WO2013065490A1 - 板状物の加工装置及び板状物の加工方法 - Google Patents

板状物の加工装置及び板状物の加工方法 Download PDF

Info

Publication number
WO2013065490A1
WO2013065490A1 PCT/JP2012/076859 JP2012076859W WO2013065490A1 WO 2013065490 A1 WO2013065490 A1 WO 2013065490A1 JP 2012076859 W JP2012076859 W JP 2012076859W WO 2013065490 A1 WO2013065490 A1 WO 2013065490A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
chamfering
chamfering grindstone
grindstone
edge
Prior art date
Application number
PCT/JP2012/076859
Other languages
English (en)
French (fr)
Inventor
英雄 本村
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2013065490A1 publication Critical patent/WO2013065490A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/10Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass
    • B24B9/102Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass for travelling sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/02Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant

Definitions

  • the present invention relates to a plate-shaped material processing apparatus and a plate-shaped material processing method.
  • Glass plates (plates) for FPD (FLAT PANEL DISPLAY) used for liquid crystal displays, plasma displays, etc. are formed by forming molten glass into plates and then cutting them into glass plates of a predetermined rectangular size using a cutting device. Is done. Thereafter, the glass plate is chamfered by grinding the edge thereof with a chamfering grindstone of a chamfering device (processing device). As a chamfering device, it is known as in Patent Document 1.
  • the chamfering device described in Patent Document 2 includes a chamfering grindstone, a cooling liquid (grinding liquid) injection nozzle, and the like.
  • the chamfering grindstone is rotated around an axis parallel to an axis perpendicular to the plane of the glass plate, and the rotation direction is set to a direction opposite to the conveyance direction of the glass plate in the grinding portion of the glass plate. ing.
  • the outer peripheral surface used as the grinding surface of the chamfering grindstone is substantially concave and has an arcuate cross-sectional contour shape, and the edge of the glass plate is ground into an arcuate cross-sectional shape.
  • the coolant injection nozzle is configured to inject coolant toward the contact portion from the upstream side in the rotation direction of the chamfering grindstone with reference to the contact portion between the glass plate and the chamfering grindstone. ing.
  • a pair of coolant (coolant) injection nozzles described in Patent Document 3 are disposed on both sides of the workpiece, and are disposed obliquely above the contact portion between the workpiece and the grindstone, and the contact Coolant is sprayed from an oblique direction toward the portion and the vicinity thereof. That is, the processing apparatus of Patent Document 3 includes two coolant injection nozzles.
  • Japanese Unexamined Patent Publication No. 2002-160147 Japanese Unexamined Patent Publication No. 2009-172749 Japanese Unexamined Patent Publication No. 2007-30051
  • the coolant spray nozzle is not installed at the optimal position, so the coolant sprayed from the coolant spray nozzle is not sprayed to the optimal position, and the glass plate after grinding is not Burning and chipping occurred at the edge, causing cracks in the glass plate and inhibiting productivity.
  • a chamfering grindstone rotating at a high speed of 5000 rpm or more forms a thick air layer along the outer peripheral surface of the rotating chamfering grindstone.
  • the coolant injection pressure and the injection amount for penetrating the air layer are set, but the coolant injection nozzle is not installed at the optimum position. Has the problem that the injection pressure and the injection amount become unnecessarily large, and the load of the coolant injection device becomes large.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a plate-like material processing apparatus and a plate-like material processing method including an injection unit that injects a coolant at an optimum position. To do.
  • the present invention provides a surface plate for holding a plate-like object, and a disk-like or columnar surface for chamfering by grinding an edge of the plate-like object held by the surface plate.
  • Moving means for moving the object along the edge of the plate-like object, and injection means for injecting a cooling liquid to a contact portion between the grinding surface of the chamfering grindstone and the edge of the plate-like object
  • a processing apparatus for a plate-like object, wherein the injection means injects the cooling liquid in an in-plane direction perpendicular to a rotation axis of the chamfering grindstone. provide.
  • the present invention presses the grinding surface of a rotating disk-shaped or columnar chamfering grindstone against the edge of the plate-shaped body, and the plate-shaped body and the chamfering grindstone Is moved relatively along the edge of the plate-like body, and a coolant is sprayed onto the contact portion between the grinding surface of the chamfering grindstone and the edge of the plate-like object.
  • the injecting means for injecting the cooling liquid to the contact portion between the grinding surface of the chamfering grindstone and the edge of the plate-like object has an in-plane direction orthogonal to the rotation axis of the chamfering grindstone.
  • the cooling liquid is sprayed on.
  • the edge portion of the plate-like object can be well chamfered by the chamfering grindstone, and the coolant spray amount can be reduced.
  • the present invention injects the cooling liquid to the optimum position using one injection means, the amount of cooling water used is compared with the apparatus of Patent Document 3 using two cooling liquid injection nozzles. Can be reduced.
  • production of the burning and chipping which arise in the edge part of a glass plate can be reduced.
  • the injection means of the present invention injects the coolant in a tangential direction of the grinding surface of the chamfering grindstone.
  • the coolant can be sprayed to the optimum position without applying a rotational load to the chamfering grindstone due to the coolant spray pressure.
  • the chamfering grindstone of the present invention is a disk or columnar shape in which the shape of the grinding surface of the chamfering grindstone is flat, and when the edge of the plate-like object is contacted, the contact pressure Accordingly, it is preferable that the cross-sectional shape of the chamfering grindstone is elastically deformed into a concave shape along the shape of the edge portion.
  • the chamfering grindstone of the present invention is not a grooved chamfering grindstone in which an annular groove (grinding surface) is formed on the outer peripheral surface thereof, but the outer peripheral surface is flat and the edge of the plate-like object is in contact Then, the chamfering grindstone whose cross-sectional shape in the thickness direction of the chamfering grindstone is elastically deformed into a concave shape along the shape of the edge portion by contact pressure.
  • the position of the injection means may be set so that the cooling liquid is injected to the bottom of the elastically deformed recess.
  • the boundary surface can be ground smoothly.
  • minute chipping (chips) generated on the boundary surface can be reduced.
  • the chamfering grindstone of the present invention preferably includes one or a plurality of annular grooves on the outer peripheral surface.
  • the coolant can be sprayed to an optimum position, so that the edge portion of the plate-like material can be well chamfered by the chamfering grindstone, and the coolant is sprayed.
  • the amount can be reduced.
  • FIG. 1 is a plan view of a chamfering apparatus to which a plate-like material processing apparatus of the present invention is applied.
  • FIG. 2 is a perspective view showing the arrangement positions of the chamfering grindstone, the glass plate, and the nozzle.
  • FIG. 3A is an explanatory diagram in which a groove of a chamfering grindstone is disposed opposite to an edge portion of a glass plate.
  • FIG. 3B is an explanatory diagram in which the edge portion of the glass plate is ground by the groove of the chamfering grindstone.
  • FIG. 3C is an explanatory diagram of an edge portion of a glass plate that has been ground and chamfered.
  • 4A is an explanatory view of the arrangement position shown in FIG. 2 as viewed from the side.
  • FIG. 4B is an explanatory view of the arrangement position shown in FIG. 2 as viewed from above.
  • FIG. 5 is an overall perspective view illustrating another chamfering grindstone.
  • FIG. 6A is an explanatory diagram in which the grinding surface of the chamfering grindstone of FIG. 5 is disposed opposite to the edge portion of the glass plate.
  • FIG. 6B is an explanatory diagram in which the edge portion of the glass plate is ground by the chamfering grindstone of FIG. 5.
  • FIG. 6C is an explanatory diagram of an edge portion of the glass plate chamfered by the chamfering grindstone in FIG. 5.
  • FIG. 7 is a side view in which the edge portion of the glass plate is ground by the chamfering grindstone of FIG.
  • FIG. 1 is a plan view of a chamfering apparatus 10 according to an embodiment to which a processing apparatus for a plate-like object of the present invention is applied.
  • This chamfering device 10 is a device that chamfers an edge portion of a glass plate (plate-like object) 12 having a thickness of 0.7 mm or less.
  • the plate-like object applicable to the processing apparatus of the present invention is not limited to the glass plate for a liquid crystal display, but is a glass plate for an FPD such as a glass plate for a plasma display or a glass plate for an LED display, a building material or a mirror.
  • the present invention may be applied to a general glass plate, metal plate, or resin plate.
  • the thickness of the plate-like object is not limited to 0.7 mm or less, and may be a thickness exceeding 0.7 mm.
  • the chamfering device 10 includes a surface plate 14 that holds and holds a rectangular glass plate 12, a moving device (moving means) 16 that reciprocates the surface plate 14 in the direction of arrows AB, and an edge portion of the glass plate 12 is ground.
  • the chamfering apparatus 10 holds the main surface of the glass plate 12 on the mounting surface of the surface plate 14 and moves the surface plate 14 in the direction of arrow A by the moving device 16 while moving the glass plate during the movement.
  • the 12 opposing edge portions 12A and 12B are ground by chamfering grindstones 18 and 20 that are rotating (spinning) in a direction facing the moving direction of the glass plate 12. Thereby, the edge portions 12A and 12B of the glass plate 12 are chamfered. Further, at the time of the grinding process, the coolant is sprayed from the nozzle 26 to the contact portion between the chamfering grindstone 18 and the edge portion 12 ⁇ / b> A of the glass plate 12, and the chamfering grindstone 20 and the edge of the glass plate 12.
  • Cooling liquid is sprayed from the nozzle 28 to the contact portion with the portion 12B.
  • the material for the coolant is not particularly limited, and may be pure water, grinding oil, or a mixture thereof.
  • a chamfering grindstone 18 is disposed to face the edge portion 12 ⁇ / b> A in order to chamfer a pair of opposed edge portions 12 ⁇ / b> A and 12 ⁇ / b> B of the glass plate 12 at the same time.
  • 20 is arranged to face the edge 12B.
  • the chamfering grindstone 18 is rotated counterclockwise by the motor 22, and the chamfering grindstone 20 is rotated clockwise by the motor 24. Further, the rotational speed of the chamfering grindstones 18 and 20 is set to 5000 rpm or more.
  • FIG. 1 shows a chamfering device 10 that grinds the edge portions 12A and 12B with fixed chamfering grindstones 18 and 20 while moving the glass plate 12 in the arrow A direction.
  • the chamfering device that fixes the glass plate 12 and moves the chamfering grindstones 18 and 20 along the edge portions 12A and 12B of the glass plate 12 may be used.
  • a chamfering device that moves both the grindstones 18 and 20 along the edge portions 12A and 12B of the glass plate 12 toward each other may be used.
  • the other opposing edge portions 12C and 12D of the glass plate 12 may be ground by a pair of chamfering grindstones (not shown) arranged at the rear stage of the chamfering grindstones 18 and 20 in FIG. .
  • the glass plate 12 is moved in the B direction by the surface plate 14 to return to the original position, and then the glass plate 12 is moved by the surface plate 14 to 90 degrees with the perpendicular in the main surface direction of the glass plate 12 as an axis.
  • the edge portions 12C and 12D may be ground by the chamfering grindstones 18 and 20 whose intervals are changed while the glass plate 12 is moved in the A direction by the surface plate 14.
  • the chamfering grindstones 18 and 20 are arranged to face the end face 12E of the glass plate 12 as shown in FIG.
  • the end surface 12E is a surface in a direction orthogonal to the main surface 12F of the glass plate 12, and is a surface before chamfering.
  • the boundary portion between the end surface 12E and the main surface 12F and the portion including the end surface 12E are referred to as end edge portions 12A to 12D, and the end edge portions 12A to 12D are ground by the chamfering grindstones 18 and 20.
  • the rotation axes of the chamfering grindstones 18 and 20 may be inclined at a predetermined angle with respect to a normal line in the main surface direction of the glass plate 12.
  • the chamfering grindstones 18 and 20 are simultaneously driven to rotate, and the opposing edge portions 12A and 12B of the glass plate 12 are simultaneously ground by the chamfering grindstones 18 and 20 by the movement of the glass plate 12 by the moving device 16 of FIG. Processed.
  • 3A and 3B are enlarged cross-sectional views of main parts of the outer peripheral surfaces 30 and 32 of the chamfering grindstones 18 and 20, respectively. Since the chamfering grindstones 18 and 20 have the same configuration, the chamfering grindstone 18 will be described here, and the description of the chamfering grindstone 20 will be omitted.
  • a plurality of annular grooves 34 that are grinding surfaces are formed in the horizontal direction, and a plurality of annular grooves 34 are provided in parallel in the vertical direction as shown in the side view of FIG. 4A.
  • the cross-sectional shape in the thickness direction of the chamfering grindstone 18 of the annular groove 34 is not limited to the U shape shown in FIGS. 3A and 3B, and may be a V shape or a concave shape.
  • the number of the annular grooves 34 may be one, it is preferable to provide a plurality of the annular grooves 34 as shown in FIG. 4A in order to eliminate the replacement work of the chamfering grindstone 18.
  • the shape of the annular groove 34 may be a shape having a single radius of curvature, and includes a portion where the end surface 12E is ground and a boundary surface 12G between the end surface 12E ′ and the main surface 12F which has been ground as shown in FIG. 3C.
  • the part to be ground may have a shape having different radii of curvature.
  • the edge 12A of the glass plate 12 is opposed to the annular groove 34, and as shown in FIG. 3B, the chamfering grindstone 18 is fed toward the edge 12A by the grinding allowance.
  • the annular groove 34 of the chamfering grindstone 18 is pressed and brought into contact with the end edge portion 12A.
  • the end edge portion 12 ⁇ / b> A is ground by the annular groove 34.
  • the chamfering grindstone 18 is fed toward the end edge 12A so that the center portion of the end surface 12E in the thickness direction of the glass plate 12 is in contact with the deepest portion of the annular groove 34. It is done.
  • a metal bond grindstone in which abrasive grains are held with a metal binder such as iron, copper, cobalt, or brass, or abrasive grains are held with a thermosetting resin binder.
  • a resin bond grindstone a vitrified bond grindstone in which abrasive grains are held with a porcelain binder such as glass, and an electrodeposited grindstone in which a plating layer is formed on a pedestal surface of the grindstone, and the abrasive grains are fixed to the plating layer.
  • abrasive grains arranged in the binder examples include diamond, silicon carbide (SiC), and alumina (Al 2 O 3 ).
  • FIG. 5 is an overall perspective view showing another chamfering grindstone 40
  • FIGS. 6A to 6C are explanatory views of the grinding of the glass plate 12 by the chamfering grindstone 40 of FIG.
  • a chamfering grindstone 40 shown in FIG. 5 is a chamfering grindstone having a disk shape or a columnar shape and a substantially flat grinding surface 42 on the outer peripheral surface. Further, the grinding surface 42 of the chamfering grindstone 40 is disposed opposite to the edge portion 12A of the glass plate 12 as shown in FIG. 6A, and the edge portion 12A of the glass plate 12 is ground surface 42 as shown in FIG. 6B.
  • the elastic body made of rubber or the like whose cross-sectional shape in the thickness direction of the chamfering grindstone 40 is elastically deformed into a concave shape along the shape of the end edge portion 12A due to the contact pressure.
  • the grinding surface 42 has the contour shape of the edge portions 12A to 12D. It is recessed into a substantially matching concave shape. At this time, pressure due to contact concentrates on the boundary surfaces 12G and 12G between the end surface 12E and the main surface 12F of the glass plate 12, so that the boundary surfaces 12G and 12G are ground to a greater extent than the other portions.
  • the edge portion 12A is ground as shown in FIG. 6C.
  • FIG. 7 is a side view in which the edge portion 12A of the glass plate 12 is ground by the chamfering grindstone 40 of FIG.
  • the upper and lower edge portions 46, 46 of the concave portion 44 of the grinding surface 42 of the chamfering grindstone 40 swelled by being pushed by the edge 12 A of the glass plate 12 are the upper and lower boundary surfaces 12 G, Since the contact surfaces 12G and 12G are contacted at a low pressure, the boundary surfaces 12G and 12G are smoothly ground by the edge portions 46 and 46, and the occurrence of chipping at the boundary surfaces 12G and 12G is reduced.
  • the chamfering grindstone 40 is configured by dispersing abrasive grains in an elastic body.
  • the elastic body include butyl rubber, silicone, polyurethane, and natural rubber.
  • the abrasive grains include diamond, alumina (Al 2 O 3 ), silicon carbide (SiC), pumice, and garnet.
  • the nozzles 26 and 28 according to the embodiment will be described with reference to FIGS. 2, 4A, and 4B. Since the nozzles 26 and 28 are the same member and the concept of the arrangement position is the same, the nozzle 26 will be described here, and the description of the nozzle 28 will be omitted.
  • the nozzle 26 is recessed on the grinding surface of the chamfering grindstone 18 (the same applies to the chamfering grindstone 40) (in the case of the chamfering grindstone 18, the annular groove 34, and in the case of the chamfering grindstone 40).
  • the chamfering grindstone 18 (40) as shown in FIG. 2 is a position P2 upstream of the chamfering grindstone 18 in the rotational direction with respect to the contact position P1 between the concave portion 44) and the edge 12A of the glass plate 12. It is installed in the position which injects a cooling liquid toward the position P2 (FIG. 4B) from the position of the upstream of the rotation direction.
  • the position P2 is such that the diameter d of the annular groove 34 of the chamfering grindstone 18 and the ratio x / d of the distance x between the contact position P1 and the position P2 are 0.04 (4%) to 0.05 (5%). ) (0.04 (4%) ⁇ x / d ⁇ 0.05 (5%)).
  • the nozzle 26 is installed at a position for injecting the coolant in the in-plane direction orthogonal to the rotating shaft 19 of the chamfering grindstone 18. That is, the nozzle 26 according to the embodiment sprays the cooling liquid toward the position P2 in a direction parallel to the in-plane direction of the main surface 12F of the glass plate 12 as indicated by an arrow C in FIG. 4B.
  • the cooling liquid can penetrate the air layer formed along the outer peripheral surface of the rotating chamfering grindstone 18 at the optimum position of the chamfering grindstone 18 (40). Since it is injected to the position, the edge 12A of the glass plate 12 can be chamfered satisfactorily by the chamfering grindstone 18 (40), and the injection amount of the coolant can be reduced. In addition, being able to chamfer well means that it is possible to reduce the occurrence of burning and chipping at the edge portion 12A of the glass plate 12 and to reduce chipping generated at the boundary surface 12G.
  • the distance from the chamfering grindstone 18 (40) to the injection port of the nozzle 26 (28) is not particularly limited, and may be a distance close to each other so as not to contact each other. Since the coolant sprayed from the nozzle 26 (28) installed at the distance is instantaneously supplied to the position P2 along with the rotation of the chamfering grindstone 18 (40), the glass plate 12 is favorably ground. Will not cause any problems.
  • the nozzle 26 is preferably installed at a position for injecting the coolant in the tangential direction of the grinding surface (annular groove 34, recess 44) of the chamfering grindstone 18 (40).
  • the coolant is sprayed to the optimum position of the chamfering grindstone 18 (40) without applying a rotational load to the chamfering grindstone 18 (40) by the spraying pressure of the coolant sprayed from the nozzle 26.
  • the coolant is sprayed to the optimum position using the single nozzle 26 (28), compared with the apparatus of Patent Document 3 using two coolant spray nozzles, The amount of cooling water used can be reduced.
  • a preferable condition for allowing the coolant injected from the nozzle 26 to penetrate the air layer formed on the outer peripheral surface of the chamfering grindstone 18 (40) during high-speed rotation is that the diameter of the injection port of the nozzle 26 is 2. 3 to 3 mm, the distance from the position P2 to the nozzle 26 nozzle is 10 to 20 mm, the flow rate of the coolant is 10 to 20 m / sec, and the chamfering speed by the chamfering grindstone 18 (40) (the chamfering of the glass plate 12).
  • the relative speed with respect to the grinding wheels 18 and 20 for use is preferably 12 m / min.
  • the object to be processed by the plate processing apparatus of the present invention is not limited to a glass plate for FPD such as a liquid crystal display that requires high chamfering accuracy, and may be a general glass plate for building materials or mirrors. Moreover, it is not limited to a glass plate, A metal-made or resin-made plate-shaped object may be sufficient.
  • SYMBOLS 10 ... Chamfering device, 12 ... Glass plate, 12A-12D ... End edge part, 12E ... End surface, 12E '... End surface, 12F ... Main surface, 12G ... Boundary surface, 14 ... Surface plate, 16 ... Moving device, 18, DESCRIPTION OF SYMBOLS 20 ... Chamfering wheel, 19 ... Rotating shaft, 22, 24 ... Motor, 26, 28 ... Nozzle, 30, 32 ... Outer peripheral surface, 40 ... Chamfering grindstone, 42 ... Grinding surface, 44 ... Recess, 46 ... Edge Part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

 本発明は、板状物を保持する定盤と、前記定盤に保持された前記板状物の端縁部を研削して面取りする円盤状又は円柱状の面取用砥石と、前記面取用砥石を回転させる回転手段と、前記面取用砥石の周縁部を前記板状物の外周面の研削面に接触させて前記面取用砥石、又は前記板状物を、前記板状物の端縁部に沿って移動させる移動手段と、前記面取用砥石の前記研削面と前記板状物の端縁部との接触箇所に冷却液を噴射する噴射手段と、を備えた板状物の加工装置であって、前記噴射手段は、前記面取用砥石の回転軸に対して直交する面内方向に前記冷却液を噴射する板状物の加工装置に関する。

Description

板状物の加工装置及び板状物の加工方法
 本発明は、板状物の加工装置及び板状物の加工方法に関する。
 液晶ディスプレイ、プラズマディスプレイ等に使用されるFPD(FLAT PANEL DISPLAY)用のガラス板(板状物)は、溶融ガラスを板状に成形し、その後、切断装置によって所定の矩形サイズのガラス板に切断される。その後、ガラス板は、面取装置(加工装置)の面取用砥石によって、その端縁部が研削加工されることにより面取りされる。面取装置としては、特許文献1の如く公知である。
 また、特許文献2に記載された面取装置は、面取用砥石、及び冷却液(研削液)噴射ノズル等を備えている。前記面取用砥石は、ガラス板の平面に直交する軸と平行な軸を中心に回転されるとともに、その回転方向は、ガラス板の研削部においてガラス板の搬送方向と相対する方向に設定されている。また、面取用砥石の研削面となる外周面は、略凹状で円弧状の断面輪郭形状をなし、ガラス板の端縁部を断面円弧状に研削加工する。
 一方、前記冷却液噴射ノズルは、ガラス板と面取用砥石との接触部を基準として、面取用砥石の回転方向上流側から、前記接触部に向けて冷却液を噴射するように構成されている。
 また、特許文献3に記載された冷却液(クーラント)噴射ノズルは、ワークを挟んで両側に一対配置されるとともに、ワークと砥石との接触部に対して斜め上方に設置されており、前記接触部及びその近傍に向けて冷却液を斜め方向から噴射している。すなわち、特許文献3の加工装置では2本の冷却液噴射ノズルを備えている。
日本国特開2002-160147号公報 日本国特開2009-172749号公報 日本国特開2007-30051号公報
 しかしながら、従来の面取装置では、冷却液噴射ノズルが最適な位置に設置されていないため、冷却液噴射ノズルから噴射された冷却液が最適な位置に噴射されず、研削加工後のガラス板の端縁部に焼け、欠けが発生し、ガラス板の割れの要因になるとともに、生産性を阻害する要因になっていた。
 特に、5000rpm以上の高速回転の面取用砥石は、回転中の面取用砥石の外周面に沿って層の厚い空気層が形成される。冷却液噴射ノズルを含む冷却液噴射装置では、前記空気層を貫通させるための冷却液の噴射圧力、噴射量が設定されているが、冷却液噴射ノズルが最適な位置に設置されていない場合には、前記噴射圧力、噴射量が無用に大きくなり、冷却液噴射装置の負荷が大きくなるという問題があった。
 本発明は、このような事情に鑑みてなされたもので、最適な位置に冷却液を噴射する噴射手段を備えた板状物の加工装置及び板状物の加工方法を提供することを目的とする。
 本発明は、前記目的を達成するために、板状物を保持する定盤と、前記定盤に保持された前記板状物の端縁部を研削して面取りする円盤状又は円柱状の面取用砥石と、前記面取用砥石を回転させる回転手段と、前記面取用砥石の周縁部を前記板状物の外周面の研削面に接触させて前記面取用砥石、又は前記板状物を、前記板状物の端縁部に沿って移動させる移動手段と、前記面取用砥石の前記研削面と前記板状物の端縁部との接触箇所に冷却液を噴射する噴射手段と、を備えた板状物の加工装置であって、前記噴射手段は、前記面取用砥石の回転軸に対して直交する面内方向に前記冷却液を噴射する板状物の加工装置を提供する。
 本発明は、前記目的を達成するために、板状体の端縁部に、回転する円盤状又は円柱状の面取用砥石の研削面を押し付けるとともに、前記板状体及び前記面取用砥石を、前記板状体の前記端縁部に沿って相対的に移動させながら、前記面取用砥石の前記研削面と前記板状物の前記端縁部との接触箇所に冷却液を噴射させることにより、前記板状体の端縁部を面取り加工する板状体の加工方法において、前記面取用砥石の回転軸に対して直交する面内方向に前記冷却液を噴射する板状物の加工方法を提供する。
 本発明によれば、面取用砥石の研削面と板状物の端縁部との接触箇所に冷却液を噴射する噴射手段が、面取用砥石の回転軸に対して直交する面内方向に前記冷却液を噴射する。これにより、冷却液が最適な位置に噴射されるので、面取用砥石によって板状物の端縁部を良好に面取りできるとともに、冷却液噴射量を低減できる。また、本発明は、1つの噴射手段を用いて冷却液を最適な位置に噴射しているので、2本の冷却液噴射ノズルを用いる特許文献3の装置と比較して、冷却水の使用量を削減できる。なお、板状物がガラス板の場合には、ガラス板の端縁部に生じる焼け、欠けの発生を低減できる。
 本発明の前記噴射手段は、前記面取用砥石の前記研削面の接線方向に前記冷却液を噴射することが好ましい。
 本発明によれば、冷却液の噴射圧力によって面取用砥石に回転負荷をかけることなく、冷却液を最適な位置に噴射することができる。
 本発明の前記面取用砥石は、該面取用砥石の前記研削面の形状が扁平である円盤状又は円柱状であって、前記板状物の端縁部が接触されると、接触圧によって該端縁部の形状に沿って、前記面取用砥石の厚さ方向の断面形状が凹状に弾性変形することが好ましい。
 本発明の前記面取用砥石は、その外周面に環状溝(研削面)が形成された溝付きの面取用砥石ではなく、外周面が扁平であり、板状物の端縁部が接触されると、接触圧によって端縁部の形状に沿って、前記面取用砥石の厚さ方向の断面形状が凹状に弾性変形する面取用砥石である。この場合、弾性変形した凹部の底部に冷却液を噴射するように、噴射手段の位置を設定すればよい。
 本発明によれば、板状物の端縁部のうち、板状物の端面と主面との境界面に面取用砥石が接触するので、前記境界面を円滑に研削加工できる。板状物がガラス板の場合には、前記境界面に生じる微小なチッピング(欠け)を低減できる。
 本発明の前記面取用砥石は、前記外周面に1本又は複数本の環状溝を備えていることが好ましい。
 本発明に係る板状物の加工装置によれば、最適な位置に冷却液を噴射することができるので、面取用砥石によって板状物の端縁部を良好に面取りできるとともに、冷却液噴射量を低減できる。
図1は、本発明の板状物の加工装置が適用された面取装置の平面図である。 図2は、面取用砥石とガラス板とノズルの配置位置を示した斜視図である。 図3Aは、ガラス板の端縁部に面取用砥石の溝が対向配置された説明図である。 図3Bは、面取用砥石の溝によってガラス板の端縁部が研削されている説明図である。 図3Cは、研削加工されて面取りされたガラス板の端縁部の説明図である。 図4Aは、図2に示した配置位置を側面から見た説明図である。 図4Bは、図2に示した配置位置を上面から見た説明図である。 図5は、他の面取用砥石を示した全体斜視図である。 図6Aは、ガラス板の端縁部に図5の面取用砥石の研削面が対向配置された説明図である。 図6Bは、ガラス板の端縁部が図5の面取用砥石によって研削されている説明図である。 図6Cは、図5の面取用砥石によって面取りされたガラス板の端縁部の説明図である。 図7は、ガラス板の端縁部が図5の面取用砥石によって研削されている側面図である。
 以下、添付図面に従って本発明に係る板状物の加工装置及び板状物の加工方法の好ましい実施の形態を詳説する。
 図1は、本発明の板状物の加工装置が適用された、実施の形態の面取装置10の平面図である。この面取装置10は、厚さが0.7mm以下の液晶ディスプレイ用ガラス板(板状物)12の端縁部を面取りする装置である。なお、本発明の加工装置に適用できる板状物は、液晶ディスプレイ用ガラス板に限定されず、プラズマディスプレイ用ガラス板、LEDディスプレイ用ガラス板等のFPD用ガラス板、建材用やミラー用等の一般的なガラス板、金属製、又は樹脂製の板状物に適用してもよい。また板状物の厚さも0.7mm以下に限定されず、0.7mmを超える厚さであってもよい。
 面取装置10は、矩形状のガラス板12を吸着保持する定盤14、定盤14を矢印A-B方向に往復移動させる移動装置(移動手段)16、ガラス板12の端縁部を研削加工して面取りする円盤状又は円柱状の一対の面取用砥石18、20、面取用砥石18、20を高速回転させるモータ(回転手段)22、24、及び冷却液を噴射するノズル(噴射手段)26、28等から構成される。
 実施の形態の面取装置10は、定盤14の搭載面にガラス板12の主面を吸着保持させ、定盤14を移動装置16によって矢印A方向に移動させながら、その移動中にガラス板12の対向する端縁部12A、12Bを、ガラス板12の移動方向に対して対向する方向に回転(自転)している面取用砥石18、20によって研削加工する。これによって、ガラス板12の端縁部12A、12Bが面取りされる。また、前記研削加工時には、面取用砥石18とガラス板12の端縁部12Aとの接触箇所に、ノズル26から冷却液が噴射されるとともに、面取用砥石20とガラス板12の端縁部12Bとの接触箇所に、ノズル28から冷却液が噴射される。これにより、前記接触箇所が前記冷却液によって冷却されるので、ガラス板12の端縁部12Aに生じる焼け、欠け等の発生が低減され、また、ガラス板12の前記主面と研削された端面との境界部に生じるチッピングが低減される。前記ノズル26、28については後述する。
 冷却液の材料は特に限定されず、純水、研削油、及びこれらの混合物でよい。
 面取装置10では、ガラス板12の対向する一対の端縁部12A、12Bを同時に面取りするために、面取用砥石18が端縁部12Aに対向して配置されるとともに、面取用砥石20が端縁部12Bに対向して配置されている。
 図1において面取用砥石18は、モータ22によって反時計方向に回転され、面取用砥石20は、モータ24によって時計方向に回転される。また、面取用砥石18、20の回転数は、5000rpm以上に設定されている。
 なお、図1では、ガラス板12を矢印A方向に移動させながら、固定された面取用砥石18、20によって端縁部12A、12Bを研削加工する面取装置10を示しているが、これに限定されるものではなく、ガラス板12を固定し、面取用砥石18、20をガラス板12の端縁部12A、12Bに沿って移動させる面取装置でもよく、ガラス板12及び面取用砥石18、20の双方をガラス板12の端縁部12A、12Bに沿って互いに近づく方向に移動させる面取装置でもよい。また、ガラス板12の他の対向する端縁部12C、12Dは、図1の面取用砥石18、20の後段に配置された不図示の一対の面取用砥石によって研削加工してもよい。又は、ガラス板12を定盤14によってB方向に移動させて元の位置に復帰させ、次に、ガラス板12を定盤14によって、ガラス板12の主面方向の垂線を軸にして90度回転させた後、定盤14によってガラス板12をA方向に移動させながら、間隔が変更された面取用砥石18、20によって端縁部12C、12Dを研削加工してもよい。
 面取用砥石18、20は、図2の如くガラス板12の端面12Eに対向して配置されている。ここで端面12Eとは、ガラス板12の主面12Fに対して直交する方向の面であり、面取り前の面である。この端面12Eと主面12Fとの境界部、及び端面12Eを含む部分を端縁部12A~12Dと称し、端縁部12A~12Dを面取用砥石18、20によって研削加工する。なお、特許文献1に記載の如く、面取用砥石18、20の回転軸を、ガラス板12の主面方向の垂線に対して所定角度傾斜させてもよい。
 面取用砥石18、20は同時に回転駆動され、図1の移動装置16によるガラス板12の移動によって、ガラス板12の対向する端縁部12A、12Bが面取用砥石18、20によって同時に研削加工される。
 図3A、図3Bは、面取用砥石18、20の外周面30、32の要部拡大断面図である。なお、面取用砥石18、20は同一構成なので、ここでは面取用砥石18について説明し、面取用砥石20の説明は省略する。
 面取用砥石18の外周面30には、研削面である複数本の環状溝34が水平方向に形成され、この環状溝34が図4Aの側面図の如く上下方向に複数本平行に備えられている。なお、環状溝34の面取用砥石18の厚さ方向の断面形状は、図3A、図3Bに記載のU字状に限定されず、V字状、凹状であってもよい。また、環状溝34の本数は1本でもよいが、面取用砥石18の交換作業を省くため、図4Aの如く複数本備えることが好ましい。環状溝34が面取用砥石18に複数本備えられているため、使用中の環状溝34が寿命になったとき、図示しない制御装置で面取用砥石18を環状溝34のピッチ単位で上下方向(面取用砥石18の厚さ方向)に昇降させれば、面取用砥石18の交換作業をせずに新しい環状溝34で面取りできる。また、環状溝34の形状は、単一の曲率半径を有する形状でもよく、端面12Eを研削する部分、及び図3Cに示すように研削終了した端面12E′と主面12Fとの境界面12Gを研削する部分が異なる曲率半径を有する形状のものでもよい。
 図3Aに示すように、ガラス板12の端縁部12Aは、環状溝34に対向され、図3Bの如く、面取用砥石18が研削代分だけ端縁部12Aに向けて送られることにより、端縁部12Aに面取用砥石18の環状溝34が押圧当接される。これにより、図3Cの如く、端縁部12Aが環状溝34によって研削加工される。なお、図3Aの破線で示すように、端面12Eのガラス板12の厚さ方向の中心部が環状溝34の最深部に当接するように面取用砥石18が端縁部12Aに向けて送られる。
 面取用砥石18、20としては、鉄系、銅系、コバルト系、真鍮系等の金属の結合剤で砥粒を保持したメタルボンド砥石、熱硬化性樹脂の結合剤で砥粒を保持したレジンボンド砥石、ガラス等の磁器質の結合剤で砥粒を保持したビトリファイドボンド砥石、砥石の台座表面にメッキ層をつくり、前記メッキ層に砥粒を固着した電着砥石が挙げられる。
 結合剤に配される研磨砥粒としては、ダイヤモンド、炭化ケイ素(SiC)、アルミナ(Al)等を挙げることができる。
 図5は、他の面取用砥石40を示した全体斜視図であり、図6A~図6Cは、図5の面取用砥石40によるガラス板12の研削の説明図である。
 図5に示す面取用砥石40は、円盤状又は円柱状に構成されるとともに、外周面の研削面42が実質的に扁平な面取用砥石である。また、面取用砥石40の研削面42は、図6Aの如く、ガラス板12の端縁部12Aに対向配置され、図6Bに示すように、ガラス板12の端縁部12Aが研削面42に接触されると、その接触圧により、端縁部12Aの形状に沿って、面取用砥石40の厚さ方向の断面形状が凹状に弾性変形するゴム製等の弾性体である。
 この面取用砥石40によれば、ガラス板12の端縁部12A~12Dが面取用砥石40の扁平な研削面42に接触すると、研削面42は端縁部12A~12Dの輪郭形状に略一致する凹状に凹まされる。この時、ガラス板12の端面12Eと主面12Fとの境界面12G、12Gに接触による圧力が集中するので、境界面12G、12Gが他の部分よりも多めに研削されていき、ガラス板12の端縁部12Aが図6Cの如く研削される。
 図7は、ガラス板12の端縁部12Aが図5の面取用砥石40によって研削されている側面図である。図7の如く、ガラス板12の端縁部12Aに押されて膨らむ面取用砥石40の研削面42の凹部44の上下のエッジ部分46、46が、ガラス板12の上下の境界面12G、12Gに低圧で接触するため、境界面12G、12Gがエッジ部分46、46によって円滑に研削され、境界面12G、12Gに生じるチッピングの発生が低減される。
 面取用砥石40は、弾性体内に研磨砥粒を分散することにより構成される。弾性体としては、ブチルゴム、シリコーン、ポリウレタン、天然ゴムを挙げることができる。前記研磨砥粒としては、ダイヤモンド、アルミナ(Al)、炭化ケイ素(SiC)、軽石、ガーネット等を挙げることができる。
 次に、実施の形態のノズル26、28について図2、及び図4A、図4Bを参照して説明する。なお、ノズル26、28は同一部材であり、配置位置の概念も同一なので、ここではノズル26について説明し、ノズル28の説明は省略する。
 前述の如く、ノズル26は、面取用砥石18(面取用砥石40も同様)の研削面(面取用砥石18の場合には環状溝34、面取用砥石40の場合には凹んだ凹部44)とガラス板12の端縁部12Aとの接触位置P1に対して面取用砥石18の回転方向上流側の位置P2であって、図2の如く、面取用砥石18(40)の回転方向の上流側の位置から位置P2(図4B)に向けて冷却液を噴射する位置に設置されている。また、位置P2は、面取用砥石18の環状溝34の直径d及び接触位置P1と位置P2との距離xの比x/dが、0.04(4%)~0.05(5%)の範囲内(0.04(4%)≦x/d≦0.05(5%))となるように設定される。
 また、ノズル26は、図4Aの如く、面取用砥石18の回転軸19に対して直交する面内方向に冷却液を噴射する位置に設置されている。すなわち、実施の形態のノズル26は、図4Bの矢印Cの如く、位置P2に向けて冷却液を、ガラス板12の主面12Fの面内方向と平行方向に噴射する。
 実施の形態のノズル26によれば、冷却液が面取用砥石18(40)の最適な位置、すなわち回転中の面取用砥石18の外周面に沿って形成された、空気層を貫通できる位置に噴射されるので、面取用砥石18(40)によってガラス板12の端縁部12Aを良好に面取りできるとともに、冷却液の噴射量を低減できる。なお、良好に面取りできるとは、ガラス板12の端縁部12Aに生じる焼け、欠けの発生を低減でき、境界面12Gに発生するチッピングを軽減できるという意味である。また、面取用砥石18(40)からノズル26(28)の噴射口までの距離は特に限定されず、それぞれが接しない程度に近接する距離であってもよい。当該距離に設置されたノズル26(28)から噴射された冷却液は、面取用砥石18(40)の回転に伴って位置P2に瞬時に供給されるので、ガラス板12の良好な研削加工に支障は生じない。
 また、ノズル26は、図4Bの如く、面取用砥石18(40)の前記研削面(環状溝34、凹部44)の接線方向に冷却液を噴射する位置に設置されることが好ましい。これにより、ノズル26から噴射された冷却液の噴射圧力によって面取用砥石18(40)に回転負荷をかけることなく、冷却液を面取用砥石18(40)の最適な位置に噴射することができる。また、実施の形態では、1本のノズル26(28)を用いて冷却液を最適な位置に噴射しているので、2本の冷却液噴射ノズルを用いる特許文献3の装置と比較して、冷却水の使用量を削減できる。
 なお、高速回転中の面取用砥石18(40)の外周面に形成される空気層に、ノズル26から噴射される冷却液を貫通させる好適な条件は、ノズル26の噴射口の径が2~3mm、位置P2からノズル26の噴射口までの距離が10~20mm、冷却液の流速が10~20m/sec、及び面取用砥石18(40)による面取り加工速度(ガラス板12の面取用砥石18、20に対する相対速度)が12m/minであることが好ましい。このような条件下で面取り加工を行うことにより、冷却液を前記空気層に貫通させることができるとともに、冷却液の供給量を3~5L/minに低減できる。
 以上、本発明の一実施形態について説明したが、本発明は、上記の実施形態に制限されない。本発明の範囲を逸脱することなく、上記の実施形態に種々の変形および置換を加えることができる。
 本出願は、2011年10月31日出願の日本特許出願2011-239107に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の板状物の加工装置による加工対象物は、高い面取り精度が要求される液晶ディスプレイ等のFPD用ガラス板に限定されず、建材用やミラー用等の一般的なガラス板でもよい。また、ガラス板に限定されず、金属製、又は樹脂製の板状物であってもよい。
 10…面取装置、12…ガラス板、12A~12D…端縁部、12E…端面、12E′…端面、12F…主面、12G…境界面、14…定盤、16…移動装置、18、20…面取用砥石、19…回転軸、22、24…モータ、26、28…ノズル、30、32…外周面、40…面取用砥石、42…研削面、44…凹部、46…エッジ部

Claims (5)

  1.  板状物を保持する定盤と、
     前記定盤に保持された前記板状物の端縁部を研削して面取りする円盤状又は円柱状の面取用砥石と、
     前記面取用砥石を回転させる回転手段と、
     前記面取用砥石の周縁部を前記板状物の外周面の研削面に接触させて前記面取用砥石、又は前記板状物を、前記板状物の端縁部に沿って移動させる移動手段と、
     前記面取用砥石の前記研削面と前記板状物の端縁部との接触箇所に冷却液を噴射する噴射手段と、
     を備えた板状物の加工装置であって、
     前記噴射手段は、前記面取用砥石の回転軸に対して直交する面内方向に前記冷却液を噴射する板状物の加工装置。
  2.  前記噴射手段は、前記面取用砥石の前記研削面の接線方向に前記冷却液を噴射する請求項1に記載の板状物の加工装置。
  3.  前記面取用砥石は、該面取用砥石の前記周縁部の形状が扁平である円盤状又は円柱状であって、前記板状物の前記研削面が接触されると、接触圧によって該端縁部の形状に沿って、前記面取用砥石の厚さ方向の断面形状が凹状に弾性変形する弾性体である請求項1、又は2に記載の板状物の加工装置
  4.  前記面取用砥石は、前記外周面に1本又は複数本の環状溝を備えている請求項1、又は2に記載の板状物の加工装置。
  5.  板状体の端縁部に、回転する円盤状又は円柱状の面取用砥石の研削面を押し付けるとともに、前記板状体及び前記面取用砥石を、前記板状体の前記端縁部に沿って相対的に移動させながら、前記面取用砥石の前記研削面と前記板状物の前記端縁部との接触箇所に冷却液を噴射させることにより、前記板状体の端縁部を面取り加工する板状体の加工方法において、
     前記面取用砥石の回転軸に対して直交する面内方向に前記冷却液を噴射する板状物の加工方法。
PCT/JP2012/076859 2011-10-31 2012-10-17 板状物の加工装置及び板状物の加工方法 WO2013065490A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-239107 2011-10-31
JP2011239107A JP2015006697A (ja) 2011-10-31 2011-10-31 板状物の加工装置及び加工方法

Publications (1)

Publication Number Publication Date
WO2013065490A1 true WO2013065490A1 (ja) 2013-05-10

Family

ID=48191846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076859 WO2013065490A1 (ja) 2011-10-31 2012-10-17 板状物の加工装置及び板状物の加工方法

Country Status (3)

Country Link
JP (1) JP2015006697A (ja)
TW (1) TW201318776A (ja)
WO (1) WO2013065490A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140329448A1 (en) * 2012-01-17 2014-11-06 Guilin Champion Union Diamond Co., Ltd. Grinding wheel
JP2015058507A (ja) * 2013-09-19 2015-03-30 旭硝子株式会社 レジンボンド砥石の研磨用溝の作製方法及びレジンボンド砥石並びに板状体の加工装置及び板状体の加工方法
CN106413987A (zh) * 2014-02-27 2017-02-15 康宁股份有限公司 玻璃处理设备和方法
CN106660188A (zh) * 2014-08-06 2017-05-10 日本电气硝子株式会社 板状物的端面加工装置
JP2018171707A (ja) * 2018-08-15 2018-11-08 日本電気硝子株式会社 板状物の端面加工装置
CN109015186A (zh) * 2018-06-13 2018-12-18 彩虹集团有限公司 一种tft玻璃边研磨装置及方法
EP3581331A1 (en) 2018-06-13 2019-12-18 Phup Remszklo s.c. Set of discs for grinding the edges of glass plates

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107614454A (zh) * 2015-05-29 2018-01-19 旭硝子株式会社 化学强化玻璃
KR102607582B1 (ko) * 2016-08-30 2023-11-30 삼성디스플레이 주식회사 커버 윈도우, 커버 윈도우를 포함하는 표시 장치 및 커버 윈도우의 제조 방법
JP6973237B2 (ja) * 2018-03-29 2021-11-24 日本電気硝子株式会社 板ガラスの製造方法
CN110281101B (zh) * 2019-07-23 2021-10-29 西安奕斯伟材料科技有限公司 一种边缘研磨装置及方法
WO2023100957A1 (ja) * 2021-12-03 2023-06-08 日本電気硝子株式会社 ガラス板の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219348A (ja) * 2000-02-04 2001-08-14 Bando Kiko Kk ガラス板の周縁を研削する方法及びその装置
JP2008093744A (ja) * 2006-10-06 2008-04-24 Nippon Electric Glass Co Ltd 回転砥石
JP2009172749A (ja) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd ガラス板の端面研削装置およびその方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219348A (ja) * 2000-02-04 2001-08-14 Bando Kiko Kk ガラス板の周縁を研削する方法及びその装置
JP2008093744A (ja) * 2006-10-06 2008-04-24 Nippon Electric Glass Co Ltd 回転砥石
JP2009172749A (ja) * 2007-12-25 2009-08-06 Nippon Electric Glass Co Ltd ガラス板の端面研削装置およびその方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140329448A1 (en) * 2012-01-17 2014-11-06 Guilin Champion Union Diamond Co., Ltd. Grinding wheel
JP2015058507A (ja) * 2013-09-19 2015-03-30 旭硝子株式会社 レジンボンド砥石の研磨用溝の作製方法及びレジンボンド砥石並びに板状体の加工装置及び板状体の加工方法
CN111496680A (zh) * 2013-09-19 2020-08-07 Agc株式会社 玻璃板的加工方法
CN106413987A (zh) * 2014-02-27 2017-02-15 康宁股份有限公司 玻璃处理设备和方法
CN106413987B (zh) * 2014-02-27 2019-06-21 康宁股份有限公司 玻璃处理设备和方法
CN106660188A (zh) * 2014-08-06 2017-05-10 日本电气硝子株式会社 板状物的端面加工装置
CN109015186A (zh) * 2018-06-13 2018-12-18 彩虹集团有限公司 一种tft玻璃边研磨装置及方法
EP3581331A1 (en) 2018-06-13 2019-12-18 Phup Remszklo s.c. Set of discs for grinding the edges of glass plates
JP2018171707A (ja) * 2018-08-15 2018-11-08 日本電気硝子株式会社 板状物の端面加工装置

Also Published As

Publication number Publication date
TW201318776A (zh) 2013-05-16
JP2015006697A (ja) 2015-01-15

Similar Documents

Publication Publication Date Title
WO2013065490A1 (ja) 板状物の加工装置及び板状物の加工方法
JP6238117B2 (ja) 板状体の加工方法
KR101755062B1 (ko) 유리 기판 및 유리 기판의 제조 방법
JP5305214B2 (ja) 板ガラスの端面加工方法
WO2017022389A1 (ja) 板ガラス加工装置及びガラス基板
JP2002160147A (ja) 板ガラスの端縁部研磨方法
KR20080019187A (ko) 판 형상체의 모따기 방법 및 그 장치
KR101447224B1 (ko) 모바일 디스플레이용 글라스의 가공 장치 및 가공 방법
JP6624461B2 (ja) ガラス板の面取り装置、ガラス板の面取り方法、及びガラス板の製造方法
CN106217259B (zh) 弹性砂轮的修整方法
TW201805107A (zh) 玻璃基板及玻璃基板的製造方法
JP2014233797A (ja) ガラス板の製造方法、および、ガラス板の製造装置
KR20120099594A (ko) 유리판의 연마 방법
JP6608604B2 (ja) 面取り加工された基板及び液晶表示装置の製造方法
JP5370913B2 (ja) ガラス基板の端面研磨装置およびその端面研磨方法
US10166652B2 (en) Substrate polishing device and method thereof
KR101871853B1 (ko) 평판 디스플레이용 패널 가공 장치
JP2002059346A (ja) 板状物の面取り加工方法及び装置
WO2023085192A1 (ja) ガラス板の製造方法
JP6062834B2 (ja) 切削ブレードのツルーイング方法及び装置
JP2016182647A (ja) ガラス基板の製造方法
KR20210129809A (ko) 자기부상 자동조심 폴리싱 툴

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP