(a),図4(b)に示すように、半導体パッケージ2のコレクタCと平滑コンデンサ8の正極端子とを接続する導体10は、パッケージ面に対して立設する板状の導電部10aを有する。導電部10aは、半導体パッケージ2から立設する立設部10bと、この立設部10bの上部側端部から、隣接する半導体パッケージ3方向に延伸する延伸部10cを有する。この延伸部10cの端部に、平滑コンデンサ8の正極端子と接続されるスタッドボルトなどの接続部10dが延伸部10c面から突出して設けられる。なお、延伸部10cは、後述の導体12の導電部12aの高さ程度の距離だけ半導体パッケージ3から離間して設けられる。図2(a)に示すように、接続部10dに平滑コンデンサ8を接続した後、接続部10dは、ナットなどにより締結される(他の接続部と平滑コンデンサ8,9との接続も同様である)。なお、接続部10dにおける接続方法は、着脱式のコネクタを使用するなど、適宜周知の接続方法を適用すればよい。 As shown in FIGS. 4A and 4B, the conductor 10 that connects the collector C of the semiconductor package 2 and the positive terminal of the smoothing capacitor 8 is a plate-like conductive portion that is erected with respect to the package surface. 10a. The conductive portion 10a has a standing portion 10b standing from the semiconductor package 2, and an extending portion 10c extending from the upper end portion of the standing portion 10b toward the adjacent semiconductor package 3. A connecting portion 10d such as a stud bolt connected to the positive terminal of the smoothing capacitor 8 is provided at the end of the extending portion 10c so as to protrude from the surface of the extending portion 10c. The extending portion 10c is provided away from the semiconductor package 3 by a distance that is about the height of a conductive portion 12a of the conductor 12 described later. As shown in FIG. 2A, after the smoothing capacitor 8 is connected to the connecting portion 10d, the connecting portion 10d is fastened with a nut or the like (the connection between the other connecting portions and the smoothing capacitors 8 and 9 is the same). is there). In addition, what is necessary is just to apply a well-known connection method suitably for the connection method in the connection part 10d, such as using a detachable connector.
 さらに、図4(a),図4(b)に示すように、半導体パッケージ5のエミッタEと平滑コンデンサ9の負極端子とを接続する導体11は、パッケージ面に対して立設する板状の導電部11aを有する。導電部11aは、半導体パッケージ5から立設する立設部11bと、この立設部11bの上部側端部から、隣接する半導体パッケージ4方向に延伸する延伸部11cを有し、この延伸部11cの端部に、平滑コンデンサ9の負極端子と接続される接続部11dが延伸部11c面から突出して設けられる。なお、延伸部11cは、後述の導体13の導電部13aの高さ程度の距離だけ半導体パッケージ4から離間して設けられる。 Further, as shown in FIGS. 4A and 4B, the conductor 11 connecting the emitter E of the semiconductor package 5 and the negative electrode terminal of the smoothing capacitor 9 is a plate-like shape standing on the package surface. It has a conductive portion 11a. The conductive portion 11a has a standing portion 11b standing from the semiconductor package 5 and an extending portion 11c extending from the upper end of the standing portion 11b toward the adjacent semiconductor package 4, and the extending portion 11c. A connecting portion 11d connected to the negative electrode terminal of the smoothing capacitor 9 is provided to protrude from the surface of the extending portion 11c. The extending portion 11c is provided away from the semiconductor package 4 by a distance that is about the height of a conductive portion 13a of the conductor 13 described later.
 図5(a),図5(b)に示すように、半導体パッケージ2のエミッタEと、半導体パッケージ3のコレクタC、結合ダイオード6のカソードK1とを接続する導体12は、パッケージ面に対して立設する板状の導電部12aを有する。同様に、半導体パッケージ5のコレクタCと、半導体パッケージ4のエミッタE、結合ダイオード7のアノードA2とを接続する導体13は、パッケージ面に対して立設する板状の導電部13aを有する。 As shown in FIGS. 5A and 5B, the conductor 12 connecting the emitter E of the semiconductor package 2, the collector C of the semiconductor package 3, and the cathode K1 of the coupling diode 6 is connected to the package surface. It has a plate-like conductive portion 12a standing upright. Similarly, the conductor 13 that connects the collector C of the semiconductor package 5, the emitter E of the semiconductor package 4, and the anode A2 of the coupling diode 7 has a plate-like conductive portion 13a that stands upright with respect to the package surface.
 図6(a),図6(b)に示すように、結合ダイオード6のアノードA1と、結合ダイオード7のカソードK2と、平滑コンデンサ8,9の接続点とを接続する導体14は、パッケージ面に対して立設する板状の導電部14aを有する。導電部14aは、第1,第2延伸部14b,14c、第1,第2折り返し部14d,14eと、接続導体部14fとから構成される。 As shown in FIGS. 6A and 6B, the conductor 14 that connects the anode A1 of the coupling diode 6, the cathode K2 of the coupling diode 7, and the connection point of the smoothing capacitors 8 and 9 is formed on the package surface. Has a plate-like conductive portion 14a. The conductive portion 14a includes first and second extending portions 14b and 14c, first and second folded portions 14d and 14e, and a connecting conductor portion 14f.
 第1延伸部14bは、パッケージ面に対して立設する板状の導電体であって、結合ダイオード6のアノードA1から半導体パッケージ3及び半導体パッケージ2まで延伸して設けられる。第2延伸部14cは、パッケージ面に対して立設する板状の導電体であって、結合ダイオード7のカソードK2から半導体パッケージ4及び半導体パッケージ5まで延伸して設けられる。第1延伸部14bは、図5(a)で示した導体12の導電部12aの高さと略等しく、この導電部12aに沿うように配置される。また、第2延伸部14cは、図5(a)で示した導体13の導電部13aの高さと略等しく、この導電部13aに沿うように配置される。 The first extending portion 14b is a plate-like conductor standing on the package surface, and is provided extending from the anode A1 of the coupling diode 6 to the semiconductor package 3 and the semiconductor package 2. The second extending portion 14 c is a plate-like conductor standing on the package surface, and is provided extending from the cathode K 2 of the coupling diode 7 to the semiconductor package 4 and the semiconductor package 5. The first extending portion 14b is substantially equal to the height of the conductive portion 12a of the conductor 12 shown in FIG. 5A, and is disposed along the conductive portion 12a. Moreover, the 2nd extending | stretching part 14c is substantially equal to the height of the electroconductive part 13a of the conductor 13 shown to Fig.5 (a), and is arrange | positioned along this electroconductive part 13a.
 そして、図6(a)に示すように、第1,第2延伸部14b,14cの端部から、それぞれパッケージ面に対して立設するように第1,第2折り返し部14d,14eが設けられ、折り返し部14dと折り返し部14eとを接続するように、板状の接続導体部14fが設けられる。接続導体部14fは、第1延伸部14b及び第2延伸部14cの高さより高い位置に設けられる。なお、接続導体部14fには、平滑コンデンサ8,9の接続点と接続される接続部14gが接続導体部14f面から突出して設けられる。また、接続導体部14fには、後述の導体16の交流端子接続部16eが貫通する貫通孔14hが形成されている。 As shown in FIG. 6A, first and second folded portions 14d and 14e are provided so as to stand upright from the end portions of the first and second extending portions 14b and 14c, respectively, with respect to the package surface. The plate-like connecting conductor portion 14f is provided so as to connect the folded portion 14d and the folded portion 14e. The connecting conductor portion 14f is provided at a position higher than the height of the first extending portion 14b and the second extending portion 14c. The connecting conductor portion 14f is provided with a connecting portion 14g connected to the connecting point of the smoothing capacitors 8 and 9, protruding from the surface of the connecting conductor portion 14f. The connecting conductor portion 14f is formed with a through hole 14h through which an AC terminal connecting portion 16e of the conductor 16 described later passes.
 図7(a),図7(b)に示すように、半導体パッケージ3と交流端子17とを接続する導体15は、導体14に沿うように形成される。つまり、導体15は、導体14の第1延伸部14bと並行して配置される板状の第1導電部15bと、導体14の折り返し部14dと並行して配置される板状の折り返し部15cと、導体14の接続導体部14fと並行して配置される板状の第2導電部15dとを有する。なお、第2導電部15dの端部には、交流端子17と接続するための接続部15eが、第2導電部15d面から突出して設けられる。 7A and 7B, the conductor 15 that connects the semiconductor package 3 and the AC terminal 17 is formed along the conductor 14. That is, the conductor 15 includes a plate-like first conductive portion 15b arranged in parallel with the first extending portion 14b of the conductor 14, and a plate-like folded portion 15c arranged in parallel with the folded portion 14d of the conductor 14. And a plate-like second conductive portion 15d arranged in parallel with the connecting conductor portion 14f of the conductor 14. Note that a connection portion 15e for connecting to the AC terminal 17 is provided at the end of the second conductive portion 15d so as to protrude from the surface of the second conductive portion 15d.
 同様に、半導体パッケージ4と交流端子17とを接続する導体16は、導体14に沿うように形成される。つまり、導体16は、導体14の第2延伸部14cと並行して配置される板状の第1導電部16bと、導体14の折り返し部14eと並行して配置される板状の折り返し部16cと、導体14の接続導体部14fと並行して配置される板状の第2導電部16dとを有する。なお、第2導電部16dの端部には、交流端子17と接続するための接続部16eが、第2導電部16d面から突出して設けられる。 Similarly, the conductor 16 connecting the semiconductor package 4 and the AC terminal 17 is formed along the conductor 14. That is, the conductor 16 includes a plate-like first conductive portion 16b arranged in parallel with the second extending portion 14c of the conductor 14 and a plate-like folded portion 16c arranged in parallel with the folded portion 14e of the conductor 14. And a plate-like second conductive portion 16d disposed in parallel with the connecting conductor portion 14f of the conductor 14. In addition, the connection part 16e for connecting with the alternating current terminal 17 is provided in the edge part of the 2nd electroconductive part 16d, and protrudes from the 2nd electroconductive part 16d surface.
 本発明の実施形態1に係る3レベルインバータ装置1の配線インダクタンス低減効果について、図8~図11を参照して説明する。図8~図11は、実施形態1に係る3レベルインバータ装置1の各動作モード(モード1~モード4)における電流経路を説明する説明図である。 The wiring inductance reduction effect of the three-level inverter device 1 according to the first embodiment of the present invention will be described with reference to FIGS. 8 to 11 are explanatory diagrams illustrating current paths in the respective operation modes (mode 1 to mode 4) of the three-level inverter device 1 according to the first embodiment.
 図8(a)に示すように、半導体パッケージ2及び半導体パッケージ3がターンオンし、半導体パッケージ4及び半導体パッケージ5がターンオフした場合(モード1)、3レベルインバータ回路を流れる電流は、導体10→半導体パッケージ2→導体12→半導体パッケージ3→導体15→交流端子17となる。 As shown in FIG. 8A, when the semiconductor package 2 and the semiconductor package 3 are turned on and the semiconductor package 4 and the semiconductor package 5 are turned off (mode 1), the current flowing through the three-level inverter circuit is the conductor 10 → semiconductor. Package 2 → conductor 12 → semiconductor package 3 → conductor 15 → AC terminal 17
 図8(b)に示すように、本発明の実施形態1に係る3レベルインバータ装置1は、導体10の立設部10bと導体15の折り返し部15cとが沿うように、また、導体10の延伸部10cと導体15の第2導電部15dとがそれぞれ沿うように並行して配置されている。この導体10の立設部10b(または、延伸部10c)を流れる電流の向き(図中細字矢印で示す)と導体15の折り返し部15c(または、第2導電部15d)を流れる電流の向き(図中太字矢印で示す)が逆向きであるので、立設部10bと折り返し部15c(または、延伸部10cと第2導電部15d)で流れる電流が、立設部10bと折り返し部15c(または、延伸部10cと第2導電部15d)で発生した磁界をお互いに打ち消しあうこととなり、配線インダクタンスが低減する。同様の理由により、導体12の導電部12aと導体15の第1導電部15bとを近接して沿うように配置しているので、この導体12の導電部12aを流れる電流の向き(図中細字矢印で示す)と導体15の第1導電部15bを流れる電流の向き(図中太字矢印で示す)が逆向きとなり、配線インダクタンスが低減する。 As illustrated in FIG. 8B, the three-level inverter device 1 according to the first embodiment of the present invention is configured so that the standing portion 10 b of the conductor 10 and the folded portion 15 c of the conductor 15 are aligned. The extending portion 10c and the second conductive portion 15d of the conductor 15 are arranged in parallel so as to be along each other. Direction of current flowing through the standing portion 10b (or extending portion 10c) of the conductor 10 (indicated by a thin arrow in the figure) and direction of current flowing through the folded portion 15c (or the second conductive portion 15d) of the conductor 15 ( Since the reverse direction is indicated by a bold arrow in the figure, the current flowing in the standing portion 10b and the folded portion 15c (or the extending portion 10c and the second conductive portion 15d) is increased by the standing portion 10b and the folded portion 15c (or The magnetic fields generated in the extending portion 10c and the second conductive portion 15d) cancel each other, and the wiring inductance is reduced. For the same reason, the conductive portion 12a of the conductor 12 and the first conductive portion 15b of the conductor 15 are arranged so as to be close to each other, so that the direction of the current flowing through the conductive portion 12a of the conductor 12 (in FIG. The direction of the current flowing through the first conductive portion 15b of the conductor 15 (indicated by a bold arrow in the figure) is opposite to that of the conductor 15 and the wiring inductance is reduced.
 図9(a)に示すように、半導体パッケージ3がターンオンし、半導体パッケージ2,4,5がターンオフした場合(モード2)、3レベルインバータ回路を流れる電流は、導体14→結合ダイオード6→導体12→半導体パッケージ3→導体15→交流端子17となる。 As shown in FIG. 9A, when the semiconductor package 3 is turned on and the semiconductor packages 2, 4 and 5 are turned off (mode 2), the current flowing through the three-level inverter circuit is as follows: conductor 14 → coupled diode 6 → conductor 12 → semiconductor package 3 → conductor 15 → AC terminal 17
 図9(b)に示すように、実施形態1に係る3レベルインバータ装置1は、モード2の場合においても、平板状の導体12,14,15を流れる電流の向きが逆向きになるように各々の導体12,14,15が近接して配置される。つまり、導体14の接続導体部14f(電流の向きを細字矢印で示す)と、導体15の第2導電部15d(電流の向きを太字矢印で示す)が近接して沿うように配置されている。また、導体14の折り返し部14d(電流の向きを細字矢印で示す)と、導体15の折り返し部15c(電流の向きを太字矢印で示す)が近接して沿うように配置されている。さらに、導体14の第1延伸部14b(電流の向きを細字矢印で示す)と、導体12の導電部12aと導体15の第1導電部15b(電流の向きを太字矢印で示す)が近接して沿うように配置され積層導体を構成している。その結果、各板状の導電部を流れる電流により発生した磁界と、それらの導電部に近接して配置される他の導電部で発生した磁界とがお互いに打ち消しあうこととなり、配線インダクタンスが低減する。特に、導体10の立設部10b、導体15の折り返し部15c、導体14の折り返し部14dを略同一の形状として積層した積層導体構造とすることで、配線インダクタンスがより一層低減する。 As shown in FIG. 9B, in the three-level inverter device 1 according to the first embodiment, the direction of the current flowing through the flat conductors 12, 14, and 15 is reversed even in the mode 2. The respective conductors 12, 14, 15 are arranged in close proximity. That is, the connecting conductor portion 14f of the conductor 14 (the direction of current is indicated by a thin arrow) and the second conductive portion 15d of the conductor 15 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other. . The folded portion 14d of the conductor 14 (the direction of current is indicated by a thin arrow) and the folded portion 15c of the conductor 15 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other. Further, the first extending portion 14b of the conductor 14 (the direction of current is indicated by a thin arrow) and the conductive portion 12a of the conductor 12 and the first conductive portion 15b of the conductor 15 (the direction of current is indicated by a bold arrow) are close to each other. The laminated conductors are arranged along the line. As a result, the magnetic field generated by the current flowing through each plate-like conductive part and the magnetic field generated by other conductive parts arranged close to those conductive parts cancel each other, reducing wiring inductance. To do. In particular, the wiring inductance is further reduced by forming a laminated conductor structure in which the standing portion 10b of the conductor 10, the folded portion 15c of the conductor 15, and the folded portion 14d of the conductor 14 are laminated in substantially the same shape.
 図10(a)に示すように、半導体パッケージ4及び半導体パッケージ5がターンオンし、半導体パッケージ2及び半導体パッケージ3がターンオフした場合(モード3)、3レベルインバータ回路を流れる電流は、交流端子17→導体16→半導体パッケージ4→導体13→半導体パッケージ5→導体11となる。 As shown in FIG. 10A, when the semiconductor package 4 and the semiconductor package 5 are turned on and the semiconductor package 2 and the semiconductor package 3 are turned off (mode 3), the current flowing through the three-level inverter circuit is changed to the AC terminal 17 → Conductor 16 → semiconductor package 4 → conductor 13 → semiconductor package 5 → conductor 11
 図10(b)に示すように、実施形態1に係る3レベルインバータ装置1は、モード3の場合においても、平板状の導体11,13,16を流れる電流の向きが逆向きになるように各々の導体11,13,16が近接して配置される。つまり、導体16の第2導電部16d(電流の向きを細字矢印で示す)と、導体11の延伸部11c(電流の向きを太字矢印で示す)が近接して沿うように配置される。また、導体16の折り返し部16c(電流の向きを細字矢印で示す)と、導体11の立設部11b(電流の向きを太字矢印で示す)が近接して沿うように配置され積層導体を構成している。さらに、導体16の第1導電部16b(電流の向きを細字矢印で示す)と、導体13の導電部13a(電流の向きを太字矢印で示す)とが近接して沿うように配置され積層導体を構成している。その結果、各板状の導電部を流れる電流により発生した磁界と、それらの導電部に近接して配置される他の導電部で発生した磁界とがお互いに打ち消しあうこととなり、配線インダクタンスが低減する。 As shown in FIG. 10B, in the three-level inverter device 1 according to the first embodiment, the direction of the current flowing through the flat conductors 11, 13, and 16 is reversed even in the mode 3. The respective conductors 11, 13, and 16 are arranged close to each other. That is, the second conductive portion 16d of the conductor 16 (the direction of current is indicated by a thin arrow) and the extending portion 11c of the conductor 11 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other. Further, the folded portion 16c (the direction of current is indicated by a thin arrow) of the conductor 16 and the standing portion 11b (the direction of current is indicated by a bold arrow) of the conductor 11 are arranged so as to be close to each other to constitute a laminated conductor. is doing. Further, the first conductive portion 16b of the conductor 16 (the direction of current is indicated by a thin arrow) and the conductive portion 13a of the conductor 13 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other and the laminated conductor Is configured. As a result, the magnetic field generated by the current flowing through each plate-like conductive part and the magnetic field generated by other conductive parts arranged close to those conductive parts cancel each other, reducing wiring inductance. To do.
 図11(a)に示すように、半導体パッケージ4がターンオンし、半導体パッケージ2,3,5がターンオフした場合(モード4)、3レベルインバータ回路を流れる電流は、交流端子17→導体16→半導体パッケージ4→導体13→結合ダイオード7→導体14となる。 As shown in FIG. 11A, when the semiconductor package 4 is turned on and the semiconductor packages 2, 3 and 5 are turned off (mode 4), the current flowing through the three-level inverter circuit is as follows: AC terminal 17 → conductor 16 → semiconductor Package 4 → conductor 13 → coupling diode 7 → conductor 14.
 図11(b)に示すように、実施形態1に係る3レベルインバータ装置1は、モード4の場合においても、平板状の導体13,14,16を流れる電流の向きが逆向きになるように各々の導体13,14,16が近接して配置される。つまり、導体16の第2導電部16d(電流の向きを細字矢印で示す)と、導体14の接続導体部14f(電流の向きを太字矢印で示す)が近接して沿うように配置され積層導体を構成している。また、導体16の折り返し部16c(電流の向きを細字矢印で示す)と、導体14の折り返し部14e(電流の向きを太字矢印で示す)が近接して沿うように配置され積層導体を構成している。さらに、導体16の第1導電部16b及び導体13の導電部13a(電流の向きを細字矢印で示す)と、導体14の第2延伸部14c(電流の向きを太字矢印で示す)とが近接して沿うように配置され積層導体を構成している。その結果、各板状の導電部を流れる電流により発生した磁界と、それらの導電部に近接して配置される他の導電部で発生した磁界とがお互いに打ち消しあうこととなり、配線インダクタンスが低減する。特に、導体11の立設部11b、導体14の折り返し部14e、導体16の折り返し部16cを略同一の形状として積層した積層導体構造とすることで、配線インダクタンスがより一層低減する。 As shown in FIG. 11 (b), the three-level inverter device 1 according to the first embodiment is configured so that the direction of the current flowing through the flat conductors 13, 14, 16 is reversed even in the mode 4. The respective conductors 13, 14, and 16 are arranged close to each other. That is, the second conductive portion 16d of the conductor 16 (the direction of current is indicated by a thin arrow) and the connection conductor portion 14f of the conductor 14 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other and the laminated conductor Is configured. Further, the folded portion 16c of the conductor 16 (the direction of current is indicated by a thin arrow) and the folded portion 14e of the conductor 14 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other to constitute a laminated conductor. ing. Further, the first conductive portion 16b of the conductor 16 and the conductive portion 13a of the conductor 13 (the direction of current is indicated by a thin arrow) and the second extending portion 14c of the conductor 14 (the direction of current is indicated by a bold arrow) are close to each other. Accordingly, the laminated conductors are arranged. As a result, the magnetic field generated by the current flowing through each plate-like conductive part and the magnetic field generated by other conductive parts arranged close to those conductive parts cancel each other, reducing wiring inductance. To do. In particular, the wiring inductance is further reduced by providing a laminated conductor structure in which the standing portion 11b of the conductor 11, the folded portion 14e of the conductor 14, and the folded portion 16c of the conductor 16 are laminated in substantially the same shape.
 以上のように、本発明の実施形態1に係る電力変換装置及び電力変換装置の導体配置方法によれば、パッケージ面に対して立設する板状の導電部を有する導体で回路を構成することで、平滑コンデンサと、この平滑コンデンサと接続される半導体パッケージの端子との距離を短くすることができる。その結果、平滑コンデンサと半導体パッケージ間の配線インダクタンスが低減されるので、電力変換装置サージ電圧を低減することができる。 As described above, according to the power conversion device and the conductor arrangement method of the power conversion device according to the first embodiment of the present invention, the circuit is configured by the conductor having the plate-like conductive portion standing on the package surface. Thus, the distance between the smoothing capacitor and the terminal of the semiconductor package connected to the smoothing capacitor can be shortened. As a result, since the wiring inductance between the smoothing capacitor and the semiconductor package is reduced, the surge voltage of the power converter can be reduced.
 また、回路を構成する導体において、流れる電流が逆方向となる導電部同士を近接して設け、積層導体を構成することで、お互いの配線インダクタンスを低減することができ、電力変換装置のサージ電圧を低減することができる。 Also, in the conductors that make up the circuit, by providing the conductive parts in the opposite directions of the flowing current in close proximity to each other to form the laminated conductors, the mutual wiring inductance can be reduced, and the surge voltage of the power conversion device Can be reduced.
 また、各導体の導電部が、パッケージ面に対して立設していることで、導体を組み立てる際の作業が容易になるとともに、導電部を積層した積層体の裏面表面どちらからでも直流電圧源または交流端子を接続することが可能となる。その結果、電力変換装置を構成する構成部材の配置設計が容易になる。また、導体をパッケージ面に対して立設させることで、パーケージ面と平行方向の導体面積が小さくなるので、電力変換装置を小型化することができる。また、平板状の導体がパッケージ面を覆うことがないので、半導体パッケージの放熱性が向上する。 In addition, since the conductive portions of the conductors are erected with respect to the package surface, the work for assembling the conductors can be facilitated, and the DC voltage source can be applied from either the back surface of the laminate in which the conductive portions are stacked. Alternatively, an AC terminal can be connected. As a result, the layout design of the constituent members constituting the power conversion device is facilitated. Further, since the conductor area in the direction parallel to the package surface is reduced by standing the conductor with respect to the package surface, the power conversion device can be reduced in size. Moreover, since the flat conductor does not cover the package surface, the heat dissipation of the semiconductor package is improved.
 (実施形態2)
 本発明の実施形態2に係る電力変換装置である3レベルインバータ装置について図を参照して説明する。なお、本発明の実施形態2に係る3レベルインバータ装置は、半導体パッケージ2~5の配置形態が異なること以外は、実施形態1に係る3レベルインバータ装置1と同じである。よって、実施形態1に係る3レベルインバータ装置1と同じ構成のものについては同じ符号を付し、詳細な説明を省略する。なお、実施形態2に係る3レベルインバータ装置の電気回路図は、図3で示した実施形態1に係る3レベルインバータ装置1の電気回路図と同じである。
(Embodiment 2)
A three-level inverter device that is a power converter according to Embodiment 2 of the present invention will be described with reference to the drawings. The three-level inverter device according to the second embodiment of the present invention is the same as the three-level inverter device 1 according to the first embodiment except that the arrangement form of the semiconductor packages 2 to 5 is different. Therefore, the same components as those of the three-level inverter device 1 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. The electric circuit diagram of the three-level inverter device according to the second embodiment is the same as the electric circuit diagram of the three-level inverter device 1 according to the first embodiment shown in FIG.
 図12,13は、実施形態2に係る3レベルインバータ装置19の1相分の構造を示す図であり、図12は、平滑コンデンサ8,9を接続する前の図であり、図13は、平滑コンデンサ8,9を接続した図である。 12 and 13 are diagrams showing a structure of one phase of the three-level inverter device 19 according to the second embodiment. FIG. 12 is a diagram before the smoothing capacitors 8 and 9 are connected, and FIG. It is the figure which connected the smoothing capacitors 8 and 9. FIG.
 図12(a),13(a)に示すように、実施形態2に係る3レベルインバータ装置19は、略直線上に並べられた素子パッケージ群2~7と、直流電圧源を構成する第1,第2の単位電圧源である平滑コンデンサ8,9とを備える。そして、素子パッケージ群2~7を構成する各素子パッケージ同士、または、素子パッケージと平滑コンデンサ8,9(若しくは、交流端子17)を接続する導体20~26を備える。図12(b),図13(b)に示すように、導体20~26は、パッケージ面に対して立設する板状の導電部20a~26aを有する。 As shown in FIGS. 12 (a) and 13 (a), the three-level inverter device 19 according to the second embodiment includes element package groups 2 to 7 arranged in a substantially straight line and a first voltage source constituting a DC voltage source. , And smoothing capacitors 8 and 9 as second unit voltage sources. Each of the device packages constituting the device package groups 2 to 7 or conductors 20 to 26 for connecting the device package and the smoothing capacitors 8 and 9 (or the AC terminal 17) are provided. As shown in FIGS. 12B and 13B, the conductors 20 to 26 have plate-like conductive portions 20a to 26a standing on the package surface.
 まず、素子パッケージ群2~7について図3、図12(c)を参照して説明する。図3に示すように、実施形態2に係る3レベルインバータ装置19は、実施形態1に係る3レベルインバータ装置1と同様に、平滑コンデンサ8と交流端子17との間に直列に接続される半導体パッケージ2,3と、半導体パッケージ2と半導体パッケージ3の直列接続点と、平滑コンデンサ8,9の直列接続点との間に接続された結合ダイオード6と、交流端子17と平滑コンデンサ9との間に直列された半導体パッケージ4,5と、半導体パッケージ4と半導体パッケージ5の直列接続点と、平滑コンデンサ8,9の直列接続点との間に接続された結合ダイオード7とから構成される。 First, the element package groups 2 to 7 will be described with reference to FIGS. 3 and 12C. As shown in FIG. 3, the three-level inverter device 19 according to the second embodiment is a semiconductor connected in series between the smoothing capacitor 8 and the AC terminal 17 in the same manner as the three-level inverter device 1 according to the first embodiment. Between the diodes 2 and 3, the series connection point of the semiconductor package 2 and the semiconductor package 3, and the series connection point of the smoothing capacitors 8 and 9, and between the AC terminal 17 and the smoothing capacitor 9 The semiconductor packages 4 and 5 are connected in series, and the coupling diode 7 is connected between the series connection point of the semiconductor package 4 and the semiconductor package 5 and the series connection point of the smoothing capacitors 8 and 9.
 図12(c)に示すように、半導体パッケージ2は、半導体パッケージ3と結合ダイオード6との間に設けられる。この時、半導体パッケージ2は、半導体パッケージ2のエミッタEが結合ダイオード6のカソードK1及び半導体パッケージ3のコレクタCと隣接するように設けられる。また、半導体パッケージ5は、半導体パッケージ4と結合ダイオード7との間に設けられる。この時、半導体パッケージ5は、半導体パッケージ5のコレクタCが結合ダイオード7のアノードA2及び半導体パッケージ4のエミッタEと隣接するように設けられる。さらに、結合ダイオード6のアノードA1と結合ダイオード7のアノードA2とが隣接し、結合ダイオード6のカソードK1と結合ダイオード7のカソードK2とが隣接するように結合ダイオード6,7が一体に形成される。その結果、半導体パッケージ2~5及び結合ダイオード6,7は、略直線上に並んだ状態で配置される。 As shown in FIG. 12 (c), the semiconductor package 2 is provided between the semiconductor package 3 and the coupling diode 6. At this time, the semiconductor package 2 is provided such that the emitter E of the semiconductor package 2 is adjacent to the cathode K1 of the coupling diode 6 and the collector C of the semiconductor package 3. The semiconductor package 5 is provided between the semiconductor package 4 and the coupling diode 7. At this time, the semiconductor package 5 is provided so that the collector C of the semiconductor package 5 is adjacent to the anode A 2 of the coupling diode 7 and the emitter E of the semiconductor package 4. Further, the coupling diodes 6 and 7 are integrally formed so that the anode A1 of the coupling diode 6 and the anode A2 of the coupling diode 7 are adjacent to each other, and the cathode K1 of the coupling diode 6 and the cathode K2 of the coupling diode 7 are adjacent to each other. . As a result, the semiconductor packages 2 to 5 and the coupling diodes 6 and 7 are arranged side by side on a substantially straight line.
 次に、実施形態2に係る3レベルインバータ装置19を構成する導体20~26について、3レベルインバータ装置19に導体20~26を個別に設けた状態を参照しながら説明する。 Next, the conductors 20 to 26 constituting the three-level inverter device 19 according to the second embodiment will be described with reference to the state where the conductors 20 to 26 are individually provided in the three-level inverter device 19.
 図14(a),図14(b)に示すように、半導体パッケージ2のコレクタCと平滑コンデンサ8の正極端子とを接続する導体20は、パッケージ面に対して立設する板状の導電部20aを有する。この導電部20aの端部には、平滑コンデンサ8の正極端子と接続される接続部20bが導電部20a面から突出して設けられる。また、半導体パッケージ5のエミッタEと平滑コンデンサ9の負極端子とを接続する導体21は、パッケージ面に対して立設する板状の導電部21aを有する。この導電部21aの端部には、平滑コンデンサ9の負極端子と接続される接続部21bが導電部21a面から突出して設けられる。 As shown in FIGS. 14A and 14B, the conductor 20 that connects the collector C of the semiconductor package 2 and the positive terminal of the smoothing capacitor 8 is a plate-like conductive portion that stands upright with respect to the package surface. 20a. A connection portion 20b connected to the positive terminal of the smoothing capacitor 8 is provided at the end of the conductive portion 20a so as to protrude from the surface of the conductive portion 20a. The conductor 21 that connects the emitter E of the semiconductor package 5 and the negative terminal of the smoothing capacitor 9 has a plate-like conductive portion 21a that stands upright with respect to the package surface. A connecting portion 21b connected to the negative electrode terminal of the smoothing capacitor 9 is provided at the end of the conductive portion 21a so as to protrude from the surface of the conductive portion 21a.
 図15(a),図15(b)に示すように、半導体パッケージ2のエミッタEと、半導体パッケージ3のコレクタC、結合ダイオード6のカソードK1とを接続する導体22は、パッケージ面に対して立設する板状の導電部22aを有する。同様に、半導体パッケージ5のコレクタCと、半導体パッケージ4のエミッタE、結合ダイオード7のアノードA2とを接続する導体23は、パッケージ面に対して立設する板状の導電部23aを有する。 As shown in FIGS. 15A and 15B, the conductor 22 connecting the emitter E of the semiconductor package 2, the collector C of the semiconductor package 3, and the cathode K1 of the coupling diode 6 is connected to the package surface. It has a plate-like conductive portion 22a standing upright. Similarly, the conductor 23 that connects the collector C of the semiconductor package 5, the emitter E of the semiconductor package 4, and the anode A2 of the coupling diode 7 has a plate-like conductive portion 23a that stands upright with respect to the package surface.
 図16(a),図16(b)に示すように、結合ダイオード6のアノードA1と、結合ダイオード7のカソードK2と、平滑コンデンサ8,9の接続点とを接続する導体24は、パッケージ面に対して立設する板状の導電部24aを有する。導電部24aは、第1,第2延伸部24b,24c、第1,第2折り返し部24d,24eと、接続導体部24fとから構成される。 As shown in FIGS. 16A and 16B, the conductor 24 connecting the anode A1 of the coupling diode 6, the cathode K2 of the coupling diode 7, and the connection point of the smoothing capacitors 8 and 9 is formed on the package surface. Has a plate-like conductive portion 24a erected. The conductive portion 24a includes first and second extending portions 24b and 24c, first and second folded portions 24d and 24e, and a connecting conductor portion 24f.
 第1延伸部24bは、パッケージ面に対して立設する板状の導電体であって、第1延伸部24bは、結合ダイオード6のアノードA1から半導体パッケージ2まで延伸している。第2延伸部24cは、パッケージ面に対して立設する板状の導電体であって、第2延伸部24cは、結合ダイオード7のカソードK2から半導体パッケージ5まで延伸している。第1延伸部14bは、図15(a)で示した導体22の導電部22aの高さと略等しく、この導電部22aに沿うように配置される。また、第2延伸部24cは、図15(a)で示した導体23の導電部23aの高さと略等しく、この導電部23aに沿うように配置される。 The first extending portion 24b is a plate-like conductor standing on the package surface, and the first extending portion 24b extends from the anode A1 of the coupling diode 6 to the semiconductor package 2. The second extending portion 24 c is a plate-like conductor standing on the package surface, and the second extending portion 24 c extends from the cathode K 2 of the coupling diode 7 to the semiconductor package 5. The first extending portion 14b is substantially equal to the height of the conductive portion 22a of the conductor 22 shown in FIG. 15A, and is arranged along the conductive portion 22a. The second extending portion 24c is substantially equal to the height of the conductive portion 23a of the conductor 23 shown in FIG. 15A, and is arranged along the conductive portion 23a.
 そして、図16(a)に示すように、第1,第2延伸部24b,24cの端部から、それぞれパッケージ面に対して立設するように第1,第2折り返し部24d,24eが設けられ、第1折り返し部24dと第2折り返し部24eとを接続するように、板状の接続導体部24fが設けられる。この接続導体部24fは、第1延伸部24b及び第2延伸部24cの高さより高い位置に設けられる。なお、接続導体部24fには、平滑コンデンサ8,9の接続点と接続する接続部24gが接続導体部24f面から突出して設けられる。また、接続導体部24fには、後述の導体26の交流端子接続部26eが貫通する貫通孔24hが形成されている。 Then, as shown in FIG. 16A, first and second folded portions 24d and 24e are provided so as to stand from the end portions of the first and second extending portions 24b and 24c, respectively, with respect to the package surface. The plate-like connecting conductor portion 24f is provided so as to connect the first folded portion 24d and the second folded portion 24e. The connecting conductor portion 24f is provided at a position higher than the height of the first extending portion 24b and the second extending portion 24c. The connection conductor portion 24f is provided with a connection portion 24g connected to the connection point of the smoothing capacitors 8 and 9 so as to protrude from the surface of the connection conductor portion 24f. The connecting conductor portion 24f is formed with a through hole 24h through which an AC terminal connecting portion 26e of the conductor 26 described later passes.
 図17(a),図17(b)に示すように、半導体パッケージ3と交流端子17とを接続する導体25は、導体22、及び導体24に沿うように形成される。つまり、導体25は、パッケージ面に対して立設する導電部25aを有し、この導電部25aは、導体22の導電部22aと平行して配置される板状の第1導電部25bと、導体24の第1折り返し部24dと並行して配置される板状の第2導電部25cと、導体24の接続導体部24fと並行して配置される板状の接続導体部25dとを有する。なお、接続導体部25dには、交流端子17と接続するための交流端子接続部25eが、接続導体部25d面から突出して設けられる。 17A and 17B, the conductor 25 that connects the semiconductor package 3 and the AC terminal 17 is formed along the conductor 22 and the conductor 24. That is, the conductor 25 has a conductive portion 25a standing on the package surface, and the conductive portion 25a includes a plate-like first conductive portion 25b arranged in parallel with the conductive portion 22a of the conductor 22, It has a plate-like second conductive portion 25 c arranged in parallel with the first folded portion 24 d of the conductor 24, and a plate-like connecting conductor portion 25 d arranged in parallel with the connection conductor portion 24 f of the conductor 24. The connecting conductor portion 25d is provided with an AC terminal connecting portion 25e for connecting to the AC terminal 17 so as to protrude from the surface of the connecting conductor portion 25d.
 同様に、半導体パッケージ4と交流端子17とを接続する導体26は、導体23、及び導体24に沿うように形成される。つまり、導体26は、パッケージ面に対して立設する導電部26aを有し、この導電部26aは、導体23の導電部23aと並行して配置される板状の第1導電部26bと、導体24の第2折り返し部24eと並行して配置される板状の第2導電部26cと、導体24の接続導体部24fと並行して配置される板状の接続導体部26dとを有する。なお、接続導体部26dには、交流端子17と接続するための交流端子接続部26eが、接続導体部26d面から突出して設けられる。 Similarly, the conductor 26 that connects the semiconductor package 4 and the AC terminal 17 is formed along the conductor 23 and the conductor 24. That is, the conductor 26 has a conductive portion 26a standing on the package surface, and the conductive portion 26a includes a plate-like first conductive portion 26b arranged in parallel with the conductive portion 23a of the conductor 23; It has a plate-like second conductive portion 26c arranged in parallel with the second folded portion 24e of the conductor 24 and a plate-like connecting conductor portion 26d arranged in parallel with the connecting conductor portion 24f of the conductor 24. The connecting conductor portion 26d is provided with an AC terminal connecting portion 26e for connecting to the AC terminal 17 so as to protrude from the surface of the connecting conductor portion 26d.
 本発明の実施形態2に係る3レベルインバータ装置19の配線インダクタンス低減効果について、図18~図21を参照して説明する。図18~図21は、実施形態に係る3レベルインバータ装置19の各動作モード(モード1~モード4)における電流経路を説明する説明図である。 The wiring inductance reduction effect of the three-level inverter device 19 according to the second embodiment of the present invention will be described with reference to FIGS. 18 to 21 are explanatory diagrams for explaining current paths in the respective operation modes (mode 1 to mode 4) of the three-level inverter device 19 according to the embodiment.
 図18(a)に示すように、半導体パッケージ2及び半導体パッケージ3がターンオンし、半導体パッケージ4及び半導体パッケージ5がターンオフした場合(モード1)、3レベルインバータ回路を流れる電流は、導体20→半導体パッケージ2→導体22→半導体パッケージ3→導体25→交流端子17となる。 As shown in FIG. 18A, when the semiconductor package 2 and the semiconductor package 3 are turned on and the semiconductor package 4 and the semiconductor package 5 are turned off (mode 1), the current flowing through the three-level inverter circuit is the conductor 20 → semiconductor. Package 2 → conductor 22 → semiconductor package 3 → conductor 25 → AC terminal 17
 図18(b)に示すように、本発明の実施形態2に係る3レベルインバータ装置19は、導体20の導電部20aと導体25の第2導電部25cとが近接して沿うように並行して配置されている。また、導体22の導電部22aと導体25の第1導電部25bとがそれぞれ沿うように並行して配置されている。 As shown in FIG. 18B, the three-level inverter device 19 according to the second embodiment of the present invention is parallel to the conductive portion 20a of the conductor 20 and the second conductive portion 25c of the conductor 25 in close proximity. Are arranged. Further, the conductive portion 22a of the conductor 22 and the first conductive portion 25b of the conductor 25 are arranged in parallel so as to be along each other.
 この導体20の導電部20aを流れる電流の向き(図中細字矢印で示す)と導体25の第2導電部25cを流れる電流の向き(図中太字矢印で示す)が逆向きであるので、導電部20aと第2導電部25cで流れる電流が、導電部20aと第2導電部25cで発生した磁界をお互いに打ち消しあうこととなり、配線インダクタンスが低減する。同様の理由により、導体22の導電部22aと導体25の第1導電部25bとを近接して沿うように配置し積層導体を構成することで、この導体22の導電部22aを流れる電流の向き(図中細字矢印で示す)と導体25の第1導電部25bを流れる電流の向き(図中太字矢印で示す)が逆向きとなり、配線インダクタンスが低減する。 Since the direction of current flowing through the conductive portion 20a of the conductor 20 (indicated by a thin arrow in the figure) and the direction of current flowing through the second conductive portion 25c of the conductor 25 (indicated by a bold arrow in the figure) are opposite, The current flowing in the part 20a and the second conductive part 25c cancels out the magnetic fields generated in the conductive part 20a and the second conductive part 25c, thereby reducing the wiring inductance. For the same reason, by arranging the conductive portion 22a of the conductor 22 and the first conductive portion 25b of the conductor 25 so as to be close to each other and forming a laminated conductor, the direction of the current flowing through the conductive portion 22a of the conductor 22 The direction of current flowing through the first conductive portion 25b of the conductor 25 (indicated by the bold arrow in the figure) is reversed (indicated by the thin arrow in the figure), and the wiring inductance is reduced.
 図19(a)に示すように、半導体パッケージ3がターンオンし、半導体パッケージ2,4,5がターンオフした場合(モード2)、3レベルインバータ回路を流れる電流は、導体24→結合ダイオード6→導体22→半導体パッケージ3→導体25→交流端子17となる。 As shown in FIG. 19A, when the semiconductor package 3 is turned on and the semiconductor packages 2, 4 and 5 are turned off (mode 2), the current flowing through the three-level inverter circuit is as follows: conductor 24 → coupled diode 6 → conductor 22 → semiconductor package 3 → conductor 25 → AC terminal 17
 図19(b)に示すように、実施形態2に係る3レベルインバータ装置19は、モード2の場合においても、平板状の導体22,24,25を流れる電流の向きが逆向きになるように各々の導体22,24,25が近接して配置される。つまり、導体24の接続導体部24f(電流の向きを細字矢印で示す)と、導体25の接続導体部25d(電流の向きを太字矢印で示す)が近接して沿うように配置される。また、導体24の折り返し部24d(電流の向きを細字矢印で示す)と、導体25の第2導電部25c(電流の向きを太字矢印で示す)が近接して沿うように配置される。さらに、導体22の導電部22a(電流の向きを太字矢印で示す)と、導体25の第1導電部25b(電流の向きを太字矢印で示す)と導体24の第1延伸部24b(電流の向きを細字矢印で示す)が近接して沿うように配置され積層導体を構成している。その結果、各板状の導電部を流れる電流により発生した磁界と、それらの導電部に近接して配置される他の導電部で発生した磁界とがお互いに打ち消しあうこととなり、配線インダクタンスが低減する。特に、導体20の導電部20a、導体24の折り返し部24d、導体25の第2導電部25cを略同一の形状として積層した積層導体構造とすることで、配線インダクタンスがより一層低減する。 As shown in FIG. 19B, in the three-level inverter device 19 according to the second embodiment, even in the case of mode 2, the direction of the current flowing through the flat conductors 22, 24, 25 is reversed. The respective conductors 22, 24, 25 are arranged close to each other. That is, the connection conductor portion 24f of the conductor 24 (the direction of current is indicated by a thin arrow) and the connection conductor portion 25d of the conductor 25 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other. The folded portion 24d of the conductor 24 (the direction of current is indicated by a thin arrow) and the second conductive portion 25c of the conductor 25 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other. Furthermore, the conductive portion 22a of the conductor 22 (the direction of current is indicated by a bold arrow), the first conductive portion 25b of the conductor 25 (the direction of current is indicated by a bold arrow), and the first extended portion 24b of the conductor 24 (the current direction) The laminated conductors are arranged so that the directions thereof are close to each other (indicated by thin arrows). As a result, the magnetic field generated by the current flowing through each plate-like conductive part and the magnetic field generated by other conductive parts arranged close to those conductive parts cancel each other, reducing wiring inductance. To do. In particular, the wiring inductance is further reduced by adopting a laminated conductor structure in which the conductive portion 20a of the conductor 20, the folded portion 24d of the conductor 24, and the second conductive portion 25c of the conductor 25 are laminated in substantially the same shape.
 図20(a)に示すように、半導体パッケージ4及び半導体パッケージ5がターンオンし、半導体パッケージ2及び半導体パッケージ3がターンオフした場合(モード3)、3レベルインバータ回路を流れる電流は、交流端子17→導体26→半導体パッケージ4→導体23→半導体パッケージ5→導体21となる。 As shown in FIG. 20A, when the semiconductor package 4 and the semiconductor package 5 are turned on and the semiconductor package 2 and the semiconductor package 3 are turned off (mode 3), the current flowing through the three-level inverter circuit is changed to the AC terminal 17 → Conductor 26 → semiconductor package 4 → conductor 23 → semiconductor package 5 → conductor 21.
 図20(b)に示すように、実施形態2に係る3レベルインバータ装置19は、モード3の場合においても、平板状の導体21,23,26を流れる電流の向きが逆向きになるように各々の導体21,23,26が近接して配置される。つまり、導体26の第2導電部26c(電流の向きを細字矢印で示す)と、導体21の導電部21a(電流の向きを太字矢印で示す)が近接して沿うように配置され積層導体を構成している。また、導体26の第1導電部26b(電流の向きを細字矢印で示す)と、導体23の導電部23a(電流の向きを太字矢印で示す)が近接して沿うように配置され積層導体を構成している。その結果、各板状の導電部を流れる電流により発生した磁界と、それらの導電部に近接して配置される他の導電部で発生した磁界とがお互いに打ち消しあうこととなり、配線インダクタンスが低減する。 As shown in FIG. 20B, the three-level inverter device 19 according to the second embodiment is configured so that the direction of the current flowing through the flat conductors 21, 23, 26 is reversed even in the mode 3. The respective conductors 21, 23, and 26 are arranged close to each other. That is, the second conductive portion 26c of the conductor 26 (the direction of current is indicated by a thin arrow) and the conductive portion 21a of the conductor 21 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other and the laminated conductor is It is composed. Further, the first conductive portion 26b of the conductor 26 (the direction of the current is indicated by a thin arrow) and the conductive portion 23a of the conductor 23 (the direction of the current is indicated by a bold arrow) are arranged so as to be close to each other and the laminated conductor is It is composed. As a result, the magnetic field generated by the current flowing through each plate-like conductive part and the magnetic field generated by other conductive parts arranged close to those conductive parts cancel each other, reducing wiring inductance. To do.
 図21(a)に示すように、半導体パッケージ4がターンオンし、半導体パッケージ2,3,5がターンオフした場合(モード4)、3レベルインバータ回路を流れる電流は、交流端子17→導体26→半導体パッケージ4→導体23→結合ダイオード7→導体24となる。 As shown in FIG. 21A, when the semiconductor package 4 is turned on and the semiconductor packages 2, 3 and 5 are turned off (mode 4), the current flowing through the three-level inverter circuit is as follows: AC terminal 17 → conductor 26 → semiconductor Package 4 → conductor 23 → coupling diode 7 → conductor 24.
 図21(b)に示すように、実施形態2に係る3レベルインバータ装置19は、モード4の場合においても、平板状の導体23,24,26を流れる電流の向きが逆向きになるように各々の導体23,24,26が近接して配置される。つまり、導体26の接続導体部26d(電流の向きを細字矢印で示す)と、導体24の接続導体部24f(電流の向きを太字矢印で示す)が近接して沿うように配置され積層導体を構成している。また、導体26の第2導電部26c(電流の向きを細字矢印で示す)と、導体24の折り返し部24e(電流の向きを太字矢印で示す)が近接して沿うように配置され積層導体を構成している。さらに、導体26の第1導電部26b(電流の向きを細字矢印で示す)及び導体24の第2延伸部24c(電流の向きを太字矢印で示す)と、導体23の導電部23a(電流の向きを太字矢印で示す)とが近接して沿うように配置され積層導体を構成している。その結果、各板状の導電部を流れる電流により発生した磁界と、それらの導電部に近接して配置される他の導電部で発生した磁界とがお互いに打ち消しあうこととなり、配線インダクタンスが低減する。特に、導体21の導電部21a、導体24の折り返し部24e、導体26の第2導電部26cを略同一の形状として積層した積層導体構造とすることで、配線インダクタンスがより一層低減する。 As shown in FIG. 21B, the three-level inverter device 19 according to the second embodiment is configured so that the direction of the current flowing through the flat conductors 23, 24, and 26 is reversed even in the mode 4. The respective conductors 23, 24, and 26 are arranged close to each other. That is, the connection conductor portion 26d of the conductor 26 (the direction of current is indicated by a thin arrow) and the connection conductor portion 24f of the conductor 24 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other and the laminated conductor is It is composed. Further, the second conductive portion 26c of the conductor 26 (the direction of current is indicated by a thin arrow) and the folded portion 24e of the conductor 24 (the direction of current is indicated by a bold arrow) are arranged so as to be close to each other and the laminated conductor is It is composed. Furthermore, the first conductive portion 26b of the conductor 26 (the direction of current is indicated by a thin arrow), the second extension portion 24c of the conductor 24 (the direction of the current is indicated by a bold arrow), and the conductive portion 23a of the conductor 23 (the current direction) Are arranged so that their directions are close to each other and constitute a laminated conductor. As a result, the magnetic field generated by the current flowing through each plate-like conductive part and the magnetic field generated by other conductive parts arranged close to those conductive parts cancel each other, reducing wiring inductance. To do. In particular, the wiring inductance is further reduced by adopting a laminated conductor structure in which the conductive portion 21a of the conductor 21, the folded portion 24e of the conductor 24, and the second conductive portion 26c of the conductor 26 are laminated in substantially the same shape.
 以上のように、本発明の実施形態2に係る電力変換装置19及び電力変換装置19の導体配置方法によれば、パッケージ面に対して立設する平板状の導電部を有する導体で回路を構成することで、平滑コンデンサと、この平滑コンデンサと接続される半導体パッケージの端子との距離を短くすることができる。その結果、平滑コンデンサと半導体パッケージ間の配線インダクタンスが低減されるので、電力変換装置で発生するサージ電圧を低減することができる。特に、実施形態2に係る電力変換装置19は、平滑コンデンサ8と半導体パッケージ2(若しくは、平滑コンデンサ9と半導体パッケージ5)とを接続する導体の長さが実施形態1に係る電力変換装置1と比較して短いので、実施形態1に係る電力変換装置1の有する効果に加えて、さらに配線インダクタンスを低減することができる。 As described above, according to the power conversion device 19 and the conductor arrangement method of the power conversion device 19 according to the second embodiment of the present invention, the circuit is configured by the conductor having the flat conductive portion standing on the package surface. By doing so, the distance between the smoothing capacitor and the terminal of the semiconductor package connected to the smoothing capacitor can be shortened. As a result, since the wiring inductance between the smoothing capacitor and the semiconductor package is reduced, the surge voltage generated in the power conversion device can be reduced. In particular, the power conversion device 19 according to the second embodiment is different from the power conversion device 1 according to the first embodiment in that the length of the conductor connecting the smoothing capacitor 8 and the semiconductor package 2 (or the smoothing capacitor 9 and the semiconductor package 5) is the same as that of the power conversion device 1 according to the first embodiment. Since the comparison is short, in addition to the effect of the power conversion device 1 according to the first embodiment, the wiring inductance can be further reduced.
 以上、本発明の電力変換装置及び電力変換装置の導体配置方法に関して、記載された具体例に対してのみ詳細に説明したが、本発明は、本発明の技術的思想の範囲で多彩な変形及び修正が可能であることは、当業者にとって明白なことであり、このような変形及び修正が本発明の電力変換装置及び電力変換装置の導体配置方法に属することは当然のことである。 As described above, the power converter of the present invention and the conductor arrangement method of the power converter have been described in detail only for the specific examples described. However, the present invention includes various modifications and variations within the scope of the technical idea of the present invention. It is obvious to those skilled in the art that the modification is possible, and it is natural that such variations and modifications belong to the power conversion device and the conductor arrangement method of the power conversion device of the present invention.
 例えば、本発明の電力変換装置は、回路を構成する導体において、流れる電流が逆方向となる導電部同士を近接して設けるものである。よって、実施形態で説明したようにすべての導電部の組合せについて近接して設ける形態が好ましいが、電力変換装置の構成などを勘案して、一部の導電部の組合せについてのみ近接して設けた場合にも、本発明の電力変換装置及び電力変換装置の導体配置方法の効果を部分的に得ることができる。 For example, in the power conversion device of the present invention, in the conductor constituting the circuit, the conductive portions in which the flowing current is in the opposite direction are provided close to each other. Therefore, as described in the embodiment, it is preferable that all the combinations of the conductive parts are provided close to each other. However, in consideration of the configuration of the power converter, the combination of only some of the conductive parts is provided close to each other. Even in this case, the effects of the power conversion device and the conductor arrangement method for the power conversion device of the present invention can be partially obtained.
 また、実施形態では、3レベルインバータ装置を例示して説明したが、実施形態の電力変換装置に限らず、さまざまな電力変換装置においてスイッチング素子と直流電源(若しくは、交流電源)の接続等、電力変換装置の回路を形成する導体に適用することができる。なお、実施形態の説明では、1相分の構造を示して説明したが、電力変換装置を3相とする場合には、3レベルインバータ装置1を3組用いればよい。 In the embodiment, the three-level inverter device has been described as an example. However, the power conversion device is not limited to the power conversion device of the embodiment, and various power conversion devices such as connection of a switching element and a DC power source (or AC power source) The present invention can be applied to a conductor forming a circuit of a conversion device. In the description of the embodiment, the structure for one phase is shown and described. However, when the power conversion device has three phases, three sets of three-level inverter devices 1 may be used.
 また、各導体(板状の導電部)間に絶縁板を設けることで、導体間の短絡を防止し、電力変換装置の安全性を向上させることができる。 Also, by providing an insulating plate between each conductor (plate-like conductive part), it is possible to prevent a short circuit between the conductors and improve the safety of the power converter.
1,19…3レベルインバータ装置(電力変換装置)
2…半導体パッケージ(第1半導体スイッチング素子)
3…半導体パッケージ(第2半導体スイッチング素子)
4…半導体パッケージ(第3半導体スイッチング素子)
5…半導体パッケージ(第4半導体スイッチング素子)
6…結合ダイオード(第1結合ダイオード)
7…結合ダイオード(第2結合ダイオード)
8…平滑コンデンサ(第1単位電圧源)
9…平滑コンデンサ(第2単位電圧源)
10,20…導体(第1導体)
11,21…導体(第2導体)
12,22…導体(第3導体)
13,23…導体(第5導体)
14,24…導体(第4導体)
15,25…導体(第6導体)
16,26…導体(第7導体)
10a~16a,20a~26a…導電部、10b,11b…立設部
10c,11c…延伸部、14b,24b…第1延伸部
14c,24c…第2延伸部、14d,24d…第1折り返し部
14e,24e…第2折り返し部、14f,24f,25d,26d…接続導体部
15b,16b,25b,26b…第1導電部、15c,16c…折り返し部
15d,16d,25c,26c…第2導電部
17…交流端子
18…ヒートシンク
1, 19 ... 3-level inverter device (power converter)
2. Semiconductor package (first semiconductor switching element)
3. Semiconductor package (second semiconductor switching element)
4. Semiconductor package (third semiconductor switching element)
5 ... Semiconductor package (fourth semiconductor switching element)
6 ... Coupling diode (first coupling diode)
7. Coupling diode (second coupling diode)
8: Smoothing capacitor (first unit voltage source)
9: Smoothing capacitor (second unit voltage source)
10, 20 ... conductor (first conductor)
11, 21 ... conductor (second conductor)
12, 22 ... conductor (third conductor)
13, 23 ... conductor (fifth conductor)
14, 24 ... conductor (fourth conductor)
15, 25 ... conductor (sixth conductor)
16, 26 ... conductor (seventh conductor)
10a to 16a, 20a to 26a ... conductive portion, 10b, 11b ... standing portion 10c, 11c ... extending portion, 14b, 24b ... first extending portion 14c, 24c ... second extending portion, 14d, 24d ... first folded portion 14e, 24e ... second folded portion, 14f, 24f, 25d, 26d ... connecting conductor portions 15b, 16b, 25b, 26b ... first conductive portion, 15c, 16c ... folded portions 15d, 16d, 25c, 26c ... second conductive Part 17 ... AC terminal 18 ... Heat sink

Claims (13)

  1.  半導体スイッチング素子を内蔵した複数の半導体パッケージと、
     複数の結合ダイオードと、を
    有する電力変換装置であって、
     前記複数の半導体パッケージが設けられる面に対して立設する板状の導電部を有し、前記半導体パッケージのコレクタと前記電力変換装置の電圧源正極とを接続する第1導体と、
     前記複数の半導体パッケージが設けられる面に対して立設する板状の導電部を有し、前記半導体パッケージのエミッタと前記電力変換装置の電圧源負極とを接続する第2導体と、を備える
    こと特徴とする電力変換装置。
    A plurality of semiconductor packages containing semiconductor switching elements;
    A power conversion device having a plurality of coupling diodes,
    A first conductor connecting a collector of the semiconductor package and a voltage source positive electrode of the power converter, having a plate-like conductive portion standing on a surface on which the plurality of semiconductor packages are provided;
    A plate-like conductive portion standing on a surface on which the plurality of semiconductor packages are provided, and a second conductor connecting the emitter of the semiconductor package and the voltage source negative electrode of the power converter. A power conversion device.
  2.  前記複数の半導体パッケージが設けられる面に対して立設する板状の導電部を有し、前記電源正極と接続される半導体パッケージを含む半導体パッケージと当該半導体パッケージと接続される結合ダイオードとを接続する第3導体と、
     前記第1導体の導電部と、前記第3導体の導電部と近接して沿うように配置される板状の導電部を有し、当該結合ダイオードと前記電力変換装置の電圧源とを接続する第4導体と、を備える
    ことを特徴とする請求項1に記載の電力変換装置。
    A semiconductor package including a semiconductor package connected to the power supply positive electrode and a coupling diode connected to the semiconductor package, having a plate-like conductive portion standing on a surface on which the plurality of semiconductor packages are provided A third conductor that
    A conductive portion of the first conductor; and a plate-like conductive portion arranged so as to be close to the conductive portion of the third conductor, and connecting the coupling diode and the voltage source of the power converter. The power converter according to claim 1, further comprising a fourth conductor.
  3.  前記複数の半導体パッケージが設けられる面に対して立設する板状の導電部を有し、前記電源負極と接続される半導体パッケージを含む半導体パッケージと当該半導体パッケージに接続される結合ダイオードとを接続する第5導体と、を備え、
     前記第4導体は、当該結合ダイオードと前記電圧源とを接続するとともに、前記第2導体の導電部と、前記第5導体の導電部と近接して沿うように配置される板状の導電部を、有する
    ことを特徴とする請求項2に記載の電力変換装置。
    A semiconductor package including a semiconductor package connected to the power supply negative electrode, and a coupling diode connected to the semiconductor package, having a plate-like conductive portion standing on a surface on which the plurality of semiconductor packages are provided And a fifth conductor
    The fourth conductor connects the coupling diode and the voltage source, and is a plate-like conductive portion disposed so as to be close to the conductive portion of the second conductor and the conductive portion of the fifth conductor. The power conversion device according to claim 2, further comprising:
  4.  前記第1導体の導電部または前記第3導体の導電部と近接して、沿うように配置される板状の導電部を有し、前記電源正極と接続された半導体パッケージに前記第3導体を介して直列に接続された半導体パッケージと、電力変換装置の交流端子と、を接続する第6導体を、備える
    ことを特徴とする請求項2に記載の電力変換装置。
    A plate-like conductive portion arranged so as to be in close proximity to the conductive portion of the first conductor or the conductive portion of the third conductor, and the third conductor is connected to the semiconductor package connected to the power supply positive electrode The power converter according to claim 2, further comprising: a sixth conductor that connects the semiconductor package connected in series via the AC terminal of the power converter.
  5.  前記第2導体の導電部または前記第5導体の導電部と近接して、沿うように配置される導電部を有し、前記電源負極と接続された半導体パッケージに前記第5導体を介して直列に接続された半導体パッケージと、電力変換装置の交流端子と、を接続する第7導体を、備える
    ことを特徴とする請求項3に記載の電力変換装置。
    A conductive portion disposed so as to be in close proximity to the conductive portion of the second conductor or the fifth conductor, and in series with the semiconductor package connected to the power source negative electrode via the fifth conductor The power converter according to claim 3, further comprising: a seventh conductor that connects the semiconductor package connected to the AC terminal and the AC terminal of the power converter.
  6.  複数の半導体パッケージと、
     複数の結合ダイオードと、を有する電力変換装置において、
     前記半導体パッケージが設けられる面に対して立設する板状の導電部を有する導体で、前記電力変換装置の回路を構成する
    ことを特徴とする電力変換装置における導体の配置方法。
    A plurality of semiconductor packages;
    In a power converter having a plurality of coupling diodes,
    A conductor arrangement method in a power converter, wherein a conductor having a plate-like conductive portion standing on a surface on which the semiconductor package is provided constitutes a circuit of the power converter.
  7.  前記回路を構成する各導電部において、流れる電流の向きが反対となる導電部を近接して沿うように設ける
    ことを特徴とする請求項6に記載の電力変換装置における導体の配置方法。
    The method of arranging conductors in a power converter according to claim 6, wherein in each of the conductive parts constituting the circuit, the conductive parts having opposite directions of flowing current are provided so as to be close to each other.
  8.  直列接続された第1,第2単位電圧源を含み、3つの直流電圧レベルの3端子を有する直流電圧源と、
     前記第1単位電圧源の正極端子と交流端子との間に直列接続された第1,第2半導体スイッチング素子と、
     この直列接続点と前記第1,第2単位電圧源の直列接続点との間に接続された第1結合ダイオードと、
     前記交流端子と前記第2単位電圧源の負極端子との間に直列接続された第3,第4半導体スイッチング素子と、
     この直列接続点と前記第1,第2単位電圧源の直列接続点との間に接続された第2結合ダイオードと、
    を有する電力変換装置における導体の配置方法であって、
     前記第1単位電圧源と前記第1半導体スイッチング素子とを接続する導体は、前記それぞれの半導体スイッチング素子が配置される面に対して立設する板状の導電部を有し、この導電部に前記第1単位電圧源を接続する
    ことを特徴とする電力変換装置における導体の配置方法。
    A direct-current voltage source including first and second unit voltage sources connected in series and having three terminals of three direct-current voltage levels;
    First and second semiconductor switching elements connected in series between a positive terminal and an AC terminal of the first unit voltage source;
    A first coupling diode connected between the series connection point and the series connection point of the first and second unit voltage sources;
    Third and fourth semiconductor switching elements connected in series between the AC terminal and the negative terminal of the second unit voltage source;
    A second coupling diode connected between the series connection point and the series connection point of the first and second unit voltage sources;
    A method for arranging conductors in a power conversion device comprising:
    The conductor connecting the first unit voltage source and the first semiconductor switching element has a plate-like conductive part standing on the surface on which the respective semiconductor switching elements are arranged. A method for arranging conductors in a power converter, wherein the first unit voltage source is connected.
  9.  前記第1,第2半導体スイッチング素子と前記第1結合ダイオードを接続する導体は、それぞれの半導体スイッチング素子が配置される面に対して立設する板状の導電部を有し、
     前記第1,第2結合ダイオードと前記第1,第2単位電圧源の直列接続点とを接続する導体を、前記第1,第2半導体スイッチング素子と前記第1結合ダイオードを接続する導体の導電部、及び前記第1単位電圧源と前記第1半導体スイッチング素子とを接続する導体の導電部に近接して沿うように形成する
    ことを特徴とする請求項8に記載の電力変換装置における導体の配置方法。
    The conductor connecting the first and second semiconductor switching elements and the first coupling diode has a plate-like conductive portion standing on the surface on which the respective semiconductor switching elements are disposed,
    Conductors connecting the first and second coupling diodes and the series connection point of the first and second unit voltage sources are conductive conductors connecting the first and second semiconductor switching elements and the first coupling diode. And a conductor in the power converter according to claim 8, wherein the conductor is formed so as to be close to a conductive portion of a conductor connecting the first unit voltage source and the first semiconductor switching element. Placement method.
  10.  前記第2半導体スイッチング素子と前記交流端子とを接続する導体を、前記第1,第2半導体スイッチング素子と前記第1結合ダイオードを接続する導体の導電部、及び前記第1単位電圧源と前記第1半導体スイッチング素子とを接続する導体の導電部に近接して沿うように形成する
    ことを特徴とする請求項9に記載の電力変換装置における導体の配置方法。
    A conductor connecting the second semiconductor switching element and the AC terminal; a conductive portion of the conductor connecting the first and second semiconductor switching elements and the first coupling diode; and the first unit voltage source and the first The conductor arranging method in the power conversion device according to claim 9, wherein the conductor is formed so as to be close to a conductive portion of a conductor connecting the one semiconductor switching element.
  11.  前記第2単位電圧源と前記第4半導体スイッチング素子とを接続する導体は、前記それぞれの半導体スイッチング素子が配置される面に対して立設する板状の導電部を有し、この導電部に前記第2単位電圧源を接続する
    ことを特徴とする請求項8から請求項10のいずれか1項に記載の電力変換装置における導体の配置方法。
    The conductor connecting the second unit voltage source and the fourth semiconductor switching element has a plate-like conductive part standing on the surface on which the respective semiconductor switching elements are arranged. The method of arranging conductors in a power converter according to any one of claims 8 to 10, wherein the second unit voltage source is connected.
  12.  前記第3,第4半導体スイッチング素子と前記第2結合ダイオードを接続する導体は、それぞれの半導体スイッチング素子が配置される面に対して立設する板状の導電部を有し、
     前記第1,第2結合ダイオードと前記第1,第2単位電圧源の直列接続点とを接続する導体を、前記第3,第4半導体スイッチング素子と前記第2結合ダイオードを接続する導体の導電部、及び前記第2単位電圧源と前記第4半導体スイッチング素子とを接続する導体の導電部に近接して沿うように形成する
    ことを特徴とする請求項11に記載の電力変換装置における導体の配置方法。
    The conductor connecting the third and fourth semiconductor switching elements and the second coupling diode has a plate-like conductive portion standing on the surface on which the respective semiconductor switching elements are disposed,
    Conductors connecting the first and second coupling diodes and the series connection point of the first and second unit voltage sources are conductive conductors connecting the third and fourth semiconductor switching elements and the second coupling diode. And a conductor in the power converter according to claim 11, wherein the conductor is formed so as to be close to a conductive portion of a conductor connecting the second unit voltage source and the fourth semiconductor switching element. Placement method.
  13.  前記第3半導体スイッチング素子と前記交流端子とを接続する導体を、前記第3,第4半導体スイッチング素子と前記第2結合ダイオードを接続する導体の導電部、及び前記第2単位電圧源と前記第4半導体スイッチング素子とを接続する導体の導電部に近接して沿うように形成する
    ことを特徴とする請求項12に記載の電力変換装置における導体の配置方法。
    A conductor connecting the third semiconductor switching element and the AC terminal, a conductive portion of a conductor connecting the third and fourth semiconductor switching elements and the second coupling diode, and the second unit voltage source and the second The conductor arranging method in the power conversion device according to claim 12, wherein the conductor is formed so as to be close to the conductive portion of the conductor connecting the four semiconductor switching elements.
PCT/JP2012/076671 2011-11-09 2012-10-16 Power conversion apparatus, and method for disposing conductor in power conversion apparatus WO2013069415A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011245117A JP5807516B2 (en) 2011-11-09 2011-11-09 Power converter and method of arranging conductor in power converter
JP2011-245117 2011-11-09

Publications (1)

Publication Number Publication Date
WO2013069415A1 true WO2013069415A1 (en) 2013-05-16

Family

ID=48289799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076671 WO2013069415A1 (en) 2011-11-09 2012-10-16 Power conversion apparatus, and method for disposing conductor in power conversion apparatus

Country Status (2)

Country Link
JP (1) JP5807516B2 (en)
WO (1) WO2013069415A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122877A1 (en) * 2013-02-06 2014-08-14 富士電機株式会社 Semiconductor device
WO2016023873A1 (en) * 2014-08-11 2016-02-18 Woodward Kempen Gmbh Low inductivity circuit arrangement of an inverter
CN107843806A (en) * 2017-10-30 2018-03-27 阳光电源股份有限公司 A kind of Wiring detection method, device and photovoltaic generating system
EP3451377A4 (en) * 2016-05-03 2019-03-27 Yangzhou Guoyang Electronic Co., Ltd. Combined electrode and three-level high-power module thereof
WO2020021655A1 (en) * 2018-07-25 2020-01-30 東芝三菱電機産業システム株式会社 Power converter
CN112367760A (en) * 2020-10-29 2021-02-12 科华恒盛股份有限公司 Overcurrent structure, capacitor module and converter

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6179487B2 (en) * 2014-08-26 2017-08-16 富士電機株式会社 Semiconductor module unit of 3-level power converter
JP6160780B2 (en) 2014-08-26 2017-07-12 富士電機株式会社 3-level power converter
JP6575072B2 (en) * 2015-02-03 2019-09-18 富士電機株式会社 Phase unit and three-level power converter using the same
JP6234393B2 (en) * 2015-03-03 2017-11-22 三菱電機株式会社 Power semiconductor device and power conversion device
JP7443687B2 (en) * 2019-07-23 2024-03-06 富士電機株式会社 power converter
JP7408941B2 (en) * 2019-07-25 2024-01-09 富士電機株式会社 power converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308267A (en) * 1996-05-13 1997-11-28 Nippon Soken Inc Bus bar and capacitor assembling structure
JP2002526023A (en) * 1998-09-18 2002-08-13 エービービー アクチボラゲット VSC converter
JP2005085840A (en) * 2003-09-05 2005-03-31 Mitsubishi Electric Corp Power semiconductor device
JP2006280191A (en) * 1998-04-28 2006-10-12 Hitachi Ltd Main circuit structure for power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308267A (en) * 1996-05-13 1997-11-28 Nippon Soken Inc Bus bar and capacitor assembling structure
JP2006280191A (en) * 1998-04-28 2006-10-12 Hitachi Ltd Main circuit structure for power converter
JP2002526023A (en) * 1998-09-18 2002-08-13 エービービー アクチボラゲット VSC converter
JP2005085840A (en) * 2003-09-05 2005-03-31 Mitsubishi Electric Corp Power semiconductor device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122877A1 (en) * 2013-02-06 2014-08-14 富士電機株式会社 Semiconductor device
US9871465B2 (en) 2013-02-06 2018-01-16 Fuji Electric Co., Ltd. Semiconductor device including positive, negative and intermediate potential conductor plates
WO2016023873A1 (en) * 2014-08-11 2016-02-18 Woodward Kempen Gmbh Low inductivity circuit arrangement of an inverter
CN106716808A (en) * 2014-08-11 2017-05-24 伍德沃德肯彭有限公司 Low inductivity circuit arrangement of an inverter
CN106716808B (en) * 2014-08-11 2019-09-13 伍德沃德肯彭有限公司 The low inductive circuit arrangement of inverter
US9998028B2 (en) 2014-08-11 2018-06-12 Woodward Kempen Gmbh Low inductivity circuit arrangement of an inverter
EP3451377A4 (en) * 2016-05-03 2019-03-27 Yangzhou Guoyang Electronic Co., Ltd. Combined electrode and three-level high-power module thereof
CN107843806A (en) * 2017-10-30 2018-03-27 阳光电源股份有限公司 A kind of Wiring detection method, device and photovoltaic generating system
CN107843806B (en) * 2017-10-30 2020-08-28 阳光电源股份有限公司 Wiring detection method and device and photovoltaic power generation system
WO2020021655A1 (en) * 2018-07-25 2020-01-30 東芝三菱電機産業システム株式会社 Power converter
CN112119581A (en) * 2018-07-25 2020-12-22 东芝三菱电机产业系统株式会社 Power conversion device
JPWO2020021655A1 (en) * 2018-07-25 2021-01-07 東芝三菱電機産業システム株式会社 Power converter
CN112119581B (en) * 2018-07-25 2024-02-06 东芝三菱电机产业系统株式会社 Power conversion device
CN112367760A (en) * 2020-10-29 2021-02-12 科华恒盛股份有限公司 Overcurrent structure, capacitor module and converter
CN112367760B (en) * 2020-10-29 2022-06-10 科华恒盛股份有限公司 Overcurrent structure, capacitor module and converter

Also Published As

Publication number Publication date
JP5807516B2 (en) 2015-11-10
JP2013102627A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP5807516B2 (en) Power converter and method of arranging conductor in power converter
JP5642086B2 (en) 3-level power converter
US8300443B2 (en) Semiconductor module for use in power supply
US20100328833A1 (en) Power module with additional transient current path and power module system
JP5132175B2 (en) Power converter
WO2019123818A1 (en) Power converter
JP2014217270A (en) Half bridge for 3-level power conversion device
WO2014021112A1 (en) Switching element unit
WO2015019160A1 (en) Power conversion device
JP5241421B2 (en) Power converter
JP4842018B2 (en) Power converter
US20150085549A1 (en) Power conversion apparatus
JPWO2018109884A1 (en) Power converter
JP6493171B2 (en) Power converter
JP7086308B2 (en) DC / DC converter device
JP2018182850A (en) Power converter
JP2013236460A (en) Three-level inverter
JP2015136225A (en) power converter
JP6338543B2 (en) 3-level power converter
JP6433579B2 (en) Power converter
JP2015201962A (en) Electric power supply
JP2018174654A (en) Conductor connection structure of multilevel inverter
JP7110772B2 (en) power converter
JP6674398B2 (en) Wiring structure of power converter and control line
JP2023128422A (en) Electric power convertor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847938

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847938

Country of ref document: EP

Kind code of ref document: A1