WO2013069324A1 - 太陽電池およびその製造方法、太陽電池モジュール - Google Patents

太陽電池およびその製造方法、太陽電池モジュール Download PDF

Info

Publication number
WO2013069324A1
WO2013069324A1 PCT/JP2012/062395 JP2012062395W WO2013069324A1 WO 2013069324 A1 WO2013069324 A1 WO 2013069324A1 JP 2012062395 W JP2012062395 W JP 2012062395W WO 2013069324 A1 WO2013069324 A1 WO 2013069324A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
film layer
main surface
type layer
thin film
Prior art date
Application number
PCT/JP2012/062395
Other languages
English (en)
French (fr)
Inventor
友宏 品川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2013069324A1 publication Critical patent/WO2013069324A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell, and more particularly to a solar cell in which an intrinsic silicon-based thin film layer and a conductive silicon-based thin film layer are laminated on a single crystal silicon substrate, a manufacturing method thereof, and a solar cell module.
  • crystalline silicon solar cells using single crystal silicon or polycrystalline silicon as photovoltaic devices have a high share in the solar cell market.
  • single-crystal silicon solar cells have extremely high photoelectric conversion efficiency among the commonly used solar cells, and are expected to become mainstream in the solar cell market in the future.
  • a single crystal heterojunction silicon solar cell in which an amorphous silicon thin film is formed on a single crystal silicon substrate.
  • a solar cell in which an intrinsic amorphous silicon thin film is inserted between single crystal silicon and a conductive amorphous silicon layer is used as one of means for achieving the highest level of photoelectric conversion efficiency.
  • the introduction of an intrinsic amorphous silicon layer has succeeded in suppressing carrier recombination on the surface of the crystal substrate, which has been a factor in reducing the efficiency of conventional crystalline silicon solar cells. ing.
  • One of the factors that limit the light absorption amount of the solar cell is light absorption loss due to the conductive amorphous silicon layer laminated on the light receiving surface side of the solar cell.
  • the conductive amorphous silicon layer is attempted to have a wide band gap or a thin film.
  • the amount of light absorption of the original amorphous silicon-based material is enormous and excessively thin conductive type amorphous silicon layer inhibits the formation of electric field of solar cell, Can't be.
  • Patent Document 1 describes a so-called substrate type thin film silicon solar cell in which a back side electrode layer, an amorphous silicon thin film layer having a pin structure, and a light receiving side electrode layer are sequentially laminated on an insulating substrate. Also in this solar cell, light absorption loss on the light receiving surface side is a problem.
  • Patent Document 1 light is directly incident on the power generation layer by providing an opening in the electrode layer on the light-receiving surface, which is originally laminated on the entire surface of the substrate, and in the conductive amorphous silicon thin film layer as a countermeasure against light absorption loss. Proposed structure.
  • Patent Document 1 a conductive amorphous silicon thin film layer that absorbs a large amount of light by providing an opening in the electrode layer on the light receiving surface and the conductive silicon thin film layer that are originally present on the entire surface as described above. Increasing the light that reaches the power generation layer directly without going through.
  • the diffusion length of carriers generated in the power generation layer is short, so that the distance between the carrier generation portion and the conductive silicon layer increases due to the formation of the opening. There is a problem that the collection amount is greatly reduced and the efficiency is lowered.
  • the width of the opening is 0.5 ⁇ m or more and 3.0 ⁇ m or less when the amorphous silicon power generation layer is used, and 0.5 ⁇ m or more when the polycrystalline silicon power generation layer is used The restriction is 100 ⁇ m or less.
  • the present invention has been made in view of the above, and an object thereof is to obtain a solar cell excellent in photoelectric conversion efficiency, a manufacturing method thereof, and a solar cell module.
  • a solar cell according to the present invention includes a first intrinsic silicon-based thin film layer and a first conductivity-type silicon-based material on a first main surface of a conductivity-type single crystal silicon-based substrate.
  • a thin film layer, a first transparent conductive film layer, and a first electrode are laminated in this order, and a second intrinsic silicon-based thin film layer and a second conductivity-type silicon-based material are formed on the second main surface of the conductive single crystal silicon-based substrate.
  • the first intrinsic silicon-based thin film layer and the first transparent conductive film layer cover a region corresponding to the first opening on the first main surface.
  • FIG. 1-1 is a cross-sectional view of a principal part showing a schematic configuration of the solar cell according to the first embodiment.
  • FIG. 1-2 is a top view of a schematic configuration of the solar cell according to the first embodiment.
  • FIG. 2 is a top view schematically showing an example of an opening pattern.
  • FIG. 3A is a schematic cross-sectional view of the relevant part of the method for manufacturing the solar cell according to the first embodiment.
  • FIG. 3-2 is a cross-sectional view of the relevant part schematically showing the method for manufacturing the solar cell according to the first embodiment.
  • FIG. 3C is a schematic cross-sectional view of the relevant part of the method for manufacturing the solar cell according to the first embodiment.
  • FIGS. 3-4 is principal part sectional drawing which shows typically the manufacturing method of the solar cell concerning Embodiment 1.
  • FIGS. FIG. 3-5 is a sectional view of a principal part schematically showing the method for producing the solar cell according to the first embodiment.
  • FIGS. 3-6 is principal part sectional drawing which shows typically the manufacturing method of the solar cell concerning Embodiment 1.
  • FIGS. FIG. 4 is a main part sectional view showing a schematic configuration of the solar cell according to the second embodiment.
  • FIG. 5-1 is a cross-sectional view of relevant parts schematically showing the method for manufacturing the solar cell according to the second embodiment.
  • FIG. 5-2 is a cross-sectional view of relevant parts schematically showing the method for manufacturing the solar cell according to the second embodiment.
  • FIGS. 5-3 is principal part sectional drawing which shows typically the manufacturing method of the solar cell concerning Embodiment 2.
  • FIGS. FIGS. 5-4 is principal part sectional drawing which shows typically the manufacturing method of the solar cell concerning Embodiment 2.
  • FIGS. FIGS. 5-5 is principal part sectional drawing which shows typically the manufacturing method of the solar cell concerning Embodiment 2.
  • FIGS. FIGS. 5-6 is principal part sectional drawing which shows typically the manufacturing method of the solar cell concerning Embodiment 2.
  • FIGS. FIGS. 5-7 is principal part sectional drawing which shows typically the manufacturing method of the solar cell concerning Embodiment 2.
  • FIGS. FIG. 6 is a main part sectional view showing a schematic configuration of the solar cell according to the third embodiment.
  • FIGS. 7-1 is a cross-sectional view of relevant parts schematically showing the method for manufacturing the solar cell according to the third embodiment.
  • FIG. 7-2 is a cross-sectional view of relevant parts schematically showing the method for manufacturing the solar cell according to the third embodiment.
  • FIG. 7-3 is a cross-sectional view of the relevant part schematically showing the method for manufacturing the solar cell according to the third embodiment.
  • FIG. 7-4 is a cross-sectional view of the relevant part schematically showing the method for manufacturing the solar cell according to the third embodiment.
  • FIGS. 7-5 is principal part sectional drawing which shows typically the manufacturing method of the solar cell concerning Embodiment 3.
  • FIGS. FIGS. 7-6 is principal part sectional drawing which shows typically the manufacturing method of the solar cell concerning Embodiment 3.
  • FIG. 8 is a cross-sectional perspective view along the thickness direction of the solar cell according to the second embodiment.
  • FIG. 9 is a cross-sectional perspective view along the thickness direction of the solar cell according to the fourth embodiment.
  • FIG. 10 is a characteristic diagram showing the relationship between the number of interelectrode p-type layer lines formed and the photoelectric conversion efficiency in the solar cell according to the fourth embodiment.
  • FIG. 11 is a cross-sectional perspective view along the thickness direction of the solar cell according to the fifth embodiment.
  • FIG. 1-1 is a cross-sectional view of a principal part showing a schematic configuration of the solar cell according to the first embodiment.
  • FIG. 1-2 is a top view of a schematic configuration of the solar cell according to the first embodiment.
  • FIG. 1-1 corresponds to a part of the line segment AA in FIG.
  • the solar cell according to the first embodiment includes single crystal silicon in which a substantially intrinsic intrinsic (i-type) silicon thin film layer and a conductive amorphous silicon thin film layer are formed on a single crystal silicon substrate. Heterojunction solar cell.
  • an intrinsic (i-type) amorphous is formed on the first main surface side which is the light-receiving surface side of the n-type single crystal silicon substrate 1 (hereinafter sometimes referred to as the substrate 1).
  • a silicon layer 21 (hereinafter sometimes referred to as i-type layer 21) and a p-type amorphous silicon layer 22 (hereinafter also referred to as p-type layer 22) are formed in this order.
  • the i-type layer 21 is formed on the entire surface of the first main surface of the substrate 1.
  • the p-type layer 22 is not formed on the entire surface of the i-type layer 21 and has a plurality of openings 221 that penetrates in the film thickness direction.
  • n-type single crystal silicon substrate 1 a p-type single crystal silicon substrate or a crystal silicon-based substrate usually used for a single crystal silicon heterojunction solar cell may be used.
  • the p-type layer 22 is not limited to amorphous silicon, and a conductive amorphous silicon-based material applicable to a single crystal silicon heterojunction solar cell can be used.
  • FIG. 1-2 shows a state seen through the transparent conductive film layer 23.
  • the i-type layer 21 is actually visible in the region of the opening 221, but the opening 221 is identified by hatching for easy understanding.
  • an intrinsic (i-type) amorphous silicon layer 31 (hereinafter referred to as i-type layer 31) is provided on the second main surface side opposite to the light-receiving surface (back side) of the substrate 1.
  • an n-type amorphous silicon layer 32 (hereinafter sometimes referred to as an n-type layer 32) are formed in this order.
  • an n-type layer 32 doped n-type is used to obtain a back surface field effect.
  • both the i-type layer 31 and the n-type layer 32 are formed on the entire surface of the substrate 1.
  • a transparent conductive film layer 33 is formed on the entire surface of the substrate 1 on the n-type layer 32.
  • a back surface silver electrode 34 is formed on the transparent conductive film layer 33.
  • the n-type layer 32 is not limited to amorphous silicon, and a conductive amorphous silicon-based material applicable to single crystal silicon heterojunction solar cells can be used.
  • FIG. 2 is a top view schematically showing an example of the pattern of the opening 221.
  • the p-type layer 22 and the opening 221 are shown paying attention.
  • FIG. 2A shows an example in which the opening 221 is formed in a strip shape in the plane of the p-type layer 22.
  • FIG. 2B shows an example in which the opening 221 is formed in a square shape in the plane of the p-type layer 22.
  • FIG. 2C shows an example in which the opening 221 is formed so as to leave the p-type layer 22 in a plurality of square shapes in the plane of the p-type layer 22.
  • FIG. 2D shows an example in which the opening 221 is formed in a circular shape in the plane of the p-type layer 22.
  • the opening 221 can have various shapes.
  • a plurality of openings 221 are formed in a part of the p-type layer 22. For this reason, a part of sunlight incident on the first main surface side of the solar cell passes through the transparent conductive film layer 23 and then passes through the i-type layer 21 without passing through the p-type layer 22. To reach. That is, sunlight that has entered the region of the opening 221 passes through the transparent conductive film layer 23 and then passes through the i-type layer 21 without passing through the p-type layer 22 and reaches the inside of the substrate 1. As a result, it is possible to greatly reduce the light absorption loss on the short wavelength side that is inherently generated when passing through the p-type layer 22, and to reduce the current loss.
  • the transparent conductive film layer 23 is also formed in the opening 221 of the p-type layer 22, surface reflection prevention is also performed in the region of the opening 221 of the p-type layer 22. The effect is maintained, and the amount of incident light into the solar cell can be increased.
  • the entire first main surface of the substrate 1 is covered with the i-type layer 21, that is, the i-type layer 21 is also formed on the surface of the substrate 1 below the opening 221. Therefore, it is possible to prevent an increase in defects on the surface of the substrate 1 that is the power generation layer in the opening 221.
  • the substrate 1, the i-type layer 21, the p-type layer 22, the transparent conductive film layer 23, and the upper electrode are always electrically connected. For this reason, it is not necessary to limit the patterning of the upper electrode and the like in consideration of the electrical connection between the p-type layer 22 and the upper electrode. For example, as shown in FIG. 2 (c), even when the p-type layer 22 is finely separated in the plane, the shape of the upper electrode and the position between the substrate 1 and the upper electrode can be electrically removed without performing alignment. Can be electrically connected. Therefore, the degree of freedom of member arrangement increases.
  • FIGS. 3-1 to 3-6 are cross-sectional views schematically illustrating a method for manufacturing the solar cell according to the first embodiment.
  • an n-type single crystal silicon substrate was prepared as the substrate 1 (FIG. 3-1).
  • the thickness of the substrate 1 is about 200 ⁇ m, for example.
  • a p-type single crystal silicon substrate can be used as the substrate 1, in addition to the n-type single crystal silicon substrate.
  • a pn junction is formed by forming a p-type layer on the light receiving surface side of the substrate using n-type single crystal silicon as the substrate. It is preferable to constitute.
  • minority carrier mobility is higher for electrons than holes. For this reason, the loss of minority carriers can be suppressed by adopting a structure in which minority carriers on the light-receiving surface side become electrons in this way.
  • the texture structure in which the (111) crystal plane was exposed was formed on the front and back surfaces of the substrate 1 by performing anisotropic etching with an alkaline solution on the front and back surfaces of the substrate 1.
  • the texture structure is formed at least on the light receiving surface side of the substrate 1.
  • a texture structure may be formed on the back surface of the substrate 1 in consideration of the light scattering effect on the back surface of the substrate 1 as in this embodiment (FIG. 3-2).
  • thin film silicon layers were formed on both surfaces of the substrate 1 using, for example, a PECVD (Plasma-Enhanced Chemical Vapor Deposition) apparatus (FIG. 3-3).
  • the i-type layer 21 was deposited on the first main surface of the substrate 1 with a thickness of 5 nm, and the p-type layer 22 was deposited thereon with a thickness of 8 nm. Thereby, the i-type layer 21 and the p-type layer 22 are laminated
  • the film forming conditions for the i-type layer 21 were, for example, that silane and hydrogen were introduced into the PECVD apparatus as material gases at 50 sccm and 300 sccm, respectively.
  • the film forming pressure was 150 Pa
  • the film forming temperature was 150 ° C.
  • the RF output was 20 mW per square cm.
  • the diborane used here was diluted 200 times with hydrogen.
  • the film forming conditions are not limited to these conditions and can be appropriately changed according to the film forming environment.
  • the i-type layer 21 is made of an amorphous silicon-based alloy such as amorphous silicon oxide, amorphous silicon carbide, or amorphous silicon nitride. These amorphous silicon alloys, microcrystalline silicon, and alloys thereof can be used for the p-type layer 22.
  • the i-type layer 31 was deposited on the second main surface of the substrate 1 with a thickness of 5 nm, and the n-type layer 32 was deposited thereon with a thickness of 10 nm. Thereby, the i-type layer 31 and the n-type layer 32 are laminated
  • the film forming conditions will be described.
  • silane and hydrogen as material gases were introduced into the PECVD apparatus at 50 sccm and 300 sccm, respectively.
  • the film forming conditions for the n-type layer 32 were, for example, that phosphine was introduced into the PECVD apparatus at 10 sccm, 100 sccm, and 20 sccm for the addition of silane, hydrogen, and phosphorus as an n-type dopant as material gases.
  • the film forming pressure was 150 Pa
  • the film forming temperature was 150 ° C.
  • the RF output was 20 mW per square cm.
  • the phosphine used here was diluted 100 times with hydrogen.
  • the film forming conditions are not limited to these conditions and can be appropriately changed according to the film forming environment.
  • an amorphous silicon-based alloy such as amorphous silicon oxide, amorphous silicon carbide, or amorphous silicon nitride is used for the i-type layer 21, and the p-type layer 22 is used.
  • the band gap of the p-type layer 32 and the i-type layer 31 can be controlled by using these amorphous silicon alloys, microcrystalline silicon, and alloys thereof.
  • the p-type layer 22 laminated on the entire first main surface of the substrate 1 was patterned by dry etching, for example (FIG. 3-4).
  • a photoresist pattern serving as an etching mask was formed by photolithography and etching.
  • a photoresist was applied on the p-type layer 22 and patterned into a predetermined pattern.
  • plasma etching is performed on the p-type layer 22 by an RIE (Reactive Ion Etching) apparatus to partially remove the p-type layer 22 and pattern the p-type layer 22. . Thereafter, the remaining photoresist was removed.
  • RIE Reactive Ion Etching
  • Nitrogen trifluoride was used as the etching gas.
  • fluorine gas such as carbon fluoride, sulfur fluoride, and fluoromethane
  • chlorine gas such as chlorine, boron chloride, and silicon chloride, or hydrogen
  • a rare gas such as argon or helium depending on the situation.
  • the dry etching apparatus in addition to the RIE apparatus, another plasma etching apparatus such as an ICP (Inductively Coupled Plasma) apparatus or a sputter etching apparatus may be used.
  • ICP Inductively Coupled Plasma
  • the etching rate was about 0.2 nm per second for 40 seconds. Under this condition, the i-type layer 21 is partially removed depending on the in-plane position, but the etching effect does not reach the interface between the i-type layer 21 and the substrate 1.
  • a strip-shaped opening 221 as shown in FIG. 2A was formed in the p-type layer 22 to pattern the p-type layer 22.
  • the width of the p-type layer 22 and the opening 221 (in the short-side direction of the strip) is 1.1 mm, and the pattern of the remaining p-type layer 22 is the upper grid silver electrode 24 and the upper bus silver electrode that are upper electrodes.
  • the region substantially coincides with the 25 formation region.
  • the pattern of the p-type layer 22 is not limited to this, but when such a structure is used, the p-type layer 22 is left only in a portion shaded by the upper grid silver electrode 24 and the upper bus silver electrode 25, and light reception
  • the p-type layer 22 is left only in a portion shaded by the upper grid silver electrode 24 and the upper bus silver electrode 25, and light reception
  • the pattern of the p-type layer 22 is limited by the hole diffusion length.
  • the minority carrier diffusion length is a distance serving as an index for safely moving minority carriers generated in the substrate, and is determined by minority carrier mobility and minority carrier lifetime.
  • the minority carrier diffusion length is about 1 mm. In the case of such a solar cell, it is preferable that the distance between the p-type layers 22 adjacent to each other with the opening 221 interposed therebetween is within 2 mm.
  • the etching is performed immediately after the p-type layer 22 is formed, not after the formation of the transparent conductive film layer 23, the controllability of the film thickness in the etching is improved, and the p-type layer is left while leaving the i-type layer 21. Only 22 can be removed.
  • the transparent conductive film layer 23 made of indium oxide is formed on the entire surface on the first main surface side of the substrate 1, and the transparent conductive film layer made of indium oxide is formed on the entire surface on the second main surface side of the substrate 1.
  • 33 was formed (FIGS. 3-5). Both the thickness of the transparent conductive film layer 23 and the transparent conductive film layer 33 was 80 nm.
  • an ITO film or a zinc oxide film can be used in addition to the indium oxide film.
  • the upper grid silver electrode 24 and the upper bus silver electrode 25 constituting the comb-shaped upper electrode are formed on the first main surface side, and the back surface silver electrode 34 is formed on the entire second main surface side by printing.
  • FIG. 1-2 were fabricated (FIGS. 3-6).
  • the width of the upper grid silver electrode 24 was 200 ⁇ m, and the distance between adjacent upper grid silver electrodes 24 across the opening 221 was 2 mm.
  • the upper electrode was formed only in the region where the p-type layer 22 was present.
  • the pattern of the p-type layer 22 and the pattern of the upper grid silver electrode 24 are formed at the same pitch, and the upper grid silver electrode 24 is always formed of the p-type layer 22.
  • the effect of forming the opening 221 is small. Therefore, by leaving the conductive silicon thin film layer (p-type layer 22) in this region and forming the opening 221 in a region where the upper electrode does not exist, an electric field is formed by the conductive silicon thin film layer (p-type layer 22). The effect and the effect of increasing the amount of light absorption at the opening 221 can be optimized.
  • a plurality of openings 221 are formed in a part of the p-type layer 22 while leaving the i-type layer 21. For this reason, a part of sunlight incident on the first main surface side of the solar cell passes through the transparent conductive film layer 23 and then passes through the i-type layer 21 without passing through the p-type layer 22. To reach. As a result, it is possible to greatly reduce the light absorption loss on the short wavelength side that is inherently generated when passing through the p-type layer 22, and to reduce the current loss.
  • the transparent conductive film layer 23 is also formed in the opening 221 of the p-type layer 22, the surface antireflection effect is maintained even in the region of the opening 221 of the p-type layer 22. Therefore, the amount of light incident on the solar cell can be increased. Moreover, it can prevent that the stress balance of both surfaces of the board
  • the entire first main surface of the substrate 1 is covered with the i-type layer 21, that is, the i-type layer 21 is also formed on the surface of the substrate 1 below the opening 221. It is possible to prevent an increase in defects on the surface of the substrate 1 that is the power generation layer in the opening 221.
  • the substrate 1, the i-type layer 21, the p-type layer 22, the transparent conductive film layer 23, and the upper electrode (upper grid silver electrode 24, upper bus silver electrode 25) are always electrically connected. It is connected to the. For this reason, it is not necessary to limit the patterning of the upper electrode and the like in consideration of the electrical connection between the p-type layer 22 and the upper electrode. Thereby, the freedom degree of member arrangement
  • Embodiment 1 a single crystal heterojunction silicon solar cell having excellent photoelectric conversion efficiency can be obtained.
  • Embodiment 2 a photoresist pattern is formed on the p-type layer 22 when the opening 221 is formed in the p-type layer 22, and then the p-type layer is formed by plasma etching using the photoresist pattern as a mask. 22 patterning was performed. However, when such a manufacturing process is used, processes such as applying a photoresist, curing the photoresist, removing an extra resist before etching, and removing a resist after etching are necessary, and the number of processes increases. In Embodiment 2, a mode in which the number of steps required for forming the opening 221 is small will be described.
  • FIG. 4 is a cross-sectional view of a principal part showing a schematic configuration of the solar cell according to the second embodiment.
  • the solar cell according to the second embodiment is different from the solar cell according to the first embodiment in that a zinc oxide (AZO: Aluminum-doped Zinc Oxide) layer 41 in which aluminum is doped as a transparent conductive film on the p-type layer 22.
  • AZO Zinc Oxide
  • the other configuration is the same as that of the solar cell according to the first embodiment.
  • the process is reduced by using the AZO layer 41 instead of the photoresist as a patterning mask.
  • FIGS. 5-1 to 5-7 are cross-sectional views schematically showing a solar cell manufacturing method according to the second embodiment.
  • the steps described with reference to FIGS. 3-1 to 3-3 in the first embodiment are performed, and the i-type layer 21 and the p-type layer 22 are formed in this order on the entire first main surface of the substrate 1.
  • the i-type layer 31 and the p-type layer 32 were formed in this order on the entire second main surface of the substrate 1 (FIGS. 5-1 to 5-3).
  • the p-type layer 22 formed on the first main surface was patterned.
  • the AZO layer 41 is formed in a predetermined pattern with a thickness of 10 nm on the p-type layer 22 of the first main surface by a sputtering method (FIG. 5-4). At this time, the AZO layer 41 was formed into a strip shape in the plane of the first main surface using a mask.
  • the p-type layer 22 was patterned using an RIE apparatus (FIGS. 5-5). After the patterning, the AZO layer 41 is left as it is.
  • the process can be simplified and the number of processes can be reduced as compared with the case where a photoresist is used as a mask. . That is, the process can be shortened by using a transparent conductive film that does not need to be removed as a mask.
  • Hydrogen was used as the etching gas. This is because AZO works as a mask against hydrogen because AZO is a reduction-resistant transparent conductive film having high reduction resistance.
  • the AZO layer 41 is formed in a strip shape here, the film formation pattern of the AZO layer 41 may be appropriately changed depending on the etching pattern of the p-type layer 22. Further, titanium oxide or the like may be used as a transparent conductive film that can be used as a mask having high reduction resistance.
  • the etching is performed immediately after the p-type layer 22 is formed, not after the formation of the transparent conductive film layer 23, the controllability of the film thickness in the etching is improved, and the p-type layer is left while leaving the i-type layer 21. Only 22 can be removed.
  • the transparent conductive film layer 23 made of indium oxide is formed on the entire surface on the first main surface side of the substrate 1, and the transparent conductive film layer made of indium oxide is formed on the entire surface on the second main surface side of the substrate 1.
  • the AZO layer 41 used as a mask remains on the p-type layer 22 on the first main surface.
  • the AZO layer 41 itself is a transparent conductive film, electrical connection with the upper and lower layers is not possible. Even if the AZO layer 41 remains, there is no problem. Further, by sandwiching the AZO layer 41, it is possible to obtain an effect of alleviating the band gap mismatch between the p-type layer 22 and the transparent conductive film layer 23.
  • the upper grid silver electrode 24 and the upper bus silver electrode 25 constituting the comb-shaped upper electrode on the first main surface side, and the back surface silver on the entire second main surface side.
  • the electrode 34 was formed by printing to produce a solar cell according to the second embodiment (FIGS. 5-7). At this time, the upper electrode was formed only in the region where the p-type layer 22 was present.
  • a plurality of openings 221 are formed in a part of the p-type layer 22 as in the first embodiment. For this reason, a part of sunlight incident on the first main surface side of the solar cell passes through the transparent conductive film layer 23 and then passes through the i-type layer 21 without passing through the p-type layer 22. To reach. As a result, it is possible to greatly reduce the light absorption loss on the short wavelength side that is inherently generated when passing through the p-type layer 22, and to reduce the current loss.
  • the transparent conductive film layer 23 is also formed in the opening 221 of the p-type layer 22 as in the case of the first embodiment, the region of the opening 221 in the p-type layer 22 The antireflection effect on the surface is maintained, and the amount of incident light into the solar cell can be increased. Moreover, it can prevent that the stress balance of both surfaces of the board
  • the entire first main surface of the substrate 1 is covered with the i-type layer 21, that is, the surface of the substrate 1 below the opening 221 is also i-type. Since the layer 21 is formed, it is possible to prevent an increase in defects on the surface of the substrate 1 that is a power generation layer in the opening 221.
  • the substrate 1, the i-type layer 21, the p-type layer 22, the transparent conductive film layer 23, the upper electrode (upper grid silver electrode 24, upper bus silver electrode). 25) is always electrically connected. For this reason, it is not necessary to limit the patterning of the upper electrode and the like in consideration of the electrical connection between the p-type layer 22 and the upper electrode. Thereby, the freedom degree of member arrangement
  • the p-type layer 22 is patterned using the AZO layer 41, which is a transparent conductive film, as a mask, so the process is simpler and the number of processes is reduced compared to the case where a photoresist is used as a mask. Is possible.
  • Embodiment 3 Since the single crystal heterojunction silicon solar cell has a symmetrical structure on the front and back surfaces of the substrate, both surfaces of the substrate can be used as light receiving surfaces.
  • the present invention is applied to a solar cell in which both surfaces of a substrate are light receiving surfaces will be described.
  • FIG. 6 is a main part sectional view showing a schematic configuration of the solar cell according to the third embodiment.
  • the solar cell according to the third embodiment is different from the solar cell according to the first embodiment in that the first main surface and the second main surface of the substrate 1 are both light receiving surfaces, and thus not only the p-type layer 22 but also n
  • the mold layer 32 also has an opening 321, and a lower grid silver electrode 35 and a lower bus silver electrode (not shown) constituting a comb-shaped lower electrode on the second main surface side instead of the back surface silver electrode 34. ) Is provided, and the other configuration is the same as that of the solar cell according to the first embodiment.
  • the effect of providing the opening 221 in the p-type layer 22 described in the first embodiment can be obtained also on the second main surface side. That is, even when light is incident from the second main surface side, the effect of increasing the amount of light incident on the substrate 1 by removing the n-type layer 32 can be obtained.
  • FIGS. 7-1 to 7-6 are cross-sectional views schematically showing a method for manufacturing the solar cell according to the third embodiment.
  • the steps described with reference to FIGS. 3-1 to 3-3 in the first embodiment are performed, and the i-type layer 21 and the p-type layer 22 are formed in this order on the entire first main surface of the substrate 1.
  • the i-type layer 31 and the p-type layer 32 were formed in this order on the entire second main surface of the substrate 1 (FIGS. 7-1 to 7-3).
  • the texture structure was formed on both sides of the substrate 1.
  • etching is performed on the p-type layer 22 laminated on the entire first main surface of the substrate 1 and the n-type layer 32 laminated on the entire second main surface of the substrate 1 by the method described in the first embodiment. Then, a strip-shaped opening 221 was formed in the p-type layer 22, and a strip-shaped opening 321 was formed in the n-type layer 32 (FIG. 7-4). Note that a transparent conductive film may be used as a dry etching mask instead of the photoresist as described in the second embodiment.
  • the etching is performed immediately after the p-type layer 22 is formed, not after the formation of the transparent conductive film layer 23, the controllability of the film thickness in the etching is improved, and only the p-type layer 22 is removed while leaving the i-type layer 21. It becomes possible to do. Further, since the etching is performed immediately after the n-type layer 32 is formed, not after the formation of the transparent conductive film layer 23, the controllability of the film thickness in the etching is improved, and only the n-type layer 32 is left while leaving the i-type layer 31. Can be removed.
  • the transparent conductive film layer 23 made of indium oxide is formed on the entire surface on the first main surface side of the substrate 1 and the entire surface on the second main surface side of the substrate 1 using the sputtering apparatus in the same manner as in the first embodiment. Then, a transparent conductive film layer 33 made of indium oxide was formed (FIG. 7-5).
  • a silver electrode (not shown) was formed by printing to produce the solar cell shown in FIG. 6 (FIGS. 7-6). At this time, the upper electrode was formed only in the region where the p-type layer 22 was present, and the lower electrode was formed only in the region where the n-type layer 32 was present.
  • a plurality of openings 221 are formed in a part of the p-type layer 22 as in the first embodiment. For this reason, a part of sunlight incident on the first main surface side of the solar cell passes through the transparent conductive film layer 23 and then passes through the i-type layer 21 without passing through the p-type layer 22. To reach. As a result, it is possible to greatly reduce the light absorption loss on the short wavelength side that is inherently generated when passing through the p-type layer 22, and to reduce the current loss.
  • a plurality of openings 321 are formed in a part of the n-type layer 32.
  • the transparent conductive film layer 23 is also formed in the opening 221 of the p-type layer 22 as in the case of the first embodiment, the region of the opening 221 in the p-type layer 22 The antireflection effect on the surface is maintained, and the amount of incident light into the solar cell can be increased.
  • the transparent conductive film layer 33 is also formed in the opening 321 of the n-type layer 32, the surface antireflection effect is maintained even in the region of the opening 321 of the n-type layer 32. Therefore, the amount of light incident on the solar cell can be increased.
  • the entire first main surface of the substrate 1 is covered by the i-type layer 21, that is, the surface of the substrate 1 below the opening 221 is also i-type. Since the layer 21 is formed, it is possible to prevent an increase in defects on the surface of the substrate 1 that is a power generation layer in the opening 221.
  • the entire second main surface of the substrate 1 is covered with the i-type layer 31, that is, the i-type layer 31 is also formed on the surface of the substrate 1 below the opening 321. It is possible to prevent an increase in defects on the surface of the substrate 1 that is a power generation layer in the opening 321.
  • the substrate 1, the i-type layer 21, the p-type layer 22, the transparent conductive film layer 23, the upper electrode (upper grid silver electrode 24, upper bus silver electrode). 25) is always electrically connected. For this reason, it is not necessary to limit the patterning of the upper electrode and the like in consideration of the electrical connection between the p-type layer 22 and the upper electrode. Thereby, the freedom degree of member arrangement
  • the substrate 1, the i-type layer 31, the n-type layer 32, the transparent conductive film layer 33, and the lower electrode (lower grid silver electrode 35, lower bus silver electrode) are always electrically connected. It is connected. For this reason, it is not necessary to limit the patterning of the lower electrode and the like in consideration of the electrical connection between the n-type layer 32 and the lower electrode. Thereby, the freedom degree of member arrangement
  • Embodiment 4 In the case of the single crystal heterojunction silicon solar cell described in the above embodiment, the generated carriers can be collected even if the opening 221 is widened to some extent. However, in actuality, the generated carrier collection efficiency slightly decreases according to the width of the opening 221, and the open circuit voltage gradually decreases.
  • the region where the p-type layer 22 is formed in order to reduce the current loss as much as possible, the region where the p-type layer 22 is formed is only directly below the upper grid silver electrode 24 and in the vicinity thereof, and the p-type layer 22 is present in all other regions.
  • the opening 221 is not used. As a result, since the width of the opening becomes as wide as 2 mm, for example, the reduction amount of the open circuit voltage may increase.
  • FIG. 8 is a cross-sectional perspective view along the thickness direction of the solar cell according to the second embodiment, showing the first main surface side.
  • the texture structure formed on the surface of the substrate 1 is omitted.
  • FIG. 9 is a cross-sectional perspective view along the thickness direction of the solar cell according to the fourth embodiment, showing the first main surface side.
  • the openings 221 are the openings 221, and the interelectrode p-type layer is between the adjacent upper grid silver electrodes 24.
  • this structure differs from the structure of Embodiment 2 in that the number of portions where the p-type layer 22 is formed increases, so that some light absorption loss occurs.
  • the solar cell according to the fourth embodiment is different from the solar cell according to the second embodiment in that there is one inter-electrode p-type layer line 222 and one inter-electrode AZO layer line 412 between adjacent upper grid silver electrodes 24. Only exist.
  • an AZO layer 41 that is a reduction-resistant transparent conductive film made of zinc oxide is formed.
  • the p-type layer 22 is patterned by performing hydrogen etching using the AZO layer 41 as a mask.
  • a patterning method for the p-type layer 22 a method may be employed in which a resist is applied on the p-type layer 22 and cured after being used without using the AZO layer 41.
  • the patterning shape of the line of the p-type layer 22 is set so that, for example, the line width is 100 ⁇ m and the width of the opening 221 is 950 ⁇ m.
  • the width of the opening 221 between the upper grid silver electrodes 24 is preferably 200 ⁇ m to 1 mm.
  • the width of the opening 221 is less than 200 ⁇ m, the effect of increasing the light absorption amount in the opening 221 cannot be sufficiently obtained.
  • the width of the opening 221 is larger than 1 mm, the electric field forming effect by the inter-electrode p-type layer line 222 cannot be sufficiently obtained.
  • the transparent conductive film layer 23, the upper grid silver electrode 24, and the upper bus silver electrode 25 are formed in the same manner as in the first and second embodiments to form the first main surface.
  • the side structure is completed. Further, the structure on the back surface side is formed in the same manner as in the first and second embodiments.
  • FIG. 10 shows a result of a simulation performed on the relationship between the number of the p-type layer 2 lines 222 arranged at equal intervals between the upper grid silver electrodes 24 and the photoelectric conversion efficiency.
  • FIG. 10 is a characteristic diagram showing the relationship between the number of interelectrode p-type layer lines 222 formed and the photoelectric conversion efficiency in the solar cell according to the fourth embodiment.
  • the formation width of the inter-electrode p-type layer line 222 was 100 ⁇ m per line.
  • the horizontal axis represents the number of formed p-type layers
  • the vertical axis represents the values when the opening 221 does not exist for the open-circuit voltage (Voc), the short-circuit current density (Jsc), and the photoelectric conversion efficiency (Eff). It represents the relative comparison value when used as a reference.
  • FIG. 11 is a cross-sectional perspective view along the thickness direction of the solar cell according to the fifth embodiment, showing the first main surface side.
  • the transparent conductive film is thicker in the region where the AZO layer 41 is laminated than in other regions. As a result, in this region, the resistance in the in-plane direction is reduced, and the carrier transport efficiency is increased.
  • the inter-electrode p-type layer line 222 described in the fourth embodiment and the inter-electrode AZO layer line 412 formed on the upper grid silver electrode 24 in the plane direction of the substrate 1 are used. It arrange
  • the carriers that have reached the interelectrode p-type layer line 222 reach the upper grid silver electrode 24 while passing through the nearest low resistance transparent conductive film region.
  • the series resistance of the entire solar cell is reduced, the fill factor (FF) is improved, and as a result, the photoelectric conversion efficiency can be improved.
  • the p-type layer 22 is disposed directly below and in the vicinity of the upper grid silver electrode 24 in order to increase the number of p-type layer 22 formation portions.
  • the shape is simplified.
  • a structure in which the p-type layer 22 disposed immediately below the upper grid silver electrode 24 and in the vicinity thereof is removed may be employed. It goes without saying that the same effect as described above can be obtained even when the above-described configuration is applied to the second main surface side of n-type single crystal silicon substrate 1 in the third embodiment.
  • a solar cell module having excellent photoelectric conversion efficiency can be realized by forming a plurality of solar cells having the configuration described in the above embodiment and electrically connecting adjacent solar cells to each other.
  • one upper electrode and the other lower electrode of adjacent solar cells may be electrically connected.
  • the solar cell according to the present invention is useful for realizing a single crystal heterojunction silicon solar cell excellent in photoelectric conversion efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 n型単結晶シリコン基板1の第1主面に、真性(i型)非晶質シリコン層21とp型非晶質シリコン層22と透明導電膜層23と上部グリッド銀電極24とがこの順で積層され、前記n型単結晶シリコン基板1の第2主面に、真性(i型)非晶質シリコン層31とn型非晶質シリコン層32と透明導電膜層33と裏面銀電極34とがこの順で積層された太陽電池であって、前記p型非晶質シリコン層22が、厚み方向に貫通する開口部221を有し、前記真性(i型)非晶質シリコン層21および透明導電膜層23が、前記第1主面における前記開口部221に対応する領域を覆っている。

Description

太陽電池およびその製造方法、太陽電池モジュール
 本発明は、太陽電池に関するものであり、特に、単結晶シリコン基板上に真性シリコン系薄膜層および導電性シリコン系薄膜層が積層された太陽電池およびその製造方法、太陽電池モジュールに関するものである。
 現在、光起電力装置として単結晶シリコンや多結晶シリコン等を用いた結晶シリコン系太陽電池が太陽電池市場において高いシェアを有している。特に単結晶シリコン太陽電池は、一般に普及されている太陽電池の中では極めて高い光電変換効率を有し、今後も太陽電池市場の中では主流となっていくと考えられる。
 代表的な高効率単結晶シリコン太陽電池の構造として、単結晶シリコン基板上に非晶質シリコン系薄膜を形成した単結晶ヘテロ接合シリコン太陽電池が挙げられる。その中でも、単結晶シリコンと導電性非晶質シリコン層との間に真性の非晶質シリコン系薄膜を挿入した太陽電池は、最高レベルの光電変換効率を達成する手段の1つとして利用されている。この構造の太陽電池においては、真性非晶質シリコン層の導入により、従来の結晶系シリコン太陽電池で効率を低下させる要因となっていた結晶基板表面でのキャリア再結合を抑制することに成功している。
 太陽電池の高光電変換効率化においては、短絡電流、開放電圧、曲線因子(F.F.)の改善が必要になる。単結晶ヘテロ接合シリコン太陽電池では、欠陥要素の低減により極めて高い開放電圧およびF.F.を実現しているが、更なる高効率化を目指す場合には、光吸収量の増加による短絡電流の改善が必要になる。
 太陽電池の光吸収量を制限している要素の一つに、太陽電池の受光面側に積層された導電型非晶質シリコン層による光吸収損失が挙げられる。現行の太陽電池ではこの光吸収損失を低減するために導電型非晶質シリコン層のワイドバンドギャップ化や薄膜化などを試みている。しかし、もともとの非晶質シリコン系材料の光吸収量が甚大であることや、導電型非晶質シリコン層を過度に薄膜化すると太陽電池の電界形成を阻害することなどから、十分な対策とはなり得ていない。
 受光面側の導電型非晶質シリコン層による光吸収を回避して発電量を増加させる方法として、特許文献1において新しい試みがなされている。特許文献1では、絶縁性基板上に裏面側電極層、pin構造を有する非晶質シリコン系薄膜層、受光面側電極層が順次積層された所謂サブストレート型薄膜シリコン太陽電池に関して述べているが、この太陽電池においても受光面側での光吸収損失が問題となっている。特許文献1では、光吸収損失対策として本来は基板全面に積層される受光面側の電極層、導電型非晶質シリコン系薄膜層に開口部を設けることにより、発電層に直接光を入射させる構造を提案している。
 特許文献1では、前述した通り本来は全面に存在する受光面側の電極層および導電型シリコン系薄膜層に開口部を持たせることで、光吸収量の多い導電型非晶質シリコン系薄膜層を経由せず発電層に直接届く光を増加させている。
特開2011―29625号公報
 しかしながら、非晶質シリコン系薄膜発電層の場合、発電層で発生したキャリアの拡散長が短いため、開口部形成によってキャリア生成部と導電型シリコン層との間の距離が増大することでキャリアの収集量が大きく低下し、効率が低下するという問題がある。実際に特許文献1では開口部形成による上記影響を回避するため、開口部の幅を非晶質シリコン発電層時で0.5μm以上3.0μm以下、多結晶シリコン発電層時で0.5μm以上100μm以下という制限を行っている。
 こうした問題はキャリアの拡散長が十分に長い単結晶シリコンへテロ接合太陽電池を用いることで解決することができるが、単結晶シリコンへテロ接合太陽電池の場合は、開口部を形成することにより、発電層である単結晶シリコン基板表面での欠陥が増大し、光電変換効率が低下する、という別の問題がある。
 他にも、特許文献1に記載の太陽電池では、光入射側に形成された透明導電膜層にも開口部が形成されるため、面内で分離された導電型薄膜シリコン層及び透明導電膜層と電流取出し用金属電極との間の電気的接続を取るために、表面金属電極の形成位置および形状が限られたものになってしまう問題もある。
 本発明は、上記に鑑みてなされたものであって、光電変換効率に優れた太陽電池およびその製造方法、太陽電池モジュールを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる太陽電池は、導電型単結晶シリコン系基板の第1主面に、第1真性シリコン系薄膜層と第1導電型シリコン系薄膜層と第1透明導電膜層と第1電極とがこの順で積層され、前記導電型単結晶シリコン系基板の第2主面に、第2真性シリコン系薄膜層と第2導電型シリコン系薄膜層と第2透明導電膜層と第2電極とがこの順で積層された太陽電池であって、前記第1導電型シリコン系薄膜層が、厚み方向に貫通する第1開口部を有し、前記第1真性シリコン系薄膜層及び前記第1透明導電膜層が、前記第1主面における前記第1開口部に対応する領域を覆っていること、を特徴とする。
 本発明によれば、光電変換効率に優れた単結晶シリコンへテロ接合太陽電池が得られる、という効果を奏する。
図1-1は、実施の形態1にかかる太陽電池の概略構成を示す要部断面図である。 図1-2は、実施の形態1にかかる太陽電池の概略構成を示す上面図である。 図2は、開口部のパターンの一例を模式的に示す上面図である。 図3-1は、実施の形態1にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図3-2は、実施の形態1にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図3-3は、実施の形態1にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図3-4は、実施の形態1にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図3-5は、実施の形態1にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図3-6は、実施の形態1にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図4は、実施の形態2にかかる太陽電池の概略構成を示す要部断面図である。 図5-1は、実施の形態2にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図5-2は、実施の形態2にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図5-3は、実施の形態2にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図5-4は、実施の形態2にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図5-5は、実施の形態2にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図5-6は、実施の形態2にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図5-7は、実施の形態2にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図6は、実施の形態3にかかる太陽電池の概略構成を示す要部断面図である。 図7-1は、実施の形態3にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図7-2は、実施の形態3にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図7-3は、実施の形態3にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図7-4は、実施の形態3にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図7-5は、実施の形態3にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図7-6は、実施の形態3にかかる太陽電池の製造方法を模式的に示す要部断面図である。 図8は、実施の形態2にかかる太陽電池における厚み方向に沿った断面斜視図である。 図9は、実施の形態4にかかる太陽電池における厚み方向に沿った断面斜視図である。 図10は、実施の形態4にかかる太陽電池において、電極間p型層ラインの形成本数と光電変換効率の関係を示した特性図である。 図11は、実施の形態5にかかる太陽電池における厚み方向に沿った断面斜視図である。
 以下に、本発明にかかる太陽電池およびその製造方法、太陽電池モジュールの実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。また、平面図であっても、図面を見易くするためにハッチングを付す場合がある。
実施の形態1.
 図1-1は、実施の形態1にかかる太陽電池の概略構成を示す要部断面図である。図1-2は、実施の形態1にかかる太陽電池の概略構成を示す上面図である。図1-1は、図1-2の線分A-Aの一部に対応する。実施の形態1にかかる太陽電池は、単結晶シリコン系基板上に、実質的に真正な真性(i型)シリコン系薄膜層と導電型非晶質シリコン系薄膜層とが形成された単結晶シリコンへテロ接合太陽電池である。
 実施の形態1にかかる太陽電池において、n型単結晶シリコン基板1(以下、基板1と呼ぶ場合がある)の受光面側である第1主面側には、真性(i型)非晶質シリコン層21(以下、i型層21と呼ぶ場合がある)とp型非晶質シリコン層22(以下、p型層22と呼ぶ場合がある)とがこの順で形成されている。i型層21は、基板1の第1主面上の全面に形成されている。p型層22は、i型層21の全面には形成されず、膜厚方向に貫通する複数の開口部221を有する。なお、n型単結晶シリコン基板1の代わりに、p型単結晶シリコン基板や、単結晶シリコンへテロ接合太陽電池に通常用いられる結晶シリコン系基板を用いてもよい。また、p型層22も非晶質シリコンに限定されず、単結晶シリコンへテロ接合太陽電池に適用可能な導電型非晶質シリコン系材料を使用可能である。
 i型層21とp型層22との上には、開口部221を埋めてこれらの層を覆うように透明導電膜層23が基板1の面内の全面に形成されている。透明導電膜層23上の一部には、櫛形の上部電極を構成する上部グリッド銀電極24と上部バス銀電極25が形成されている。なお、図1-2においては、透明導電膜層23を透過して見た状態を示している。また、上面から見た場合、実際は開口部221の領域にはi型層21が見えるが、理解の容易のため開口部221にはハッチングを入れて識別している。
 また、この太陽電池において、基板1の受光面と反対側(裏面側)である第2主面側には、真性(i型)非晶質シリコン層31(以下、i型層31と呼ぶ場合がある)とn型非晶質シリコン層32(以下、n型層32と呼ぶ場合がある)とがこの順で形成されている。基板1の第2主面側においては、裏面電界効果を得るためにn型にドープされたn型層32が用いられている。また、基板1の第2主面側においては、i型層31およびn型層32の両層とも基板1の面内の全面に形成されている。n型層32上には透明導電膜層33が基板1の面内の全面に形成されている。透明導電膜層33上には裏面銀電極34が形成されている。n型層32は非晶質シリコンに限定されず、単結晶シリコンへテロ接合太陽電池に適用可能な導電型非晶質シリコン系材料を使用可能である。
 図2は、開口部221のパターンの一例を模式的に示す上面図である。図2においては、p型層22と開口部221とに注目して示している。図2(a)は、開口部221がp型層22の面内において短冊形状に形成された例を示している。図2(b)は、開口部221がp型層22の面内において正方形状に形成された例を示している。図2(c)は、開口部221がp型層22の面内において該p型層22を複数の正方形状に残すように形成された例を示している。図2(d)は、開口部221がp型層22の面内において円形状に形成された例を示している。このように、開口部221は種々の形状とすることが可能である。
 以上のように構成された実施の形態1にかかる太陽電池においては、p型層22の一部に複数の開口部221が形成されている。このため、太陽電池の第1主面側に入射した太陽光の一部は透明導電膜層23を通過した後、p型層22を経由せずにi型層21を通過して基板1内に到達する。すなわち、開口部221の領域に入射した太陽光は、透明導電膜層23を通過した後、p型層22を経由せずにi型層21を通過して基板1内に到達する。これにより、本来はp型層22を通過する際に発生する短波長側の光吸収損失を大きく低減することが可能であり、電流損失を低減することができる。
 また、実施の形態1にかかる太陽電池においては、透明導電膜層23がp型層22の開口部221にも形成されているため、p型層22の開口部221の領域においても表面反射防止効果が保たれており、太陽電池内への入射光量をより多くすることができる。
 また、実施の形態1にかかる太陽電池においては、基板1の第1主面全域がi型層21によって覆われて、すなわち開口部221の下部の基板1表面にもi型層21が形成されているため、開口部221において発電層である基板1の表面の欠陥が増大することを防止することができる。
 また、基板1、i型層21、p型層22、透明導電膜層23、上部電極(上部グリッド銀電極24、上部バス銀電極25)との間は常に電気的に接続されている。このため、p型層22と上部電極との間の電気的接続を考えて上部電極等のパターニングの制限をする必要が無い。たとえば図2(c)に示されるようにp型層22が面内で細かく分離された構造とされた場合でも、上部電極の形状、位置合わせを行わずに電気的に基板1~上部電極間を電気的に接続させることが可能である。したがって、部材配置の自由度が大きくなる。
 つぎに、実施の形態1にかかる太陽電池の製造方法について図3-1~図3-6を参照して具体的な実施例に基づいて説明する。図3-1~図3-6は、実施の形態1にかかる太陽電池の製造方法を模式的に示す要部断面図である。
 まず、基板1として、n型単結晶シリコン基板を用意した(図3-1)。基板1の厚みは、たとえば約200μmとした。ここで、基板1としてはn型の単結晶シリコン基板の他に、p型の単結晶シリコン基板を用いることも可能ではある。しかし、光吸収量が多くなる受光面付近での少数キャリア移動度を高めるためには、基板としてn型単結晶シリコンを用いて該基板の受光面側にp型層を形成させることによりpn接合を構成することが好ましい。通常、少数キャリア移動度は、正孔よりも電子のほうが高い。このため、このように受光面側の少数キャリアが電子となる構造とすることで、少数キャリアの損失を抑制することができる。
 基板1のn型単結晶シリコン基板には、基板表面の結晶面方位が(100)面のものを用いた。そして、基板1の表裏面に対してアルカリ溶液による異方性エッチングを行うことで(111)結晶面が露出したテクスチャ構造を基板1の表裏面に形成した。ここで、テクスチャ構造は、少なくとも基板1の受光面側の表面に形成される。なお、本実施例のように基板1の裏面側での光散乱効果を考慮して、基板1の裏面側の表面にもテクスチャ構造を形成させてもよい(図3-2)。
 つぎに、たとえばPECVD(Plasma-Enhanced Chemical Vapor Deposition)装置を用いて、基板1の両面に薄膜シリコン層を形成した(図3-3)。まず、基板1の第1主面にi型層21を5nmの膜厚で堆積させ、その上にp型層22を8nmの膜厚で堆積させた。これにより、第1主面の全面にi型層21、p型層22がこの順で積層される。
 ここで、製膜条件について説明する。i型層21の製膜条件は、たとえば材料ガスとしてシラン、水素をそれぞれ50sccm、300sccmでPECVD装置に導入した。p型層22の製膜条件は、たとえば材料ガスとしてシラン、水素およびp型ドーパントであるホウ素の添加用にジボランをそれぞれ10sccm、100sccm、40sccmmでPECVD装置に導入した。
 共通条件として、製膜圧力は150Pa、製膜温度は150℃、RF出力は20mW毎平方cmとした。また、ここで用いるジボランは水素によって200倍に希釈されたものを用いた。なお、製膜条件についてはこれらの条件に限定されるものではなく成膜環境に応じて適宜変更が可能である。また、p型層22およびi型層21のバンドギャップを制御するために、i型層21に非晶質酸化シリコン、非晶質炭化シリコン、非晶質窒化シリコンなどの非晶質シリコン系合金を使用し、p型層22にこれらの非晶質シリコン系合金や微結晶シリコンおよびその合金を用いることも可能である。
 つぎに、基板1の第2主面側の製膜を行う。基板1の第2主面側については、まず基板1の第2主面にi型層31を5nmの膜厚で堆積させ、その上にn型層32を10nmの膜厚で堆積させた。これにより、第2主面の全面にi型層31、n型層32がこの順で積層される。
 ここで、製膜条件について説明する。i型層31の製膜条件は、たとえば材料ガスとしてシラン、水素をそれぞれ50sccm、300sccmでPECVD装置に導入した。n型層32の製膜条件は、たとえば材料ガスとしてシラン、水素およびn型ドーパントであるリンの添加用にフォスフィンをそれぞれ10sccm、100sccm、20sccmmでPECVD装置に導入した。
 共通条件として、製膜圧力は150Pa、製膜温度は150℃、RF出力は20mW毎平方cmとした。また、ここで用いるフォスフィンは水素によって100倍に希釈されたものを用した。なお、製膜条件についてはこれらの条件に限定されるものではなく成膜環境に応じて適宜変更が可能である。また、第1主面側と同様に、i型層21に非晶質酸化シリコン、非晶質炭化シリコン、非晶質窒化シリコンなどの非晶質シリコン系合金を使用し、p型層22にこれらの非晶質シリコン系合金や微結晶シリコンおよびその合金を用いることによりp型層32およびi型層31のバンドギャップを制御することも可能である。
 つぎに、基板1の第1主面の全面に積層させたp型層22をたとえばドライエッチングによりパターニングした(図3-4)。まず、フォトリソグラフィとエッチングにより、エッチングのマスクとなるフォトレジストのパターンを形成した。p型層22上にフォトレジストを塗布し、所定のパターンにパターニングした。つぎに、フォトレジストをマスクに用いて、RIE(Reactive Ion Etching)装置によりp型層22に対してプラズマエッチングを行ってp型層22を部分的に除去して、p型層22をパターニングした。その後、残ったフォトレジストを除去した。
 エッチングガスとしては、三フッ化窒素を用いた。エッチングガスとしては、このようなフッ化窒素以外にも、フッ化炭素、フッ化硫黄、フルオロメタンなどのフッ素系ガスや塩素、塩化ホウ素、塩化珪素などの塩素系ガス、あるいは水素を用いてもよい。また、状況に応じてアルゴンやヘリウムなどの希ガスを添加することも可能である。また、ドライエッチング装置としては、RIE装置の他にも、ICP(Inductively Coupled Plasma)装置などの他のプラズマエッチング装置や、スパッタエッチング装置を使用してもよい。
 このエッチングにおいては、p型層22のみでなく、太陽電池の受光面側におけるパッシベーション層としての役割を有するi型層21を削り取ってしまい、基板1の表面にダメージを与える虞がある。これを防ぐため、エッチングレートをできるだけ小さくし、p型層22のみを安定的に除去することが好ましい。本実施例においてはエッチングレートを毎秒約0.2nmとして40秒間行った。この条件では、面内位置によってはi型層21が一部削られることにはなるが、エッチング効果がi型層21と基板1との界面にまで到達することはない。
 本実施例では、図2(a)に示されるような短冊形状の開口部221をp型層22に形成してp型層22をパターニングした。p型層22および開口部221の幅(短冊形状の短手方向)は、それぞれ1.1mmとし、残存させるp型層22のパターンは、上部電極である上部グリッド銀電極24および上部バス銀電極25の形成領域にほぼ一致する領域とした。p型層22のパターンはこれに限定するものではないが、このような構造を用いると、上部グリッド銀電極24および上部バス銀電極25によって影となる部分のみにp型層22を残し、受光量が多くなるその他の部分(上部グリッド銀電極24および上部バス銀電極25の形成領域以外の部分)のp型層22を除去することで、基板1への入射光の低減を抑制して基板1での光吸収効率を最大化させることができる。
 なお、p型層22のパターンは、正孔の拡散長による制限を受ける。少数キャリア拡散長は、基板内で発生した少数キャリアが安全に移動できる指標となる距離であり、少数キャリア移動度や少数キャリアライフタイムによって決まる。一般的なn型単結晶シリコン基板でライフタイムが1ms程度の場合の少数キャリア拡散長は、およそ1mm程度となる。このような太陽電池の場合は、開口部221を挟んで隣り合うp型層22間の距離は2mm以内にすることが好ましい。
 このように、透明導電膜層23の形成後ではなく、p型層22を形成した直後にエッチングを行うため、エッチングにおける膜厚の制御性が向上し、i型層21を残しつつp型層22のみを除去することが可能になる。
 つぎに、スパッタリング装置を用いて、基板1の第1主面側の全面に酸化インジウムからなる透明導電膜層23を、基板1の第2主面側の全面に酸化インジウムからなる透明導電膜層33を形成した(図3-5)。透明導電膜層23および透明導電膜層33の厚さは、ともに80nmとした。透明導電膜層23、33としては、酸化インジウム膜以外にも、ITO膜や酸化亜鉛膜などを用いることもできる。
 最後に、第1主面側に櫛形の上部電極を構成する上部グリッド銀電極24と上部バス銀電極25を、第2主面側の全面に裏面銀電極34を印刷により形成して、図1-1および図1-2に示される太陽電池を作製した(図3-6)。上部グリッド銀電極24の幅は200μmとし、開口部221を挟んで隣り合う上部グリッド銀電極24間の距離は2mmとした。このとき、前述したように上部電極はp型層22が存在する領域にのみ形成した。本実施例では、図1-2に表されるようにp型層22のパターンと上部グリッド銀電極24とのパターンを同一ピッチで形成させており、上部グリッド銀電極24は常にp型層22の真上に来るように配置している。また、電極の下部領域はもともと入射する光の量が他の領域と比べて少ないため開口部221の形成による効果は少ない。そこで、この領域の導電型シリコン系薄膜層(p型層22)を残し、開口部221を上部電極が存在しない領域に形成することで導電型シリコン系薄膜層(p型層22)による電界形成効果と開口部221における光吸収量の上昇効果を最適化することができる。
 上述したように、実施の形態1においては、i型層21を残してp型層22の一部に複数の開口部221が形成される。このため、太陽電池の第1主面側に入射した太陽光の一部は透明導電膜層23を通過した後、p型層22を経由せずにi型層21を通過して基板1内に到達する。これにより、本来はp型層22を通過する際に発生する短波長側の光吸収損失を大きく低減することが可能であり、電流損失を低減することができる。
 また、実施の形態1においては、透明導電膜層23がp型層22の開口部221にも形成されているため、p型層22の開口部221の領域においても表面反射防止効果が保たれており、太陽電池内への入射光量をより多くすることができる。また、片面側の透明導電膜を削ってしまうことで基板1の両面の応力バランスが崩れてしまうことを防ぐことができる。
 また、実施の形態1においては、基板1の第1主面全域がi型層21によって覆われて、すなわち開口部221の下部の基板1表面にもi型層21が形成されているため、開口部221において発電層である基板1の表面の欠陥が増大することを防止することができる。
 また、実施の形態1においては、基板1、i型層21、p型層22、透明導電膜層23、上部電極(上部グリッド銀電極24、上部バス銀電極25)との間は常に電気的に接続されている。このため、p型層22と上部電極との間の電気的接続を考えて上部電極等のパターニングの制限をする必要が無い。これにより、部材配置の自由度が大きくなる。
 したがって、実施の形態1によれば、光電変換効率に優れた単結晶へテロ接合シリコン太陽電池が得られる。
実施の形態2.
 実施の形態1では、p型層22に開口部221を形成する際にp型層22上にフォトレジストのパターンを形成した後に、該フォトレジストのパターンをマスクに用いてプラズマエッチングによりp型層22のパターニングを行った。しかしながら、このような製造工程を用いた場合は、フォトレジストの塗布、フォトレジストの硬化、エッチング前の余計なレジストの除去、エッチング後のレジスト除去などの工程が必要であり、工程が増加する。実施の形態2では、開口部221形成に要する工程数の少ない形態について説明する。
 図4は、実施の形態2にかかる太陽電池の概略構成を示す要部断面図である。実施の形態2にかかる太陽電池が実施の形態1にかかる太陽電池と異なる点は、p型層22上に透明導電膜としてアルミニウムがドープされた酸化亜鉛(AZO:Aluminum-doped Zinc Oxide)層41が形成されていることであり、それ以外の構成は実施の形態1にかかる太陽電池と同じである。そして、本実施の形態では、p型層22に開口部221を形成する際にフォトレジストではなくこのAZO層41をパターニングマスクとして利用することで工程の削減を図る。
 実施の形態2にかかる太陽電池の製造方法について図5-1~図5-7を参照して説明する。図5-1~図5-7は、実施の形態2にかかる太陽電池の製造方法を模式的に示す要部断面図である。
 まず、実施の形態1において図3-1~図3-3を参照して説明した工程を実施して、基板1の第1主面の全面にi型層21、p型層22をこの順で形成し、基板1の第2主面の全面にi型層31、p型層32をこの順で形成した(図5-1~図5-3)。
 つぎに、第1主面上に形成されたp型層22のパターニングを行った。本実施の形態では、まず第1主面のp型層22上にスパッタリング法を用いてAZO層41を10nmの膜厚で所定のパターンに製膜した(図5-4)。このとき、マスクを用いてAZO層41が第1主面の面内において短冊形状になるように製膜した。つぎに、AZO層41をマスクとして、RIE装置を用いてp型層22をパターニングした(図5-5)。パターニング後、AZO層41は、そのまま残存させる。このように、透明導電膜であるAZO層41をマスクとしてp型層22のパターニングを行うことにより、フォトレジストをマスクに用いる場合に比べて工程が簡略化され、工程数の低減が可能である。すなわち、除去する必要がない透明導電膜をマスクとして用いることにより、工程を短縮することができる。
 エッチングガスとしては、水素を用いた。これは、AZOは耐還元性が高い耐還元性透明導電膜であるため、AZOが水素に対するマスクとして働くことによる。ここではAZO層41を短冊形状に製膜したが、p型層22のエッチングパターンによってAZO層41の製膜パターンを適宜変更してもよい。また、耐還元性の高いマスクとして使用可能な透明導電膜として、酸化チタンなどを用いてもよい。
 このように、透明導電膜層23の形成後ではなく、p型層22を形成した直後にエッチングを行うため、エッチングにおける膜厚の制御性が向上し、i型層21を残しつつp型層22のみを除去することが可能になる。
 つぎに、スパッタリング装置を用いて、基板1の第1主面側の全面に酸化インジウムからなる透明導電膜層23を、基板1の第2主面側の全面に酸化インジウムからなる透明導電膜層33を形成した(図5-6)。透明導電膜層23および透明導電膜層33の厚さは、ともに80nmとした。このとき、第1主面のp型層22上にはマスクとして用いたAZO層41が残存しているが、AZO層41自体は透明導電膜であるため上下の層との電気的な接続は十分取ることができ、AZO層41が残存しても問題はない。また、AZO層41を挟むことによって、p型層22と透明導電膜層23のとの間のバンドギャップ的な不整合を緩和する効果を得ることができる。
 最後に、実施の形態1の場合と同様にして、第1主面側に櫛形の上部電極を構成する上部グリッド銀電極24と上部バス銀電極25を、第2主面側の全面に裏面銀電極34を印刷により形成して、実施の形態2にかかる太陽電池を作製した(図5-7)。このとき、上部電極はp型層22が存在する領域にのみ形成した。
 上述したように、実施の形態2においては、実施の形態1の場合と同様にp型層22の一部に複数の開口部221が形成される。このため、太陽電池の第1主面側に入射した太陽光の一部は透明導電膜層23を通過した後、p型層22を経由せずにi型層21を通過して基板1内に到達する。これにより、本来はp型層22を通過する際に発生する短波長側の光吸収損失を大きく低減することが可能であり、電流損失を低減することができる。
 また、実施の形態2においては、実施の形態1の場合と同様に透明導電膜層23がp型層22の開口部221にも形成されているため、p型層22の開口部221の領域においても表面反射防止効果が保たれており、太陽電池内への入射光量をより多くすることができる。また、片面側の透明導電膜を削ってしまうことで基板1の両面の応力バランスが崩れてしまうことを防ぐことができる。
 また、実施の形態2においては、実施の形態1の場合と同様に基板1の第1主面全域がi型層21によって覆われて、すなわち開口部221の下部の基板1表面にもi型層21が形成されているため、開口部221において発電層である基板1の表面の欠陥が増大することを防止することができる。
 また、実施の形態2においては、実施の形態1の場合と同様に基板1、i型層21、p型層22、透明導電膜層23、上部電極(上部グリッド銀電極24、上部バス銀電極25)との間は常に電気的に接続されている。このため、p型層22と上部電極との間の電気的接続を考えて上部電極等のパターニングの制限をする必要が無い。これにより、部材配置の自由度が大きくなる。
 さらに、実施の形態2においては、透明導電膜であるAZO層41をマスクとしてp型層22のパターニングを行うため、フォトレジストをマスクに用いる場合に比べて工程が簡略であり工程数の低減が可能である。
 したがって、実施の形態2によれば、光電変換効率に優れた単結晶へテロ接合シリコン太陽電池が得られる。
実施の形態3.
 単結晶へテロ接合シリコン太陽電池は基板の表裏面で対称構造を有することから、基板の両面を受光面とすることも可能である。実施の形態3では、基板の両面を受光面とする太陽電池に本発明を適用する場合について説明する。
 図6は、実施の形態3にかかる太陽電池の概略構成を示す要部断面図である。実施の形態3にかかる太陽電池が実施の形態1にかかる太陽電池と異なる点は、基板1の第1主面、第2主面がともに受光面となるため、p型層22だけでなくn型層32にも開口部321が設けられている点と、裏面銀電極34の代わりに第2主面側に櫛形の下部電極を構成する下部グリッド銀電極35と下部バス銀電極(図示せず)が設けられている点であり、それ以外の構成は実施の形態1にかかる太陽電池と同じである。n型層32に開口部321を設けることにより、実施の形態1で説明したp型層22に開口部221を設けることによる効果が第2主面側においても得られる。すなわち、第2主面側から光が入射する場合でもn型層32の除去による基板1への光入射量の増加効果を得ることができる。
 実施の形態3にかかる太陽電池の製造方法について図7-1~図7-6を参照して説明する。図7-1~図7-6は、実施の形態3にかかる太陽電池の製造方法を模式的に示す要部断面図である。
 まず、実施の形態1において図3-1~図3-3を参照して説明した工程を実施して、基板1の第1主面の全面にi型層21、p型層22をこの順で形成し、基板1の第2主面の全面にi型層31、p型層32をこの順で形成した(図7-1~図7-3)。なお、テクスチャ構造は基板1の両面に対して形成した。実施の形態3にかかる太陽電池では第2主面側からも光が入射されるため、基板1の両面にテクスチャ構造が形成されていることが必要である。基板1の両面にテクスチャ構造を備えることにより、基板1のどちらの面から光が入射しても十分に入射光の光散乱が行える。
 つぎに、基板1の第1主面の全面に積層させたp型層22および基板1の第2主面の全面に積層させたn型層32を実施の形態1で説明した方法でドライエッチングによりパターニングして、p型層22に短冊形状の開口部221を、n型層32に短冊形状の開口部321を形成した(図7-4)。なお、ドライエッチングのマスクとして、フォトレジストの代わりに、実施の形態2で説明したように透明導電膜を利用してもよい。
 透明導電膜層23の形成後ではなく、p型層22を形成した直後にエッチングを行うため、エッチングにおける膜厚の制御性が向上し、i型層21を残しつつp型層22のみを除去することが可能になる。また、透明導電膜層23の形成後ではなく、n型層32を形成した直後にエッチングを行うため、エッチングにおける膜厚の制御性が向上し、i型層31を残しつつn型層32のみを除去することが可能になる。
 つぎに、実施の形態1の場合と同様にスパッタリング装置を用いて、基板1の第1主面側の全面に酸化インジウムからなる透明導電膜層23を、基板1の第2主面側の全面に酸化インジウムからなる透明導電膜層33を形成した(図7-5)。
 最後に、第1主面側に櫛形の上部電極を構成する上部グリッド銀電極24と上部バス銀電極25を、第2主面側に櫛形の下部電極を構成する下部グリッド銀電極35と下部バス銀電極(図示せず)を印刷により形成して、図6に示される太陽電池を作製した(図7-6)。このとき、上部電極はp型層22が存在する領域にのみ形成し、下部電極はn型層32が存在する領域にのみ形成した。
 上述したように、実施の形態3においては、実施の形態1の場合と同様にp型層22の一部に複数の開口部221が形成される。このため、太陽電池の第1主面側に入射した太陽光の一部は透明導電膜層23を通過した後、p型層22を経由せずにi型層21を通過して基板1内に到達する。これにより、本来はp型層22を通過する際に発生する短波長側の光吸収損失を大きく低減することが可能であり、電流損失を低減することができる。また、n型層32の一部に複数の開口部321が形成される。このため、太陽電池の第2主面側に入射した太陽光の一部は透明導電膜層33を通過した後、n型層32を経由せずにi型層31を通過して基板1内に到達する。これにより、本来はn型層32を通過する際に発生する短波長側の光吸収損失を大きく低減することが可能であり、電流損失を低減することができる。
 また、実施の形態3においては、実施の形態1の場合と同様に透明導電膜層23がp型層22の開口部221にも形成されているため、p型層22の開口部221の領域においても表面反射防止効果が保たれており、太陽電池内への入射光量をより多くすることができる。また、実施の形態3においては、透明導電膜層33がn型層32の開口部321にも形成されているため、n型層32の開口部321の領域においても表面反射防止効果が保たれており、太陽電池内への入射光量をより多くすることができる。
 また、実施の形態3においては、実施の形態1の場合と同様に基板1の第1主面全域がi型層21によって覆われて、すなわち開口部221の下部の基板1表面にもi型層21が形成されているため、開口部221において発電層である基板1の表面の欠陥が増大することを防止することができる。また、実施の形態3においては、基板1の第2主面全域がi型層31によって覆われて、すなわち開口部321の下部の基板1表面にもi型層31が形成されているため、開口部321において発電層である基板1の表面の欠陥が増大することを防止することができる。
 また、実施の形態3においては、実施の形態1の場合と同様に基板1、i型層21、p型層22、透明導電膜層23、上部電極(上部グリッド銀電極24、上部バス銀電極25)との間は常に電気的に接続されている。このため、p型層22と上部電極との間の電気的接続を考えて上部電極等のパターニングの制限をする必要が無い。これにより、部材配置の自由度が大きくなる。また、実施の形態3においては、基板1、i型層31、n型層32、透明導電膜層33、下部電極(下部グリッド銀電極35、下部バス銀電極)との間は常に電気的に接続されている。このため、n型層32と下部電極との間の電気的接続を考えて下部電極等のパターニングの制限をする必要が無い。これにより、部材配置の自由度が大きくなる。
 したがって、実施の形態3によれば、光電変換効率に優れた単結晶へテロ接合シリコン太陽電池が得られる。
実施の形態4.
 上記実施の形態において示した単結晶へテロ接合シリコン太陽電池の場合、開口部221をある程度広くしても生成キャリアの収集が可能である。しかし、実際には開口部221の幅に応じて若干の生成キャリア収集効率の低下が生じ、開放電圧が徐々に低下していく。前記実施の形態1~3では、電流損失を極力減らすためにp型層22の形成領域を上部グリッド銀電極24の直下およびその極近傍のみとし、それ以外の領域はすべてp型層22が存在しない開口部221とした。その結果、開口部の幅がたとえば2mmと広くなるため、開放電圧の低下量が増大するおそれがある。
 実施の形態4ではこの点に鑑み、開口部形成によって電流を増加させつつも開放電圧の低下を抑制して発電効率を最適化させる。図8は、実施の形態2にかかる太陽電池における厚み方向に沿った断面斜視図であり、第一主面側を表している。なお、図8では基板1の表面に形成されているテクスチャ構造は省略している。図9は、実施の形態4にかかる太陽電池における厚み方向に沿った断面斜視図であり、第一主面側を表している。
 実施の形態4にかかる単結晶へテロ接合シリコン太陽電池では、隣り合う上部グリッド銀電極24間が全て開口部221とはなっておらず、隣り合う上部グリッド銀電極24間に電極間p型層ライン222および電極間AZO層ライン412が一部存在する。したがって、開口部221は、基板1の面内において上部グリッド銀電極24の長手方向に平行に延在した略長方形状に設けられる。このため隣り合う開口部221間の距離は実施の形態2の場合に比べて減少しており、pn接合による電界の効果が及ぶ領域が拡大し、キャリア収集効率が増加している。
 一方で、この構造は実施の形態2の構造と異なり、p型層22の形成部が増えるため、若干の光吸収損失が発生する。なお、実施の形態4にかかる太陽電池が、実施の形態2にかかる太陽電池と異なる点は、隣り合う上部グリッド銀電極24間に電極間p型層ライン222および電極間AZO層ライン412が一部存在することのみである。
 実施の形態4にかかる太陽電池の形成においては、実施の形態1および実施の形態2にかかる太陽電池と同様に、n型単結晶シリコン基板1の第一主面上にアモルファスシリコンからなるi型層21およびp型層22が形成された後に、酸化亜鉛からなる耐還元性の透明導電膜であるAZO層41が形成される。そして、実施の形態2の場合と同様に、AZO層41をマスクとして水素エッチングを行ってp型層22のパターニングが行われる。ただし、p型層22のパターニングの方法としては、AZO層41を使わずにp型層22上にレジストを塗布して硬化させた後に削る方法を採用してもよい。
 ここでのp型層22のラインのパターニング形状は、たとえば線幅が100μm、開口部221の幅が950μmとなるように設定される。たとえば上部グリッド銀電極24間が2mmである場合には、隣り合う上部グリッド銀電極24の間に一本の電極間p型層ライン222が形成部が形成されることになる。なお、上部グリッド銀電極24間の開口部221の幅は、200μm~1mmとされることが好ましい。開口部221の幅が200μm未満の場合は、開口部221における光吸収量の上昇効果が十分に得られない。開口部221の幅が1mmより大の場合は、電極間p型層ライン222による電界形成効果が十分に得られない。n型単結晶シリコン基板1の第2主面側においても同様である。
 そして、p型層22を成型した後に、実施の形態1および実施の形態2の場合と同様に透明導電膜層23、上部グリッド銀電極24、上部バス銀電極25が形成されて第1主面側の構造が完成する。また、裏面側の構造は、実施の形態1および実施の形態2の場合と同様にして形成される。
 上記のような実施の形態4にかかる太陽電池では、開口部221が実施の形態1~実施の形態3の場合と比べて5%減少しているが、電界をより効果的にかけることができるため光電変換効率は向上する。また、ここで上部グリッド銀電極24間に等間隔にp型層2ライン222を配置したときの、その本数と光電変換効率の関係についてシミュレーションを行った結果を図10に示す。図10は、実施の形態4にかかる太陽電池において、電極間p型層ライン222の形成本数と光電変換効率の関係を示した特性図である。電極間p型層ライン222の形成幅は、1本当たり100μmとした。図10において、横軸はp型層の形成本数であり、縦軸は開放電圧(Voc)、短絡電流密度(Jsc)、光電変換効率(Eff)について、開口部221が存在しない場合の値を基準としたときの相対比較値を表している。
 図10より、上部グリッド銀電極24間に電極間p型層ライン222を追加することにより、開口部221の形成による電圧減少を抑える効果が得られ、光電変換効率が向上することがわかる。開放電圧は、数本の電極間p型層ライン222の形成によって十分に改善できる。このため、p型層22の形成面積を大きく増やす必要なく、光電変換効率を上昇させることができる。なお、上述した構成を実施の形態3におけるn型単結晶シリコン基板1の第二主面側に適用しても上記と同様の効果が得られることは言うまでもない。
実施の形態5.
 実施の形態5では、実施の形態4に対してさらに改良を加えた構造について説明する。図11は、実施の形態5にかかる太陽電池における厚み方向に沿った断面斜視図であり、第一主面側を表している。実施の形態2で示されるような構造を用いた場合、AZO層41が積層された領域は、その他の領域と比較して透明導電膜が厚くなっている。この結果、この領域は面内方向に対しての抵抗が減少し、キャリア輸送効率が上昇している。
 実施の形態5にかかる太陽電池では、実施の形態4で説明した電極間p型層ライン222およびその上に形成された電極間AZO層ライン412を、基板1の面方向において上部グリッド銀電極24の長手方向に対して直交する方向に配置することを特徴とする。この構造においては、電極間p型層ライン222に到達したキャリアは、直近の低抵抗な透明導電膜の領域を通りながら上部グリッド銀電極24に到達する。これにより太陽電池全体の直列抵抗が低下し、曲線因子(F.F.)が向上し、その結果、光電変換効率の向上を実現することができる。
 また、本実施の形態では、p型層22の形成部を増やすために上部グリッド銀電極24の直下およびその極近傍にp型層22を配置したが、この構造の場合には、形状の簡略化のために上部グリッド銀電極24の直下およびその極近傍に配置されたp型層22を除去した構造とすることもできる。なお、上述した構成を実施の形態3におけるn型単結晶シリコン基板1の第2主面側に適用しても上記と同様の効果が得られることは言うまでもない。
 また、上記の実施の形態で説明した構成を有する太陽電池を複数形成し、隣接する太陽電池同士を電気的に接続することにより、光電変換効率に優れた太陽電池モジュールが実現できる。この場合は、例えば隣接する太陽電池セルの一方の上部電極と他方の下部電極とを電気的に接続すればよい。
 以上のように、本発明にかかる太陽電池は、光電変換効率に優れた単結晶へテロ接合シリコン太陽電池の実現に有用である。
 1 n型単結晶シリコン基板(基板)
 21 真性(i型)非晶質シリコン層(i型層)
 22 p型非晶質シリコン層(p型層)
 23 透明導電膜層
 24 上部グリッド銀電極
 25 上部バス銀電極
 31 真性(i型)非晶質シリコン層(i型層)
 32 n型非晶質シリコン層(n型層)
 33 透明導電膜層
 34 裏面銀電極
 35 下部グリッド銀電極
 41 酸化亜鉛層(AZO層)
 221 開口部
 222 電極間p型層ライン
 321 開口部
 412 電極間AZO層ライン

Claims (12)

  1.  導電型単結晶シリコン系基板の第1主面に、第1真性シリコン系薄膜層と第1導電型シリコン系薄膜層と第1透明導電膜層と第1電極とがこの順で積層され、前記導電型単結晶シリコン系基板の第2主面に、第2真性シリコン系薄膜層と第2導電型シリコン系薄膜層と第2透明導電膜層と第2電極とがこの順で積層された太陽電池であって、
     前記第1導電型シリコン系薄膜層が、厚み方向に貫通する第1開口部を有し、
     前記第1真性シリコン系薄膜層及び前記第1透明導電膜層が、前記第1主面における前記第1開口部に対応する領域を覆っていること、
     を特徴とする太陽電池。
  2.  前記第1電極は、前記第1主面の面内において前記第1開口部の上部領域を除いた領域に形成されていること、
     を特徴とする請求項1に記載の太陽電池。
  3.  前記第1電極は、前記第1主面の面内において一定の間隔をおいて並列配置された複数本の第1グリッド電極を有し、
     前記第1開口部は、前記第1グリッド電極の長手方向に平行に延在した形状に設けられ、幅が200μm~1mmであること、
     を特徴とする請求項1または2に記載の太陽電池。
  4.  前記第2導電型シリコン系薄膜層が、厚み方向に貫通する第2開口部を有し、
     前記第2真性シリコン系薄膜層及び第2透明導電膜層が、前記第2主面における前記第2開口部に対応する領域を覆っていること、
     を特徴とする請求項1~3のいずれか1つに記載の太陽電池。
  5.  前記第2電極は、前記第2主面の面内において前記第2開口部の上部領域を除いた領域に形成されていること、
     を特徴とする請求項4に記載の太陽電池。
  6.  前記第2電極は、前記第2主面の面内において一定の間隔をおいて並列配置された複数本の第2グリッド電極を有し、
     前記第2開口部は、前記第2グリッド電極の長手方向に平行に延在した形状に設けられ、幅が200μm~1mmであること、
     を特徴とする請求項4または5に記載の太陽電池。
  7.  導電型単結晶シリコン系基板の主面上に真性シリコン系薄膜層を形成する第1工程と、
     前記真性シリコン系薄膜層上に導電型シリコン系薄膜層を形成する第2工程と、
     前記導電型シリコン系薄膜層上に透明導電膜層を形成する第3工程と、
     前記透明導電膜層上に電極を形成する第4工程と、
     を含む太陽電池の製造方法であって、
     前記第2工程において、前記導電型シリコン系薄膜層の一部に、厚み方向に貫通する開口部を形成して前記真性シリコン系薄膜層を露出させること、
     を特徴とする太陽電池の製造方法。
  8.  前記第2工程では、フォトリソグラフィおよびエッチングにより前記導電型シリコン系薄膜層上にレジストパターンを形成し、該レジストパターンをマスクとしてエッチングにより前記導電型シリコン系薄膜層の一部に前記開口部を形成して前記真性シリコン系薄膜層を露出させること、
     を特徴とする請求項7に記載の太陽電池の製造方法。
  9.  前記第2工程では、前記導電型シリコン系薄膜層上に耐還元性透明導電膜のパターンを形成し、該パターンをマスクとして水素によるプラズマエッチングにより前記導電型シリコン系薄膜層の一部に前記開口部を形成して前記真性シリコン系薄膜層を露出させること、
     を特徴とする請求項7に記載の太陽電池の製造方法。
  10.  前記電極を、前記主面の面内において前記開口部の上部領域を除いた領域に形成すること、
     を特徴とする請求項7~9のいずれか1つに記載の太陽電池の製造方法。
  11.  前記導電型単結晶シリコン系基板の主面が、前記導電型単結晶シリコン系基板の第1主面および第2主面の少なくとも一方の主面であること、
     を特徴とする請求項7~10のいずれか1つに記載の太陽電池の製造方法。
  12.  請求項1~6のいずれか1つに記載の太陽電池の少なくとも2つ以上が電気的に直列または並列に接続されてなること、
     を特徴とする太陽電池モジュール。
PCT/JP2012/062395 2011-11-10 2012-05-15 太陽電池およびその製造方法、太陽電池モジュール WO2013069324A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011246697 2011-11-10
JP2011-246697 2011-11-10

Publications (1)

Publication Number Publication Date
WO2013069324A1 true WO2013069324A1 (ja) 2013-05-16

Family

ID=48289593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062395 WO2013069324A1 (ja) 2011-11-10 2012-05-15 太陽電池およびその製造方法、太陽電池モジュール

Country Status (2)

Country Link
JP (1) JPWO2013069324A1 (ja)
WO (1) WO2013069324A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101813123B1 (ko) * 2016-08-24 2017-12-29 주성엔지니어링(주) 태양전지 및 그 제조 방법
EP3576160A1 (en) * 2018-06-01 2019-12-04 Beijing Juntai Innovation Technology Co., Ltd Solar cell and preparation method thereof
CN114005886A (zh) * 2021-10-29 2022-02-01 苏州光汇新能源科技有限公司 一种适用于室内发电的硅异质结太阳电池结构及其制备方法
CN114649422A (zh) * 2020-12-17 2022-06-21 浙江爱旭太阳能科技有限公司 一种硅基异质结太阳电池结构及制备方法
CN114823935A (zh) * 2022-05-16 2022-07-29 东方日升新能源股份有限公司 一种异质结电池及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389657A (ja) * 1986-10-03 1988-04-20 Asahi Glass Co Ltd 透明電導膜
JPS6439780A (en) * 1987-08-06 1989-02-10 Sharp Kk Manufacture of solar cell
JPH07131041A (ja) * 1992-12-09 1995-05-19 Sanyo Electric Co Ltd 光起電力素子
JPH09181343A (ja) * 1995-12-26 1997-07-11 Kyocera Corp 光電変換装置
JP2005260107A (ja) * 2004-03-15 2005-09-22 Sanyo Electric Co Ltd 光起電力装置の製造方法
JP2006237452A (ja) * 2005-02-28 2006-09-07 Sanyo Electric Co Ltd 光起電力素子
JP2011029625A (ja) * 2009-07-03 2011-02-10 Semiconductor Energy Lab Co Ltd 光電変換装置及びその作製方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927027B2 (ja) * 2011-10-05 2016-05-25 株式会社半導体エネルギー研究所 光電変換装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389657A (ja) * 1986-10-03 1988-04-20 Asahi Glass Co Ltd 透明電導膜
JPS6439780A (en) * 1987-08-06 1989-02-10 Sharp Kk Manufacture of solar cell
JPH07131041A (ja) * 1992-12-09 1995-05-19 Sanyo Electric Co Ltd 光起電力素子
JPH09181343A (ja) * 1995-12-26 1997-07-11 Kyocera Corp 光電変換装置
JP2005260107A (ja) * 2004-03-15 2005-09-22 Sanyo Electric Co Ltd 光起電力装置の製造方法
JP2006237452A (ja) * 2005-02-28 2006-09-07 Sanyo Electric Co Ltd 光起電力素子
JP2011029625A (ja) * 2009-07-03 2011-02-10 Semiconductor Energy Lab Co Ltd 光電変換装置及びその作製方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629769B2 (en) 2016-08-24 2020-04-21 Jusung Engineering Co., Ltd. Solar cell and method of manufacturing the same
WO2018038478A1 (ko) * 2016-08-24 2018-03-01 주성엔지니어링(주) 태양전지 및 그 제조 방법
TWI629805B (zh) * 2016-08-24 2018-07-11 南韓商周星工程股份有限公司 太陽能電池及其製造方法
CN108431969A (zh) * 2016-08-24 2018-08-21 周星工程股份有限公司 太阳能电池及其制造方法
US20180358506A1 (en) * 2016-08-24 2018-12-13 Jusung Engineering Co., Ltd. Solar cell and method of manufacturing the same
KR101813123B1 (ko) * 2016-08-24 2017-12-29 주성엔지니어링(주) 태양전지 및 그 제조 방법
EP3576160A1 (en) * 2018-06-01 2019-12-04 Beijing Juntai Innovation Technology Co., Ltd Solar cell and preparation method thereof
CN114649422A (zh) * 2020-12-17 2022-06-21 浙江爱旭太阳能科技有限公司 一种硅基异质结太阳电池结构及制备方法
CN114649422B (zh) * 2020-12-17 2024-05-10 浙江爱旭太阳能科技有限公司 一种硅基异质结太阳电池结构及制备方法
CN114005886A (zh) * 2021-10-29 2022-02-01 苏州光汇新能源科技有限公司 一种适用于室内发电的硅异质结太阳电池结构及其制备方法
CN114005886B (zh) * 2021-10-29 2024-01-09 苏州光汇新能源科技有限公司 一种适用于室内发电的硅异质结太阳电池结构及其制备方法
CN114823935A (zh) * 2022-05-16 2022-07-29 东方日升新能源股份有限公司 一种异质结电池及其制备方法
CN114823935B (zh) * 2022-05-16 2024-05-03 东方日升新能源股份有限公司 一种异质结电池及其制备方法

Also Published As

Publication number Publication date
JPWO2013069324A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
EP3170209B1 (en) Solar cell with interdigitated back contact
JP6059173B2 (ja) 太陽電池
JP5538360B2 (ja) 太陽電池の製造方法及び太陽電池
JP5461028B2 (ja) 太陽電池
US20170194516A1 (en) Advanced design of metallic grid in photovoltaic structures
KR101889775B1 (ko) 태양 전지 및 이의 제조 방법
US9960302B1 (en) Cascaded photovoltaic structures with interdigitated back contacts
US20170256661A1 (en) Method of manufacturing photovoltaic panels with various geometrical shapes
US8664034B2 (en) Method of manufacturing solar cell
WO2014034677A1 (ja) 光起電力素子およびその製造方法
AU2013326971A1 (en) Photovoltaic devices with electroplated metal grids
WO2013069324A1 (ja) 太陽電池およびその製造方法、太陽電池モジュール
WO2013094233A1 (ja) 太陽電池およびその製造方法、太陽電池モジュール
US9761749B2 (en) Photoelectric conversion device
US9997647B2 (en) Solar cells and manufacturing method thereof
JP2014093418A (ja) 光起電力装置およびその製造方法、光起電力モジュール
JP2010283406A (ja) 太陽電池
US8889981B2 (en) Photoelectric device
JP2015506584A (ja) 光起電力セル及び製造方法
CN210956694U (zh) 背钝化太阳能电池结构
JP7221276B2 (ja) 太陽電池の製造方法、および、太陽電池
KR20120086593A (ko) 태양전지 및 그 제조방법
JP5645734B2 (ja) 太陽電池素子
CN116110996A (zh) 太阳能电池及其制备方法
JP6004946B2 (ja) 太陽電池及び太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013542875

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847413

Country of ref document: EP

Kind code of ref document: A1