WO2013065681A1 - 放射線画像撮影システム、放射線画像処理装置、放射線画像撮影装置、放射線動画像処理方法、及び放射線動画像処理プログラム - Google Patents

放射線画像撮影システム、放射線画像処理装置、放射線画像撮影装置、放射線動画像処理方法、及び放射線動画像処理プログラム Download PDF

Info

Publication number
WO2013065681A1
WO2013065681A1 PCT/JP2012/078034 JP2012078034W WO2013065681A1 WO 2013065681 A1 WO2013065681 A1 WO 2013065681A1 JP 2012078034 W JP2012078034 W JP 2012078034W WO 2013065681 A1 WO2013065681 A1 WO 2013065681A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
image information
image
charge
unit
Prior art date
Application number
PCT/JP2012/078034
Other languages
English (en)
French (fr)
Inventor
大田 恭義
西納 直行
中津川 晴康
岩切 直人
北野 浩一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013065681A1 publication Critical patent/WO2013065681A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2006Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure

Definitions

  • the present invention relates to a radiation image capturing system, a radiation image processing apparatus, a radiation image capturing apparatus, a radiation moving image processing method, and a radiation moving image processing program.
  • the present invention relates to a radiation image capturing system, a radiation image processing apparatus, a radiation image capturing apparatus, a radiation moving image processing method, and a radiation moving image processing program having a plurality of substrates.
  • a radiographic imaging apparatus for capturing radiographic images
  • a radiographic imaging apparatus that detects radiation irradiated from a radiation irradiation apparatus and transmitted through a subject with a radiation detector is known.
  • the radiographic image capturing apparatus captures a moving image that continuously captures a plurality of radiographic images (still images), for example.
  • moving images are captured continuously by radiographic images that are still images of a plurality of shots (plurality of shots).
  • dose per shot one frame: one frame
  • each of the photostimulated luminescence emitted from both sides of the stimulable phosphor sheet on which the radiation image information is accumulated and recorded by the irradiation of the excitation light is detected.
  • a double-sided condensing type radiological image information reading device that adds and outputs two image signals carrying radiographic image information obtained by doing so.
  • the above-described technique is a calculation process (so-called subtraction image processing) that calculates a difference by weighting a radiographic image obtained by imaging, in particular, an image part corresponding to a hard part element such as a bone part in the image, and a soft part
  • the image quality of a radiographic image can be improved by using it when obtaining a radiographic image (so-called energy subtraction image) in which one of image portions corresponding to a tissue or the like is emphasized and the other is removed.
  • the present invention provides a radiation image capturing system, a radiation image processing apparatus, a radiation image capturing apparatus, a radiation moving image processing method, and a radiation moving image processing program capable of improving the image quality of moving images.
  • a first aspect of the present invention is a radiographic imaging system, a radiation conversion unit that converts radiation into at least one of electric charge and fluorescence according to the irradiated radiation, and electric charges converted and accumulated by the radiation conversion unit
  • a first substrate having either a first charge detection unit for detecting the fluorescence or a second charge detection unit for detecting the accumulated charge by converting the fluorescence converted by the radiation conversion unit;
  • a radiation detector having a second substrate provided with either one charge detection unit or a second charge detection unit in accordance with the radiation conversion unit, and a first substrate at a frame rate that is predetermined when performing moving image shooting Generating first image information based on the charge detected by the second substrate, generating second image information based on the charge detected by the second substrate, and first image information generated by the generating means.
  • a radiographic imaging apparatus comprising: a transmission unit configured to transmit the second image information to the outside; a reception unit configured to receive the first image information and the second image information transmitted from the transmission unit; One of the first image information and the second image information and the charge accumulated at a timing within a predetermined range from the charge accumulation timing when the one image information is generated by the generating means.
  • a combining unit that generates combined image information obtained by combining the other image information generated based on the control unit, and a control unit that controls the display unit to display a moving image using the combined image information obtained by the combining unit.
  • a radiographic image processing system comprising: a radiographic image processing system comprising:
  • the radiographic imaging device of the present invention includes a radiation detector, a generation unit, and a transmission unit.
  • the radiation detector includes a radiation conversion unit, a first substrate, and a second substrate.
  • the radiation conversion unit converts the radiation into at least one of electric charge and fluorescence according to the irradiated radiation.
  • the first substrate is a first charge detection unit that detects the charge converted and accumulated by the radiation conversion unit or a second charge detection unit that detects the accumulated charge by converting the fluorescence converted by the radiation conversion unit. Either one is provided according to the radiation conversion unit.
  • the second substrate includes either the first charge detection unit or the second charge detection unit according to the radiation conversion unit.
  • the transmitting unit transmits the first image information and the second image information generated by the generating unit to the outside.
  • the radiation image processing apparatus includes a receiving unit, a synthesizing unit, and a control unit.
  • the receiving unit receives the first image information and the second image information from the radiographic image capturing apparatus.
  • first image information and second image information are photographed using one radiation detector, and the two photographed images are combined to form one image (synthesized image) as display means.
  • first image information and second image information are simply combined, the image quality of the combined image may deteriorate. For example, there is a concern that the image quality deteriorates when the characteristics of the first substrate and the second substrate are different or according to the dose (energy) of the irradiated radiation.
  • the combining unit generates one of the first image information and the second image information received by the receiving unit, and the charge when the generating unit generates the one image information.
  • Composite image information is generated by combining the other image information generated based on the charge stored at a timing within a predetermined range from the storage timing.
  • the control means controls to display the moving image on the display means using the synthesized image information obtained by the synthesizing means.
  • the image quality of the moving image can be improved.
  • the transmission unit transmits a time stamp indicating the charge accumulation timing when the generation unit generates the first image information together with the first image information.
  • the generating unit transmits a time stamp indicating the charge accumulation timing when the second image information is generated, and the synthesizing unit generates the first image based on the time stamp received by the receiving unit. It is preferable to combine the information and the second image information.
  • the radiographic image processing device is configured to determine either one of the first image information and the second image information when the predetermined frame rates are different. It is preferable that an interpolation unit that generates interpolated image information is provided so as to match the frame rate, and the synthesizing unit generates the synthesized image information using the interpolated image information.
  • control unit controls the display unit to display the first image corresponding to the first image information and the second image corresponding to the second image information. It is preferable.
  • the combining unit may include a receiving unit that receives a combining ratio for combining the first image information and the second image information.
  • the transmission means may transmit the first image information and the second image information through different paths.
  • the radiation conversion unit includes a first radiation conversion layer stacked on the first substrate and a sensitivity to the radiation stacked on the second substrate. And a second radiation conversion layer different from the above.
  • an eighth aspect of the present invention is the seventh aspect, wherein the first radiation conversion layer is a direct conversion type that converts radiation into electric charge, and is provided on the radiation irradiation side of the second radiation conversion layer. It is preferable that
  • the first radiation conversion layer is more sensitive to a low energy component of radiation than the second radiation conversion layer. It is preferable that the second radiation conversion layer is provided on the radiation irradiation side.
  • the moving image shooting is performed. It is preferable to include radiation irradiation control means for controlling the radiation irradiation apparatus so that the radiation detector is continuously irradiated with radiation during the period of time.
  • An eleventh aspect of the present invention is a radiographic image processing apparatus, which is provided in a radiographic image capturing system according to any one of the first aspect to the tenth aspect.
  • a twelfth aspect of the present invention is a radiographic image capturing apparatus, which is provided in a radiographic image capturing system according to any one of the first to tenth aspects.
  • a thirteenth aspect of the present invention is a radiation moving image processing method, wherein the radiation conversion unit converts radiation into at least one of electric charge and fluorescence according to the irradiated radiation, and is converted and accumulated by the radiation conversion unit.
  • a first substrate provided with either a first charge detection unit for detecting charge or a second charge detection unit for detecting accumulated charge by converting fluorescence converted by the radiation conversion unit, according to the radiation conversion unit;
  • the first substrate at a predetermined frame rate when performing moving image capturing by the radiation detector including the second substrate having either the first charge detection unit or the second charge detection unit corresponding to the radiation conversion unit.
  • Generating the first image information based on the charge detected by the second substrate, generating the second image information based on the charge detected by the second substrate, and the first image generated by the generating step A transmission step for transmitting the information and the second image information to the outside, a reception step for receiving the first image information and the second image information transmitted by the transmission step, and the first image information and the second image received by the reception step.
  • a control process for controlling the display means to display a moving image using the composite image information obtained by the composite process.
  • a fourteenth aspect of the present invention is a radiation moving image processing program, which is converted and accumulated by a radiation conversion unit that converts radiation into at least one of electric charge and fluorescence according to the irradiated radiation, and the radiation conversion unit.
  • a first substrate provided with either a first charge detection unit for detecting charge or a second charge detection unit for detecting accumulated charge by converting fluorescence converted by the radiation conversion unit, according to the radiation conversion unit;
  • a radiation detector including a second substrate provided with either the first charge detection unit or the second charge detection unit in accordance with the radiation conversion unit, and a first frame rate that is predetermined when performing moving image shooting.
  • the first image information is generated based on the electric charge detected by the substrate, the second image information is generated based on the electric charge detected by the second substrate, and the first image generated by the generating unit is generated.
  • a transmission means for transmitting image information and second image information to the outside, a reception means for receiving the first image information and the second image information transmitted from the transmission means, and a reception means.
  • One of the received first image information and second image information is stored at a timing within a predetermined range from the charge storage timing when one of the image information is generated by the generating means.
  • Control means for generating composite image information obtained by combining the other image information generated based on the charge, and controlling the display means to display a moving image using the composite image information obtained by the composite means.
  • a computer function as a synthesizing unit and a control unit of the radiation moving image processing apparatus.
  • the image quality of moving images can be improved.
  • FIG. 1 is a schematic configuration diagram of an outline of an overall configuration of an example of a radiographic imaging system according to the present embodiment. It is a cross-sectional schematic diagram which shows an example of a structure of the radiation detector which concerns on this Embodiment. It is the schematic of a cross section which shows an example of a structure of the radiation detector which concerns on this Embodiment. It is explanatory drawing for demonstrating the columnar crystal structure of the indirect conversion type radiation conversion layer of the radiation detector which concerns on this Embodiment.
  • the other example of the structure of the radiation detector which concerns on this Embodiment is shown, and the cross section by which the radiation conversion layer, the panel 1, the panel 2, and the radiation conversion layer were laminated
  • the other example of the structure of the radiation detector which concerns on this Embodiment is shown, and it is the cross section by which the panel 1, the radiation conversion layer, the panel 2, and the radiation conversion layer were laminated
  • the other example of the structure of the radiation detector which concerns on this Embodiment is shown, and it is the cross section by which the radiation conversion layer, the panel 1, the radiation conversion layer, and the panel 2 were laminated
  • the other example of the structure of the radiation detector which concerns on this Embodiment is shown, and it is a schematic diagram of the cross section provided with two indirect conversion type radiation conversion layers.
  • the other example of the structure of the radiation detector which concerns on this Embodiment is shown, and it is a schematic diagram of the cross section provided with two direct conversion type radiation conversion layers.
  • the other example of the structure of the radiation detector which concerns on this Embodiment is shown, and it is a schematic diagram of the cross section provided with one direct conversion type radiation conversion layer.
  • the other example of the structure of the radiation detector which concerns on this Embodiment is shown, and it is a schematic diagram of the cross section provided with one indirect conversion type radiation conversion layer.
  • the schematic circuit block diagram of an example of the electronic cassette concerning this Embodiment is shown. It is a functional block diagram for demonstrating an example of the function of the electronic cassette concerning this Embodiment. It is a functional block diagram for demonstrating an example of the radiographic image processing function of the radiographic image processing apparatus which concerns on this Embodiment.
  • FIG. 1 shows a schematic configuration diagram of an overall configuration of an example of a radiographic imaging system according to the present exemplary embodiment.
  • the radiographic image capturing system 10 of the present embodiment can capture still images in addition to radiographic images as moving images.
  • a moving image refers to displaying still images one after another at a high speed and recognizing them as moving images.
  • the still images are captured, converted into electric signals, transmitted, and transmitted.
  • the process of replaying a still image is repeated at high speed.
  • the moving image includes so-called “frame advance” in which the same area (part or all) is photographed a plurality of times within a predetermined time and continuously reproduced according to the degree of “high speed”. Shall be.
  • the radiographic imaging system 10 of the present exemplary embodiment is based on an instruction (imaging menu) input from an external system (for example, RIS: Radiology Information System: radiation information system) via the console 16. It has a function of taking a radiographic image by an operation such as the above.
  • an instruction for example, RIS: Radiology Information System: radiation information system
  • the radiographic image capturing system 10 of the present embodiment displays a moving image and a still image of the captured radiographic image on the display 50 of the console 16 and the radiographic image interpretation device 18, thereby allowing a doctor, a radiographer, or the like to perform radiation. It has a function to interpret images.
  • the radiographic imaging system 10 includes a radiation generation device 12, a radiographic image processing device 14, a console 16, a storage unit 17, a radiographic image interpretation device 18, and an electronic cassette 20.
  • the radiation generator 12 includes a radiation irradiation control unit 22.
  • the radiation irradiation control unit 22 has a function of irradiating the imaging target region of the subject 30 on the imaging table 32 with the radiation X from the radiation irradiation source 22 ⁇ / b> A based on the control of the radiation control unit 62 of the radiation image processing apparatus 14. ing.
  • the radiation X transmitted through the subject 30 is applied to the electronic cassette 20 held in the holding unit 34 inside the imaging table 32.
  • the electronic cassette 20 generates charges according to the dose of the radiation X that has passed through the subject 30 and, based on the generated charge amount, image information indicating a radiation image (first image and second image, details will be described later). It has a function to generate and output.
  • the electronic cassette 20 of this embodiment includes a radiation detector 26.
  • the radiation detector 26 of the present embodiment includes two panels (panel 1 and panel 2). A first image is obtained from the panel 1, and a second image is obtained from the panel 2 (details will be described later). ).
  • image information indicating a radiographic image output from the electronic cassette 20 is input to the console 16 via the radiographic image processing device 14.
  • the console 16 according to the present embodiment uses the radiography (LAN: Local Area Network) or the like from an external system (RIS) or the like, using a radiographing menu, various types of information, or the like. It has a function to perform control.
  • the console 16 according to the present embodiment has a function of transmitting / receiving various information including image information of a radiographic image to / from the radiographic image processing apparatus 14 and a function of transmitting / receiving various information to / from the electronic cassette 20. have.
  • the console 16 in the present embodiment is a server computer.
  • the console 16 includes a control unit 40, a display driver 48, a display 50, an operation input detection unit 52, an operation panel 54, an I / O unit 56, and an I / F unit 58.
  • the control unit 40 has a function of controlling the operation of the entire console 16, and includes a CPU, a ROM, a RAM, and an HDD.
  • the CPU has a function of controlling the operation of the entire console 16.
  • Various programs including a control program used by the CPU are stored in advance in the ROM.
  • the RAM has a function of temporarily storing various data.
  • An HDD Hard Disk Drive
  • the display driver 48 has a function of controlling display of various information on the display 50.
  • the display 50 according to the present embodiment has a function of displaying an imaging menu, a captured radiographic image, and the like.
  • the display 50 is a touch panel (operation panel 54).
  • the operation input detection unit 52 has a function of detecting an operation state with respect to the operation panel 54.
  • the operation panel 54 is used for inputting various information and operation instructions by a doctor or a radiographer who is a radiographer who takes a radiographic image, and a doctor or radiographer who is an interpreter who interprets the radiographic image taken. Is.
  • the operation panel 54 of the present embodiment includes at least a touch panel.
  • the operation panel 54 of the present embodiment may include a touch pen, a plurality of keys, a mouse, and the like.
  • the I / O unit 56 and the I / F unit 58 transmit and receive various types of information to and from the radiographic image processing apparatus 14 and the radiation generating apparatus 12 through wireless communication, and also perform image information with the electronic cassette 20. And the like.
  • the control unit 40, the display driver 48, the operation input detection unit 52, and the I / O unit 56 are connected to each other via a bus 59 such as a system bus or a control bus so that information can be exchanged. Therefore, the control unit 40 controls the display of various information on the display 50 via the display driver 48 and controls the transmission / reception of various information with the radiation generator 12 and the electronic cassette 20 via the I / F unit 58. Each can be done. Further, the control unit 40 can grasp the operation state (instruction input) of the image interpreter with respect to the operation panel 54 via the operation input detection unit 52.
  • the radiation image processing apparatus 14 has a function of controlling the radiation generation apparatus 12 and the electronic cassette 20 based on an instruction from the console 16.
  • the radiographic image processing apparatus 14 also stores the radiographic image (first image and second image) received from the electronic cassette 20 in the storage unit 17 and the display 50 of the console 16 or the radiographic image interpretation apparatus 18.
  • Has a function of controlling the display (details will be described later).
  • the radiation image processing apparatus 14 includes a system control unit 60, a radiation control unit 62, a panel control unit 64, an image processing control unit 66, and an I / F unit 68.
  • the system control unit 60 has a function of controlling the entire radiographic image processing apparatus 14 and a function of controlling the radiographic image capturing system 10.
  • the system control unit 60 includes a CPU, ROM, RAM, and HDD.
  • the CPU has a function of controlling operations of the entire radiographic image processing apparatus 14 and the radiographic image capturing system 10.
  • Various programs including a control program used by the CPU are stored in advance in the ROM.
  • the RAM has a function of temporarily storing various data.
  • An HDD Hard Disk Drive
  • the radiation control unit 62 has a function of controlling the radiation irradiation control unit 22 of the radiation generator 12 based on an instruction from the console 16.
  • the panel control unit 64 has a function of receiving information from the electronic cassette 20 wirelessly or by wire.
  • the image processing control unit 66 has a function of performing various image processing on the radiation image.
  • the system control unit 60, the radiation control unit 62, the panel control unit 64, and the image processing control unit 66 are connected to each other through a bus 69 such as a system bus or a control bus so as to be able to exchange information.
  • the storage unit 17 of the present embodiment has a function of storing captured radiographic images (first image and second image) and information related to the radiographic image.
  • the storage unit 17 is, for example, an HDD.
  • the radiographic image interpretation apparatus 18 of the present embodiment is an apparatus having a function for an interpreter such as a doctor to interpret a radiographic image taken.
  • the radiographic image interpretation apparatus 18 is not specifically limited, What is called an image interpretation viewer, a console, a tablet terminal, etc. are mentioned.
  • the radiographic image interpretation apparatus 18 of the present embodiment is a personal computer. Similar to the console 16 and the radiographic image processing apparatus 14, the radiographic image interpretation apparatus 18 includes a CPU, ROM, RAM, HDD, display driver, display 23, operation input detection unit, operation panel 24, I / O unit, and I / O unit. F section is provided. In FIG. 1, only the display 23 and the operation panel 24 are shown, and other descriptions are omitted in order to avoid complicated description.
  • the radiation detector 26 of the present embodiment includes two TFT substrates (panels).
  • a panel having a TFT substrate disposed on the radiation X irradiation side is referred to as a panel 1 and is disposed on the non-irradiation side (the side farther from the surface irradiated with the radiation X than the panel 1).
  • a panel provided with a TFT substrate is referred to as a panel 2.
  • FIGS. 2A and 2B An example of the radiation detector 26 is shown in FIGS. 2A and 2B.
  • FIG. 2A is a schematic cross-sectional view of an example of the radiation detector 26.
  • FIG. 2B is a schematic cross-sectional view of an example of the radiation detector 26.
  • the radiation detector 26 shown in FIGS. 2A and 2B includes two TFT substrates (panel 1 and panel 2) and two radiation conversion layers. Specifically, the TFT substrate 70 that is the panel 1, the radiation conversion layer 74, the radiation conversion layer 76, and the TFT substrate 72 that is the panel 2 are sequentially stacked along the incident direction of the radiation X.
  • the radiation conversion layer 74 is a direct conversion type radiation conversion layer of an ISS (Irradiation Side Sampling) method as a surface reading method.
  • the radiation conversion layer 76 is a PSS (Penetration Side Sampling) type indirect conversion type radiation conversion layer as a back side reading method.
  • the TFT substrate 70 has a function of collecting and reading (detecting) carriers (holes) that are charges generated in the radiation conversion layer 74.
  • the TFT substrate 70 includes an insulating substrate 80 and a signal output unit 85.
  • the TFT substrate 70 also reads out the electric charge obtained by converting the fluorescence generated in the radiation conversion layer 76 by the radiation conversion layer 74.
  • the radiation detector 26 is an electronic reading sensor
  • the TFT substrate 70 has a function of collecting and reading out electrons.
  • the insulating substrate 80 absorbs the radiation X in the radiation converting layer 74 and the radiation converting layer 76, the insulating substrate 80 has a low radiation X absorbability and is a flexible electrically insulating thin substrate (about several tens of ⁇ m).
  • the substrate having a thickness of 1 is preferable. Specifically, it is preferably a synthetic resin, aramid, bionanofiber, or film glass (ultra-thin glass) that can be wound into a roll.
  • the signal output unit 85 includes a capacitor 92 that is a charge storage capacitor, a field effect thin film transistor (hereinafter simply referred to as TFT) 94, and a charge collection electrode 88.
  • the TFT 94 is a switching element that converts the electric charge accumulated in the capacitor 92 into an electric signal and outputs the electric signal.
  • a plurality of charge collection electrodes 88 are formed in a lattice shape (matrix shape) at intervals, and one charge collection electrode 88 corresponds to one pixel. Each charge collection electrode 88 is connected to a TFT 94 and a capacitor 92.
  • the capacitor 92 has a function of accumulating charges (holes) collected by the charge collection electrodes 88.
  • the charge accumulated in each capacitor 92 is read out by the TFT 94. Thereby, the radiographic image is taken by the TFT substrate 70.
  • the undercoat layer 82 is formed between the radiation conversion layer 74 and the TFT substrate 70.
  • the undercoat layer 82 preferably has rectification characteristics from the viewpoint of reducing dark current and leakage current. Therefore, the resistivity of the undercoat layer 82 is preferably 10 8 ⁇ cm or more, and the film thickness is preferably 0.01 ⁇ m to 10 ⁇ m.
  • the radiation that has passed through the TFT substrate 70 passes through the undercoat layer 82 and is applied to the radiation conversion layer 74.
  • the radiation conversion layer 74 is a photoelectric conversion layer that is a photoconductive material that absorbs irradiated radiation and generates positive and negative charges (electron-hole carrier pairs) according to the radiation.
  • the radiation conversion layer 74 is preferably mainly composed of amorphous Se (a-Se).
  • the radiation conversion layer 74 includes Bi 2 MO 20 (M: Ti, Si, Ge), Bi 4 M 3 O 12 (M: Ti, Si, Ge), Bi 2 O 3 , BiMO 4 (M: Nb).
  • the radiation conversion layer 74 is preferably an amorphous material having a high dark resistance, good photoconductivity against radiation irradiation, and capable of forming a large area film at a low temperature by a vacuum deposition method.
  • the thickness of the radiation conversion layer 74 is preferably in the range of 100 ⁇ m or more and 2000 ⁇ m or less in the case of a photoconductive material mainly composed of a-Se as in the present embodiment, for example.
  • the range is preferably 100 ⁇ m or more and 250 ⁇ m or less.
  • it is preferably in the range of 500 ⁇ m or more and 1200 ⁇ m or less.
  • the electrode interface layer 83 has a function of blocking hole injection and a function of preventing crystallization.
  • the electrode interface layer 83 is formed between the radiation conversion layer 74 and the overcoat layer 84.
  • the layer made of an inorganic material is preferably used by adjusting the carrier selectivity by changing the composition from the stoichiometric composition or by using a multi-component composition with two or more kinds of homologous elements.
  • an insulating polymer such as polycarbonate, polystyrene, polyimide, and polycycloolefin can be mixed with a low molecular weight electron transport material at a weight ratio of 5% to 80%. .
  • trinitrofluorene and derivatives thereof diphenoquinone derivatives, bisnaphthyl quinone derivatives, oxazole derivatives, triazole derivatives, C 60 (fullerene), and those that have been mixed with carbon clusters C 70 etc. are preferred.
  • Specific examples include TNF, DMDB, PBD, and TAZ.
  • a thin insulating polymer layer can also be preferably used.
  • parylene, polycarbonate, PVA, PVP, PVB, polyester resin, and acrylic resin such as polymethyl methacrylate are preferable.
  • the film thickness is preferably 2 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the overcoat layer 84 is formed between the electrode interface layer 83 and the bias electrode 90.
  • the overcoat layer 84 preferably has rectification characteristics from the viewpoint of reducing dark current and leakage current. Therefore, the resistivity of the overcoat layer 84 is preferably 10 8 ⁇ cm or more, and the film thickness is preferably 0.01 ⁇ m to 10 ⁇ m.
  • the bias electrode 90 has a function of applying a bias voltage to the radiation conversion layer 74, and is formed so that radiation carrying image information can pass therethrough.
  • a positive bias voltage is supplied to the bias electrode 90 from a high voltage power supply (not shown).
  • a negative bias voltage is supplied to the bias electrode 90.
  • the bias electrode 90 and the charge collection electrode 88 detect the high energy component of the radiation X in the TFT substrate 70, as described later, at least of the light (fluorescence) converted from the radiation X by the radiation conversion layer 76.
  • Light in the sensitivity wavelength region of a-Se (for example, light in the blue wavelength region) is transmitted.
  • the bias electrode 90 and the charge collection electrode 88 have low X-ray absorptivity, do not cause electromigration with a-Se, and are conductive materials capable of transmitting light in the sensitivity wavelength region, for example,
  • the transparent conductive oxide (TCO) is preferably made of a transparent conductive oxide having a high transmittance for visible light and a small resistance value.
  • the TCO, ITO, IZO, AZO, FTO, are preferably used SnO 2, TiO 2, and ZnO 2 and the like can. From the viewpoint of process simplicity, low resistance, and transparency, ITO (Indium Tin Oxide) is preferable.
  • Other materials for the bias electrode 90 include Au, Ni, Cr, Pt, Ti, Al, Cu, Pd, Ag, Mg, MgAg 3% -20% alloy, Mg-Ag intermetallic compound, MgCu 3% -20% alloy. , And metals such as Mg—Cu intermetallic compounds can be used. In particular, Au, Pt, and Mg—Ag intermetallic compounds are preferably used.
  • the thickness is preferably in the range of 15 nm to 200 nm, more preferably in the range of 30 nm to 100 nm.
  • the thickness is preferably in the range of 100 nm to 400 nm.
  • TCO is more preferable since it is easy to increase resistance value when it is going to obtain the transmittance
  • the formation method is arbitrary, but depending on the formation temperature, the a-Se of the radiation conversion layer 74 may be crystallized, so the bias electrode 90 is formed at the lowest possible temperature in order to suppress the crystallization of a-Se. It is preferable to do.
  • the bias electrode 90 is preferably formed as an organic film or organic conductor containing a metal filler by coating, roll-to-roll, ink jet, or the like.
  • Reading of charges (positive charge / negative charge) changed from radiation by the radiation conversion layer 74 may be performed as follows.
  • a voltage supply unit (not shown) is connected to each charge collection electrode 88 and bias electrode 90.
  • the voltage supply unit includes a DC power supply and a switch.
  • the DC power supply and the switch are electrically connected to the charge collection electrodes 88 and the bias electrode 90.
  • a switch is turned on and a DC voltage is applied from a DC power source so that each charge collecting electrode 88 is positive and the bias electrode 90 is negative
  • a DC electric field is generated in the radiation conversion layer 74 which is a semiconductor layer. To do. According to this DC electric field, the positive charge moves to the negative bias electrode 90 side, and the negative charge moves to the positive charge collecting electrode 88 side.
  • the TFT substrate 70 can read the negative charges through the charge collection electrodes 88.
  • the TFT 94 is turned on by the gate signal from the gate line driver 132, the TFT substrate 70 responds to the negative charges through the signal line 144A.
  • An electric signal can be output to the signal processing unit 134.
  • the radiation conversion layer 76 is a scintillator, and is formed so as to be laminated between the bias electrode 90 and the upper electrode 110 via the transparent insulating film 108 in the radiation detector 26 of the present embodiment.
  • the radiation conversion layer 76 is formed by forming a phosphor that converts the radiation X incident from above or below into light and emits light. Providing such a radiation conversion layer 76 absorbs the radiation X and emits light.
  • the wavelength range of light emitted from the radiation conversion layer 76 is preferably a visible light range (wavelength 360 nm to 830 nm). In order to enable monochrome imaging by the radiation detector 26, it is more preferable to include a green wavelength region.
  • a scintillator used for the radiation conversion layer 76 As a scintillator used for the radiation conversion layer 76, light in the a-Se sensitivity wavelength region or light in a wavelength region that can be absorbed by the TFT substrate 72 (light having a longer wavelength than light in the a-Se sensitivity wavelength region) is used. A scintillator that generates fluorescence having a relatively broad wavelength range that can be generated is desirable. Examples of such a scintillator include CsI: Na, CaWO 4 , YTaO 4 : Nb, BaFX: Eu (X is Br or Cl), LaOBr: Tm, and GOS. Specifically, when imaging using X-rays as radiation, those containing cesium iodide (CsI) are preferable.
  • CsI cesium iodide
  • CsI Tl (cesium iodide to which thallium is added) or CsI: Na having an emission spectrum of 400 nm to 700 nm at the time of X-ray irradiation. Note that the emission peak wavelength in the visible light region of CsI: Tl is 565 nm.
  • the scintillator containing CsI as the radiation conversion layer 76, it is preferable to use what was formed as a strip-shaped columnar crystal structure (refer FIG. 3) by the vacuum evaporation method.
  • the base end portion of the radiation conversion layer 76 on the TFT substrate 72 side is a non-columnar crystal portion 76 ⁇ / b> C and is in close contact with the TFT substrate 72.
  • the non-columnar crystal portion 76C the adhesion between the radiation conversion layer 76 and the TFT substrate 72 can be improved. Further, the reflection of fluorescence can be suppressed by making the porosity of the non-columnar crystal portion 76C close to 0% or reducing the thickness thereof (for example, up to about 10 ⁇ m).
  • Each column constituting the columnar crystal structure 76D is formed along the incident direction of the radiation X, and a certain amount of gap is secured between adjacent columns. Further, the CsI: Na scintillator has characteristics that the columnar crystal structure 76D is weak against humidity and the non-columnar crystal portion 76C is particularly vulnerable to humidity. Therefore, a light-transmitting moisture-proof protective material (illustrated) made of polyparaxylylene resin. (Omitted).
  • the upper electrode 110 is preferably made of a conductive material that is transparent at least with respect to the emission wavelength of the radiation conversion layer 76 because light generated by the radiation conversion layer 76 needs to enter the photoelectric conversion film 114. Specifically, it is preferable to use a transparent conductive oxide (TCO) having a high transmittance for visible light and a small resistance value. Although a metal thin film such as Au can be used as the upper electrode 110, the resistance value tends to increase if an attempt is made to obtain a transmittance of 90% or more, so that the TCO is preferred.
  • ITO, IZO, AZO, FTO are preferably used SnO 2, TiO 2, and ZnO 2 and the like can. From the viewpoint of process simplicity, low resistance, and transparency, ITO is most preferable.
  • the upper electrode 110 may have a single configuration common to all pixels, or may be divided for each pixel.
  • the photoelectric conversion film 114 includes an organic photoelectric conversion material that generates charges by absorbing light emitted from the radiation conversion layer 76.
  • the photoelectric conversion film 114 includes an organic photoelectric conversion material, absorbs the light emitted from the radiation conversion layer 76, and generates a charge corresponding to the absorbed light. In this way, the photoelectric conversion film 114 containing an organic photoelectric conversion material has a sharp absorption spectrum in the visible range. Therefore, electromagnetic waves other than light emitted by the radiation conversion layer 76 are hardly absorbed by the photoelectric conversion film 114, and noise generated by the radiation X such as X-rays absorbed by the photoelectric conversion film 114 is effectively suppressed. can do.
  • the organic photoelectric conversion material of the photoelectric conversion film 114 is preferably such that its absorption peak wavelength is closer to the emission peak wavelength of the radiation conversion layer 76 in order to absorb light emitted from the radiation conversion layer 76 most efficiently.
  • the absorption peak wavelength of the organic photoelectric conversion material and the emission peak wavelength of the radiation conversion layer 76 are ideal, but if the difference between the two is small, the light emitted from the radiation conversion layer 76 is sufficiently absorbed. Is possible.
  • the difference between the absorption peak wavelength of the organic photoelectric conversion material and the emission peak wavelength with respect to the radiation of the radiation conversion layer 76 is preferably within 10 nm, and more preferably within 5 nm.
  • organic photoelectric conversion materials examples include quinacridone organic compounds and phthalocyanine organic compounds.
  • quinacridone organic compounds since the absorption peak wavelength of quinacridone in the visible region is 560 nm, if quinacridone is used as the organic photoelectric conversion material and CsI: Tl is used as the material of the radiation conversion layer 76, the difference in the peak wavelength may be within 5 nm. It becomes possible. Thereby, the amount of charge generated in the photoelectric conversion film 114 can be substantially maximized.
  • the electron blocking film 116 can be provided between the lower electrode 112 and the photoelectric conversion film 114.
  • the electron blocking film 116 suppresses an increase in dark current caused by injection of electrons from the lower electrode 112 to the photoelectric conversion film 114 when a bias voltage is applied between the lower electrode 112 and the upper electrode 110. it can.
  • An electron donating organic material can be used for the electron blocking film 116.
  • the hole blocking film 118 can be provided between the photoelectric conversion film 114 and the upper electrode 110.
  • hole blocking film 118 when a bias voltage is applied between the lower electrode 112 and the upper electrode 110, holes are injected from the upper electrode 110 into the photoelectric conversion film 114 and dark current increases. Can be suppressed.
  • An electron-accepting organic material can be used for the hole blocking film 118.
  • the lower electrode 112 is substantially the same as the charge collection electrode 88, and a plurality of lower electrodes 112 are formed in a lattice shape (matrix shape) at intervals, and one lower electrode 112 corresponds to one pixel.
  • Each lower electrode 112 is connected to the TFT 122 and the capacitor 120 of the signal output unit 102. Note that an insulating film 103 is interposed between the signal output unit 102 and the lower electrode 112.
  • the signal output unit 102 corresponds to the lower electrode 112, a capacitor 120 that is a charge storage capacity for storing the charge transferred to the lower electrode 112, and switching that converts the charge stored in the capacitor 120 into an electrical signal and outputs the electric signal TFT122 which is an element is formed.
  • the region where the capacitor 120 and the TFT 122 are formed has a portion overlapping the lower electrode 112 in plan view. In order to minimize the plane area of the radiation detector 26 (pixel), it is desirable that the region where the capacitor 120 and the TFT 122 are formed is completely covered by the lower electrode 112.
  • the signal output unit 102 with a low possibility of reaching the radiation X is replaced with the other imaging elements such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor, TFT, May be combined. Further, it may be replaced with a CCD (Charge-Coupled Device) image sensor that transfers charges while shifting them with a shift pulse corresponding to the gate signal of the TFT.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-Coupled Device
  • a filter may be provided between the radiation conversion layer 74 (bias electrode 90) and the radiation conversion layer 76.
  • the filter detects a high energy component of the radiation X in the radiation conversion layer 76 and transmits at least light in the sensitivity wavelength region of the radiation conversion layer (a-Se) 74 out of the fluorescence generated in the radiation conversion layer 76. . Therefore, it is preferable that the filter is made of a material that has low absorption of radiation X and can transmit the light. Further, the bias electrode 90 may have the function of the filter.
  • the radiation detector 26 is not limited to the above-described one, and may be, for example, a flexible substrate.
  • the flexible substrate it is preferable to apply a substrate using ultra-thin glass by a recently developed float method as a base material in order to improve the radiation transmittance.
  • the ultra-thin glass that can be applied at this time, for example, “Asahi Glass Co., Ltd.,“ Successfully developed the world's thinnest 0.1 mm thick ultra-thin glass by the float method ”, [online], [2011 Aug. 20 search], Internet ⁇ URL: http://www.agc.com/news/2011/0516.pdf> ”.
  • the radiation X (radiation X transmitted through the subject 30) irradiated to the radiation detector 26 of the electronic cassette 20 from the radiation generator 12 (radiation irradiation source 22A) is the TFT substrate 70 (panel 1) and the radiation conversion layer 74. Then, the radiation conversion layer 76 and the TFT substrate 72 (panel 2) are transmitted in this order.
  • the direct conversion radiation conversion layer 74 including a semiconductor layer such as a-Se can generate a high-quality radiation image as compared with the indirect conversion radiation conversion layer 76 including a scintillator.
  • a semiconductor layer such as a-Se has a characteristic that it is difficult to absorb a high energy component of the radiation X as compared with a scintillator.
  • the K edge of a-Se exists on the lower energy side than the K edge of GOS (Gd 2 O 2 S), CsI, or Ba (for example, BaFBr, BaFCl) used in the scintillator.
  • the radiation conversion layer 74 (a-Se) easily absorbs the low energy component (low pressure energy) of the radiation X, but hardly absorbs the high energy component (high pressure energy).
  • the radiation conversion layer 76 (GOS, CsI, or Ba scintillator) has a characteristic that it easily absorbs the high-pressure energy of the radiation X but hardly absorbs the low-pressure energy as compared with the a-Se semiconductor layer.
  • the low-pressure energy (low energy component) of the radiation X is the radiation X corresponding to the low voltage when the tube voltage of the radiation irradiation source 22A of the radiation generator 12 is relatively low.
  • the energy component of The low-pressure energy is easily absorbed by the mammo, soft tissue, tumor, or the like of the subject 30.
  • the high-voltage energy (high energy component) of the radiation X refers to the energy component of the radiation X corresponding to the high voltage when the tube voltage of the radiation irradiation source 22A is relatively high.
  • the high-pressure energy is easily absorbed by the bone part or the like of the subject 30.
  • the radiation detector 26 only needs to include two TFT substrates (panel 1 and panel 2) stacked along the irradiation direction of the radiation X, and the configuration is as described above (FIG. 2A). , See FIG. 2B). Another example of the radiation detector 26 of the present embodiment will be described.
  • FIGS. 4A to 4C show other examples when the direct conversion type radiation conversion layer 74, the panel 1, and the panel 2 are provided as in the radiation detector 26 described above (FIGS. 2A and 2B). Show.
  • the panel 1 is a TFT substrate 70 that reads out charges from the direct conversion type radiation conversion layer 74.
  • the panel 2 is a TFT substrate 72 that reads out charges from the indirect conversion type radiation conversion layer 76.
  • a radiation conversion layer 74, a PSS TFT substrate 70 as the panel 1, an ISS TFT substrate 72 as the panel 2, and a radiation conversion layer 76 are stacked in this order from the radiation X irradiation side.
  • the radiation detector 26 is shown.
  • the TFT substrate 70 and the TFT substrate 72 may not be separate TFT substrates, but may be a single substrate (panel) having the functions of both the TFT substrate 70 and the TFT substrate 72.
  • FIG. 4B shows an ISS TFT substrate 70 as a panel 1, a radiation conversion layer 74, an ISS TFT substrate 72 as a panel 2, and a radiation conversion layer 76 in order from the side irradiated with the radiation X.
  • a stacked radiation detector 26 is shown.
  • FIG. 4C shows a radiation conversion layer 74, a PSS TFT substrate 70 as the panel 1, a radiation conversion layer 76 as the panel 1, and a PSS TFT substrate 72 as the panel 2.
  • a stacked radiation detector 26 is shown.
  • the direct conversion radiation conversion layer 74 is irradiated with the radiation X more than the indirect conversion radiation conversion layer 76.
  • positions so that it may be provided in the near (radiation irradiation source 22A) it is not restricted to this.
  • the radiation conversion layer 74 and the radiation conversion layer 76 may be disposed in reverse. Since it is preferable to provide a radiation conversion layer sensitive to low-pressure energy on the side closer to the radiation X irradiation side (radiation irradiation source 22A), the radiation shown in FIGS. 2A, 2B and 4A to 4C described above is used. It is preferable to arrange like the detector 26.
  • both of the two radiation conversion layers are good also as the direct type radiation conversion layer 74, or indirectly.
  • a radiation conversion layer 76 of a type may be used.
  • the sensitivity of the two radiation conversion layers to the radiation X is preferably different.
  • An example of an indirect radiation conversion layer 76 is shown in FIG. 5A.
  • an ISS TFT substrate 72A, a radiation conversion layer 76A, a radiation conversion layer 76B, and a PSS TFT substrate 72B are stacked as the panel 1 in order from the side irradiated with the radiation X.
  • the radiation detector 26 is shown.
  • the radiation conversion layer 76A laminated closer to the radiation X irradiation side (radiation irradiation source 22A) is used as the radiation conversion layer 76 sensitive to low-pressure energy
  • the radiation conversion layer 76B is radiation sensitive to high-pressure energy.
  • the conversion layer 76 is preferable.
  • FIG. 5B shows an example in which both of the two radiation conversion layers are direct radiation conversion layers 74.
  • an ISS TFT substrate 70A, a radiation conversion layer 74A, a radiation conversion layer 74B, and a PSS TFT substrate 70B as the panel 2 are stacked in order from the side irradiated with the radiation X.
  • the radiation detector 26 is shown.
  • 5B includes a panel 1 in which a radiation conversion layer (a-Se) 74A is directly deposited on a TFT substrate 70A, and a panel in which a radiation conversion layer (a-Se) 74B is directly deposited on a TFT substrate 70B. 2 is provided. Panel 1 and panel 2 are in close contact with each other through an insulating layer 77. Panels 1 and 2 can apply a voltage to the radiation conversion layer (a-Se) 74 (74A, 74B), respectively.
  • a-Se radiation conversion layer
  • the radiation detector 26 may be provided with one radiation conversion layer between the panel 1 and the panel 2.
  • a direct radiation conversion layer 74 may be provided (see FIG. 6A), or an indirect radiation conversion layer 76 may be provided (see FIG. 6B).
  • FIG. 7 shows a schematic circuit configuration diagram of an example of the electronic cassette 20.
  • FIG. 7 shows a state in which the electronic cassette 20 is viewed in plan from the radiation X irradiation side.
  • the electronic cassette 20 includes a cassette control unit 130, a gate line driver 132, a signal processing unit 134, and a plurality of pixels 140 arranged in a matrix in the matrix direction.
  • Each pixel 140 includes a TFT substrate (a part of the TFT substrate) of the panel 1 of the radiation detector 26 and a TFT substrate (a part of the TFT substrate) of the panel 2.
  • a radiation conversion layer 74 (a part of the radiation conversion layer 74) and a radiation conversion layer 76 (a part of the radiation conversion layer 76) are further included.
  • the electronic cassette 20 includes a plurality of gate lines 142A and 142B parallel to the row direction of the pixels 140 and a plurality of signal lines 144A and 144B parallel to the column direction of the pixels 140.
  • the gate lines 142A and 142B are connected to the gate line driver 132, and the signal lines 144A and 144B are connected to the signal processing unit 134.
  • the gate line 142A and the signal line 144A are provided in the panel 1, and the gate line 142B and the signal line 144B are provided in the panel 2. That is, for each pixel 140 arranged in the row direction, one gate line 142A connected to panel 1 (for example, TFT 94 of TFT substrate 70) and panel 2 (for example, TFT 122 of TFT substrate 72) are connected. One gate line 142B to be connected and a total of two gate lines 142 are provided. Further, for each pixel 140 arranged in the column direction, one signal line 144A connected to the panel 1 (for example, the TFT 94 of the TFT substrate 70) and the panel 2 (for example, the TFT 122 of the TFT substrate 72) are connected. One signal line 144B to be connected and two signal lines 144 in total are provided.
  • the TFTs of the panel 1 and the TFT of the panel 2 are sequentially turned on for each row, and the charges converted and accumulated from the radiation in the radiation conversion layer 74, and the radiation conversion layer 76 is converted from radiation to fluorescence, and the photoelectric conversion film In 114, the electric charge converted and accumulated from the fluorescence can be read out as an electric signal.
  • each panel is output.
  • the TFT is turned on.
  • an electric signal corresponding to the electric charge accumulated in the signal line 144A and the signal line 144B flows.
  • the signal processing unit 134 amplifies the flowed-in charge (analog electrical signal) by an amplifier circuit (not shown), and then performs A / D conversion by an A / D (analog / digital) conversion circuit (not shown).
  • the signal processing unit 134 outputs the radiation image (first image and second image, details will be described later) converted into a digital signal to the cassette control unit 130.
  • the electronic cassette 20 of the present embodiment includes a first image (first image information) generated based on the charges read by the panel 1 and a first image generated based on the charges read by the panel 2. It has a function of transmitting two images (second image information) and two images to the radiation image processing apparatus 14.
  • first image information generated based on the charges read by the panel 1
  • second image information generated based on the charges read by the panel 2.
  • FIG. 8 the functional block diagram corresponding to the said function of an example of the electronic cassette 20 is shown.
  • the electronic cassette 20 includes a cassette control unit 130, a first image information generation unit 150, a second image information generation unit 152, a time stamp generation unit 154, a transmission unit 156, and a reception unit 158.
  • the first image information generation unit 150 generates a first image (first image information) based on the electric charges read by the panel 1.
  • the second image information generation unit 152 generates a second image (second image information) based on the charges read by the panel 2.
  • the cassette control unit 130 has a function of controlling the operation of the entire electronic cassette 20, and includes a CPU, a ROM, a RAM, and an HDD, like the console 16 of the radiographic imaging system 10 described above.
  • the CPU has a function of controlling the operation of the entire electronic cassette 20.
  • Various programs including a control program used by the CPU are stored in advance in the ROM.
  • the RAM has a function of temporarily storing various data.
  • An HDD Hard Disk Drive
  • the transmission unit 156 and the reception unit 158 have a function of transmitting and receiving various types of information including image information of radiographic images to and from the radiographic image processing device 14 and the console 16 by wireless communication or wired communication.
  • the cassette control unit 130 is configured to capture a radiographic image based on an imaging menu including imaging conditions for imaging a radiographic image via the console 16 or the radiographic image processing device 14 received by the reception unit 158. And control the panel 2. Specifically, the panel 1 (for example, the TFT 94 of the TFT substrate 70) is driven to capture the first image, and the read charge is output. Further, the panel 2 (for example, the TFT 122 of the TFT substrate 72) is driven so as to capture the second image, and the read charge is output. In capturing a moving image, electric charges are read from each of the panel 1 and the panel 2 at a frame rate determined in advance according to a shooting menu or the like.
  • the frame rate at which the panel 1 reads the charges (captures the first image) and the frame rate at which the panel 2 reads the charges (captures the first image) may be the same or different. Also good.
  • the frame rate may be determined according to shooting conditions and the characteristics of the panel 1 and the panel 2.
  • 1st image information generation part 150 generates the 1st image information which shows the 1st image which is a radiographic image based on the electric charge read by panel 1. As shown in FIG. Further, the second image information generation unit 152 generates second image information indicating a second image that is a radiation image based on the electric charges read by the panel 2. When capturing a moving image, a plurality of first images (first image information) and second images (second image information) corresponding to the frame rate are generated as described above.
  • the time stamp generation unit 154 has a function of generating time stamps corresponding to the first image information and the second image information. Specifically, the time stamp generation unit 154 accumulates charges in the panel 1 by turning off the TFT (TFT 94 of the TFT substrate 70 in the radiation detector 26 shown in FIGS. 2A and 2B) for imaging. A time stamp indicating the accumulated timing and accumulation period is generated. Further, the time stamp generation unit 154 accumulates charges in the panel 2 when the TFT (TFT 122 of the TFT substrate 72 in the radiation detector 26 shown in FIGS. 2A and 2B) is turned off to accumulate charges for imaging. And a time stamp representing the accumulation period.
  • the method of generating the time stamp is not particularly limited.
  • the time stamp may be generated by acquiring the storage timing and the storage period using a timer or the like (not shown) based on a predetermined frame rate.
  • the time stamp is not particularly limited as long as it represents the accumulation timing and accumulation period in which charges are accumulated in panel 1 (first image) and panel 2 (second image), respectively.
  • it may be the charge accumulation start and end times themselves or the time from the start of imaging.
  • the cassette control unit 130 includes a plurality of first images (first image information) generated by the first image information generation unit 150 and a plurality of second images (second image information) generated by the second image information generation unit 152. ), The time stamp generated by the time stamp generating unit 154 is added, and the transmission unit 156 transmits the time stamp to the radiation image processing apparatus 14.
  • the first image (first image information) and the second image (second image information) may be transmitted (transferred) by either wireless communication or wired communication, but a plurality of paths (communication paths 157A, 157B), it is preferable from the viewpoint of speeding up to transfer the two systems independently. Further, for example, whether to perform wireless communication or wired communication may be determined according to the information amount (transfer amount) and transfer speed of the image.
  • FIG. 9 is a functional block diagram for explaining an example of the radiation image processing function. The block diagram categorizes the radiographic image processing functions by function and does not limit the hardware configuration.
  • the radiographic image capturing system 10 (radiological image processing apparatus 14) of the present embodiment includes a display control unit 160, a composite image generation unit 162, an interpolation image generation unit 164, a reception unit 166, and a composite ratio setting.
  • the display 23 (operation panel 24) and the display 50 (operation panel 54) are shown in common.
  • the storage unit 17 stores the first image information and the second image information received from the electronic cassette 20 by the receiving unit 68A (the storage unit 17).
  • the first image information and the second image information are read out from 17, and the combined image information is generated and displayed,
  • the configuration corresponding to the reception function is received in the I / F unit 68. It is called part 68A.
  • the composite image generation unit 162 reads the first image information and the second image information from the storage unit 17 and generates a composite image (composite image information) that is combined at the composite ratio set in the composite ratio setting unit 168. At this time, based on the time stamps given to the first image information and the second image information, the composite image generation unit 162 performs the accumulation of electrification at the same timing or the first image that can be regarded as having been performed. The information and the second image information are combined.
  • the dose per shot (one frame: one frame) is reduced in order to avoid an increase in the exposure dose of the subject 30. Therefore, the charge accumulation time per shot is shorter than when a still image is taken.
  • image information (first image information and second image information) obtained from each of the panel 1 and the panel 2 is synthesized to generate a moving image as a synthesized image. By generating it, the image quality of the moving image is improved.
  • the composition addition of image information
  • a radiographic image having a desired image quality cannot be obtained or the image quality is deteriorated.
  • the first image information is mainly obtained from the TFT substrate 70 that reads out charges converted from radiation by the direct conversion type radiation conversion layer 74. Obtained as panel 1.
  • the second image information is obtained by using the TFT substrate 72 that reads out the charges converted from the radiation mainly by the indirect conversion type radiation conversion layer 76 as the panel 2.
  • the radiation conversion layer 74 and the radiation conversion layer 76 have different characteristics as described above. Therefore, a high-quality moving image can be obtained by combining with weighting (composition ratio) according to characteristics.
  • the radiation conversion layer 74 is excellent in the absorption of low-pressure energy of the radiation X, and is preferably used for photographing a soft tissue or a tumor of the subject 30.
  • the radiation conversion layer 76 is excellent in the absorption of the high-pressure energy of the radiation X, and is preferably used for photographing the bone part of the subject 30.
  • a radiographic image referred to as an energy subtraction image
  • one image such as a soft tissue or a tumor, and a bone portion is emphasized and the other image is removed.
  • a composition ratio set in accordance with what the radiographer wants to observe (what to emphasize) is used.
  • the energy subtraction image is not limited to the case where the radiation detector 26 shown in FIGS. 2A and 2B is used, and can be obtained using the radiation detector 26 shown in FIG. 5 as described above.
  • a radiation image (first image) obtained by a TFT substrate 70 (TFT substrate corresponding to a PSS radiation conversion layer), which is a panel 1 having high sensitivity, is normally used. Diagnosis (interpretation) by image). When the accuracy of diagnosis is improved, or when it is difficult to see the object of interest (tumor, tumor, etc.) to be observed only with the first image, the TFT substrate 72 (ISS type radiation conversion) as the panel 2 is determined by the interpreter. It is preferable to add (synthesize) the radiation image (second image) obtained by the TFT substrate corresponding to the layer.
  • the image quality of the radiographic image obtained may vary depending on the dose and energy of the radiation X irradiated to the electronic cassette 20 (radiation detector 26). In such a case, it is preferable to set the composition ratio according to the photographing conditions (mainly tube voltage) and the reader's request rather than simply combining the first image information and the second image information.
  • FIG. 10A schematically shows a case where the irradiated radiation X has low energy. In this case, the amount of light emitted on the incident side in the radiation conversion layer is relatively larger than the amount of light emitted on the non-incident side, and the panel 2 on the non-incident side has a long propagation distance.
  • the second image obtained by 2 may be blurred.
  • the first image obtained from the first image information is a moving image without adding the second image information.
  • the image information of the radiographic image here, the second image
  • the composition ratio may be set to “0”.
  • FIG. 10B schematically shows a case where the irradiated radiation X has high energy.
  • the radiation conversion layer has a sufficient amount of light emission even on the non-incident side, and the light emission amount on the incident side and the light emission amount on the non-incident side do not change much. Therefore, image blurring of the second image obtained by the panel 2 on the counter incident side is suppressed.
  • the first image information and the second image information may be added (for example, added at an equivalent combining ratio), or the panel 2 on the anti-incident side may be emphasized (compositing on the anti-incident side). The ratio may be increased).
  • the interpolated image generation unit 164 has no image information (second image information or first image information) having a time stamp to be combined with the first image information or the second image information read out by the combined image generation unit 162. Generate an interpolated image.
  • the composite image generation unit 162 generates composite image information by combining the read first image information or second image information and the generated interpolation image.
  • the display control unit 160 has a function of controlling the display of radiation images and the like on the display 23 and the display 50.
  • the display areas of the display 23 and the display 50 include the first image 180 corresponding to the first image information stored in the storage unit 17 and the second image information stored in the storage unit 17.
  • the corresponding second image 182, the synthesized image 184 synthesized by the synthesized image generating unit 162, and the synthesized chart 186 generated by the synthesized chart generating unit 170 are displayed.
  • the composite chart 186 shows a composite ratio between the first image information and the second image information.
  • the image interpreter views the first image 180, the second image 182, and the composite image 184 displayed on the display 23 or the display 50, and inputs instructions to the composite chart 186.
  • a composition ratio between the one image 180 and the second image 182 can be set.
  • the accepting unit 166 has a function of accepting the composition ratio input by the radiogram interpreter using the composition chart 186.
  • the composition ratio setting unit 168 sets the composition ratio received by the reception unit 166.
  • the composite chart generating unit 170 has a function of generating an image (composite chart) representing a predetermined composite ratio (initial value) or a composite ratio set by the composite ratio setting unit 168.
  • FIG. 11 shows a flowchart of an example of the radiation image processing of the present embodiment.
  • the radiographic image processing is performed by executing a radiographic image processing program by the system control unit 60 of the radiographic image processing apparatus 14 or the CPU of the console 16.
  • the program is stored in advance in a storage unit (not shown) in the system control unit 60, a ROM, or the like, but may be downloaded from an external stem (RIS), a CD-ROM, a USB, or the like. It may be.
  • the radiographic image processing shown in FIG. 11 is executed when a radiographic image is taken or when an interpretation of a moving image is indicated by a radiographer.
  • step S100 the first image information received by the receiving unit 68A is stored in the storage unit 17.
  • step S102 the second image information received by the receiving unit 68A is stored in the storage unit 17. Note that when the first image information and the second image information stored in advance in the storage unit 17 are read and a composite image (moving image) is displayed, Step S100 and Step S102 are omitted, and the process starts from Step S104. .
  • the first image 180 is displayed based on the first image information read from the storage unit 17 by the display control unit 160.
  • one (one) first image information is displayed as the first image 180 from a plurality of pieces of first image information corresponding to the moving image stored in the storage unit 17.
  • a specific example of the display state of the display (23, 50) is shown in FIG.
  • the second image 182 is displayed based on the second image information read from the storage unit 17 by the display control unit 160.
  • one (one) second image information is displayed as the second image 182 from the plurality of second image information corresponding to the moving image stored in the storage unit 17.
  • the composite chart generating unit 170 generates a composite chart indicating the composite ratio set by the composite ratio setting unit 168, and displays the composite chart 186.
  • step S110 it is determined whether or not there is a change in the composition ratio. If the reception unit 166 has not received a composite ratio instruction input, the determination is negative and the process proceeds to step S114. On the other hand, when an instruction input for a composition ratio is received, the determination is affirmed and the process proceeds to step S112. After the composition ratio received by the reception unit 166 is set by the composition ratio setting unit 168, the process proceeds to step S114.
  • step S114 a composite image generation / display process (details will be described later) is performed to generate a composite image in which the first image and the second image are combined and displayed on the display (23, 50), and then the process proceeds to step S116. move on.
  • step S116 it is determined whether or not to end this process. If there is a moving image that has not been displayed yet (first image information and second image information corresponding to the moving image), the determination is negative, the process returns to step S104, and this process is repeated. On the other hand, when the display of the moving image is terminated, the determination is affirmed and the present process is terminated.
  • FIG. 13 shows a flowchart of an example of the composite image generation / display process.
  • step S200 it is determined whether or not the frame rate of the first image information stored in the storage unit 17 and the frame rate of the second image information stored in the storage unit 17 are the same.
  • the frame rate of the first image information is a frame rate when the first image information is captured by the panel 1.
  • the frame rate of the second image information is a frame rate when the second image information is captured by the panel 2.
  • the time stamp given to the first image information and the time stamp given to the second image information are compared, and if they match, it is determined that they are the same. Note that if a shooting menu (shooting condition) or the like is associated in advance and the frame rate is known, it may be determined whether or not they are the same.
  • FIG. 14 shows a specific example of the frame rate of the electronic cassette 20 including the radiation detector 26 shown in FIGS. 2A and 2B.
  • FIG. 14 shows the case where the number of frames of panel 1 and panel 2 is 6 (corresponding to 6 frames, corresponding to F11 to F16 and F21 to F26), assuming that the number of frames is the same. Further, as a case where the number of frames is not the same, a case where the number of frames of the panel 2 is 3 (three, corresponding to F2'1 to F2'3) is shown.
  • the panel 2 is set as a panel (TFT substrate) mainly used for taking a still image and the charge accumulation time is long, the number of frames may be different in this way.
  • the direct conversion type radiation conversion layer 74 and the indirect conversion type radiation conversion layer 76 have different charge amounts according to the radiation X, so that it is necessary to make the charge accumulation times different. May be the same.
  • radiation X is continuously emitted from the radiation source 22A until shooting of all shots (frames) (charge accumulation) is completed. Continuous irradiation for irradiating the electronic cassette 20 is performed.
  • step S202 the first image information of the same frame (same time stamp) and the second image information are combined by the combined image generation unit 162 to generate combined image information, and then the process proceeds to step S216.
  • the synthesized composite image information is generated.
  • step S204 the time stamp added to the first image information of the first image 180 displayed on the display (23, 50) by the above-described step S104 and step S106 (see FIG. 11) and the second of the second image 182 are displayed. The time stamp given to the two-image information is acquired.
  • step S206 it is determined whether or not the acquired time stamps are the same. If they are the same, the determination is affirmative and the process proceeds to step S208.
  • step S208 the first image information and the second image information are combined to generate combined image information, and the process proceeds to step S216.
  • the frame F11 of the second image information (panel 2) is synthesized with the frame F11 of the first image information (panel 1) to generate a synthesized image.
  • the frame F12 of the first image information (panel 1) the frame F22 of the second image information (panel 2) is synthesized to generate a composite image
  • the frame F23 of the second image information (panel 2) is synthesized to generate a synthesized image.
  • the charge accumulation timing and the accumulation period are not limited to the same, but the charge accumulation timing and the accumulation end timing are determined in advance from one accumulation timing (accumulation start timing and accumulation end timing) even when the accumulation periods overlap or do not overlap.
  • the time stamp may be the same in the case where charge is accumulated within the same period (period within the allowable range). It may be determined depending on the image quality desired by the radiogram interpreter.
  • a method for generating a composite image is not particularly limited.
  • the composite image may be synthesized by adding or dividing the charge amount (electric signal corresponding to the charge amount) for each pixel.
  • step S210 it is determined whether to generate an interpolated image of image information. Whether or not to generate an interpolated image may be determined in advance according to shooting conditions or the like, or using an instruction input unit, an operation panel (24, 54) or the like that is not shown by the interpreter. May be instructed. If the interpolation image is not created, the determination is negative and the process is terminated.
  • step S212 interpolation image information is generated.
  • the interpolation image information is obtained by using the second image information corresponding to the frame F2′1 and the second image information corresponding to the frame F2′2.
  • the method of generating the interpolated image information is not particularly limited, and for example, an intermediate value of two pieces of second image information (an intermediate value of pixel values of each pixel) may be used.
  • the first image information or the second image information and the generated interpolated image information are combined to generate combined image information.
  • the composite image information is generated by combining the first image information corresponding to the frame F12 and the interpolated image information.
  • the synthesized image 184 corresponding to the synthesized synthesized image information is displayed on the display (23, 50), and then this process is terminated.
  • the radiation detector 26 of the electronic cassette 20 provided in the radiographic imaging system 10 of the present exemplary embodiment, two panels (the panel 1 arranged on the radiation X irradiation side and the non-radiation X non-radiation X) are provided.
  • a panel 2) arranged on the irradiation side is provided.
  • the radiation detector 26 generates first image information corresponding to the electric charge read by the panel 1 and second image information corresponding to the electric charge read by the panel 2, and each of the frames is charged with the charge.
  • a time stamp indicating the accumulation period and the accumulation timing is given and output to the electronic cassette 20.
  • the radiation image processing apparatus 14 receives the first image information and the second image information, and based on the time stamp, the first image information and the second image information that can be regarded as the same time stamp or the same time stamp.
  • the synthesized composite image information is generated.
  • the radiation image processing apparatus 14 controls the display 23 or the display 50 to display a moving image (synthetic image) based on the synthetic image information.
  • the radiation detector 26 includes the panel 1 and the panel 2, and the image per pixel is obtained by combining the first image information and the second image information obtained by each.
  • Information charge amount
  • a moving image can be displayed as a high-quality composite image. Therefore, the image quality of moving images can be improved.
  • the radiographic image capturing system 10 determines that the frame rates are different based on the imaging conditions and the like, it is preferable to control the radiation generating apparatus 12 so as to perform continuous irradiation.
  • radiation X is irradiated during the charge accumulation period, and outside the accumulation period, it is opened and closed according to each charge accumulation period so that radiation X is irradiated. It is preferable to provide a shutter or the like.
  • the configuration of the radiographic image capturing system 10, the radiographic image processing apparatus 14, the electronic cassette 20, the radiation detector 26, and the like described in the present embodiment are examples. Needless to say, these can be changed according to the situation within the scope of the present invention.
  • the radiation described in the present embodiment is not particularly limited, and X-rays, ⁇ -rays, and the like can be applied.
  • Radiographic imaging system 14 Radiation image processing apparatus 16 Console 70 TFT substrate (TFT substrate substrate according to direct conversion type) 72 TFT substrate (TFT substrate substrate for indirect conversion type) 74 Radiation conversion layer (direct conversion type) 76 Radiation conversion layer (indirect conversion type) 20 Electronic cassette 26 Radiation detector 68 I / F unit, 68A Reception unit 130 Cassette control unit 150 First image information generation unit 152 Second image information generation unit 154 Time stamp generation unit 156 Transmission unit 160 Display control unit 162 Composite image generation Unit 164 interpolation image generation unit 168 composition ratio setting unit

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 本発明は、動画像の画質を向上させることができる。すなわち、放射線検出器は、2つのTFT基板を備えている。電子カセッテは、放射線Xの照射側に配置されTFT基板で読み出された電荷に応じた第1画像情報、及び放射線Xの非照射側に配置されたTFT基板で読み出された電荷に応じた第2画像情報を生成し、それぞれ各フレーム毎に、電荷の蓄積期間及び蓄積タイミングを示すタイムスタンプを付与して、外部に出力する。放射線画像処理装置は、第1画像情報及び第2画像情報を受信して、タイムスタンプに基づいて、タイムスタンプが同一、または同一とみなせる第1画像情報と第2画像情報とを合成した合成画像情報を生成し、ディスプレイまたはディスプレイに当該合成画像情報に基づいて動画像を表示させるよう制御する。

Description

放射線画像撮影システム、放射線画像処理装置、放射線画像撮影装置、放射線動画像処理方法、及び放射線動画像処理プログラム
 本発明は、放射線画像撮影システム、放射線画像処理装置、放射線画像撮影装置、放射線動画像処理方法、及び放射線動画像処理プログラムに関する。特に、複数の基板を有する放射線画像撮影システム、放射線画像処理装置、放射線画像撮影装置、放射線動画像処理方法、及び放射線動画像処理プログラムに関する。
 放射線画像の撮影を行うための放射線画像撮影装置として、放射線照射装置から照射され、被写体を透過した放射線を放射線検出器により検出する放射線画像撮影装置が知られている。また、当該放射線画像撮影装置により、静止画像である放射線画像の撮影に加えて、例えば、複数の放射線画像(静止画像)を連続して撮影する動画像の撮影が行われている。
 一般に、動画像の撮影は、複数ショット(複数枚)の静止画像である放射線画像の撮影が連続して行われる。このように動画像を撮影する場合、被検者の被曝量が多くなってしまうのを避けるため、1ショット(1枚:1フレーム)当たりの線量を少なくすることが望まれている。そこで、1ショット当たりの電荷の蓄積時間を静止画像を撮影する場合に比べて短くすると、静止画像に比べて動画像の画質が劣化する場合や、動画像を用いて診断を行う医師(読影者)等の所望する画質の放射線画像が得られない場合がある。
 ところで、例えば、特開2001-22015号公報に記載されているように、励起光の照射により放射線画像情報が蓄積記録された蓄積性蛍光体シートの両面から発せられた輝尽発光光を各々検出することにより得られた放射線画像情報を担持する2つの画像信号を加算演算して出力する、両面集光型の放射線画像情報読取装置が知られている。また、特開2010-056397号公報に記載されているように、電荷を読み出す基板の両面に、照射された放射線を検出して電荷を発生する放射線検出部を設けることにより、1回の放射線の照射により、エネルギーが異なる放射線による複数の放射線画像を得る技術が知られている。
 上述の技術は、撮影によって得られた放射線画像に重みを付けて差分を演算する演算処理(いわゆる、サブトラクション画像処理)、特に画像中の骨部等の硬部素子に相当する画像部、及び軟部組織等に相当する画像部の一方を強調して他方を除去した放射線画像(いわゆる、エネルギーサブトラクション画像)を得る場合に用いることにより、放射線画像の画質を向上させることができる。
 しかしながら、このように1つの放射線画像撮影装置で同時に複数の放射線画像を得られる技術を用いて、動画像の撮影を行う場合、複数の放射線画像を加算等して1つの放射線画像を生成することにより、逆に、動画像の画質の低下を招く懸念もある。例えば、複数の放射線検出部(例えば、シンチレータ等)を設ける場合、それぞれの特性が異なると画像ボケ等を招く場合がある。また、放射線の線量(エネルギー)により画像ボケ等を招く場合がある。
 本発明は、動画像の画質を向上させることができる、放射線画像撮影システム、放射線画像処理装置、放射線画像撮影装置、放射線動画像処理方法、及び放射線動画像処理プログラムを提供する。
 本発明の第1の態様は、放射線画像撮影システムであって、照射された放射線に応じて放射線を電荷及び蛍光の少なくとも一方に変換する放射線変換部、放射線変換部で変換されて蓄積された電荷を検出する第1電荷検出部または放射線変換部で変換された蛍光を変換して蓄積された電荷を検出する第2電荷検出部のいずれかを放射線変換部に応じて備えた第1基板、第1電荷検出部または第2電荷検出部のいずれかを放射線変換部に応じて備えた第2基板を備えた放射線検出器と、動画撮影を行う際に予め定められたフレームレートで、第1基板によって検出された電荷に基づいて第1画像情報を生成すると共に、第2基板によって検出された電荷に基づいて第2画像情報を生成する生成手段と、生成手段によって生成された第1画像情報及び第2画像情報を外部に送信する送信手段と、を備えた放射線画像撮影装置と、送信手段から送信された第1画像情報及び第2画像情報を受信する受信手段と、受信手段によって受信された第1画像情報及び第2画像情報のうちの一方の画像情報と、生成手段で一方の画像情報を生成した際の電荷の蓄積タイミングから予め定められた範囲内のタイミングで蓄積された電荷に基づいて生成された他方の画像情報と、を合成した合成画像情報を生成する合成手段と、合成手段によって得られた合成画像情報を用いて動画像を表示手段に表示させるよう制御する制御手段と、を備えた放射線画像処理装置と、を備えた放射線画像撮影システム。
 本発明の放射線画像撮影装置は、放射線検出器と、生成手段と、送信手段と、を備える。放射線検出器は、放射線変換部、第1基板、及び第2基板を備える。放射線変換部は、照射された放射線に応じて放射線を電荷及び蛍光の少なくとも一方に変換する。第1基板は、放射線変換部で変換されて蓄積された電荷を検出する第1電荷検出部または放射線変換部で変換された蛍光を変換して蓄積された電荷を検出する第2電荷検出部のいずれかを放射線変換部に応じて備える。第2基板は、第1電荷検出部または第2電荷検出部のいずれかを放射線変換部に応じて備える。
 送信手段は、生成手段で生成された第1画像情報及び第2画像情報を外部に送信する。
 また、放射線画像処理装置は、受信手段と、合成手段と、制御手段と、を備える。受信手段は、放射線画像撮影装置から第1画像情報及び第2画像情報を受信する。
 このように1つの放射線検出器を用いて2つの画像(第1画像情報及び第2画像情報)を撮影し、撮影された2つの画像を合成して1つの画像(合成画像)を表示手段に表示させる場合、単に第1画像情報と第2画像情報とを合成すると合成された画像の画質が低下する場合がある。例えば、第1基板及び第2基板の特性が異なっている場合や、照射される放射線の線量(エネルギー)に応じて、画質が低下する懸念がある。
 そのため、本実施の形態では、合成手段が、受信手段によって受信された第1画像情報及び第2画像情報のうちの一方の画像情報と、生成手段で一方の画像情報を生成した際の電荷の蓄積タイミングから予め定められた範囲内のタイミングで蓄積された電荷に基づいて生成された他方の画像情報と、を合成した合成画像情報を生成する。制御手段は、合成手段によって得られた合成画像情報を用いて動画像を表示手段に表示させるよう制御する。
 このように第1画像情報と第2画像情報とを合成することにより、動画像の画質を向上させることができる、
 本発明の第2の態様は、上記第1の態様において、送信手段は、第1画像情報と共に、生成手段が第1画像情報を生成した際の電荷の蓄積タイミングを示すタイムスタンプを送信し、かつ、第2画像情報と共に、生成手段が第2画像情報を生成した際の電荷の蓄積タイミングを示すタイムスタンプを送信し、合成手段は、受信手段で受信したタイムスタンプに基づいて、第1画像情報と第2画像情報とを合成することが好ましい。
 また、本発明の第3の態様は、上記態様において、放射線画像処理装置は、第1画像情報及び第2画像情報の予め定められたフレームレートが異なる場合に、いずれか一方の予め定められたフレームレートに合うように、補間画像情報を生成する補間手段を備え、合成手段は、補間画像情報を用いて、合成画像情報を生成することが好ましい。
 また、本発明の第4の態様は、上記態様において、制御手段は、第1画像情報に応じた第1画像及び前記第2画像情報に応じた第2画像を表示手段に表示させるよう制御することが好ましい。
 また、本発明の第5の態様は、上記態様において、合成手段が第1画像情報と第2画像情報とを合成する合成比率を受け付ける受付手段を備えるようにしてもよい。
 また、本発明の第6の態様は、上記態様においては請求項6に記載の発明のように、送信手段は、第1画像情報及び第2画像情報を異なる経路により送信するようにしてもよい。
 また、本発明の第7の態様は、上記態様において、放射線変換部は、第1基板に積層された第1放射線変換層と、第2基板に積層された放射線に対する感度が第1放射線変換層と異なる第2放射線変換層と、を備えることが好ましい。
 また、本発明の第8の態様は、上記第7の態様において、第1放射線変換層は、放射線を電荷に変換する直接変換型であり、第2放射線変換層よりも放射線の照射側に設けられていることが好ましい。
 また、本発明の第9の態様は、上記第7の態様または上記第8の態様において、第1放射線変換層は、第2放射線変換層よりも放射線の低エネルギー成分に感度を有しており、第2放射線変換層よりも放射線の照射側に設けられていることが好ましい。
 また、本発明の第10の態様は、上記態様において、放射線照射装置と、生成手段で生成される第1画像情報及び第2画像情報の予め定められたフレームレートが異なる場合は、動画撮影を行っている期間、放射線検出器に連続的に放射線が照射されるよう放射線照射装置を制御する放射線照射制御手段と、を備えることが好ましい。
 本発明の第11の態様は、放射線画像処理装置であって、上記第1の態様から上記第10の態様のいずれか1態様である放射線画像撮影システムに備えられるものである。
 本発明の第12の態様は、放射線画像撮影装置であって、上記第1の態様から上記第10の態様のいずれか1態様である放射線画像撮影システムに備えられるものである。
 本発明の第13の態様は、放射線動画像処理方法であって、照射された放射線に応じて放射線を電荷及び蛍光の少なくとも一方に変換する放射線変換部、放射線変換部で変換されて蓄積された電荷を検出する第1電荷検出部または放射線変換部で変換された蛍光を変換して蓄積された電荷を検出する第2電荷検出部のいずれかを放射線変換部に応じて備えた第1基板、第1電荷検出部または第2電荷検出部のいずれかを放射線変換部に応じて備えた第2基板を備えた放射線検出器により動画撮影を行う際に予め定められたフレームレートで、第1基板によって検出された電荷に基づいて第1画像情報を生成すると共に、第2基板によって検出された電荷に基づいて第2画像情報を生成する生成工程と、生成工程によって生成された第1画像情報及び第2画像情報を外部に送信する送信工程と、送信工程により送信された第1画像情報及び第2画像情報を受信する受信工程と、受信工程によって受信された第1画像情報及び第2画像情報のうちの一方の画像情報と、生成手段で一方の画像情報を生成した際の電荷の蓄積タイミングから予め定められた範囲内のタイミングで蓄積された電荷に基づいて生成された他方の画像情報と、を合成した合成画像情報を生成する合成工程と、合成工程によって得られた合成画像情報を用いて動画像を表示手段に表示させるよう制御する制御工程と、を備えた。
 本発明の第14の態様は、放射線動画像処理プログラムであって、照射された放射線に応じて放射線を電荷及び蛍光の少なくとも一方に変換する放射線変換部、放射線変換部で変換されて蓄積された電荷を検出する第1電荷検出部または放射線変換部で変換された蛍光を変換して蓄積された電荷を検出する第2電荷検出部のいずれかを放射線変換部に応じて備えた第1基板、第1電荷検出部または第2電荷検出部のいずれかを放射線変換部に応じて備えた第2基板を備えた放射線検出器と、動画撮影を行う際に予め定められたフレームレートで、第1基板によって検出された電荷に基づいて第1画像情報を生成すると共に、第2基板によって検出された電荷に基づいて第2画像情報を生成する生成手段と、生成手段によって生成された第1画像情報及び第2画像情報を外部に送信する送信手段と、を備えた放射線画像撮影装置の、送信手段から送信された第1画像情報及び第2画像情報を受信する受信手段と、受信手段によって受信された第1画像情報及び第2画像情報のうちの一方の画像情報と、生成手段で一方の画像情報を生成した際の電荷の蓄積タイミングから予め定められた範囲内のタイミングで蓄積された電荷に基づいて生成された他方の画像情報と、を合成した合成画像情報を生成する合成手段と、合成手段によって得られた合成画像情報を用いて動画像を表示手段に表示させるよう制御する制御手段と、を備えた放射線動画像処理装置の合成手段及び制御手段としてコンピュータを機能させるためのものである。
 本発明の上記態様によれば、動画像の画質を向上させることができる、という効果を有する。
本実施の形態に係る放射線画像撮影システムの一例の全体構成の概略の概略構成図である。 本実施の形態に係る放射線検出器の構成の一例を示す、断面の模式図である。 本実施の形態に係る放射線検出器の構成の一例を示す、断面の概略図である。 本実施の形態に係る放射線検出器の間接変換型の放射線変換層の柱状結晶構造を説明するための説明図である。 本実施の形態に係る放射線検出器の構成のその他の例を示しており、放射線Xが照射される側から順に、放射線変換層、パネル1、パネル2、及び放射線変換層が積層された断面の模式図である。 本実施の形態に係る放射線検出器の構成のその他の例を示しており、放射線Xが照射される側から順に、パネル1、放射線変換層、パネル2、及び放射線変換層が積層された断面の模式図である。 本実施の形態に係る放射線検出器の構成のその他の例を示しており、放射線Xが照射される側から順に、放射線変換層、パネル1、放射線変換層、及びパネル2が積層された断面の模式図である。 本実施の形態に係る放射線検出器の構成のその他の例を示しており、間接変換型の放射線変換層を2つ備えた断面の模式図である。 本実施の形態に係る放射線検出器の構成のその他の例を示しており、直接変換型の放射線変換層を2つ備えた断面の模式図である。 本実施の形態に係る放射線検出器の構成のその他の例を示しており、直接変換型の放射線変換層を1つ備えた断面の模式図である。 本実施の形態に係る放射線検出器の構成のその他の例を示しており、間接変換型の放射線変換層を1つ備えた断面の模式図である。 本実施の形態に係る電子カセッテの一例の概略の回路構成図を示す。 本実施の形態に係る電子カセッテの機能の一例を説明するための機能ブロック図である。 本実施の形態に係る放射線画像処理装置の放射線画像処理機能の一例を説明するための機能ブロック図である。 本実施の形態に係る放射線検出器の特性を説明するための説明図であり、照射される放射線Xが低エネルギーである場合を模式的に示した説明図である。 本実施の形態に係る放射線検出器の特性を説明するための説明図であり、照射される放射線Xが高エネルギーである場合を模式的に示した説明図である。 本実施の形態に係る放射線画像撮影システムの放射線画像処理の一例を示すフローチャートである。 本実施の形態に係るディスプレイの表示状態の具体的一例を示す説明図である。 本実施の形態における放射線画像撮影システムの放射線画像処理における合成画像生成・表示処理の一例を示すフローチャートである。 図2A及び図2Bに示した放射線検出器を備えた電子カセッテのフレームレートの具体的一例を説明するための説明図であり、放射線が連続照射された場合を示している。 図2A及び図2Bに示した放射線検出器を備えた電子カセッテにおいてフレームレートが異なる場合における、放射線の断続照射(パルス照射)を説明するための説明図である。
 以下、各図面を参照して本実施の形態の一例について説明する。
 まず、本実施の形態の放射線画像処理装置を備えた放射線画像撮影システム全体の概略構成について説明する。図1には、本実施の形態の放射線画像撮影システムの一例の全体構成の概略の概略構成図を示す。本実施の形態の放射線画像撮影システム10は、動画像としての放射線画像に加え、静止画像を撮影することが可能である。なお、本実施の形態において動画像とは、静止画像を高速に次々と表示して、動画像として認知させることをいい、静止画像を撮影し、電気信号に変換し、伝送して当該電気信号から静止画像を再生する、というプロセスを高速に繰り返すものである。従って、動画像には、前記「高速」の度合いによって、予め定められた時間内に同一領域(一部または全部)を複数回撮影し、かつ連続的に再生する、いわゆる「コマ送り」も包含されるものとする。
 本実施の形態の放射線画像撮影システム10は、コンソール16を介して外部のシステム(例えば、RIS:Radiology Information System:放射線情報システム)から入力された指示(撮影メニュー)に基づいて、医師や放射線技師等の操作により放射線画像の撮影を行う機能を有する。
 また、本実施の形態の放射線画像撮影システム10は、撮影された放射線画像の動画像及び静止画像をコンソール16のディスプレイ50や放射線画像読影装置18に表示させることにより、医師や放射線技師等に放射線画像を読影させる機能を有する。
 本実施の形態の放射線画像撮影システム10は、放射線発生装置12、放射線画像処理装置14、コンソール16、記憶部17、放射線画像読影装置18、及び電子カセッテ20を備えている。
 放射線発生装置12は、放射線照射制御ユニット22を備えている。放射線照射制御ユニット22は、放射線画像処理装置14の放射線制御部62の制御に基づいて放射線照射源22Aから放射線Xを撮影台32上の被検者30の撮影対象部位に照射させる機能を有している。
 被検者30を透過した放射線Xは、撮影台32内部の保持部34に保持された電子カセッテ20に照射される。電子カセッテ20は、被検者30を透過した放射線Xの線量に応じた電荷を発生し、発生した電荷量に基づいて放射線画像(第1画像及び第2画像、詳細後述)を示す画像情報を生成して出力する機能を有する。本実施の形態の電子カセッテ20は、放射線検出器26を備えている。本実施の形態の放射線検出器26は、2つのパネル(パネル1及びパネル2)を備えており、パネル1からは第1画像が得られ、パネル2からは第2画像が得られる(詳細後述)。
 本実施の形態では、電子カセッテ20により出力された放射線画像を示す画像情報は、放射線画像処理装置14を介してコンソール16に入力される。本実施の形態のコンソール16は、無線通信(LAN:Local Area Network)等を介して外部システム(RIS)等から取得した撮影メニューや各種情報等を用いて、放射線発生装置12及び電子カセッテ20の制御を行う機能を有している。また、本実施の形態のコンソール16は、放射線画像処理装置14との間で放射線画像の画像情報を含む各種情報の送受信を行う機能と共に、電子カセッテ20との間で各種情報の送受信を行う機能を有している。
 本実施の形態のコンソール16は、サーバー・コンピュータである。コンソール16は、制御部40、ディスプレイドライバ48、ディスプレイ50、操作入力検出部52、操作パネル54、I/O部56、及びI/F部58を備えている。
 制御部40は、コンソール16全体の動作を制御する機能を有しており、CPU、ROM、RAM、及びHDDを備えている。CPUは、コンソール16全体の動作を制御する機能を有している。ROMには、CPUで使用される制御プログラムを含む各種プログラム等が予め記憶されている。RAMは、各種データを一時的に記憶する機能を有している。HDD(ハードディスク・ドライブ)は、各種データを記憶して保持する機能を有している。
 ディスプレイドライバ48は、ディスプレイ50への各種情報の表示を制御する機能を有している。本実施の形態のディスプレイ50は、撮影メニューや撮影された放射線画像等を表示する機能を有している。また、ディスプレイ50は、タッチパネル(操作パネル54)としている。操作入力検出部52は、操作パネル54に対する操作状態を検出する機能を有している。操作パネル54は、各種情報や操作指示を、放射線画像を撮影する撮影者である医師や放射線技師等、及び撮影された放射線画像を読影する読影者である医師や放射線技師等が入力するためのものである。本実施の形態の操作パネル54は、少なくとも、タッチパネルを含んでいる。なお、本実施の形態の操作パネル54は、その他、タッチペン、複数のキー、及びマウス等を含んで構いる。
 また、I/O部56及びI/F部58は、無線通信により、放射線画像処理装置14及び放射線発生装置12との間で各種情報の送受信を行うと共に、電子カセッテ20との間で画像情報等の各種情報の送受信を行う機能を有している。
 制御部40、ディスプレイドライバ48、操作入力検出部52、I/O部56は、システムバスやコントロールバス等のバス59を介して相互に情報等の授受が可能に接続されている。従って、制御部40は、ディスプレイドライバ48を介したディスプレイ50への各種情報の表示の制御、及びI/F部58を介した放射線発生装置12及び電子カセッテ20との各種情報の送受信の制御を各々行うことができる。また、制御部40は、操作入力検出部52を介して操作パネル54に対する読影者の操作状態(指示入力)を把握することができる。
 本実施の形態の放射線画像処理装置14は、コンソール16からの指示に基づいて、放射線発生装置12及び電子カセッテ20を制御する機能を有する。また、放射線画像処理装置14は、電子カセッテ20から受信した放射線画像(第1画像及び第2画像)の画像情報の記憶部17への記憶、及びコンソール16のディスプレイ50や放射線画像読影装置18への表示を制御する機能(詳細後述)を有する。
 本実施の形態の放射線画像処理装置14は、システム制御部60、放射線制御部62、パネル制御部64、画像処理制御部66、及びI/F部68を備えている。
 システム制御部60は、放射線画像処理装置14全体を制御する機能を有すると共に、放射線画像撮影システム10を制御する機能を有している。システム制御部60は、CPU、ROM、RAM、及びHDDを備えている。CPUは、放射線画像処理装置14全体及び放射線画像撮影システム10の動作を制御する機能を有している。ROMには、CPUで使用される制御プログラムを含む各種プログラム等が予め記憶されている。RAMは、各種データを一時的に記憶する機能を有している。HDD(ハードディスク・ドライブ)は、各種データを記憶して保持する機能を有している。放射線制御部62は、コンソール16の指示に基づいて、放射線発生装置12の放射線照射制御ユニット22を制御する機能を有している。パネル制御部64は、電子カセッテ20からの情報を、無線または有線により受け付ける機能を有している。画像処理制御部66は、放射線画像に対して各種画像処理を施す機能を有している。
 システム制御部60、放射線制御部62、パネル制御部64、及び画像処理制御部66は、システムバスやコントロールバス等のバス69を介して相互に情報等の授受が可能に接続されている。
 本実施の形態の記憶部17は、撮影された放射線画像(第1画像及び第2画像)及び当該放射線画像に関係する情報を記憶する機能を有する。記憶部17は、例えば、HDD等である。
 また、本実施の形態の放射線画像読影装置18は、撮影された放射線画像を医師等の読影者が読影するための機能を有する装置である。放射線画像読影装置18は、特に限定されないが、いわゆる、読影ビューワ、コンソール、及びタブレット端末等が挙げられる。本実施の形態の放射線画像読影装置18は、パーソナル・コンピュータである。放射線画像読影装置18は、コンソール16や放射線画像処理装置14と同様に、CPU、ROM、RAM、HDD、ディスプレイドライバ、ディスプレイ23、操作入力検出部、操作パネル24、I/O部、及びI/F部を備えている。なお、図1では、記載が煩雑になるのを避けるため、これらの構成のうち、ディスプレイ23及び操作パネル24のみを示し、その他の記載を省略している。
 次に、電子カセッテ20について詳細に説明する。まず、電子カセッテ20に備えられた放射線検出器26について説明する。本実施の形態の放射線検出器26は、2つのTFT基板(パネル)を備えている。なお、以下では、放射線Xの照射側に配置されたTFT基板を備えたパネルをパネル1といい、非照射側(パネル1よりも放射線Xが照射される面から離れた側)に配置されたTFT基板を備えたパネルをパネル2という。
 放射線検出器26の一例を図2A及び図2Bに示す。図2Aは、放射線検出器26の一例の断面の模式図である。図2Bは、放射線検出器26の一例の断面の概略図である。図2A及び図2Bに示した放射線検出器26は、2つのTFT基板(パネル1及びパネル2)と、2つの放射線変換層とを備えている。具体的には、パネル1であるTFT基板70と、放射線変換層74と、放射線変換層76と、パネル2であるTFT基板72と、が放射線Xの入射方向に沿って順に積層されている。放射線変換層74は、表面読取方式としてのISS(Irradiation Side Sampling)方式の直接変換型の放射線変換層である。一方、放射線変換層76は、裏面読取方式としてのPSS(Penetration Side Sampling)方式の間接変換型の放射線変換層である。
 TFT基板70は、放射線変換層74で発生した電荷であるキャリア(正孔)を収集し読み出す(検出する)機能を有する。TFT基板70は、絶縁性基板80、及び信号出力部85を備えている。また、本実施の形態では、放射線変換層76で発生された蛍光が放射線変換層74により変換された電荷もTFT基板70により読み出される。なお、放射線検出器26が電子読取センサである場合は、TFT基板70は、電子を収集し読み出す機能を有する。
 絶縁性基板80は、放射線変換層74及び放射線変換層76において放射線Xを吸収させるため、放射線Xの吸収性が低く、且つ、可撓性を有する電気絶縁性の薄厚の基板(数十μm程度の厚みを有する基板)が好ましい。具体的には、合成樹脂、アラミド、バイオナノファイバ、あるいは、ロール状に巻き取ることが可能なフイルム状ガラス(超薄板ガラス)等であることが好ましい。
 信号出力部85は、電荷蓄積容量であるコンデンサ92、電界効果型薄膜トランジスタ(Thin Film Transistor、以下、単にTFTという)94、及び電荷収集電極88を備えている。TFT94は、コンデンサ92に蓄積された電荷を電気信号に変換して出力するスイッチング素子である。
 電荷収集電極88は、間隔を隔てて格子状(マトリクス状)に複数形成されており、1つの電荷収集電極88が1画素に対応している。各々の電荷収集電極88は、TFT94及びコンデンサ92に接続されている。
 コンデンサ92は、各電荷収集電極88で収集された電荷(正孔)を蓄積する機能を有する。この各コンデンサ92に蓄積された電荷が、TFT94によって読み出される。これによりTFT基板70による放射線画像の撮影が行われる。
 下引層82は、放射線変換層74とTFT基板70との間に形成されている。下引層82は、暗電流、及びリーク電流低減の観点から、整流特性を有することが好ましい。そのため、下引層82の抵抗率は、10Ωcm以上であること、膜厚は、0.01μm~10μmであることが好ましい。
 TFT基板70を透過した放射線が下引層82を透過して放射線変換層74に照射される。
 放射線変換層74は、照射された放射線を吸収して、放射線に応じてプラス及びマイナスの電荷(電子-正孔キャリア対)を発生する光導電物質である光電変換層である。放射線変換層74は、アモルファスSe(a-Se)を主成分とすることが好ましい。また、放射線変換層74としては、BiMO20(M:Ti、Si、Ge)、Bi12(M:Ti、Si、Ge)、Bi、BiMO(M:Nb、Ta、V)、BiWO、Bi2439、ZnO、ZnS、ZnSe、ZnTe、MNbO(M:Li、Na、K)、PbO、HgI、PbI、CdS、CdSe、CdTe、BiI、及びGaAs等のうち、少なくとも1つを主成分とする化合物を用いてもよい。なお、放射線変換層74は、暗抵抗が高く、放射線照射に対して良好な光導電性を示し、真空蒸着法により低温で大面積成膜が可能な非晶質(アモルファス)材料が好ましい。
 放射線変換層74の厚みは、例えば本実施の形態のように、a-Seを主成分とする光導電物質の場合、100μm以上、2000μm以下の範囲であることが好ましい。特に、マンモグラフィ用途では、100μm以上、250μm以下の範囲であることが好ましい。また、一般撮影用途においては、500μm以上、1200μm以下の範囲であることが好ましい。
 電極界面層83は、正孔の注入を阻止する機能と、結晶化を防止する機能と、を有している。電極界面層83は、放射線変換層74と上引層84との間に形成されている。
 電極界面層83としては、CdS、CeO、Ta、及びSiO等の無機材料、または有機高分子が好ましい。無機材料からなる層は、その組成を化学量論組成から変化させ、または2種類以上の同族元素との多元組成とすることでキャリア選択性を調節して用いることが好ましい。有機高分子からなる層としては、ポリカーボネート、ポリスチレン、ポリイミド、及びポリシクロオレフィン等の絶縁性高分子に、低分子の電子輸送材料を5%~80%の重量比で混合して用いることができる。こうした電子輸送材料としては、トリニトロフルオレンとその誘導体、ジフェノキノン誘導体、ビスナフチルキノン誘導体、オキサゾール誘導体、トリアゾール誘導体、C60(フラーレン)、及びC70等のカーボンクラスターを混合したもの等が好ましい。具体的にはTNF、DMDB、PBD、及びTAZが挙げられる。
 一方、薄い絶縁性高分子層も好ましく用いることができ、例えば、パリレン、ポリカーボネート、PVA、PVP、PVB、ポリエステル樹脂、及びポリメチルメタクリレート等のアクリル樹脂が好ましい。この場合、膜厚は、2μm以下が好ましく、0.5μm以下がより好ましい。
 上引層84は、電極界面層83とバイアス電極90との間に形成されている。上引層84は、暗電流、及びリーク電流低減の観点から、整流特性を有することが好ましい。そのため、上引層84の抵抗率は、10Ωcm以上であること、膜厚は、0.01μm~10μmであることが好ましい。
 バイアス電極90は、放射線変換層74へバイアス電圧を印加する機能を有しており、画像情報を担持した放射線が透過するように形成されている。本実施の形態では、放射線検出器26が正孔読取センサであるため、バイアス電極90には、図示を省略した高圧電源からプラスのバイアス電圧が供給される。なお、放射線検出器26が照射された放射線に応じて発生した電子を読み取る電子読取センサである場合は、バイアス電極90には、マイナスのバイアス電圧が供給される。
 バイアス電極90及び電荷収集電極88は、TFT基板70において放射線Xの高エネルギー成分を検出させる一方で、後述するように、放射線変換層76で放射線Xが変換された光(蛍光)のうち、少なくともa-Seの感度波長領域の光(例えば、青色波長領域の光)を透過させる。そのためバイアス電極90及び電荷収集電極88は、放射線Xの吸収性が低く、a-Seとの間でエレクトロマイグレーションが発生せず、且つ、該感度波長領域の光を透過可能な導電性材料、例えば、可視光に対する透過率が高く、抵抗値が小さい透明導電性酸化物(TCO:Transparent Conducting Oxide)からなることが好ましい。TCOとしては、ITO、IZO、AZO、FTO、SnO、TiO、及びZnO等を好ましく用いることができる。プロセス簡易性、低抵抗性、及び透明性の観点からはITO(Indium Tin Oxide)が好ましい。その他、バイアス電極90の材料としてはAu、Ni、Cr、Pt、Ti、Al、Cu、Pd、Ag、Mg、MgAg3%~20%合金、Mg-Ag系金属間化合物、MgCu3%~20%合金、及びMg-Cu系金属間化合物等の金属を用いることができる。特に、AuやPt、及びMg-Ag系金属間化合物を用いることが好ましい。例えばAuを用いた場合は、厚さ15nm以上、200nm以下の範囲であることが好ましく、より好ましくは30nm以上、100nm以下の範囲である。例えば、MgAs3%~20%合金を用いた場合は、厚さ100nm以上、400nm以下の範囲であることが好ましい。なお、透過率を90%以上得ようとすると抵抗値が増大し易いため、TCOの方が好ましい。
 形成方法は、任意であるが形成温度によっては、放射線変換層74のa-Seが結晶化するおそれがあるため、a-Seの結晶化を抑制するためにできる限り低温でバイアス電極90を形成することが好ましい。例えば、塗布、ロールツーロール、及びインクジェット等により、金属フィラーを含む有機膜や有機導電体としてバイアス電極90が形成されることが好ましい。また、その他の方法としては、抵抗加熱方式による蒸着により形成されることが好ましい。例えば、抵抗加熱方式によりボート内で金属塊が融解後にシャッターを開け、15秒間蒸着して一旦冷却する。この操作を金属薄膜の抵抗値が十分低くなるまで複数回繰り返すことが挙げられる。
 放射線変換層74により放射線から変化された電荷(正電荷・負電荷)の読み出しは、以下のように行えばよい。各電荷収集電極88及びバイアス電極90には、電圧供給部(図示省略)が接続されている。電圧供給部は、直流電源及びスイッチを備えている。当該直流電源及び当該スイッチは、各電荷収集電極88及びバイアス電極90と電気的に接続されている。ここで、スイッチをオンにして、各電荷収集電極88が正極性、バイアス電極90が負極性となるような直流電圧を直流電源から印加すると、半導体層である放射線変換層74に直流電界が発生する。この直流電界に従って、正電荷は、負極性のバイアス電極90側に移動すると共に、負電荷は、正極性の各電荷収集電極88側に移動する。これにより、TFT基板70は、各電荷収集電極88を介して負電荷を読み出すことが可能となり、ゲート線ドライバ132からのゲート信号によってTFT94がオンすると、信号線144Aを介して負電荷に応じた電気信号を信号処理部134に出力することが可能となる。
 また、放射線変換層74内でアバランシェ効果が発生する程度の直流電圧が各電荷収集電極88とバイアス電極90との間に印加されると、該アバランシェ効果によって、放射線変換層74内の正電荷及び負電荷が増幅される。この結果、各電荷収集電極88を介してTFT基板70(TFT94)で読み出される電荷数を増加させることができる。
 なお、各電荷収集電極88が正極性、バイアス電極90が負極性となるように、直流電圧を印加した場合について説明したが、各電荷収集電極88に負極性及びバイアス電極90に正極性の直流電圧を印加した場合でも、上述と同様の効果が得られることは言うまでもない。
 放射線変換層76はシンチレータであり、本実施の形態の放射線検出器26では、バイアス電極90と上部電極110との間に、透明絶縁膜108を介して積層されるように形成されている。放射線変換層76は、上方または下方から入射してくる放射線Xを光に変換して発光する蛍光体を成膜したものである。このような放射線変換層76を設けることで放射線Xを吸収して発光することになる。
 放射線変換層76が発する光の波長域は、可視光域(波長360nm~830nm)であることが好ましい。この放射線検出器26によってモノクロ撮像を可能とするためには、緑色の波長域を含んでいることがより好ましい。
 放射線変換層76に用いるシンチレータとしては、a-Seの感度波長領域の光や、TFT基板72で吸収可能な波長領域の光(a-Seの感度波長領域の光よりも長波長の光)を発生できるような、比較的広範囲の波長領域を有した蛍光を発生するシンチレータが望ましい。このようなシンチレータとしては、CsI:Na、CaWO、YTaO:Nb、BaFX:Eu(XはBrまたはCl)、または、LaOBr:Tm、及びGOS等がある。具体的には、放射線としてX線を用いて撮像する場合、ヨウ化セシウム(CsI)を含むものが好ましい。特にX線照射時の発光スペクトルが400nm~700nmにあるCsI:Tl(タリウムが添加されたヨウ化セシウム)やCsI:Naを用いることが好ましい。なお、CsI:Tlの可視光域における発光ピーク波長は565nmである。
 なお、放射線変換層76としてCsIを含むシンチレータを用いる場合は、真空蒸着法で短冊状の柱状結晶構造(図3参照)として形成したものを用いることが好ましい。放射線変換層76のTFT基板72側の基端部分は、非柱状結晶部分76Cとされ、TFT基板72と密着している。非柱状結晶部分76Cを設けることにより、放射線変換層76と、TFT基板72との密着性を高めることができる。また、非柱状結晶部分76Cの空隙率を0%に近づけたり、(例えば、10μm程度にまで)その厚みを薄くしたりすることにより、蛍光の反射を抑えることができる。
 柱状結晶構造76Dを構成する各柱は、放射線Xの入射方向に沿ってそれぞれ形成され、隣接する各柱の間には、ある程度の隙間が確保されている。また、CsI:Naのシンチレータは、柱状結晶構造76Dが湿度に弱く、非柱状結晶部分76Cが湿度に特に弱いという特性を有するので、ポリパラキシリレン樹脂からなる光透過性の防湿保護材(図示省略)で封止されている。
 上部電極110は、放射線変換層76により生じた光を光電変換膜114に入射させる必要があるため、少なくとも放射線変換層76の発光波長に対して透明な導電性材料でが好ましい。具体的には、可視光に対する透過率が高く、抵抗値が小さい透明導電性酸化物(TCO)を用いることが好ましい。なお、上部電極110としてAu等の金属薄膜を用いることもできるが、透過率を90%以上得ようとすると抵抗値が増大し易いため、TCOの方が好ましい。例えば、ITO、IZO、AZO、FTO、SnO、TiO、及びZnO等を好ましく用いることができる。プロセス簡易性、低抵抗性、透明性の観点からは、ITOが最も好ましい。なお、上部電極110は、全画素で共通の一枚構成としてもよく、画素毎に分割してもよい。
 光電変換膜114は、放射線変換層76が発する光を吸収して電荷が発生する有機光電変換材料を含む。
 光電変換膜114は、有機光電変換材料を含み、放射線変換層76から発せられた光を吸収し、吸収した光に応じた電荷を発生する。このように有機光電変換材料を含む光電変換膜114であれば、可視域にシャープな吸収スペクトルを持つ。そのため、放射線変換層76による発光以外の電磁波が光電変換膜114に吸収されることがほとんどなく、X線等の放射線Xが光電変換膜114で吸収されることによって発生するノイズを効果的に抑制することができる。
 光電変換膜114の有機光電変換材料は、放射線変換層76で発光した光を最も効率よく吸収するために、その吸収ピーク波長が、放射線変換層76の発光ピーク波長と近いほど好ましい。有機光電変換材料の吸収ピーク波長と放射線変換層76の発光ピーク波長とが一致することが理想的であるが、双方の差が小さければ放射線変換層76から発された光を十分に吸収することが可能である。具体的には、有機光電変換材料の吸収ピーク波長と、放射線変換層76の放射線に対する発光ピーク波長との差が、10nm以内であることが好ましく、5nm以内であることがより好ましい。
 このような条件を満たすことが可能な有機光電変換材料としては、例えばキナクリドン系有機化合物及びフタロシアニン系有機化合物が挙げられる。例えばキナクリドンの可視域における吸収ピーク波長は560nmであるため、有機光電変換材料としてキナクリドンを用い、放射線変換層76の材料としてCsI:Tlを用いれば、上記ピーク波長の差を5nm以内にすることが可能となる。これにより、光電変換膜114で発生する電荷量をほぼ最大にすることができる。
 なお、暗電流の増加を抑制するため、電子ブロッキング膜116及び正孔ブロッキング膜118の少なくともいずれかを設けることが好ましく、両方を設けることがより好ましい。電子ブロッキング膜116は、下部電極112と光電変換膜114との間に設けることができる。電子ブロッキング膜116は、下部電極112と上部電極110間にバイアス電圧を印加したときに、下部電極112から光電変換膜114に電子が注入されて暗電流が増加してしまうのを抑制することができる。電子ブロッキング膜116には、電子供与性有機材料を用いることができる。一方、正孔ブロッキング膜118は、光電変換膜114と上部電極110との間に設けることができる。正孔ブロッキング膜118は、下部電極112と上部電極110との間にバイアス電圧を印加したときに、上部電極110から光電変換膜114に正孔が注入されて暗電流が増加してしまうのを抑制することができる。正孔ブロッキング膜118には、電子受容性有機材料を用いることができる。
 下部電極112は、電荷収集電極88と略同様であり、間隔を隔てて格子状(マトリクス状)に複数形成されており、1つの下部電極112が1画素に対応している。各々の下部電極112は、信号出力部102のTFT122及びコンデンサ120に接続されている。なお、信号出力部102と下部電極112との間には、絶縁膜103が介在されている。
 信号出力部102は、下部電極112に対応して、下部電極112に移動した電荷を蓄積する電荷蓄積容量であるコンデンサ120と、コンデンサ120に蓄積された電荷を電気信号に変換して出力するスイッチング素子であるTFT122と、が形成されている。コンデンサ120及びTFT122の形成された領域は、平面視において下部電極112と重なる部分を有している。なお、放射線検出器26(画素)の平面積を最小にするために、コンデンサ120及びTFT122の形成された領域が下部電極112によって完全に覆われていることが望ましい。
 なお、放射線Xが到達する可能性が低い信号出力部102は、上述のものに代えて、放射線Xに対する耐性が低い、CMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の他の撮影素子とTFTとを組み合わせてもよい。また、TFTのゲート信号に相当するシフトパルスにより電荷をシフトしながら転送するCCD(Charge-Coupled Device)イメージセンサに置き換えるようにしてもよい。
 なお、放射線変換層74(バイアス電極90)と、放射線変換層76と、の間に、フィルタを設けてもよい。当該フィルタは、放射線変換層76において放射線Xの高エネルギー成分を検出させると共に、放射線変換層76で発生した蛍光のうち、少なくとも放射線変換層(a-Se)74の感度波長領域の光を透過させる。そのため、当該フィルタは、放射線Xの吸収性が低く、且つ、該光を透過可能な材料からなることが好ましい。また、当該フィルタの機能をバイアス電極90が有していてもよい。
 なお、放射線検出器26は上述のものに限らず、例えば、フレキシブル基板を用いたものでもよい。フレキシブル基板としては、近年開発されたフロート法による超薄板ガラスを基材として用いたものを適用することが、放射線の透過率を向上させるうえで好ましい。なお、この際に適用できる超薄板ガラスについては、例えば、「旭硝子株式会社、"フロート法による世界最薄0.1ミリ厚の超薄板ガラスの開発に成功"、[online]、[平成23年8月20日検索]、インターネット<URL:http://www.agc.com/news/2011/0516.pdf>」に開示されている。
 放射線発生装置12(放射線照射源22A)から電子カセッテ20の放射線検出器26に照射された放射線X(被検者30を透過した放射線X)は、TFT基板70(パネル1)、放射線変換層74、放射線変換層76、及びTFT基板72(パネル2)の順に透過する。
 この際、a-Se等の半導体層を含む直接変換型の放射線変換層74は、シンチレータを含む間接変換型の放射線変換層76と比較して、高画質の放射線画像を生成することができる。しかしながら、a-Se等の半導体層は、シンチレータと比較して放射線Xの高エネルギー成分を吸収しにくいという特性がある。a-SeのKエッジは、シンチレータに用いられるGOS(Gd22S)、CsIまたはBa(例えば、BaFBr、BaFCl)のKエッジよりも低エネルギー側に存在する。従って、放射線変換層74(a-Se)は、放射線Xの低エネルギー成分(低圧エネルギー)を吸収しやすいが、高エネルギー成分(高圧エネルギー)は吸収しにくい。一方、放射線変換層76(GOS、CsIまたはBaのシンチレータ)は、a-Seの半導体層と比較して、放射線Xの高圧エネルギーを吸収しやすいが、低圧エネルギーは吸収しにくいという特性がある。
 なお、本実施の形態で放射線Xの低圧エネルギー(低エネルギー成分)とは、放射線発生装置12の放射線照射源22Aの管電圧が比較的低電圧である場合での該低電圧に応じた放射線Xのエネルギー成分をいう。低圧エネルギーは、被検者30のマンモ、軟部組織又は腫瘍等に吸収されやすい。また、放射線Xの高圧エネルギー(高エネルギー成分)とは、放射線照射源22Aの管電圧が比較的高電圧である場合での該高電圧に応じた放射線Xのエネルギー成分をいう。高圧エネルギーは、被検者30の骨部等に吸収されやすい。
 本実施の形態の放射線検出器26は、放射線Xの照射方向に沿って積層された2つのTFT基板(パネル1及びパネル2)を備えていればよく、その構成は、上述のもの(図2A、図2B参照)に限らない。本実施の形態の放射線検出器26のその他の例について説明する。
 上述(図2A、図2B)の放射線検出器26のように直接変換型の放射線変換層74と、パネル1と、パネル2と、を備えている場合のその他の例について図4A~図4Cに示す。パネル1は、直接変換型の放射線変換層74から電荷を読み出すTFT基板70である。パネル2は、間接変換型の放射線変換層76から電荷を読み出すTFT基板72である。
 図4Aは、放射線Xが照射される側から順に、放射線変換層74と、パネル1としてPSS方式のTFT基板70と、パネル2としてISS方式のTFT基板72と、放射線変換層76とが積層された放射線検出器26を示している。なお、この場合、TFT基板70とTFT基板72とを別個のTFT基板とするのではなく、TFT基板70及びTFT基板72の両者の機能を備えた単一の基板(パネル)としてもよい。
 また、図4Bは、放射線Xが照射される側から順に、パネル1としてISS方式のTFT基板70と、放射線変換層74と、パネル2としてISS方式のTFT基板72と、放射線変換層76とが積層された放射線検出器26を示している。さらに、図4Cは、放射線Xが照射される側から順に、放射線変換層74と、パネル1としてPSS方式のTFT基板70と、放射線変換層76と、パネル2としてPSS方式のTFT基板72とが積層された放射線検出器26を示している。
 いずれの放射線検出器26とするかは、電子カセッテ20により撮影したい放射線画像の特性や仕様等により定めればよい。なお、上述の図2A、図2B及び図4A~図4Cに示した放射線検出器26では、直接変換型の放射線変換層74の方が間接変換型の放射線変換層76よりも放射線Xの照射側(放射線照射源22A)に近い方に設けられるように配置しているがこれに限らない。例えば、放射線変換層74及び放射線変換層76を逆に配置してもよい。なお、低圧エネルギーに感度を有する放射線変換層を放射線Xの照射側(放射線照射源22A)に近い方に設けることが好ましいため、上述の図2A、図2B及び図4A~図4Cに示した放射線検出器26のように配置することが好ましい。
 また、パネル1及びパネル2と、2つの放射線変換層と、を備える本実施の形態の放射線検出器26において、2つの放射線変換層の両者共に直接型の放射線変換層74としてもよいし、間接型の放射線変換層76としてもよい。なお、この場合、2つの放射線変換層の放射線Xに対する感度が異なることが好ましい。間接型の放射線変換層76とした場合の一例を図5Aに示す。
 図5Aでは、放射線Xが照射される側から順に、パネル1としてISS方式のTFT基板72Aと、放射線変換層76Aと、放射線変換層76Bと、パネル2としてPSS方式のTFT基板72Bとが積層された放射線検出器26を示している。この場合、放射線Xの照射側(放射線照射源22A)に近い方に積層された放射線変換層76Aを低圧エネルギーに感度を有する放射線変換層76とし、放射線変換層76Bを高圧エネルギーに感度を有する放射線変換層76とすることが好ましい。
 また、放射線変換層76Aと、放射線変換層76Bとの間に、銅板等のフィルタ75を備えるようにしてもよい。フィルタ75を備えることで、1回の撮影により実質的に管電圧を異ならせた2枚の画像を得ることができるため、エネルギーサブトラクション画像を生成する場合は、フィルタ75を備えることが好ましい。
 また、2つの放射線変換層の両者共に直接型の放射線変換層74とした場合の一例を図5Bに示す。図5Bでは、放射線Xが照射される側から順に、パネル1としてISS方式のTFT基板70Aと、放射線変換層74Aと、放射線変換層74Bと、パネル2としてPSS方式のTFT基板70Bとが積層された放射線検出器26を示している。図5Bに示した放射線検出器26は、TFT基板70Aに放射線変換層(a-Se)74Aを直接蒸着したパネル1と、TFT基板70Bに放射線変換層(a-Se)74Bを直接蒸着したパネル2とを備える。パネル1とパネル2とは、絶縁層77を介して密着されている。なお、パネル1及びパネル2は、それぞれ放射線変換層(a-Se)74(74A、74B)に電圧が印加できるものである。
 さらに、放射線検出器26を、パネル1とパネル2との間に1つの放射線変換層を備えるようにしてもよい。この場合、直接型の放射線変換層74を備える(図6A参照)ようにしてもよいし、間接型の放射線変換層76を備える(図6B参照)ようにしてもよい。
 次に上述の本実施の形態の放射線検出器26を備えた、放射線画像撮影装置である電子カセッテ20の回路構成について説明する。図7に、電子カセッテ20の一例の概略の回路構成図を示す。なお、図7は、電子カセッテ20を放射線Xの照射側から平面視した状態を示している。
 電子カセッテ20は、カセッテ制御部130と、ゲート線ドライバ132と、信号処理部134と、行列方向にマトリックス状に配列された複数の画素140と、を備えている。各画素140は、それぞれ、放射線検出器26のパネル1のTFT基板(TFT基板の一部)及びパネル2のTFT基板(TFT基板の一部)を含んでいる。なお、図2Aに示した放射線検出器26の場合では、さらに放射線変換層74(放射線変換層74の一部)及び放射線変換層76(放射線変換層76の一部)を含んでいる。
 電子カセッテ20は、画素140の行方向と平行に複数のゲート線142A、142Bを備えると共に、画素140の列方向と平行に複数の信号線144A、144Bを備えている。各ゲート線142A、142Bはゲート線ドライバ132に接続され、各信号線144A、144Bは信号処理部134に接続されている。
 ゲート線142A及び信号線144Aは、パネル1に備えられており、ゲート線142B及び信号線144Bは、パネル2に備えられている。すなわち、行方向に配置された各画素140に対して、パネル1(例えば、TFT基板70のTFT94)に接続される1本のゲート線142Aと、パネル2(例えば、TFT基板72のTFT122)に接続される1本のゲート線142Bと、合わせて2本のゲート線142が配設されている。また、列方向に配置された各画素140に対して、パネル1(例えば、TFT基板70のTFT94)に接続される1本の信号線144Aと、パネル2(例えば、TFT基板72のTFT122)に接続される1本の信号線144Bと、合わせて2本の信号線144が備えられている。
 各行毎にパネル1のTFT、及びパネル2のTFTを順次オンにすることにより放射線変換層74で放射線から変換され蓄積された電荷、及び放射線変換層76で放射線から蛍光に変換され、光電変換膜114で蛍光から変換され蓄積された電荷を電気信号として読み出すことができる。具体的には、ゲート線142A及びゲート線142Bに、ゲート線ドライバ132から予め定められたフレームレート(コンソール16から指示されたフレームレート等)に応じて順次オン信号を出力することにより、各パネルのTFTがオン状態になる。各パネルのTFTがオン状態になることにより、それぞれ信号線144A及び信号線144Bに蓄積されていた電荷に応じた電気信号が流れる。
 信号線144A及び信号線144Bに流れた電荷(電気信号)は、信号処理部134に流出する。信号処理部134は、流入した電荷(アナログの電気信号)を増幅回路(図示省略)により増幅した後にA/D(アナログ/デジタル)変換回路(図示省略)でA/D変換を行う。信号処理部134は、デジタル信号に変換された放射線画像(第1画像及び第2画像、詳細後述)をカセッテ制御部130に出力する。
 さらに本実施の形態の放射線検出器26を備えた、電子カセッテ20の機能について説明する。本実施の形態の電子カセッテ20は、パネル1により読み出された電荷に基づいて生成された第1画像(第1画像情報)と、パネル2により読み出された電荷に基づいて生成された第2画像(第2画像情報)と、2つの画像を放射線画像処理装置14に送信する機能を有している。図8に、電子カセッテ20の一例の当該機能に対応した機能ブロック図を示す。
 本実施の形態の電子カセッテ20は、カセッテ制御部130、第1画像情報生成部150、第2画像情報生成部152、タイムスタンプ生成部154、送信部156、及び受信部158を備えている。第1画像情報生成部150は、パネル1で読み取られた電荷に基づいて第1画像(第1画像情報)を生成する。第2画像情報生成部152は、パネル2で読み取られた電荷に基づいて第2画像(第2画像情報)を生成する。
 カセッテ制御部130は、電子カセッテ20全体の動作を制御する機能を有しており、上述の放射線画像撮影システム10のコンソール16と同様に、CPU、ROM、RAM、及びHDDを備えている。CPUは、電子カセッテ20全体の動作を制御する機能を有している。ROMには、CPUで使用される制御プログラムを含む各種プログラム等が予め記憶されている。RAMは、各種データを一時的に記憶する機能を有している。HDD(ハードディスク・ドライブ)は、各種データを記憶して保持する機能を有している。
 送信部156及び受信部158は、無線通信または有線通信により、放射線画像処理装置14やコンソール16等との間で放射線画像の画像情報を含む各種情報の送受信を行う機能を有している。
 カセッテ制御部130は、受信部158で受信したコンソール16または放射線画像処理装置14を介して放射線画像を撮影する撮影条件等を含む撮影メニューに基づいて、放射線画像の撮影を行うように、パネル1及びパネル2を制御する。具体的には、第1画像の撮影を行うようにパネル1(例えば、TFT基板70のTFT94)を駆動させ、読み出した電荷を出力させる。また、第2画像の撮影を行うようにパネル2(例えば、TFT基板72のTFT122)を駆動させ、読み出した電荷を出力させる。なお、動画像の撮影においては、撮影メニュー等に応じて予め定められたフレームレートで、パネル1及びパネル2の各々から電荷が読み出される。なお、パネル1で電荷を読み出す(第1画像を撮影する)フレームレートと、パネル2で電荷を読み出す(第1画像を撮影する)フレームレートとは、同一であってもよいし、異なっていてもよい。フレームレートをどのようにするかは、撮影条件や、パネル1及びパネル2の特性により定められるようにしてもよい。
 第1画像情報生成部150は、パネル1により読み出された電荷に基づいて放射線画像である第1画像を示す第1画像情報を生成する。また、第2画像情報生成部152は、パネル2により読み出された電荷に基づいて放射線画像である第2画像を示す第2画像情報を生成する。動画像の撮影の際には、上述のように各々フレームレートに応じた枚数の複数の第1画像(第1画像情報)及び第2画像(第2画像情報)が生成される。
 タイムスタンプ生成部154は、第1画像情報及び第2画像情報に対応するタイムスタンプを生成する機能を有している。具体的には、タイムスタンプ生成部154は、パネル1において、撮影のためにTFT(図2A及び図2Bに示した放射線検出器26では、TFT基板70のTFT94)をオフ状態にして電荷を蓄積した蓄積タイミング及び蓄積期間を表すタイムスタンプを生成する。また、タイムスタンプ生成部154は、パネル2において、撮影のためにTFT(図2A及び図2Bに示した放射線検出器26では、TFT基板72のTFT122)をオフ状態にして電荷を蓄積した蓄積タイミング及び蓄積期間を表すタイムスタンプを生成する。タイムスタンプの生成の仕方は特に限定されないが、例えば、予め定められたフレームレートに基づいて、図示を省略したタイマー等を用いて蓄積タイミング及び蓄積期間を取得して生成するようにすればよい。なお、タイムスタンプは、パネル1(第1画像)及びパネル2(第2画像)における電荷を蓄積した蓄積タイミング及び蓄積期間をそれぞれ表しているものであれば特に限定されない。例えば、電荷の蓄積開始及び終了の時刻そのものであってもよいし、撮影開始からの時間であってもよい。
 カセッテ制御部130は、第1画像情報生成部150で生成された複数の第1画像(第1画像情報)及び第2画像情報生成部152で生成された複数の第2画像(第2画像情報)毎に、タイムスタンプ生成部154で生成されたタイムスタンプを付与して、送信部156により、放射線画像処理装置14へ送信する。
 なお、第1画像(第1画像情報)及び第2画像(第2画像情報)は、無線通信、または有線通信のいずれで送信(転送)してもよいが、複数の経路(通信経路157A、157B)を用いて、2系統を独立させて転送することが高速化の観点からも好ましい。また例えば、画像の情報量(転送量)や転送速度に応じて、無線通信を行うか、有線通信を行うかを定めてもよい。
 次に、本実施の形態の放射線画像撮影システム10(放射線画像処理装置14)における、放射線画像処理機能について説明する。本実施の形態では、放射線画像処理として、電子カセッテ20から受信した第1画像及び第2画像と、第1画像と第2画像とを合成した合成画像(詳細後述)と、の表示の制御を行う。図9には、放射線画像処理機能の一例を説明するための機能ブロック図を示す。なお、当該ブロック図は、放射線画像処理機能を機能別に分類したものであり、ハード構成を限定するものではない。
 本実施の形態の放射線画像撮影システム10(放射線画像処理装置14)は、図9に示すように、表示制御部160、合成画像生成部162、補間画像生成部164、受付部166、合成比率設定部168、合成チャート生成部170、及び受信部68Aを備えている。なお、図9では、ディスプレイ23(操作パネル24)及びディスプレイ50(操作パネル54)を共通化して記載している。
 本実施の形態の放射線画像撮影システム10(放射線画像処理装置14)では、電子カセッテ20から受信部68A(により受信した第1画像情報と第2画像情報とを記憶部17に記憶させ、記憶部17から第1画像情報と第2画像情報とを読み出して合成画像情報を生成・表示させている。なお、本実施の形態では、I/F部68のうち、受信機能に対応する構成を受信部68Aという。
 合成画像生成部162は、記憶部17から第1画像情報と第2画像情報とを読み出して合成比率設定部168に設定された合成比率で合成した合成画像(合成画像情報)を生成する。この際、合成画像生成部162は、第1画像情報及び第2画像情報に付与されているタイムスタンプに基づいて、同一タイミングで電化の蓄積が行われた、または、行われたとみなせる第1画像情報と第2画像情報とを合成する。
 一般に、動画像を撮影する場合、被検者30の被曝量が多くなってしまうのを避けるため、1ショット(1枚:1フレーム)当たりの線量を少なくする。そのため、1ショット当たりの電荷の蓄積時間が静止画像を撮影する場合に比べて短くなる。これに対して本実施の形態の放射線画像処理装置14では、パネル1及びパネル2の各々から得られた画像情報(第1画像情報及び第2画像情報)を合成して合成画像として動画像を生成することにより、動画像の画質を向上させる。第1画像情報と第2画像情報とを合成する際、パネル1及びパネル2の特性、放射線変換層の特性、及び撮影条件等により、単に合成(画像情報の加算)を行ってしまうと、読影者の所望する画質の放射線画像が得られなかったり、画質が劣化したりする場合がある。
 図2A及び図2Bに示した放射線検出器26(電子カセッテ20)の場合では、第1画像情報は、主に直接変換型の放射線変換層74で放射線から変換された電荷を読み出すTFT基板70をパネル1として得られる。第2画像情報は、主に間接変換型の放射線変換層76で放射線から変換された電荷を読み出すTFT基板72をパネル2として得られる。このような場合では、第1画像情報と、第2画像情報と、を合成する場合、放射線変換層74と放射線変換層76とでは、上述したように特性が異なる。そのため、特性に応じた重み付け(合成比率)により合成することにより高画質の動画像を得ることができる。例えば、放射線変換層74は、放射線Xの低圧エネルギーの吸収に優れており、被検者30の軟部組織または腫瘍等の撮影に用いるのが好ましい。一方、放射線変換層76は、放射線Xの高圧エネルギーの吸収に優れており、被検者30の骨部等の撮影に用いるのが好ましい。このような場合、軟部組織または腫瘍等、及び骨部等の一方の画像を強調して他方を除去した放射線画像(エネルギーサブトラクション画像という)を得ることができる。そのため、本実施の形態では、読影者がいずれを観察したいか(いずれを強調するか)に応じて設定した合成比率を用いるようにしている。なお、エネルギーサブトラクション画像は、図2A及び図2Bに示した放射線検出器26を用いる場合に限らず、上述したように、図5に示した放射線検出器26等を用いても得ることができる。
 また、図4Aに示した放射線検出器26を用いる場合、通常時には、感度が高いパネル1であるTFT基板70(PSS方式の放射線変換層に対応するTFT基板)により得られた放射線画像(第1画像)により診断(読影)を行う。診断の確度を向上させる場合や、第1画像のみでは、観察したい関心物(腫瘍や腫瘤等)が見づらい場合等は、読影者の判断により、パネル2であるTFT基板72(ISS方式の放射線変換層に対応するTFT基板)により得られた放射線画像(第2画像)を加算(合成)するようにすることが好ましい。
 また、電子カセッテ20(放射線検出器26)に照射される放射線Xの線量やエネルギーにより得られる放射線画像の画質が異なる場合がある。このような場合は、単に第1画像情報と第2画像情報とを合成するよりも、撮影条件(主に管電圧)や、読影者の所望により、合成比率を設定することが好ましい。図10Aには、照射される放射線Xが低エネルギーである場合を模式的に示す。この場合、放射線変換層において入射側での発光量が、反入射側の発光量に比べて相対的に多く、反入射側であるパネル2では、伝播距離が長いため、反入射側にあるパネル2により得られる第2画像は、画像がボケることがある。そのため、このような場合は、第2画像情報を加算せず、第1画像情報から得られる第1画像を動画像として表示させることが好ましい。なお、このように、パネル1及びパネル2の一方により得られた放射線画像(第1画像または第2画像)を表示させる場合は、加算しない放射線画像(ここでは、第2画像)の画像情報の合成比率を「0」にして、合成するようにすればよい。
 一方、図10Bには、照射される放射線Xが高エネルギーである場合を模式的に示す。この場合、放射線変換層において反入射側においても発光量が充分にあり、入射側の発光量と反入射側の発光量とが余り変わらない。そのため、反入射側にあるパネル2により得られる第2画像の画像ボケが抑えられる。従って、このような場合、第1画像情報と第2画像情報とを加算(例えば、同等の合成比率で加算)してもよいし、反入射側にあるパネル2を重視(反入射側の合成比率を高く)してもよい。
 補間画像生成部164は、合成画像生成部162が読み出した第1画像情報または第2画像情報と合成すべきタイムスタンプを有する画像情報(第2画像情報または第1画像情報)が存在しない場合に、補間画像を生成する。この場合、合成画像生成部162は、読み出した第1画像情報または第2画像情報と、生成された補間画像とを合成して合成画像情報を生成する。
 表示制御部160は、ディスプレイ23及びディスプレイ50への放射線画像等の表示を制御する機能を有している。本実施の形態では、ディスプレイ23及びディスプレイ50の表示領域には、記憶部17に記憶されている第1画像情報に応じた第1画像180、記憶部17に記憶されている第2画像情報に応じた第2画像182、合成画像生成部162で合成された合成画像184、及び合成チャート生成部170で生成された合成チャート186が表示される。
 合成チャート186は、第1画像情報と第2画像情報との合成比率を示すものである。本実施の形態では、読影者は、ディスプレイ23またはディスプレイ50に表示された第1画像180、第2画像182、及び合成画像184を見て、合成チャート186に対して指示入力を行うことにより第1画像180と第2画像182との合成比率を設定することができる。受付部166は、読影者が合成チャート186によって指示入力した合成比率を受け付ける機能を有している。合成比率設定部168は、受付部166で受け付けた合成比率を設定する。
 合成チャート生成部170は、予め定められた合成比率(初期値)または合成比率設定部168で設定された合成比率を表す画像(合成チャート)を生成する機能を有している。
 次に、本実施の形態の放射線画像撮影システム10(放射線画像処理装置14)における、放射線画像処理について詳細に説明する。本実施の形態の放射線画像処理の一例のフローチャートを図11に示す。なお、当該放射線画像処理は、放射線画像処理装置14のシステム制御部60または、コンソール16のCPUにより放射線画像処理のプログラムが実行されることにより行われる。本実施の形態では、当該プログラムは、システム制御部60内の記憶部(図示省略)やROM等に予め記憶させておくが、外部ステム(RIS)やCD-ROM、及びUSB等からダウンロードするようにしてもよい。
 図11に示した放射線画像処理は、放射線画像が撮影された際、または読影者から動画像の読影(表示)が指示された場合に実行される。
 ステップS100では、受信部68Aにより受信した第1画像情報を記憶部17に記憶させる。次のステップS102では、受信部68Aにより受信した第2画像情報を記憶部17に記憶させる。なお、予め記憶部17に記憶させておいた第1画像情報及び第2画像情報を読み出して合成画像(動画像)を表示させる場合は、ステップS100及びステップS102を省略し、ステップS104からスタートする。
 次のステップS104では、表示制御部160により記憶部17から読み出した第1画像情報に基づいて、第1画像180を表示させる。ここでは、記憶部17に記憶されている動画像に対応する複数の第1画像情報から1つ(1枚)の第1画像情報を第1画像180として表示させる。ディスプレイ(23、50)の表示状態の具体的一例を図12に示す。次のステップS106では、表示制御部160により記憶部17から読み出した第2画像情報に基づいて、第2画像182を表示させる。ここでは、記憶部17に記憶されている動画像に対応する複数の第2画像情報から1つ(1枚)の第2画像情報を第2画像182として表示させる。次のステップS108では、合成チャート生成部170により、合成比率設定部168により設定されている合成比率を示す合成チャートを生成し、合成チャート186を表示させる。
 次のステップS110では、合成比率の変更が有るか否か判断する。受付部166で合成比率の指示入力を受け付けていない場合は、否定されてステップS114へ進む。一方、合成比率の指示入力を受け付けた場合は、肯定されてステップS112へ進み、受付部166で受け付けた合成比率を合成比率設定部168により設定した後、ステップS114へ進む。
 ステップS114では、合成画像生成・表示処理(詳細後述)を行って、第1画像と第2画像とを合成した合成画像を生成し、ディスプレイ(23、50)に表示させた後、ステップS116へ進む。
 ステップS116では、本処理を終了するか否か判断する。まだ表示させていない動画像(動画像に対応する第1画像情報及び第2画像情報)が有る場合等は、否定されてステップS104に戻り、本処理を繰り返す。一方、動画像の表示を終了する場合は、肯定されて本処理を終了する。
 次に、上述のステップS114の合成画像生成・表示処理について詳細に説明する。図13に、合成画像生成・表示処理の一例のフローチャートを示す。
 ステップS200では、記憶部17に記憶されている第1画像情報のフレームレートと、記憶部17に記憶されている第2画像情報のフレームレートと、が同一であるか否か判断する。なお、第1画像情報のフレームレートとは、第1画像情報をパネル1により撮影した際のフレームレートである。また、第2画像情報のフレームレートとは、第2画像情報をパネル2により撮影した際のフレームレートである。本実施の形態では、第1画像情報に付与されているタイムスタンプ及び第2画像情報に付与されているタイムスタンプを比較して、一致する場合に、同一であると判断する。なお、予め撮影メニュー(撮影条件)等が対応付けられており、フレームレートが判っている場合は、それにより同一であるか否かを判断するようにしてもよい。図2A及び図2Bに示した放射線検出器26を備えた電子カセッテ20のフレームレートの具体的一例を図14に示す。図14では、フレーム数が同一の場合として、パネル1及びパネル2のフレーム数が6(6枚、F11~F16、及びF21~F26に対応)の場合を示している。また、フレーム数が非同一の場合として、パネル2のフレーム数が3(3枚、F2’1~F2’3に対応)の場合を示している。例えば、パネル2が静止画の撮影に主に用いられるパネル(TFT基板)として設定されており、電荷の蓄積時間が長い場合等、このようにフレーム数が非同一となる場合がある。また例えば、直接変換型の放射線変換層74と間接変換型の放射線変換層76とでは、放射線Xに応じた電荷量が異なるため、電荷蓄積時間を異ならせる必要があり、その結果フレームレートが非同一となる場合がある。
 なお、本実施の形態では、図14に示すように、動画像の撮影中、全てのショット(フレーム)の撮影(電荷の蓄積)が終了するまで、連続して放射線照射源22Aから放射線Xが電子カセッテ20に照射される連続照射を行っている。
 フレームレートが同一である場合は、肯定されてステップS202へ進む。ステップS202では、同一フレーム(同一タイムスタンプ)の第1画像情報と、第2画像情報とを合成画像生成部162により合成し、合成画像情報を生成した後、ステップS216へ進む。本実施の形態では、上述のステップS104及びステップS106(図11参照)によりディスプレイ(23、50)に表示させた第1画像180の第1画像情報と第2画像182の第2画像情報とを合成した合成画像情報を生成する。
 一方、フレームレートが同一でない場合は、否定されてステップS204へ進む。ステップS204では、上述のステップS104及びステップS106(図11参照)によりディスプレイ(23、50)に表示させた第1画像180の第1画像情報に付与されているタイムスタンプと第2画像182の第2画像情報に付与されているタイムスタンプとを取得する。
 次のステップS206では、取得したタイムスタンプが同一であるか否か判断する。同一である場合は、肯定されてステップS208へ進む。ステップS208では、第1画像情報と第2画像情報とを合成して合成画像情報を生成した後、ステップS216へ進む。図14に示した場合では、第1画像情報(パネル1)のフレームF11に対しては、第2画像情報(パネル2)のフレームF21を合成して合成画像を生成する。同様に、第1画像情報(パネル1)のフレームF12に対しては、第2画像情報(パネル2)のフレームF22を合成して合成画像を生成し、第1画像情報(パネル1)のフレームF13に対しては、第2画像情報(パネル2)のフレームF23を合成して合成画像を生成する。なお、電荷の蓄積タイミング及び蓄積期間の両者が同一である場合に限らず、蓄積期間が重複する場合や、重複せずとも、一方の蓄積タイミング(蓄積開始タイミング及び蓄積終了タイミング)から予め定められた期間内(許容範囲とする期間)に電荷の蓄積が行われた場合等をタイムスタンプが同一であるとしてもよい。いずれとするかは、読影者の所望の画質等により定めるようにしてもよい。なお、合成画像の生成方法は特に限定されないが、例えば、画素毎に電荷量(電荷量に応じた電気信号)を加算または除算等して合成すればよい。
 一方、タイムスタンプが同一ではない場合(例えば、パネル1のフレームF12に対応する第1画像180、及びパネル2のフレームF2’1に対応する第2画像182が表示されている場合)は、否定されてステップS210へ進む。ステップS210では、画像情報の補間画像の生成を行うか否か判断する。なお、補間画像の生成を行うか否かは、撮影条件等に応じて予め定められていてもよいし、読影者が図示を省略した指示入力部または、操作パネル(24、54)等を用いて指示してもよい。補間画像の作成を行わない場合は、否定されて本処理を終了する。
 一方、補間画像の生成を行う場合は、肯定されてステップS212へ進む。ステップS212では、補間画像情報を生成する。例えば、フレームF12に対応する第1画像180が表示されている場合、フレームF2’1に対応する第2画像情報とフレームF2’2に対応する第2画像情報とを用いて、補間画像情報を生成する。なお、補間画像情報の生成の仕方は特に限定されず、例えば、2つの第2画像情報の中間値(各画素の画素値の中間値)を用いてもよい。
 次のステップS214では、第1画像情報または第2画像情報と、生成された補間画像情報と、を合成して合成画像情報を生成する。上述した例では、フレームF12に対応する第1画像情報と補間画像情報とを合成して合成画像情報を生成する。
 次のステップS216では、合成された合成画像情報に応じた合成画像184をディスプレイ(23、50)に表示させた後、本処理を終了する。
 以上、説明したように本実施の形態の放射線画像撮影システム10に備えられた電子カセッテ20の放射線検出器26では、2つのパネル(放射線Xの照射側に配置されたパネル1及び放射線Xの非照射側に配置されたパネル2)を備えている。放射線検出器26では、パネル1により読み出された電荷に応じた第1画像情報、及びパネル2により読み出された電荷に応じた第2画像情報を生成し、それぞれ各フレーム毎に、電荷の蓄積期間及び蓄積タイミングを示すタイムスタンプを付与して、電子カセッテ20に出力する。放射線画像処理装置14は、第1画像情報及び第2画像情報を受信して、タイムスタンプに基づいて、タイムスタンプが同一、またはタイムスタンプが同一とみなせる第1画像情報と第2画像情報とを合成した合成画像情報を生成する。放射線画像処理装置14は、ディスプレイ23またはディスプレイ50に当該合成画像情報に基づいて動画像(合成画像)を表示させるよう制御する。
 このように本実施の形態では、放射線検出器26がパネル1及びパネル2を備えており、それぞれにより得られた第1画像情報と第2画像情報とを合成することにより、1画素当りの画像情報(電荷量)を適切にすることができる。そのため、本実施の形態では、高画質の合成画像として動画像を表示させることができる。従って、動画像の画質を向上させることができる。
 なお、本実施の形態では、動画撮影中は放射線照射源22Aから電子カセッテ20(放射線検出器26)に対して放射線Xを照射し続ける連続照射を行う場合(図14参照)について説明したがこれに限らない。例えば、電荷の蓄積期間に応じて断続的に放射線Xを照射する、いわゆるパルス照射(図15参照)を行うようにしてもよい。なお、第1画像情報に対応するフレームレートと第2画像情報に対応するフレームレートとが異なる場合、フレームレートが遅い方の電荷の転送中に放射線Xが照射されると、適切な放射線画像情報(第1画像情報または第2画像情報)が得られない場合がある。そのため、このようにフレームレートが異なる場合は、本実施の形態のように連続照射を行うことが好ましい。、放射線画像撮影システム10(放射線画像処理装置14)が撮影条件等に基づいてフレームレートが異なると判断した場合は、連続照射を行わせるように、放射線発生装置12を制御することが好ましい。
 なお、フレームレートが異なる場合において放射線Xのパルス照射を行う場合は、電荷蓄積期間は放射線Xが照射され、蓄積期間外は、放射線Xが照射されにようにそれぞれの電荷蓄積期間に応じて開閉するシャッター等を設けることが好ましい。
 その他、上記本実施の形態で説明した放射線画像撮影システム10、放射線画像処理装置14、電子カセッテ20、及び放射線検出器26等の構成、放射線画像処理等は一例である。これらは、本発明の主旨を逸脱しない範囲内において状況に応じて変更可能であることは言うまでもない。
 また、上記本実施の形態で説明した放射線は、特に限定されるものではなく、X線やγ線等を適用することができる。
 日本出願2011-239679の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
10 放射線画像撮影システム
14 放射線画像処理装置
16 コンソール
70 TFT基板(直接変換型に応じたTFT基板基板)
72 TFT基板(間接変換型に応じたTFT基板基板)
74 放射線変換層(直接変換型)
76 放射線変換層(間接変換型)
20 電子カセッテ
26 放射線検出器
68 I/F部、68A 受信部
130 カセッテ制御部
150 第1画像情報生成部
152 第2画像情報生成部
154 タイムスタンプ生成部
156 送信部
160 表示制御部
162 合成画像生成部
164 補間画像生成部
168 合成比率設定部

Claims (14)

  1.  照射された放射線に応じて放射線を電荷及び蛍光の少なくとも一方に変換する放射線変換部、前記放射線変換部で変換されて蓄積された電荷を検出する第1電荷検出部または前記放射線変換部で変換された蛍光を変換して蓄積された電荷を検出する第2電荷検出部のいずれかを前記放射線変換部に応じて備えた第1基板、前記第1電荷検出部または前記第2電荷検出部のいずれかを前記放射線変換部に応じて備えた第2基板を備えた放射線検出器と、動画撮影を行う際に予め定められたフレームレートで、前記第1基板によって検出された電荷に基づいて第1画像情報を生成すると共に、前記第2基板によって検出された電荷に基づいて第2画像情報を生成する生成手段と、前記生成手段によって生成された前記第1画像情報及び前記第2画像情報を外部に送信する送信手段と、を備えた放射線画像撮影装置と、
     前記送信手段から送信された前記第1画像情報及び前記第2画像情報を受信する受信手段と、前記受信手段によって受信された前記第1画像情報及び前記第2画像情報のうちの一方の画像情報と、前記生成手段で当該一方の画像情報を生成した際の電荷の蓄積タイミングから予め定められた範囲内のタイミングで蓄積された電荷に基づいて生成された他方の画像情報と、を合成した合成画像情報を生成する合成手段と、前記合成手段によって得られた合成画像情報を用いて動画像を表示手段に表示させるよう制御する制御手段と、を備えた放射線画像処理装置と、
     を備えた放射線画像撮影システム。
  2.  前記送信手段は、前記第1画像情報と共に、前記生成手段が当該第1画像情報を生成した際の電荷の蓄積タイミングを示すタイムスタンプを送信し、かつ、前記第2画像情報と共に、前記生成手段が当該第2画像情報を生成した際の電荷の蓄積タイミングを示すタイムスタンプを送信し、前記合成手段は、前記受信手段で受信したタイムスタンプに基づいて、前記第1画像情報と前記第2画像情報とを合成する、請求項1に記載の放射線画像撮影システム。
  3.  前記放射線画像処理装置は、前記第1画像情報及び前記第2画像情報の予め定められたフレームレートが異なる場合に、いずれか一方の予め定められたフレームレートに合うように、補間画像情報を生成する補間手段を備え、前記合成手段は、前記補間画像情報を用いて、合成画像情報を生成する、請求項1または請求項2に記載の放射線画像撮影システム。
  4.  前記制御手段は、前記第1画像情報に応じた第1画像及び前記第2画像情報に応じた第2画像を前記表示手段に表示させるよう制御する、請求項1から請求項3のいずれか1項に記載の放射線画像撮影システム。
  5.  前記合成手段が前記第1画像情報と前記第2画像情報とを合成する合成比率を受け付ける受付手段を備えた、請求項1から請求項4のいずれか1項に記載の放射線画像撮影システム。
  6.  前記送信手段は、前記第1画像情報及び前記第2画像情報を異なる経路によって送信する、請求項1から請求項5のいずれか1項に記載の放射線画像撮影システム。
  7.  前記放射線変換部は、前記第1基板に積層された第1放射線変換層と、前記第2基板に積層された放射線に対する感度が前記第1放射線変換層と異なる第2放射線変換層と、を備えた、請求項1から請求項6のいずれか1項に記載の放射線画像撮影システム。
  8.  前記第1放射線変換層は、放射線を電荷に変換する直接変換型であり、前記第2放射線変換層よりも放射線の照射側に設けられている、請求項7に記載の放射線画像撮影システム。
  9.  前記第1放射線変換層は、前記第2放射線変換層よりも放射線の低エネルギー成分に感度を有しており、前記第2放射線変換層よりも放射線の照射側に設けられている、請求項7または請求項8に記載の放射線画像撮影システム。
  10.  放射線照射装置と、
     前記生成手段で生成される第1画像情報及び第2画像情報の予め定められたフレームレートが異なる場合は、動画撮影を行っている期間、前記放射線検出器に連続的に放射線が照射されるよう前記放射線照射装置を制御する放射線照射制御手段と、
     を備えた、請求項1から請求項9のいずれか1項に記載の放射線画像撮影システム。
  11.  前記請求項1から前記請求項10のいずれか1項に記載の放射線画像撮影システムに備えられる、放射線画像処理装置。
  12.  前記請求項1から前記請求項10のいずれか1項に記載の放射線画像撮影システムに備えられる、放射線画像撮影装置。
  13.  照射された放射線に応じて放射線を電荷及び蛍光の少なくとも一方に変換する放射線変換部、前記放射線変換部で変換されて蓄積された電荷を検出する第1電荷検出部または前記放射線変換部で変換された蛍光を変換して蓄積された電荷を検出する第2電荷検出部のいずれかを前記放射線変換部に応じて備えた第1基板、前記第1電荷検出部または前記第2電荷検出部のいずれかを前記放射線変換部に応じて備えた第2基板を備えた放射線検出器により動画撮影を行う際に予め定められたフレームレートで、前記第1基板によって検出された電荷に基づいて第1画像情報を生成すると共に、前記第2基板によって検出された電荷に基づいて第2画像情報を生成する生成工程と、
     前記生成工程によって生成された前記第1画像情報及び前記第2画像情報を外部に送信する送信工程と、
     前記送信工程により送信された前記第1画像情報及び前記第2画像情報を受信する受信工程と、
     前記受信工程によって受信された前記第1画像情報及び前記第2画像情報のうちの一方の画像情報と、前記生成手段で当該一方の画像情報を生成した際の電荷の蓄積タイミングから予め定められた範囲内のタイミングで蓄積された電荷に基づいて生成された他方の画像情報と、を合成した合成画像情報を生成する合成工程と、
     前記合成工程によって得られた合成画像情報を用いて動画像を表示手段に表示させるよう制御する制御工程と、
     を備えた放射線動画像処理方法。
  14.  照射された放射線に応じて放射線を電荷及び蛍光の少なくとも一方に変換する放射線変換部、前記放射線変換部で変換されて蓄積された電荷を検出する第1電荷検出部または前記放射線変換部で変換された蛍光を変換して蓄積された電荷を検出する第2電荷検出部のいずれかを前記放射線変換部に応じて備えた第1基板、前記第1電荷検出部または前記第2電荷検出部のいずれかを前記放射線変換部に応じて備えた第2基板を備えた放射線検出器と、動画撮影を行う際に予め定められたフレームレートで、前記第1基板によって検出された電荷に基づいて第1画像情報を生成すると共に、前記第2基板によって検出された電荷に基づいて第2画像情報を生成する生成手段と、前記生成手段によって生成された前記第1画像情報及び前記第2画像情報を外部に送信する送信手段と、を備えた放射線画像撮影装置の、前記送信手段から送信された前記第1画像情報及び前記第2画像情報を受信する受信手段と、前記受信手段によって受信された前記第1画像情報及び前記第2画像情報のうちの一方の画像情報と、前記生成手段で当該一方の画像情報を生成した際の電荷の蓄積タイミングから予め定められた範囲内のタイミングで蓄積された電荷に基づいて生成された他方の画像情報と、を合成した合成画像情報を生成する合成手段と、前記合成手段によって得られた合成画像情報を用いて動画像を表示手段に表示させるよう制御する制御手段と、を備えた放射線画像処理装置の前記合成手段及び前記制御手段としてコンピュータを機能させるための、放射線動画像処理プログラム。
PCT/JP2012/078034 2011-10-31 2012-10-30 放射線画像撮影システム、放射線画像処理装置、放射線画像撮影装置、放射線動画像処理方法、及び放射線動画像処理プログラム WO2013065681A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011239679 2011-10-31
JP2011-239679 2011-10-31

Publications (1)

Publication Number Publication Date
WO2013065681A1 true WO2013065681A1 (ja) 2013-05-10

Family

ID=48192028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078034 WO2013065681A1 (ja) 2011-10-31 2012-10-30 放射線画像撮影システム、放射線画像処理装置、放射線画像撮影装置、放射線動画像処理方法、及び放射線動画像処理プログラム

Country Status (1)

Country Link
WO (1) WO2013065681A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108966642A (zh) * 2017-03-22 2018-12-07 富士胶片株式会社 放射线检测器以及放射线图像摄影装置
JP2019024570A (ja) * 2017-07-25 2019-02-21 キヤノンメディカルシステムズ株式会社 X線診断装置
JP2021512712A (ja) * 2018-02-07 2021-05-20 イリノイ トゥール ワークス インコーポレイティド デジタルx線撮像のためのシステム及び方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249182A (ja) * 2000-03-06 2001-09-14 Fuji Photo Film Co Ltd 固体センサおよび放射線画像情報取得装置
JP2003199733A (ja) * 2001-09-26 2003-07-15 Siemens Ag X線画像メモリ、x線画像メモリの使用方法、サブトラクション血管造影原理による被検者の検査方法及びx線画像検出器
JP2010082321A (ja) * 2008-10-01 2010-04-15 Toshiba Corp X線画像診断装置
JP2011022132A (ja) * 2009-06-17 2011-02-03 Fujifilm Corp 放射線検出装置及び放射線画像検出システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249182A (ja) * 2000-03-06 2001-09-14 Fuji Photo Film Co Ltd 固体センサおよび放射線画像情報取得装置
JP2003199733A (ja) * 2001-09-26 2003-07-15 Siemens Ag X線画像メモリ、x線画像メモリの使用方法、サブトラクション血管造影原理による被検者の検査方法及びx線画像検出器
JP2010082321A (ja) * 2008-10-01 2010-04-15 Toshiba Corp X線画像診断装置
JP2011022132A (ja) * 2009-06-17 2011-02-03 Fujifilm Corp 放射線検出装置及び放射線画像検出システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108966642A (zh) * 2017-03-22 2018-12-07 富士胶片株式会社 放射线检测器以及放射线图像摄影装置
JP2019024570A (ja) * 2017-07-25 2019-02-21 キヤノンメディカルシステムズ株式会社 X線診断装置
JP7179448B2 (ja) 2017-07-25 2022-11-29 キヤノンメディカルシステムズ株式会社 X線診断装置
JP2021512712A (ja) * 2018-02-07 2021-05-20 イリノイ トゥール ワークス インコーポレイティド デジタルx線撮像のためのシステム及び方法
US11596370B2 (en) 2018-02-07 2023-03-07 Illinois Tool Works Inc. Systems and methods for digital x-ray imaging
JP7245251B2 (ja) 2018-02-07 2023-03-23 イリノイ トゥール ワークス インコーポレイティド デジタルx線撮像のためのシステム及び方法

Similar Documents

Publication Publication Date Title
Yaffe et al. X-ray detectors for digital radiography
US7834321B2 (en) Apparatus for asymmetric dual-screen digital radiography
JP5714770B2 (ja) 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラム
CN104335572B (zh) 放射线图像摄影装置、放射线图像摄影系统、放射线图像摄影装置的控制程序及放射线图像摄影装置的控制方法
Kasap et al. Direct-conversion flat-panel X-ray image sensors for digital radiography
JP2011022132A (ja) 放射線検出装置及び放射線画像検出システム
WO2012014706A1 (ja) 放射線検出器及び放射線検出器の製造方法
JP2011000235A (ja) 放射線検出装置及び放射線画像検出システム
WO2013065645A1 (ja) 放射線画像撮影装置、プログラムおよび放射線画像撮影方法
US20140023179A1 (en) Detection limit calculation device, radiation detection device, radiographic image capture system, computer-readable storage medium, and detection limit calculation method
WO2013180076A1 (ja) 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラム
JP7418334B2 (ja) X線イメージングのためのディテクター
JP2011137804A (ja) 放射線撮像装置
WO2013015016A1 (ja) 放射線撮影装置
JP6138715B2 (ja) 放射線画像撮影システム、放射線画像撮影システムの制御方法、及び放射線画像撮影システムの制御プログラム
Liu et al. flat‐panel versus computed radiography for chest imaging applications: image quality metrics measurement
WO2013065681A1 (ja) 放射線画像撮影システム、放射線画像処理装置、放射線画像撮影装置、放射線動画像処理方法、及び放射線動画像処理プログラム
WO2013065680A1 (ja) 放射線画像撮影装置、放射線画像処理装置、放射線画像撮影システム、放射線画像撮影方法、及び放射線画像撮影プログラム
WO2013065682A1 (ja) 放射線画像撮影装置、放射線画像処理装置、放射線画像撮影システム、放射線画像撮影方法、及び放射線画像撮影プログラム
JP5172573B2 (ja) 残像補正方法および装置
JP2019152595A (ja) 放射線画像検出装置
JP6987674B2 (ja) 放射線画像検出装置
WO2013125325A1 (ja) 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラム
JP2012032170A (ja) 放射線検出器及び放射線検出器の製造方法
Kim Development of Energy-Integrating Detectors for Large-Area X-Ray Imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP