WO2013064780A2 - Module de puissance et dispositif electrique pour l'alimentation et la charge combinees respectivement d'un accumulateur et d'un moteur - Google Patents

Module de puissance et dispositif electrique pour l'alimentation et la charge combinees respectivement d'un accumulateur et d'un moteur Download PDF

Info

Publication number
WO2013064780A2
WO2013064780A2 PCT/FR2012/052515 FR2012052515W WO2013064780A2 WO 2013064780 A2 WO2013064780 A2 WO 2013064780A2 FR 2012052515 W FR2012052515 W FR 2012052515W WO 2013064780 A2 WO2013064780 A2 WO 2013064780A2
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
motor
converter
power
module
Prior art date
Application number
PCT/FR2012/052515
Other languages
English (en)
Other versions
WO2013064780A3 (fr
Inventor
Boris Bouchez
Luis De Sousa
Bénédicte Silvestre
Original Assignee
Valeo Systemes De Controle Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes De Controle Moteur filed Critical Valeo Systemes De Controle Moteur
Priority to EP12794416.3A priority Critical patent/EP2774257B1/fr
Priority to CN201280065837.3A priority patent/CN104025443A/zh
Priority to JP2014539386A priority patent/JP6208675B2/ja
Priority to US14/355,303 priority patent/US9793836B2/en
Publication of WO2013064780A2 publication Critical patent/WO2013064780A2/fr
Publication of WO2013064780A3 publication Critical patent/WO2013064780A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a power module for the conversion of an electric current flowing between an accumulator and an AC motor. It also relates to an inverter, a converter and an electrical device using such a module as well as a power supply and charging method implementing such a device.
  • the invention will advantageously be applicable in the field of electric cars in which the batteries can supply the motor via an inverter and be recharged when the car is at a standstill.
  • the module according to the invention can be used in other areas.
  • an electric vehicle is equipped with high voltage batteries delivering a DC current to an inverter that converts this DC current into an alternating current for powering an electric motor, the latter ensuring the drive of the vehicle.
  • an on-board charging device essentially equipped with an AC-DC converter for rectifying the AC power of the electrical network to charge the batteries.
  • the device may comprise a DC / DC converter, which provides the adaptation of the voltage level of the network to that of the batteries.
  • the inverter and the DC / DC converter may be provided for reversible.
  • the battery charging device may in particular use the inverter to form an AC-DC converter and the motor windings to form associated inductors.
  • FIG. 1 shows the operating principle of converters of the state of the art. They use one or more control arms 1 provided with switches 2 whose opening / closing allows, in known manner, to perform a current conversion.
  • the opening / closing of the switches is obtained by a control unit 3 generating a closing / opening current of said switches.
  • the steering unit 3 exchange of information with a control unit 4 transmitting to the control unit 3 orders determining the opening / closing of the switches 2.
  • the switches 2 and the control unit 3 operate at high voltage in order to be able to transform the current into either direct current or alternating current, depending on the operating mode of the device.
  • the control unit 4 for its part, controls low voltage (of the order of 12 volts). Also, in order to decouple the high-voltage circuit (control unit 3 and switches 2) from the low-voltage circuit (control unit 4), it is known to decouple each high voltage - low voltage connection individually, by means of decouplers 5, for example opto-coupler type and / or transformer.
  • the standard on electric vehicles imposes an insulation resistance between the battery and the body, in order to avoid electrocution of any person likely to come into contact with the bodywork.
  • the HT battery is floating, none of its potentials being connected to the chassis. Insulating cables are provided for each link between the high voltage components and the control unit 4, which allows the battery to be separated from the chassis.
  • measurement units 6 or power supply units 7 are also used such as measurement units 6 or power supply units 7, in particular for supplying the control unit 3.
  • the units of measurement exchange information with the control unit.
  • the power supply units use the low voltage circuit for power supply.
  • decoupling means 5 are also provided between these components and the control unit 4.
  • the purpose of the invention is to remedy these drawbacks, and proposes for this purpose a power module for the conversion of an electric current flowing between an accumulator and an AC motor, said module comprising switching means capable of be controlled to authorize the motor supply and / or the charge of the accumulator, and an intrinsic control unit, connected to said switching means and adapted to supplying opening and / or closing signals to said switching means, said intrinsic control unit being furthermore able to exchange data with a remote control unit, this data exchange implementing at least one potential barrier. The exchange of data is done in particular through at least one potential barrier.
  • the power supply of the motor can be carried out according to different modes of supply and the switching means can be controlled to allow these different modes of supply of the motor.
  • intelligent functions formerly provided by a main control unit (the control unit 4 in FIG. 1), are carried within an individual power module, which thus comprises its own function. control unit and its associated logical functions.
  • This intrinsic control unit is, on the one hand, connected to the switching means of the power module to provide them with a control signal and, on the other hand, communicates with a remote control unit for receiving and transmitting data.
  • the signal exchanges between the switching means and the intrinsic control unit can take place in a high voltage environment and do not require a potential barrier, only the connection with the remote control unit still requiring such a barrier. Thanks to the invention, therefore, the decoupling provided by this potential barrier is limited to carriers that carry only data and the number of decoupling components to be used is limited.
  • the power modules thus formed can operate independently and themselves perform the high voltage commands, from the data transmitted by the remote control unit.
  • the potential barrier can be obtained by galvanic isolation, for example by using a transformer and / or opto-coupler for decoupling.
  • a communication bus making it possible, for example, to multiplex the data signals coming from several power modules.
  • the intrinsic control units can then communicate in high voltage, module by module, with their switching means, and in the form of data with the remote control unit.
  • the potential barrier may be disposed at the communication bus and the data exchange may involve a passage through the potential barrier of this bus.
  • the remote control unit is advantageously not part of the power module.
  • the power module can be used both within the inverter or the DC / DC converter. Indeed, it suffices to set the corresponding power module, for example via a communication port in order to program its intrinsic control unit and operate it either as a component of an inverter or as a component a DC / DC converter. It is thus made possible to manufacture such modules industrially, the specialization can be programmed later.
  • the switching means comprise at least one arm formed of two switches, connected in series, controlled from said intrinsic control unit,
  • the switching means comprise switch control means connected, on the one hand, to said intrinsic control unit and, on the other hand to the switches, said control means being able to provide a closing current and / or of opening the switches from the opening and / or closing signals of said intrinsic control unit,
  • said module further comprises measuring means connected to said intrinsic control unit,
  • said module further comprises supply means, connected at least to said intrinsic control unit and / or to said switching means, as well as possibly to said measuring means,
  • the switching means are arranged to form an H-bridge structure, capable of being connected to a phase of the motor, the switching means then comprising two arms each comprising switches between which a terminal of the motor phase is connected,
  • the power module is provided with at least one decoupling capacitor arranged to smooth the voltage at the H-bridge,
  • said module comprises a data communication bus, connected to said intrinsic control unit and able to exchange data with said remote control unit, with potential barrier on the bus,
  • the module comprises galvanic isolation means on said communication bus.
  • each of the modules is provided with means for measuring current, voltage and temperature, as well as a capacity and a non-isolated high voltage power supply, which completes the autonomy of said modules, with a reduced number of connections.
  • Module interfaces may be limited to:
  • control interface for the communication bus.
  • the invention also relates to a voltage converter comprising:
  • At least one power module as described above and a remote control unit configured to exchange data with the intrinsic control unit of the module through a potential barrier.
  • the converter may include a plurality of power modules and a single remote control unit configured to exchange data with each intrinsic control unit.
  • the exchange of data can be done only through a single potential barrier,
  • the voltage converter can be the inverter or the DC / DC converter mentioned below.
  • the invention also relates to an inverter for the combined supply and charge respectively of an accumulator and an AC motor, the inverter comprising at least one power module as described above.
  • the invention also relates to a DC / DC converter for the combined supply and charge respectively of an accumulator and an AC motor.
  • the DC / DC converter may or may not be used in combination with the inverter above.
  • said DC / DC converter can be arranged to adapt the voltage level between the battery and an inverter. It is provided with at least one power module as described above.
  • the invention also relates to a combined electric power supply and charging device, comprising an AC motor, an accumulator, an inverter provided with at least one power module as described above, said device also comprising a unit remote control, able to exchange data with the intrinsic control unit of the power module or modules, for example by a communication bus.
  • the remote control unit can thus communicate with each intrinsic control unit.
  • This combined power supply and charging device benefits from the advantages already mentioned provided by the power modules according to the invention.
  • this device in the presence of a fault, it is possible to determine which of the ports of the communication bus has the fault, and therefore to deduce the power module actually defective. Only this power module can be replaced, which limits the cost of after-sales service.
  • Another advantage of the invention is that it is possible to connect a plurality of power modules according to the invention to the same telecommunication bus, which communicates with the control unit via a limited number of links. Moreover, instead of individually decoupling each of the connections, the decoupling performed by the communication bus is global and multiplexed. In this way, the number of connectors and insulators is reduced, as is the price of the resulting electrical device.
  • Another advantage of the invention is that it is possible to make a combined electrical power supply and load device, for example by choosing the number of power modules according to the invention that one wishes to use to form the inverter and / or the DC / DC converter.
  • this electrical device also comprises a DC / DC converter disposed between the accumulator and the inverter, so as to adapt the voltage levels of the accumulator and the inverter.
  • This converter can also be provided with power modules according to the invention, that is to say modules each provided with an intrinsic control unit, the remote control unit of the device and the intrinsic control unit. these power modules being connected to the same communication bus, so that the remote control unit controls at least a portion of the switching means of these power modules through their intrinsic control unit.
  • a single remote control unit can thus exchange data with each intrinsic control unit of the device, whether the device belongs to a power module of the inverter or to a power module of the DC / DC converter.
  • the device In order to ensure the thermal regulation of the device, it may be provided that it is integrated in a housing whose at least one surface is in contact with a water exchanger so as to allow the cooling of said at least one surface.
  • This surface of cooling may furthermore comprise a plurality of pins arranged to increase the size of the exchange surface.
  • the invention also finds its interest in electrical devices providing only the power supply of the motor from the accumulator or only the charging of the accumulator from the motor and the inverters and / or converter DC / DC according to the invention are not necessarily reversible.
  • the invention also relates to a combined power supply and charging method for implementing the device presented above, this method comprising a step of controlling the switching means of at least one of the power modules making it possible to switching from a motor power mode to a battery charging mode and vice versa.
  • the invention also relates to a method of implementing a combined power supply and charging device as described above, in which the device is implemented by superimposing a plurality of electronic functional layers, said layers being such that:
  • a first layer forms the inverter
  • a second layer forms the remote control unit
  • a third layer forms the DC / DC converter.
  • This method may comprise the step of connecting the first layer and the second layer using a first communication bus and according to which the second layer and the third layer are connected using a second bus. Communication.
  • FIG. 1 already commented on, schematically represents an electrical device according to the prior art
  • FIG. 2 diagrammatically illustrates an exemplary embodiment of a power module according to the invention
  • FIG. 3 diagrammatically represents an exemplary embodiment of the combined electric power supply and charging device according to the invention.
  • the invention firstly relates to a power module 9 for converting an electric current flowing between an accumulator and an AC motor, not shown in this figure.
  • Said module 9 comprises in the example described:
  • switching means 10 which can be controlled to authorize the supply of the motor and / or the charge of the accumulator, and an intrinsic control unit 13, connected to said switching means 10 and able to deliver opening and / or closing signals to said switching means 10, said intrinsic control unit 13 being further able to exchange data with a unit remote control, not shown in this figure, with potential barrier.
  • connection is meant that the intrinsic control unit 13 is electrically connected without electrical isolation to the switching means 10. It is more generally the same for the various components of the invention which are said “connected”.
  • Said control unit 13 is of a digital nature. This means that it is able to process data in digital format, both input and output. For example, it defines a digital core for module 9.
  • the switching means 10 comprise at least one arm formed of two switches 11 controlled from said intrinsic control unit 13.
  • the switches are connected in series between two conductors 102, 104, intended to be connected to the terminals of a power supply. via a connector of the module, not shown.
  • the module comprises two arms 100, 100 ', a first having a first midpoint 106, provided between its two switches 1 1, and a second having a second midpoint 106', provided between its two switches 11.
  • Said midpoints 106, 106 ' are connected to a connector of the module, not shown, by conductors 108, 110.
  • Each connector allows the connection of a midpoint 106, 106' to a terminal of a phase of a motor, as explained thereafter.
  • the switching means 10 are thus arranged to form an H bridge structure.
  • the switching means 10 also comprise means 22 for controlling the switches 11 connected, on the one hand, to said intrinsic control unit 13 and, on the other hand, to the switches 11.
  • Said control means 22 are able to supply a current closing and / or opening switches 11 from the opening and / or closing signals of said intrinsic control unit 13.
  • the switches 1 1 are defined by transistors, in particular of the IGBT or MOSFET type, and the control means 22 deliver a current to the gates of said transistors by a current conductor 112 which will determine their on or off state.
  • the module further comprises, for example, measuring means 24 connected to said intrinsic control unit 13.
  • measuring means 24 connected to said intrinsic control unit 13. They comprise here a measurement unit 1 14, connected to the intrinsic control unit 13 by a communication bus 1 16. They also include various components allowing, for example, measurements of the current flowing in the arms 100, 100 ', measurements of the voltage across the arms or temperature measurements.
  • the current measurement is carried out, for example, using resistors 118 provided in series on the arms 100, 100 ', the voltage across the resistor being converted by operational amplifiers 120 which deliver a measurement current to the unit of measure 114.
  • the voltage measurement is effected, for example, by means of a voltage divider 122 associated with the input terminals of an operational amplifier 124 delivering a measurement current to the measurement unit 114.
  • the temperature measurement is performed, for example, using a varistor 126 associated with an operational amplifier 128 delivering a measurement current to the measurement unit 114.
  • the module further comprises, for example, supply means 26, connected at least to said intrinsic control unit 13 and / or to said switching means 10 and possibly to the measuring means for their supply.
  • Said supply means 26 are non-isolated and connected, for example, to the high-voltage supply, here by the conductor 102 supplying the H-bridge.
  • the module according to the invention may also be provided with at least one decoupling capacitor 130 arranged to protect the switching means 10. It is here connected to the conductors 102, 104 feeding the bridge H.
  • the module may further comprise a data communication bus 14, connected to said intrinsic control unit 13 and able to exchange data with said remote control unit.
  • a potential barrier not shown in this figure is provided on the bus. It may be galvanic isolation means, such as a transformer and / or an optocoupler.
  • the interfaces of module 9 are limited to:
  • Said intrinsic control unit 13 provides, for example, the following functions:
  • control means 22 may be provided capable of delivering diagnostic information to the intrinsic control unit 13 (Fault signal).
  • the invention also relates to a combined electric power supply and charging device 1 comprising, in the example represented, an accumulator 20, a DC-DC converter 30, an inverter 40, a motor alternating current 50 (here three-phase and whose windings 60 act as inductances), a communication bus 14, a remote control unit 12 and finally a connector 70.
  • a combined electric power supply and charging device 1 comprising, in the example represented, an accumulator 20, a DC-DC converter 30, an inverter 40, a motor alternating current 50 (here three-phase and whose windings 60 act as inductances), a communication bus 14, a remote control unit 12 and finally a connector 70.
  • the inverter 40 comprises a plurality of power modules 9, 9 'and 9 "as described above Each module is provided with an intrinsic control unit 13 - or local - and switching means 10 in the form of an H-bridge structure, a bridge being provided per phase of the motor This type of structure allows, in particular, an independent control of the phases of the motor which therefore do not have to be connected in star or in triangle.
  • Each bridge comprises four controllable switches 11. These switches are distributed on arms referenced from A to F, as follows:
  • the arms A and B of the unit 9 are connected to a first phase of the motor 50,
  • the device 1 also comprises a connector 70 for connection to the outlet of the three-phase electrical network.
  • This connection 70 comprises locking means, not shown, to prevent access to the electrical outlet in case of powering the device 1 during the charging mode.
  • the connector 70 is also associated with second locking means, not shown in the accompanying figures, to prevent access to the conductors (which are then energized) during the power mode.
  • the socket also provides grounding of the device 1.
  • This connector 70 advantageously comprises protections and conventional electromagnetic compatibility filters for any device intended to be connected to the electrical network.
  • the transition from the power mode to the charging mode is managed by the remote control unit 12, which controls in particular the switches 11 of the arms A to F via the communication bus 14 and the intrinsic control units 13.
  • the remote control unit 12 controls all the arms A, B, C, D, E and F, which makes it possible to generate three-phase currents in a similar manner to a standard control.
  • charge mode only the arms B, D and F are controlled by performing, by means of the inductors 60 of the motor 50 of the electric machine, a voltage booster.
  • the remote control unit 12 controls the switches of the arms A and F as follows:
  • each H bridge is controlled to allow the circulation of an alternating current in the corresponding phase of the engine.
  • the alternating currents flowing in the three phases of the motor are coordinated in a conventional manner for the motor to rotate.
  • the switches 1 1 branches A and B can be controlled according to a PWM command (English acronym for "Pulse Width Modulation” or “Pulse Width Modulation”) conventional sinusoidal.
  • the other two H-bridges are driven in the same way, but out of phase with one another, preferably
  • the remote control unit (or circuit) 12 can also allow degraded mode operation of the motor 50. In fact, in the event of phase loss following a failure of the motor 50 or of the inverter 40, the control 12 reverses the control of one of the two phases of the motor 50 in operation. This command makes it possible to continue to generate a single rotating field of constant amplitude that does not generate a torque ripple, which is impossible with a conventional three-phase device in which the loss of a phase results in strong disturbances of the couple.
  • the communication bus 14 constitutes an interface for interconnecting the different functional elements of the device 1, namely the remote control unit 12 and the intrinsic control units 13 of the power modules 9, 9 '
  • the bus 14 is provided for this purpose with a plurality of communication ports, each port being provided to receive a link with the remote unit 12 or one of the intrinsic units 13.
  • the bus 14 may be a serial or parallel bus, depending on its frequency and the number of information it can transmit simultaneously.
  • the remote control unit 12 and the intrinsic control unit 13 thus exchange information in the form of data (for example in the form of bits), which transit via the bus 14. This exchange occurs in both directions, namely the transmission of instructions from the unit 12 to the units 13 and, in return, the transmission of measurement and / or diagnostic information from the units 13 to the unit 12.
  • the transmitter can set all the bits of the bus corresponding to its communication port at the same time.
  • the reader reads all the bits at the same time.
  • the remote control unit 12 is connected to each intrinsic control unit 13, via the communication bus 14, with a potential barrier, for example by interposing an opto-coupler and / or a transformer.
  • the unit 13 comprises its own programming logic, independent of that of the unit 12.
  • the logic of the unit 13 makes it possible to execute the opening and closing actions of the switches itself. as well as measurement and / or diagnostic actions.
  • the remote control unit 12 transmits through the potential barrier of the bus 14 high level instructions to each intrinsic control unit 13, these instructions being in the form of low voltage signals. From these instructions, each unit 13 executes a program capable of delivering the appropriate high voltage signals in order to carry out the command required by the unit 12. Similarly, in return, the unit 13 retrieves the high voltage measurement signals. , transforms them into low voltage signals in the form of bits, then transmits them to the remote unit 12 via the bus 14 through the potential barrier, the unit 12 therefore having only to proceed to the analysis of information directly provided in the form of data. Only low voltage signals thus pass to the remote unit 12, which saves a significant number of high-voltage converters - low voltage compared to the solutions of the state of the art, the power module taking autonomously support high voltage operations.
  • the structure of the DC / DC converter 30 has not been shown in order to facilitate the reading of FIG. 2.
  • the structure of this converter is in all respects analogous to that of the inverter 40. specifically, it comprises three power modules (one per phase of the motor 50), these modules themselves being provided with a controllable switch cell in the form of an H-bridge structure, as well as a control unit. intrinsic control. Each intrinsic control unit connects, on the one hand, the different arms of the H bridge and, on the other hand, a communication bus.
  • the DC / DC converter 30 constitutes a mirror component of the inverter 40.
  • These two elements can therefore be manufactured in the same way, in the form of an electronic layer whose structure is identical.
  • the "inverter” or “DC / DC converter” function it is sufficient to program the intrinsic control units adequately, after the manufacture of the component.
  • the inverter and the converter can thus be manufactured industrially, for a significant saving in terms of manufacturing costs.
  • the communication bus may be the same as the bus 14 used to connect the remote control unit 12 to the units of the inverter, or an independent communication bus, specifically dedicated to the connection between said unit of communication. remote control 12 and the modules of the converter 30.
  • the device 1 may in particular be superimposed a plurality of layers, such as:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

L'invention concerne un module de puissance (9) pour la conversion d'un courant électrique circulant entre un accumulateur et un moteur à courant alternatif, ledit module (9) comprenant des moyens de commutation (10), aptes à être commandés pour autoriser l'alimentation du moteur et/ou la charge de l'accumulateur, et une unité de commande intrinsèque (13), reliée auxdits moyens de commutation (10) et apte à délivrer des signaux d'ouverture et/ou de fermeture auxdits moyens de commutation (10), ladite unité de commande intrinsèque (13) étant en outre apte à échanger des données avec uneunité de commande distante, avec barrière de potentiel. Figure de l'abrégé: Figure 2

Description

Module de puissance et dispositif électrique pour l'alimentation et la charge combinées respectivement d'un accumulateur et d'un moteur
La présente invention concerne un module de puissance pour la conversion d'un courant électrique circulant entre un accumulateur et un moteur à courant alternatif. Elle concerne également un onduleur, un convertisseur et un dispositif électrique utilisant un tel module ainsi qu'un procédé d'alimentation et de charge mettant en œuvre un tel dispositif.
L'invention trouvera avantageusement application dans le domaine des automobiles électriques dans lesquelles les batteries peuvent alimenter le moteur via un onduleur et être rechargées lorsque l'automobile est à l'arrêt. Toutefois, bien que particulièrement prévus pour une telle application, le module conforme à l'invention pourra être utilisé dans d'autres domaines.
Classiquement, un véhicule électrique est équipé de batteries haute tension délivrant un courant continu à un onduleur qui transforme ce courant continu en un courant alternatif permettant d'alimenter un moteur électrique, ce dernier assurant l'entraînement du véhicule. De manière à assurer la recharge de ces batteries haute tension, il est connu d'équiper le véhicule d'un dispositif de charge embarqué essentiellement muni d'un convertisseur alternatif-continu permettant de redresser la puissance alternative du réseau électrique pour charger les batteries. En outre, le dispositif peut comprendre un convertisseur continu- continu, dit DC/DC, qui assure l'adaptation du niveau de tension du réseau à celui des batteries.
Les composants électroniques de la chaîne d'alimentation, d'une part, et de la chaîne de charge, d'autre part, sont coûteux. Par ailleurs, l'alimentation du moteur et la charge des batteries s'effectuent à des phases différentes. Aussi il a été proposé, dans les documents de brevet EP 0 603 778 et WO 97/09009, de réutiliser une partie du moteur et des composants servant à son alimentation pour réaliser le dispositif de charge des batteries.
A cet effet, l'onduleur et le convertisseur DC/DC pourront être prévus réversibles. Le dispositif de charge des batteries pourra en particulier utiliser l'onduleur pour former un convertisseur alternatif-continu ainsi que les bobinages du moteur pour former des inductances associées.
On a représenté à la figure 1 le principe de fonctionnement des convertisseurs de l'état de l'art. Ils utilisent un ou plusieurs bras de commande 1 munis de commutateurs 2 dont l'ouverture/fermeture permet, de façon connue, d'opérer une conversion de courant.
L'ouverture/fermeture des commutateurs est obtenue par une unité de pilotage 3 générant un courant de fermeture/ouverture desdits commutateurs. L'unité de pilotage 3 échange des informations avec une unité de commande 4 transmettant à l'unité de pilotage 3 des ordres déterminant l'ouverture/fermeture des commutateurs 2.
Les commutateurs 2 et l'unité de pilotage 3 fonctionnent à haute tension pour pouvoir transformer le courant soit en courant continu, soit en courant alternatif, suivant le mode de fonctionnement du dispositif. L'unité de commande 4, quant à elle, commande en basse tension (de l'ordre de 12 Volts). Aussi, pour découpler le circuit haute tension (unité de pilotage 3 et commutateurs 2) du circuit basse tension (unité de commande 4), il est connu de découpler individuellement chaque connexion haute tension - basse tension, au moyen de découpleurs 5, par exemple du type opto-coupleur et/ou transformateur.
De plus, la norme sur les véhicules électriques impose une tenue à l'isolation entre la batterie et la carrosserie, afin d'éviter l'électrocution de toute personne susceptible de rentrer en contact avec la carrosserie. Pour cela, la batterie HT est flottante, aucun de ses potentiels n'étant relié au châssis. Il est prévu des câbles isolants pour chaque liaison entre les composants haute tension et l'unité de commande 4, ce qui permet de désolidariser la batterie du châssis.
D'autres composants fonctionnant sous haute tension sont également employés tels que des unités de mesure 6 ou des unités d'alimentation 7, notamment d'alimentation de l'unité de pilotage 3. Les unités de mesure échangent des informations avec l'unité de commande 4. Les unités d'alimentation utilisent le circuit basse tension pour la fourniture du courant. Ainsi, des moyens de découplage 5 sont aussi prévus entre ces composants et l'unité de commande 4.
Pour toutes ces raisons, les dispositifs électriques selon l'art antérieur présentent des inconvénients à la fois en termes de connectique et de prix et de fiabilité, cette dernière étant liée au nombre de composants utilisés.
Par ailleurs, ils présentent un inconvénient majeur en termes de fiabilité, en particulier lorsqu'une même unité de commande 4 sert à plusieurs bras de commande 1. En effet, si une défaillance intervient, il est n'est pas aujourd'hui prévu de solutions pour déterminer son origine et il s'avère nécessaire de remplacer l'ensemble du convertisseur DC/DC et/ou de l'onduleur.
L'invention a pour but de remédier à ces inconvénients, et propose à cet effet un module de puissance pour la conversion d'un courant électrique circulant entre un accumulateur et un moteur à courant alternatif, ledit module comprenant des moyens de commutation, aptes à être commandés pour autoriser l'alimentation moteur et/ou la charge de l'accumulateur, et une unité de commande intrinsèque, reliée auxdits moyens de commutation et apte à délivrer des signaux d'ouverture et/ou de fermeture auxdits moyens de commutation, ladite unité de commande intrinsèque étant en outre apte à échanger des données avec une unité de commande distante, cet échange de données mettant en œuvre au moins une barrière de potentiel. L'échange de données se fait notamment à travers au moins une barrière de potentiel.
L'alimentation du moteur peut être effectuée selon différents modes d'alimentation et les moyens de commutation peuvent être commandés pour permettre ces différents modes d'alimentation du moteur.
Grâce à l'invention, on déporte des fonctions intelligentes, autrefois assurées par une unité de commande principale (l'unité de commande 4 sur la figure 1), à l'intérieur d'un module de puissance individuel, qui comprend ainsi sa propre unité de commande et ses propres fonctions logiques associées. Cette unité de commande intrinsèque est, d'une part, reliée aux moyens de commutation du module de puissance pour leur fournir un signal de commande et, d'autre part, communique avec une unité de commande distante pour recevoir et transmettre des données.
Les échanges de signaux entre les moyens de commutation et l'unité de commande intrinsèque pourront avoir lieu dans un environnement haute tension et ne pas nécessiter de barrière de potentiel, seule la liaison avec l'unité de commande distante nécessitant encore une telle barrière. Grâce à l'invention, on limite donc le découplage fourni par cette barrière de potentiel à des supports qui transportent uniquement des données et on limite le nombre de composants de découplage à utiliser.
Autrement dit, les modules de puissance ainsi constitués peuvent fonctionner de manière indépendante et réaliser eux-mêmes les commandes haute tension, à partir des données transmises par l'unité de commande distante.
La barrière de potentiel peut être obtenue par isolation galvanique, par exemple en utilisant pour le découplage un transformateur et/ou un opto-coupleur.
On pourra en outre employer un bus de communication permettant, par exemple, de multiplexer les signaux de données issus de plusieurs modules de puissance. Les unités de commande intrinsèques pourront alors communiquer en haute tension, module par module, avec leurs moyens de commutation, et sous la forme de données avec l'unité de commande distante. La barrière de potentiel peut être disposée au niveau du bus de communication et l'échange de données peut impliquer un passage à travers la barrière de potentiel de ce bus.
L'unité de commande distante ne fait avantageusement pas partie du module de puissance. Un autre avantage de l'invention est que le module de puissance peut être aussi bien utilisé au sein de l'onduleur ou du convertisseur DC/DC. En effet, il suffit pour cela de paramétrer le module de puissance correspondant, par exemple via un port de communication afin de programmer son unité de commande intrinsèque et de le faire fonctionner soit en tant que composant d'un onduleur, soit en tant que composant d'un convertisseur DC/DC. Il est ainsi rendu possible de fabriquer de tels modules de façon industrielle, la spécialisation pouvant être programmée postérieurement.
Selon différents modes de réalisation, qui pourront être pris ensemble ou séparément :
les moyens de commutation comprennent au moins un bras formé de deux commutateurs, montés en série, commandés à partir de ladite unité de commande intrinsèque,
les moyens de commutation comprennent des moyens de pilotage des commutateurs reliés, d'une part, à ladite unité de commande intrinsèque et, d'autre part aux commutateurs, lesdits moyens de pilotage étant aptes à fournir un courant de fermeture et/ou d'ouverture des commutateurs à partir des signaux d'ouverture et/ou de fermeture de ladite unité de commande intrinsèque,
ledit module comprend en outre des moyens de mesure reliés à ladite unité de commande intrinsèque,
ledit module comprend en outre des moyens d'alimentation, reliés au moins à ladite unité de commande intrinsèque et/ou auxdits moyens de commutation, ainsi qu'éventuellement auxdits moyens de mesure,
les moyens de commutation sont agencés pour former une structure de pont en H, apte à être reliée à une phase du moteur, les moyens de commutation comprenant alors deux bras comprenant chacun des commutateurs entre lesquels une borne de la phase du moteur est reliée,
le module de puissance est muni d'au moins une capacité de découplage agencée pour lisser la tension au niveau du pont en H,
ledit module comprend un bus de communication de données, relié à ladite unité de commande intrinsèque et apte à échanger des données avec ladite unité de commande distante, avec barrière de potentiel sur le bus,
le module comprend des moyens d'isolation galvanique sur ledit bus de communication.
Ainsi, selon un mode de réalisation particulier, chacun des modules est muni de moyens de mesure de courant, de tension et de température, ainsi que d'une capacité et d'une alimentation haute tension non isolée, ce qui complète l'autonomie desdits modules, avec un nombre réduit de connexions.
Les interfaces du module peuvent être limitées à:
deux interfaces de puissance pour alimenter le module en haute tension, - deux interfaces de puissance délivrant le courant sortant du pont en H,
une interface de commande pour le bus de communication.
L'invention concerne aussi un convertisseur de tension comprenant :
au moins un module de puissance tel que décrit ci-dessus, et une unité de commande distante configurée pour échanger des données avec l'unité de commande intrinsèque du module à travers une barrière de potentiel.
Le convertisseur peut comprendre une pluralité de modules de puissance et une seule unité de commande distante configurée pour échanger des données avec chaque unité de commande intrinsèque. L 'échange de données peut ne se faire qu'à travers une seule barrière de potentiel,
Le convertisseur de tension peut être l'onduleur ou le convertisseur DC/DC mentionné ci-dessous.
L'invention concerne aussi un onduleur pour l'alimentation et la charge combinées respectivement d'un accumulateur et d'un moteur à courant alternatif, l'onduleur comprenant au moins un module de puissance tel que décrit plus haut.
II pourra s'agir d'un onduleur pour moteur polyphasé, l'onduleur étant alors muni de modules de puissance en nombre égal au nombre de phases dudit moteur, chacun desdits modules de puissance étant relié à l'une desdites phases dudit moteur.
L'invention concerne aussi un convertisseur DC/DC pour l'alimentation et la charge combinées respectivement d'un accumulateur et d'un moteur à courant alternatif.
Le convertisseur DC/DC peut ou non être utilisé en combinaison avec l'onduleur ci- dessus. En cas de combinaison, ledit convertisseur DC/DC peut être agencé pour adapter le niveau de tension entre l'accumulateur et un onduleur. Il est muni pour cela d'au moins un module de puissance tel que décrit plus haut.
L'invention concerne aussi un dispositif électrique combiné d'alimentation et de charge, comportant un moteur à courant alternatif, un accumulateur, un onduleur muni d'au moins un module de puissance tel que décrit ci-dessus, ledit dispositif comportant également une unité de commande distante, apte à échanger des données avec l'unité de commande intrinsèque du ou des modules de puissance, par exemple par un bus de communication. L'unité de commande distante peut ainsi communiquer avec chaque unité de commande intrinsèque.
Ce dispositif électrique combiné d'alimentation et de charge bénéficie des avantages déjà évoqués fournis par les modules de puissance selon l'invention. En outre, grâce à ce dispositif, en présence d'un défaut, il est possible de déterminer lequel des ports du bus de communication présente le défaut, et donc d'en déduire le module de puissance effectivement défectueux. Seul ce module de puissance peut alors être remplacé, ce qui limite les coûts de service après-vente.
Un autre avantage de l'invention est qu'il est possible de connecter une pluralité de modules de puissance selon l'invention à un même bus de télécommunication, qui communique avec l'unité de commande par l'intermédiaire d'un nombre limité de liaisons. De plus, au lieu de découpler individuellement chacune des connexions, le découplage réalisé par le bus de communication se fait de manière globale et multiplexée. De cette manière, le nombre de connectiques et d'isolateurs est réduit, de même que le prix du dispositif électrique résultant.
Un autre avantage de l'invention est que l'on peut réaliser un dispositif électrique combiné d'alimentation et de charge sur-mesure, en choisissant par exemple le nombre de modules de puissance selon l'invention que l'on souhaite utiliser pour former l'onduleur et/ou le convertisseur DC/DC.
De préférence, ce dispositif électrique comporte également un convertisseur DC/DC disposé entre l'accumulateur et l'onduleur, de manière à adapter les niveaux de tension de l'accumulateur et de l'onduleur. Ce convertisseur peut être lui aussi muni de modules de puissance selon l'invention, c'est-à-dire de modules munis chacun d'une unité de commande intrinsèque, l'unité de commande distante du dispositif et l'unité de commande intrinsèque de ces modules de puissance étant reliées à un même bus de communication, de manière que l'unité de commande distante commande au moins une partie des moyens de commutation de ces modules de puissance par l'intermédiaire de leur unité de commande intrinsèque.
Une seule unité de commande distante peut ainsi échanger des données avec chaque unité de commande intrinsèque du dispositif, que cette dernière appartienne à un module de puissance de l'onduleur ou à un module de puissance du convertisseur DC/DC.
Afin d'assurer la régulation thermique du dispositif, il pourra être prévu qu'il soit intégré dans un boîtier dont au moins une surface est en contact avec un échangeur à eau de manière à permettre le refroidissement de ladite au moins une surface. Cette surface de refroidissement peut comprendre par ailleurs une pluralité de picots agencés pour augmenter la dimension de la surface d'échange.
Bien sûr, l'invention trouve aussi son intérêt dans des dispositifs électriques assurant seulement l'alimentation du moteur depuis l'accumulateur ou seulement la charge de l'accumulateur depuis le moteur et les onduleurs et/ou convertisseur DC/DC conformes à l'invention ne sont pas nécessairement réversibles.
L'invention concerne également un procédé combiné d'alimentation et de charge pour la mise en œuvre du dispositif présenté ci-dessus, ce procédé comportant une étape de commande des moyens de commutation d'au moins l'un des modules de puissance permettant de passer d'un mode d'alimentation du moteur à un mode de charge de l'accumulateur et inversement.
L'invention concerne également un procédé d'implémentation d'un dispositif combiné d'alimentation et de charge tel que décrit ci-dessus, dans lequel on implémente le dispositif en superposant une pluralité de couches fonctionnelles électroniques, lesdites couches étant telles que :
- une première couche forme l'onduleur,
- une seconde couche forme l'unité de commande distante, et
- une troisième couche forme le convertisseur DC/DC.
Ce procédé peut comporter l'étape selon laquelle on connecte la première couche et la deuxième couche à l'aide d'un premier bus de communication et selon laquelle on connecte la deuxième couche et la troisième couche à l'aide d'un second bus de communication. L'invention sera mieux comprise à l'aide des dessins annexés sur lesquels :
la figure 1, déjà commentée, représente schématiquement un dispositif électrique selon l'art antérieur,
- la figure 2 illustre schématiquement un exemple de réalisation d'un module de puissance selon l'invention,
la figure 3 représente schématiquement un exemple de réalisation du dispositif électrique combiné d'alimentation et de charge conforme à l'invention. Comme illustré à la figure 2, l'invention concerne tout d'abord un module de puissance 9 pour la conversion d'un courant électrique circulant entre un accumulateur et un moteur à courant alternatif, non représentés à cette figure. Ledit module 9 comprend dans l'exemple décrit:
des moyens de commutation 10, aptes à être commandés pour autoriser l'alimentation du moteur et/ou la charge de l'accumulateur, et une unité de commande intrinsèque 13 , reliée auxdits moyens 10 de commutation et apte à délivrer des signaux d'ouverture et/ou de fermeture auxdits moyens de commutation 10, ladite unité de commande intrinsèque 13 étant en outre apte à échanger des données avec une unité de commande distante, non représenté à cette figure, avec barrière de potentiel.
Par « reliée », on entend que l'unité de commande intrinsèque 13 est liée électriquement sans isolation galvanique aux moyens de commutation 10. Il en est plus généralement de même pour les différents composants de l'invention qui sont dits « reliés ».
Ladite unité de commande 13 est de nature numérique. On entend par là qu'elle est apte traiter des données sous format numérique, aussi bien en entrée qu'en sortie. Elle définit ainsi, par exemple, un cœur numérique pour le module 9.
Les moyens 10 de commutation comprennent au moins un bras formé de deux commutateurs 1 1 commandés à partir de ladite unité de commande intrinsèque 13. Les commutateurs sont reliés en série entre deux conducteurs 102, 104, destinés à être relié aux bornes d'une alimentation, par l'intermédiaire d'un connecteur du module, non représenté. Ici, le module comprend deux bras 100, 100', un premier présentant un premier point milieu 106, prévu entre ses deux commutateurs 1 1, et un second présentant un second point milieu 106', prévu entres ses deux commutateurs 11. Lesdits points milieu 106, 106' sont reliés à un connecteur du module, non représenté, par des conducteurs 108, 110. Chaque connecteur permet la connexion d'un point milieu 106, 106' à une borne d'une phase d'un moteur, comme expliqué par la suite. Les moyens de commutation 10 sont ainsi agencés pour former une structure de pont en H.
Les moyens 10 de commutation comprennent également des moyens 22 de pilotage des commutateurs 11 reliés, d'une part, à ladite unité de commande intrinsèque 13 et, d'autre part aux commutateurs 11. Lesdits moyens 22 de pilotage sont aptes à fournir un courant de fermeture et/ou d'ouverture des commutateurs 11 à partir des signaux d'ouverture et/ou de fermeture de ladite unité de commande intrinsèque 13.
Ici, les commutateurs 1 1 sont définis par des transistors, notamment du type IGBT ou MOSFET, et les moyens 22 de pilotage délivrent un courant aux grilles desdits transistors par un conducteur 112, courant qui déterminera leur état passant ou bloqué.
Le module comprend en outre, par exemple, des moyens de mesure 24 reliés à ladite unité de commande intrinsèque 13. Ils comprennent ici une unité de mesure 1 14, reliée à l'unité de commande intrinsèque 13 par un bus de communication 1 16. Ils comprennent aussi différents composants permettant, par exemple, des mesures du courant circulant dans les bras 100, 100', des mesures de la tension aux bornes des bras ou des mesures de température.
La mesure de courant s'effectue, par exemple, à l'aide de résistances 118 prévues en série sur les bras 100, 100', la tension aux bornes de la résistance étant convertie par des amplificateurs opérationnels 120 qui délivrent un courant de mesure à l'unité de mesure 114.
La mesure de tension s'effectue, par exemple, à l'aide d'un diviseur de tension 122 associé aux bornes d'entrée d'un amplificateur opérationnel 124 délivrant un courant de mesure à l'unité de mesure 114.
La mesure de température s'effectue, par exemple, à l'aide d'une varistance 126 associée à un amplificateur opérationnel 128 délivrant un courant de mesure à l'unité de mesure 114.
Le module comprend en outre, par exemple, des moyens d'alimentation 26, reliés au moins à ladite unité de commande intrinsèque 13 et/ou auxdits moyens de commutation 10 ainsi que, éventuellement aux moyens de mesure pour leur alimentation. Lesdits moyens d'alimentation 26 sont non-isolés et reliés, par exemple, à l'alimentation haute-tension, ici par le conducteur 102 alimentant le pont en H.
Le module conforme à l'invention pourra aussi être muni d'au moins une capacité de découplage 130 agencée pour protéger les moyens de commutation 10. Elle est ici raccordée aux conducteurs 102, 104 alimentant le pont en H.
Le module pourra encore comprendre un bus de communication de données 14, relié à ladite unité de commande intrinsèque 13 et apte à échanger des données avec ladite unité de commande distante. Une barrière de potentiel, non représenté à cette figure est prévue sur le bus. Il pourra s'agir de moyens d'isolation galvanique, tels qu'un transformateur et/ou un opto-coupleur.
Autrement dit, dans l'exemple illustré, les interfaces du module 9 se limitent à:
deux interfaces de puissance, reliées aux conducteurs 102, 104, pour alimenter le module en haute tension,
deux interfaces de puissance, reliées aux conducteurs 108, 1 10 délivrant le courant sortant du pont en H,
- une interface de commande pour le bus de communication 14.
Ladite unité de commande intrinsèque 13 assure, par exemple, les fonctions suivantes :
application des ordres reçus de l'unité distante par le bus de communication 14, notamment des ordres relatifs au courant de sortie souhaité, détermination des ordres d'ouverture/fermeture des commutateurs 2 à transmettre aux unités de pilotage 22 (signaux HS, LS), à partir des ordres relatifs au courant de sortie souhaité,
vérification de la cohérence des informations reçues par le bus de communication 14,
réalisation de diagnostiques relatifs au module, et/ou
transmission d'un état complet du module à l'intention de l'unité distante, par l'intermédiaire du bus de communication 14.
En retour des ordres reçus, les moyens de pilotage 22 pourront être prévus aptes à délivrer des informations de diagnostique à l'unité de commande intrinsèque 13 (signal Fault).
Comme illustré à la figure 3, l'invention concerne aussi un dispositif électrique combiné d'alimentation et de charge 1 comportant, dans l'exemple représenté, un accumulateur 20, un convertisseur de courant continu-continu 30, un onduleur 40, un moteur à courant alternatif 50 (ici triphasé et dont les enroulements 60 font office d'inductances), un bus de communication 14, une unité de commande distante 12 et enfin une connectique 70.
L'onduleur 40 comporte une pluralité de modules de puissance 9, 9' et 9" tels que décrit plus haut. Chaque module est muni d'une unité de commande intrinsèque 13 - ou local - et des moyens de commutation 10 sous la forme d'une structure de pont en H, un pont étant prévu par phase du moteur. Ce type de structure permet, notamment, une commande indépendante des phases du moteur qui n'auront donc pas à être connectées en étoile ou en triangle.
Chaque pont comporte quatre commutateurs pilotables 11. Ces commutateurs sont répartis sur des bras référencés de A à F, de la manière suivante :
- les bras A et B de l'unité 9 sont reliés à une première phase du moteur 50,
- les bras C et D de l'unité 9' sont reliés à une seconde phase, et
- les bras E et F de l'unité 9" sont reliés à la troisième phase.
Le dispositif 1 comporte également une connectique 70 permettant le raccordement à la prise du réseau électrique triphasé. Cette connectique 70 comporte des moyens de verrouillage, non représentés, pour empêcher l'accès à la prise électrique en cas de mise sous tension du dispositif 1 lors du mode de charge. La connectique 70 est également associée à des seconds moyens de verrouillage, non représentés dans les figures annexées, pour empêcher l'accès aux conducteurs (qui sont alors sous tension) lors du mode d'alimentation. La prise assure également une mise à la terre du dispositif 1. Cette connectique 70 comporte avantageusement des protections et des filtres de compatibilité électromagnétique classiques pour tout appareil destiné à être relié au réseau électrique.
Le passage du mode d'alimentation au mode de charge est géré par l'unité de commande distante 12, qui pilote notamment les commutateurs 11 des bras A à F par l'intermédiaire du bus de communication 14 et des unités de commande intrinsèques 13. En mode alimentation, l'unité de commande distante 12 commande l'ensemble des bras A, B, C, D, E et F, ce qui permet de générer des courants triphasés de manière analogue à une commande standard. En mode charge, seuls les bras B, D et F sont commandés en réalisant, au moyen des inductances 60 du moteur 50 de la machine électrique, un élévateur de tension.
Plus précisément, et dans le présent exemple, l'unité de commande distante 12 pilote les commutateurs des bras A et F de la manière suivante :
- En mode d'alimentation, chacun des ponts en H est commandé de façon à permettre la circulation d'un courant alternatif dans la phase correspondante du moteur. Les courants alternatifs circulant dans les trois phases du moteur sont coordonnés de manière classique pour que le moteur tourne. Les commutateurs 1 1 des branches A et B peuvent être pilotés selon une commande PWM (acronyme anglo-saxon de « Puise Width Modulation », soit en français « Modulation à Largeur d'Impulsions ») sinusoïdale classique. Les deux autres ponts en H sont pilotés de la même manière, mais en déphasage les uns des autres, de préférence à
120° dans le cas d'un moteur triphasé,
- En mode de charge triphasé, les deux commutateurs de chacun des bras A, C et E sont ouverts, tandis que les commutateurs des bras B, D et F sont pilotés selon une commande alternative classique pour un chargeur triphasé de sorte que chaque inductance 60 soit traversée par un courant alternatif et que la fonction PFC
(acronyme anglo-s ax o n de « Power Factor Correction », soit en français « Correction de Facteur de Puissance ») soit réalisée sur l'ensemble des phases. L'unité - ou circuit - de commande distante 12 peut également permettre un fonctionnement en mode dégradé du moteur 50. En effet, en cas de perte de phase suite à une défaillance du moteur 50 ou de l'onduleur 40, l'unité de commande 12 inverse la commande de l'une des deux phases du moteur 50 en fonctionnement. Cette commande permet de continuer à générer un champ tournant unique, d'amplitude constante, ne générant pas d'ondulation de couple, ce qui est impossible avec un dispositif triphasé classique dans lequel la perte d'une phase se traduit par des fortes perturbations du couple. Comme déjà évoqué plus haut, le bus de communication 14 constitue une interface permettant d'interconnecter les différents éléments fonctionnels du dispositif 1 , à savoir l'unité de commande distante 12 et les unités de commande intrinsèques 13 des modules de puissance 9, 9 ' et 9". Le bus 14 est muni à cet effet d'une pluralité de ports de communication, chaque port étant prévu pour recevoir une liaison avec l'unité distante 12 ou l'une des unités intrinsèques 13. Le bus 14 peut être un bus série ou parallèle, en fonction de sa fréquence et du nombre d'informations qu'il peut transmettre simultanément.
L'unité de commande distante 12 et l'unité de commande intrinsèque 13 échangent ainsi des informations sous la forme de données (par exemple sous la forme de bits), qui transitent via le bus 14. Cet échange se produit dans les deux sens, à savoir la transmission d'instructions de l'unité 12 vers les unités 13 et, en retour, la transmission d'informations de mesure et/ou de diagnostique des unités 13 vers l'unité 12.
Ces différents modules peuvent ainsi exercer alternativement un rôle de dispositif émetteur et un rôle de dispositif lecteur. Dans chaque cas, l'émetteur peut positionner au même instant tous les bits du bus correspondant à son port de communication. A un moment adéquat (déterminé par exemple par un signal de contrôle), le lecteur lit tous les bits en même temps.
L'unité de commande distante 12 est reliée à chaque unité de commande intrinsèque 13, via le bus de communication 14, avec barrière de potentiel, par exemple par interposition d'un opto-coupleur et/ou d'un transformateur.
Comme déjà indiqué, l'unité 13 comprend sa propre logique de programmation, indépendante de celle de l'unité 12. En particulier la logique de l'unité 13 permet d'exécuter elle-même les actions d'ouverture et de fermeture des commutateurs, ainsi que des actions de mesure et/ou de diagnostic.
De cette manière, l'unité de commande distante 12 transmet à travers la barrière de potentiel du bus 14 des instructions de haut niveau à chaque unité de commande intrinsèque 13, ces instructions se présentant sous la forme de signaux basse tension. A partir de ces instructions, chaque unité 13 exécute un programme apte à délivrer les signaux haute tension adéquats en vue de réaliser la commande exigée par l'unité 12. De même, en retour, l'unité 13 récupère les signaux de mesure haute tension, les transforme en signaux basse tension sous la forme de bits, puis les transmet à l'unité distante 12 via le bus 14 à travers la barrière de potentiel, l'unité 12 n'ayant dès lors plus qu'à procéder à l'analyse des informations directement fournies sous la forme de données. Seuls des signaux basse tension transitent ainsi jusqu'à l'unité distante 12, ce qui permet d'économiser un nombre significatif de convertisseurs haute tension - basse tension par rapport aux solutions de l'état de l'art, le module de puissance prenant en charge de façon autonome les opérations haute tension.
Dans le présent mode de réalisation, la structure du convertisseur DC/DC 30 n'a pas été représentée afin de faciliter la lecture de la figure 2. La structure de ce convertisseur est en tout point analogue à celle de l'onduleur 40. Plus précisément, elle comporte trois modules de puissance (un par phase du moteur 50), ces modules étant eux-mêmes munis d'une cellule de commutateurs pilotables sous la forme d'une structure de pont en H, ainsi que d'une unité de commande intrinsèque. Chaque unité de commande intrinsèque relie, d'une part, les différents bras du pont en H et, d'autre part, un bus de communication.
De cette manière, le convertisseur DC/DC 30 constitue un composant miroir de l'onduleur 40. Ces deux éléments peuvent donc être fabriqués de la même façon, sous la forme d'une couche électronique dont la structure est identique. Afin de conférer à cette couche électronique la fonction « onduleur » ou « convertisseur DC/DC », il suffit de programmer les unités de commande intrinsèque de manière adéquate, postérieurement à la fabrication du composant. L'onduleur et le convertisseur peuvent ainsi être fabriqués de manière industrielle, pour une économie significative en termes de coûts de fabrication. Dans ce cas, le bus de communication peut être le même que le bus 14 utilisé pour relier l'unité de commande distante 12 aux unités de l ' onduleur, ou bien un bus de communication indépendant, spécifiquement dédié à la connexion entre ladite unité de commande distante 12 et les modules du convertisseur 30.
Lors de l'implémentation du dispositif 1 selon l'invention, il peut être notamment superposé une pluralité de couches, telles que :
- une première couche correspondant à l'onduleur 40,
- une seconde couche correspondant à l'unité de commande distante 12,
- une troisième couche correspondant au convertisseur DC/DC 30
De cette manière, l'on réalise une majeure partie du dispositif par simple superposition de couches électroniques, la connexion entre les couches « onduleur 40 » et « unité de commande distante 12 » étant assurée par un premier bus de communication, tandis que la connexion entre les couches « convertisseur DC/DC 30 » e t « unité dé commande distante 12 » étant assurée par un second bus de communication.
Les modes de réalisation précédemment décrits de la présente invention sont donnés à titre d'exemples et ne sont nullement limitatifs. Il est entendu que l'homme du métier saura transposer ces exemples dans d'autres cas, par exemple lorsque l'on utilise des machines électriques à plus de trois phases. Il est également entendu que l'homme du métier saura adapter ces exemples au cas où l'onduleur n'a pas une structure de pont en H, mais une structure classique avec des ponts triphasés et des moyens de commutation de type contacteur de puissance pour passer d'un mode de charge des batteries à un mode d'alimentation du moteur.

Claims

Revendications
1. Module de puissance (9,9',9") pour la conversion d'un courant électrique circulant entre un accumulateur (20) et un moteur (50) à courant alternatif, ledit module (9,9',9") comprenant des moyens de commutation (10), aptes à être commandés pour autoriser l'alimentation du moteur (50) et/ou la charge de l'accumulateur (20), et une unité de commande intrinsèque (13), reliée auxdits moyens (10) de commutation et apte à délivrer des signaux d'ouverture et/ou de fermeture auxdits moyens de commutation (10), ladite unité de commande intrinsèque étant en outre apte à échanger des données avec une unité de commande distante (12), cet échange de données mettant en œuvre une barrière de potentiel.
2. Module selon la revendication 1 dans lequel les moyens (10) de commutation comprennent au moins un bras formé de deux commutateurs (1 1), montés en série, commandés à partir de ladite unité de commande intrinsèque (13).
3. Module selon la revendication 2 dans lequel les moyens ( 10) de commutation comprennent des moyens (22) de pilotage des commutateurs reliés, d'une part, à ladite unité de commande intrinsèque (13) et, d'autre part aux commutateurs, lesdits moyens (22) de pilotage étant aptes à fournir un courant de fermeture et/ou d'ouverture des commutateurs
(11) à partir des signaux d'ouverture et/ou de fermeture de ladite unité de commande intrinsèque (13).
4. Module selon l'une quelconque des revendications 1 à 3 comprenant en outre des moyens de mesure (24) reliés à ladite unité de commande intrinsèque (13).
5. Module selon l'une quelconque des revendications 1 à 4 comprenant en outre des moyens d'alimentation (26), reliés au moins à ladite unité de commande intrinsèque (13) et/ou auxdits moyens de commutation (10).
6. Module selon l'une quelconque des revendications précédentes, dans lequel les moyens de commutation (10) sont agencés pour former une structure de pont en H, apte à être reliée à une phase (60) du moteur (50).
7. Module selon l'une quelconque des revendications précédentes, muni d'au moins une capacité de découplage (130) agencée pour protéger les moyens de commutation (10).
8. Module de puissance selon l'une quelconque des revendications précédentes comprenant en outre un bus de communication de données (14), relié à ladite unité de commande intrinsèque (13) et apte à échanger des données avec ladite unité de commande distante
(12) , avec barrière de potentiel sur le bus.
9. Module de puissance selon la revendication 8 comprenant des moyens d'isolation galvanique sur ledit bus de communication (14).
10. Convertisseur de tension comprenant :
au moins un module de puissance (9, 9', 9") selon l'une quelconque des revendications précédentes, et
une unité de commande distante (12) configurée pour échanger des données avec l'unité de commande intrinsèque (13) du module (9, 9', 9") à travers une barrière de potentiel.
11. Convertisseur selon la revendication 10, comprenant une pluralité de modules de puissance (9, 9', 9") et une seule unité de commande distante (12) configurée pour échanger des données avec chaque unité de commande intrinsèque (13) à travers une seule barrière de potentiel,
12. Convertisseur selon la revendication 10 ou 1 1 , étant un onduleur (40) pour l'alimentation et la charge combinées respectivement d'un accumulateur (20) et d'un moteur (50) à courant alternatif.
13. Onduleur selon la revendication 12, pour lequel le moteur (50) étant un moteur polyphasé, l'onduleur (40) est muni de modules de puissance (9,9',9") en nombre égal au nombre de phases (60) dudit moteur (50), chacun desdits modules de puissance (9,9 ',9") étant relié à l'une desdites phases (60) dudit moteur (50).
14. Convertisseur selon la revendication 10 ou 1 1, étant un convertisseur DC/DC (30) pour l'alimentation et la charge combinées respectivement d'un accumulateur (20) et d'un moteur (50) à courant alternatif.
15. Convertisseur selon la revendication 14, étant agencé pour adapter le niveau de tension entre l'accumulateur (20) et un onduleur (40).
16. Dispositif électrique (1) combiné d'alimentation et de charge, comportant un moteur (50) à courant alternatif, un accumulateur (20), un onduleur (40) muni d'au moins un module de puissance (9,9',9") selon l'une quelconque des revendications 1 à 9, ledit dispositif (1) comportant également une unité de commande distante (12), aptes à échanger des données avec l'unité de commande intrinsèque (13) du ou desdits modules de puissance (9,9',9").
17. Dispositif électrique selon la revendication 16, comportant un convertisseur DC/DC (30) comprenant au moins un module de puissance selon l 'une quelconque des revendications 1 à 9, le convertisseur DC/DC (30) étant disposé entre l'accumulateur (20) et l'onduleur (40).
18. Procédé d'implémentation d'un dispositif selon la revendication 17, dans lequel on implémente le dispositif en superposant une pluralité de couches électroniques, les couches étant telles que :
- une première couche forme l'onduleur (40),
- une seconde couche forme l'unité de commande distante (12), et
- une troisième couche forme le convertisseur DC/DC (30).
PCT/FR2012/052515 2011-11-02 2012-10-30 Module de puissance et dispositif electrique pour l'alimentation et la charge combinees respectivement d'un accumulateur et d'un moteur WO2013064780A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12794416.3A EP2774257B1 (fr) 2011-11-02 2012-10-30 Module de puissance et dispositif électrique pour l'alimentation et la charge combinées respectivement d'un accumulateur et d'un moteur
CN201280065837.3A CN104025443A (zh) 2011-11-02 2012-10-30 分别用于蓄电池和马达的联合供电和充电的功率模块和电气装置
JP2014539386A JP6208675B2 (ja) 2011-11-02 2012-10-30 電力モジュール、およびモータへの給電および蓄電池の充電に共用しうる電気装置
US14/355,303 US9793836B2 (en) 2011-11-02 2012-10-30 Power module and electric device for the combined powering and charging of an accumulator and a motor respectively

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1159907A FR2982092B1 (fr) 2011-11-02 2011-11-02 Module de puissance et dispositif electrique pour l'alimentation et la charge combinees respectivement d'un accumulateur et d'un moteur
FR1159907 2011-11-02

Publications (2)

Publication Number Publication Date
WO2013064780A2 true WO2013064780A2 (fr) 2013-05-10
WO2013064780A3 WO2013064780A3 (fr) 2014-01-16

Family

ID=47263451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/052515 WO2013064780A2 (fr) 2011-11-02 2012-10-30 Module de puissance et dispositif electrique pour l'alimentation et la charge combinees respectivement d'un accumulateur et d'un moteur

Country Status (6)

Country Link
US (1) US9793836B2 (fr)
EP (1) EP2774257B1 (fr)
JP (1) JP6208675B2 (fr)
CN (2) CN109980982B (fr)
FR (1) FR2982092B1 (fr)
WO (1) WO2013064780A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537953A (ja) * 2013-11-19 2016-12-01 ボンバルディアー プリモーフ ゲゼルシャフト ミット ベシュレンクテル ハフツングBombardier Primove GmbH 三相1次巻線構造体を動作させる方法及び1次ユニット

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002384B1 (fr) * 2013-02-21 2016-08-19 Valeo Systemes De Controle Moteur Architecture electrique pour la conversion d'une tension continue en une tension alternative, et reciproquement
DE102013216700B4 (de) * 2013-08-22 2022-01-27 Siemens Mobility GmbH Ladung von batteriefahrtfähigen Straßenfahrzeugen
WO2016011656A1 (fr) * 2014-07-25 2016-01-28 中山大洋电机股份有限公司 Procédé de commande intégrée d'entraînement et de charge pour véhicule électrique, et véhicule électrique l'utilisant
DE102015111072A1 (de) * 2015-07-08 2017-01-12 Fraba B.V. Wartungs- und Überwachungssystem zur Überwachung eines Tororgans
US9673809B1 (en) * 2016-03-24 2017-06-06 Nxp Usa, Inc. Replication of a drive signal across a galvanic isolation barrier
US11631907B2 (en) 2017-11-02 2023-04-18 Qualcomm Incorporated System and method for charging of a battery
AU2019447744B2 (en) 2019-05-24 2024-03-28 Huawei Digital Power Technologies Co., Ltd. Integrated charger and motor control system comprising a transformer and multi-level power converters
WO2021074661A1 (fr) 2019-10-16 2021-04-22 ZHU, Karen Ming Convertisseur de puissance à ponts multiples à sorties multiples
CN116080405B (zh) * 2023-03-24 2023-06-27 成都赛力斯科技有限公司 车辆上下电系统、实现方法和计算机设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603778A1 (fr) 1992-12-25 1994-06-29 Fuji Electric Co., Ltd. Système électrique d'un véhicule électrique
WO1997009009A1 (fr) 1995-09-05 1997-03-13 Dansk Service Center Aide visuelle et/ou acoustique pour usage personnel et utilisation de ces aides

Family Cites Families (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464651A (en) * 1980-04-14 1984-08-07 Stanley Vemco Home security and garage door operator system
US4360801A (en) * 1980-04-14 1982-11-23 Stanley Vemco Home security and garage door operator system
US4433274A (en) * 1980-04-14 1984-02-21 Duhame Dean C Home security and garage door operator system
US4947053A (en) * 1986-08-15 1990-08-07 General Motors Corporation High DC voltage power supply for motor vehicle electrical system
US4944056A (en) * 1988-09-28 1990-07-31 The Research Foundation Of State University Of Ny Method and apparatus for transporting a disabled person
EP0646902A3 (fr) * 1988-12-06 1995-06-07 Boral Johns Perry Ind Pty Ltd Dispositif pour la réception et transmission d'une pluralité de signaux parallèles.
US5055762A (en) * 1989-04-17 1991-10-08 General Motors Corporation Current controlled full wave transitor bridge inverter for a multiple phase AC machine
US4987351A (en) * 1990-01-11 1991-01-22 General Motors Corporation Load-based control of an AC motor
US5517402A (en) * 1992-06-04 1996-05-14 Sanden Corporation Inverter circuit with an improved inverter driving circuit
US5465011A (en) * 1992-12-14 1995-11-07 Square D Company Uninterruptible power supply with improved output regulation
JPH0851799A (ja) * 1994-08-09 1996-02-20 Nippondenso Co Ltd インバータ装置及びそれを用いた電源装置
US5747955A (en) * 1995-03-31 1998-05-05 Quinton Instrument Company Current sensing module for a variable speed AC motor drive for use with a treadmill
US5650709A (en) * 1995-03-31 1997-07-22 Quinton Instrument Company Variable speed AC motor drive for treadmill
US5623191A (en) * 1995-04-12 1997-04-22 Allen-Bradley Company, Inc. Circuit board architecture for a motor controller
US5610493A (en) * 1995-04-12 1997-03-11 Allen-Bradley Company, Inc. Terminal configuration for a motor controller
CN1065686C (zh) * 1995-09-08 2001-05-09 株式会社安川电机 电力变换装置及电力变换方法
FR2764713B1 (fr) * 1997-06-11 1999-07-16 Commissariat Energie Atomique Procede de commande d'au moins un transistor du type igbt apte a permettre le fonctionnement de celui-ci sous irradiation
KR100326104B1 (ko) * 1997-08-04 2002-10-11 가부시끼가이샤 도시바 전력변환장치의제어방법
US6014323A (en) * 1997-08-08 2000-01-11 Robicon Corporation Multiphase power converter
GB2330254B (en) * 1997-10-09 2000-10-18 Toshiba Kk Multiple inverter system
US5900683A (en) * 1997-12-23 1999-05-04 Ford Global Technologies, Inc. Isolated gate driver for power switching device and method for carrying out same
US6295510B1 (en) * 1998-07-17 2001-09-25 Reliance Electric Technologies, Llc Modular machinery data collection and analysis system
JP4432168B2 (ja) * 1998-11-30 2010-03-17 ソニー株式会社 移動体搭載用バッテリ装置
US6410185B1 (en) * 1999-02-15 2002-06-25 Sony Corporation Battery device for loading on moving body
JP4631118B2 (ja) * 1999-02-15 2011-02-16 ソニー株式会社 移動体搭載用バッテリ装置
JP2001025267A (ja) * 1999-07-08 2001-01-26 Toyota Autom Loom Works Ltd 電圧駆動型素子のドライブ保護回路
US6757597B2 (en) * 2001-01-31 2004-06-29 Oshkosh Truck A/C bus assembly for electronic traction vehicle
US6885920B2 (en) * 1999-07-30 2005-04-26 Oshkosh Truck Corporation Control system and method for electric vehicle
DE19951584B4 (de) * 1999-10-27 2005-09-15 Ballard Power Systems Ag Vorrichtung zum Erzeugen elektrischer Energie mit einer Brennstoffzelle, der Zusatzaggregate zum Starten und zum Betrieb zugeordnet sind und Verfahren zum Betrieb der Vorrichtung
DE20115474U1 (de) * 2001-09-19 2003-02-20 Biester Klaus Gleichspannungs-Wandlervorrichtung
DE20115473U1 (de) * 2001-09-19 2003-02-20 Biester Klaus Universelles Energieversorgungssystem
US7615893B2 (en) * 2000-05-11 2009-11-10 Cameron International Corporation Electric control and supply system
DE20115471U1 (de) * 2001-09-19 2003-02-20 Biester Klaus Universelles Energieversorgungssystem
EP1217475B1 (fr) * 2000-12-13 2005-10-26 Lg Electronics Inc. Appareil et méthode pour commander à distance des appareils ménagers
US7277782B2 (en) * 2001-01-31 2007-10-02 Oshkosh Truck Corporation Control system and method for electric vehicle
DE20115475U1 (de) * 2001-09-19 2003-02-20 Biester Klaus Gleichspannungs-Wandlervorrichtung
US6496393B1 (en) * 2001-11-28 2002-12-17 Ballard Power Systems Corporation Integrated traction inverter module and bi-directional DC/DC converter
DE10231091A1 (de) * 2002-07-10 2004-01-22 Robert Bosch Gmbh Aktivgleichrichter-Modul für Drehstromgeneratoren von Fahrzeugen
JP2004080851A (ja) * 2002-08-09 2004-03-11 Aisin Aw Co Ltd 駆動用電源装置
US7755223B2 (en) * 2002-08-23 2010-07-13 The Chamberlain Group, Inc. Movable barrier operator with energy management control and corresponding method
US6864650B2 (en) * 2003-06-24 2005-03-08 Warn Industries, Inc. Winch controller
EP1719141A1 (fr) * 2004-01-30 2006-11-08 ABB Technology Ltd Moniteur d'etat destine a un dispositif de distribution electrique
DE102004031216A1 (de) * 2004-06-28 2006-01-19 Siemens Ag Vorrichtung und Verfahren zum Ladungsausgleich in Reihe geschalteter Energiespeicher
FR2881295B1 (fr) * 2005-01-26 2007-03-23 Valeo Equip Electr Moteur Gestion du fonctionnement d'un alterno-demarreur de vehicule automobile
JP2006300038A (ja) * 2005-04-25 2006-11-02 Denso Corp 強制冷却式車両用モータ制御装置
MX2007014842A (es) * 2005-05-27 2008-02-21 Siemens Energy & Automat Funcionamiento de un inversor con sobremodulacion.
EP1889377B1 (fr) * 2005-06-06 2012-11-07 Lutron Electronics Co., Inc. Systeme de commande d'eclairages et de moteurs
EP1749690A1 (fr) * 2005-08-03 2007-02-07 ABB Technology AG Ensemble transformateurs et convertisseur à plusieurs niveaux
US8554877B2 (en) * 2005-08-19 2013-10-08 Rockwell Automation Technologies, Inc. Motor drive with integrated server module
RU2388133C2 (ru) * 2005-09-09 2010-04-27 Сименс Энерджи Энд Отомейшн, Инк. Система и способ снижения влияний гармоник на систему доставки энергии
JP4859443B2 (ja) * 2005-11-17 2012-01-25 日立オートモティブシステムズ株式会社 電力変換装置
JP4918795B2 (ja) * 2006-03-16 2012-04-18 富士電機株式会社 パワーエレクトロニクス機器
CN101405921B (zh) * 2006-03-18 2013-07-10 利纳克有限公司 用于电驱动家具设施的电源关断开关和控制箱
JP4185110B2 (ja) 2006-05-11 2008-11-26 三菱電機株式会社 車載用電力変換装置
US7821220B2 (en) * 2006-09-29 2010-10-26 Rockwell Automation Technologies, Inc. Motor having integral programmable logic controller
JP4793225B2 (ja) * 2006-11-07 2011-10-12 株式会社デンソー インバータ装置
JP4909712B2 (ja) * 2006-11-13 2012-04-04 日立オートモティブシステムズ株式会社 電力変換装置
JP5028085B2 (ja) * 2006-12-27 2012-09-19 アイシン・エィ・ダブリュ株式会社 電子回路装置とその製造方法
FI120855B (fi) * 2007-02-15 2010-03-31 Kone Corp Laitteisto ja menetelmä moottorin tehonsyötön ohjaamiseksi
US8330572B2 (en) * 2007-03-16 2012-12-11 Homerun Holdings Corporation Multiple barrier control system
US20080266802A1 (en) * 2007-04-30 2008-10-30 Rockwell Automation Technologies, Inc. Phase change cooled electrical connections for power electronic devices
US20080266801A1 (en) * 2007-04-30 2008-10-30 Rockwell Automation Technologies, Inc. Phase change cooled power electronic module
US20080266803A1 (en) * 2007-04-30 2008-10-30 Rockwell Automation Technologies, Inc. Phase change cooled electrical bus structure
US7787270B2 (en) * 2007-06-06 2010-08-31 General Electric Company DC-DC and DC-AC power conversion system
US8143788B2 (en) * 2007-08-31 2012-03-27 California Institute Of Technology Compact high current rare-earth emitter hollow cathode for hall effect thrusters
JP5108421B2 (ja) * 2007-09-05 2012-12-26 株式会社ケーヒン 分割モジュール端子を有するインバータ装置
JP2009106021A (ja) * 2007-10-22 2009-05-14 Toyota Motor Corp 回転電機制御装置
JP2009206723A (ja) * 2008-02-27 2009-09-10 Panasonic Electric Works Co Ltd ファームウェアのアップデート方法、分散システム、親局、子局、及びファームウェアのアップデートプログラム
US7880343B2 (en) * 2008-04-07 2011-02-01 Toshiba International Corporation Drive isolation transformer controller and method
US8179065B2 (en) * 2008-04-30 2012-05-15 Rockwell Automation Technologies, Inc. Position sensorless control of permanent magnet motor
US7826985B2 (en) * 2008-05-02 2010-11-02 Rockwell Automation Technologies, Inc. Power module life estimation fatigue function
JP5126515B2 (ja) * 2008-05-08 2013-01-23 日立工機株式会社 オイルパルス工具
JP5382291B2 (ja) * 2008-05-08 2014-01-08 日立工機株式会社 オイルパルス工具
US8076885B2 (en) * 2008-05-15 2011-12-13 Warn Industries, Inc. Integrated overload and low voltage interrupt module
US8242735B2 (en) * 2008-07-09 2012-08-14 Caterpillar Inc. Method and system for temperature-based power converter control
WO2010014645A1 (fr) * 2008-07-28 2010-02-04 Taps Manufacturing, Inc. Transformateurs éliminant les tensions transitoires et les courants harmoniques (thq), topologie d’enroulement de transformateur et procédés de réalisation
JP2010081786A (ja) * 2008-09-01 2010-04-08 Suri-Ai:Kk パワースイッチング回路
US7830681B2 (en) * 2008-09-24 2010-11-09 Teco-Westinghouse Motor Company Modular multi-pulse transformer rectifier for use in asymmetric multi-level power converter
US8279640B2 (en) * 2008-09-24 2012-10-02 Teco-Westinghouse Motor Company Modular multi-pulse transformer rectifier for use in symmetric multi-level power converter
US10282285B2 (en) * 2008-09-30 2019-05-07 Rockwell Automation Technologies, Inc. Human interface module for motor drive
US8148929B2 (en) * 2008-09-30 2012-04-03 Rockwell Automation Technologies, Inc. Power electronic module IGBT protection method and system
US8046179B2 (en) * 2008-10-06 2011-10-25 Rockwell Automation Technologies, Inc. Power converter disable verification system and method
JP2010104135A (ja) * 2008-10-23 2010-05-06 Hitachi Ltd 電力変換装置及び車載用電機システム
US20100107498A1 (en) * 2008-10-30 2010-05-06 Bruce Calvin Ley Garage door opener
US20100117578A1 (en) * 2008-11-13 2010-05-13 Robert Keith Hollenbeck Garage door opener
US8212514B2 (en) * 2008-11-17 2012-07-03 Rockwell Automation Technologies, Inc. Serial interface motor controller having user configurable communications speeds
US8072174B2 (en) * 2008-11-17 2011-12-06 Rockwell Automation Technologies, Inc. Motor controller with integrated serial interface having selectable synchronization and communications
US8248009B2 (en) * 2008-11-17 2012-08-21 Rockwell Automation Technologies, Inc. Motor controller having integrated communications configurations
US8080965B2 (en) * 2008-11-17 2011-12-20 Rockwell Automation Technologies, Inc. Motor controller with deterministic synchronous interrupt having multiple serial interface backplane
US20100123425A1 (en) * 2008-11-17 2010-05-20 Rockwell Automation Technologies, Inc. Motor drive synchronization system and method
US8692408B2 (en) * 2008-12-03 2014-04-08 General Electric Company Modular stacked subsea power system architectures
US8058745B2 (en) * 2008-12-16 2011-11-15 General Electric Company Systems and methods providing a power converter
JP5142111B2 (ja) * 2008-12-26 2013-02-13 学校法人金沢工業大学 スパッタリング装置
DE102009000096A1 (de) * 2009-01-09 2010-07-15 Robert Bosch Gmbh Verfahren für die Steuerung einer Stromversorgungseinrichtung mit einem Wechselrichter
US8223515B2 (en) * 2009-02-26 2012-07-17 TECO—Westinghouse Motor Company Pre-charging an inverter using an auxiliary winding
JP2010207067A (ja) * 2009-03-06 2010-09-16 Hyundai Motor Co Ltd 磁石埋込み型ロータ
US8314578B2 (en) * 2009-03-09 2012-11-20 GM Global Technology Operations LLC Control of an alternator-starter for a hybrid electric vehicle having a disconnected high-voltage battery
RU2482977C1 (ru) * 2009-03-13 2013-05-27 Кабусики Кайся Тосиба Система подвижного состава и способ ее управления
JP5267296B2 (ja) 2009-04-13 2013-08-21 トヨタ自動車株式会社 駆動装置およびその異常判定方法並びに車両
US8254076B2 (en) * 2009-06-30 2012-08-28 Teco-Westinghouse Motor Company Providing modular power conversion
JP4844653B2 (ja) * 2009-07-20 2011-12-28 株式会社デンソー パワースイッチング素子の駆動装置
DE102009028147A1 (de) * 2009-07-31 2011-02-03 Robert Bosch Gmbh Schaltungsanordnung für ein Bordnetz
DE102009029091A1 (de) * 2009-09-02 2011-03-03 Robert Bosch Gmbh Starthilfeverfahren und Einrichtung für die Durchführung des Verfahrens
JP4831246B2 (ja) * 2009-09-08 2011-12-07 株式会社デンソー 電力変換装置
JP2011061924A (ja) * 2009-09-08 2011-03-24 Tokai Rika Co Ltd インバータ装置
DE102009045279A1 (de) * 2009-10-02 2011-04-07 Zf Friedrichshafen Ag Schaltungsmodul, Leiterplattenanordnung und modulares Steuergerät sowie Verfahren zur Herstellung eines solchen
FR2953077B1 (fr) * 2009-11-26 2013-07-05 Michelin Soc Tech Onduleur de pilotage d'un moteur electrique synchrone comportant un regulateur integre.
JP2011130551A (ja) * 2009-12-16 2011-06-30 Sanyo Electric Co Ltd 電源装置及びこれを備える車両
DE102009054820A1 (de) * 2009-12-17 2011-06-22 Robert Bosch GmbH, 70469 Energiespeichersystem und Verfahren zu dessen Betreiben
US8783396B2 (en) * 2010-01-21 2014-07-22 Epower Engine Systems, Llc Hydrocarbon fueled-electric series hybrid propulsion systems
WO2011094743A1 (fr) * 2010-02-01 2011-08-04 Howard Industries, Inc. Dispositif d'entrée de courant ayant un transformateur multiplicateur d'impulsions de courant pour réduire des courants harmoniques dans circuits et dispositifs convertisseurs/onduleurs et procédé de fabrication correspondant
WO2011105083A1 (fr) * 2010-02-25 2011-09-01 三洋電機株式会社 Appareil de commande de batterie, système de batterie, véhicule électrique, appareil de commande de charge, chargeur, corps mobile, système d'alimentation électrique, appareil de stockage électrique et appareil d'alimentation électrique
CN102792549A (zh) * 2010-03-08 2012-11-21 三洋电机株式会社 电池控制装置、电池系统、电动车辆、移动体、电力储存装置及电源装置
US8994208B2 (en) * 2010-03-15 2015-03-31 Magna Electronics Inc. Backup power for overvoltage protection for electric vehicle
JP5484985B2 (ja) * 2010-03-29 2014-05-07 三洋電機株式会社 電源装置及びこの電源装置を備える車両
EP2385604A1 (fr) * 2010-05-07 2011-11-09 Brusa Elektronik AG Procédé et unité de surveillance de cellules pour la surveillance d'un accumulateur, unité de surveillance centrale et accumulateur
US8400092B2 (en) * 2010-07-16 2013-03-19 Rockwell Automation Technologies, Inc. Motor drive component verification system and method
US8188694B2 (en) * 2010-07-16 2012-05-29 Rockwell Automation Technologies, Inc. Parallel power inverter motor drive system
JP5341842B2 (ja) * 2010-08-31 2013-11-13 日立オートモティブシステムズ株式会社 電源回路及び電力変換装置
ES2916823T3 (es) * 2010-09-15 2022-07-06 Mitsubishi Electric Corp Motor que contiene un dispositivo de conversión de potencia
JP5594893B2 (ja) * 2010-12-22 2014-09-24 日立オートモティブシステムズ株式会社 電池制御装置およびこれを備えた蓄電装置
US8635731B2 (en) * 2011-07-13 2014-01-28 Robert Garner Teethbrush
US8947048B2 (en) * 2011-07-29 2015-02-03 Infineon Technologies Ag Power supply system with charge balancing
JP5344264B2 (ja) * 2011-08-09 2013-11-20 株式会社デンソー 電力変換装置
KR20130039612A (ko) * 2011-10-12 2013-04-22 엘에스산전 주식회사 회생형 고압 인버터
US8766584B2 (en) * 2011-11-14 2014-07-01 Rockwell Automation Technologies, Inc. System and method for managing DC link switching harmonics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603778A1 (fr) 1992-12-25 1994-06-29 Fuji Electric Co., Ltd. Système électrique d'un véhicule électrique
WO1997009009A1 (fr) 1995-09-05 1997-03-13 Dansk Service Center Aide visuelle et/ou acoustique pour usage personnel et utilisation de ces aides

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537953A (ja) * 2013-11-19 2016-12-01 ボンバルディアー プリモーフ ゲゼルシャフト ミット ベシュレンクテル ハフツングBombardier Primove GmbH 三相1次巻線構造体を動作させる方法及び1次ユニット
US10186905B2 (en) 2013-11-19 2019-01-22 Bombardier Primove Gmbh Method of operating a three phase primary winding structure and a primary unit

Also Published As

Publication number Publication date
FR2982092A1 (fr) 2013-05-03
JP6208675B2 (ja) 2017-10-04
FR2982092B1 (fr) 2015-01-02
CN109980982B (zh) 2021-09-07
US20140292243A1 (en) 2014-10-02
CN109980982A (zh) 2019-07-05
CN104025443A (zh) 2014-09-03
EP2774257A2 (fr) 2014-09-10
WO2013064780A3 (fr) 2014-01-16
EP2774257B1 (fr) 2018-03-21
JP2015501631A (ja) 2015-01-15
US9793836B2 (en) 2017-10-17

Similar Documents

Publication Publication Date Title
EP2774257B1 (fr) Module de puissance et dispositif électrique pour l'alimentation et la charge combinées respectivement d'un accumulateur et d'un moteur
EP2718975B1 (fr) Dispositif de generation d'energie photovoltaique avec gestion individuelle des cellules
CN106394271B (zh) 用于直流快速充电的高电压电池接触器布置
EP2580085B1 (fr) Circuit electrique mixte a fonction d'onduleur et de convertisseur alternatif-continu et procede de diagnostic d'un tel circuit
WO2012117110A2 (fr) Batterie avec gestion individuelle des cellules
EP1567383A2 (fr) Vehicule a traction electrique ou hybride comportant un dispositif de commande de la charge de la batterie
EP2681798A1 (fr) Batterie avec gestion individuelle des cellules
FR2961964A1 (fr) Procede de charge de moyens d'accumulation et dispositif de charge correspondant
WO2014198929A1 (fr) Batterie composée d'un assemblage en chaîne de modules
EP3389175B1 (fr) Dispositif de conversion, procédé de commande et véhicule associés
FR3078845A1 (fr) Architecture electrique de pilotage de convertisseurs et aeronef comprenant l'architecture
EP2820739A1 (fr) Circuit electrique pour la charge par un reseau electrique d'au moins une unite de stockage d'energie electrique
EP3604020B1 (fr) Gestion combinée de deux sources de tension
WO2019110297A1 (fr) Convertisseur continu-continu avec pre-charge d'un premier reseau electrique a partir d'un deuxieme reseau electrique
EP4237273A1 (fr) Système d'alimentation électrique
FR3089721A1 (fr) Dispositif de charge réversible pour véhicule automobile
FR3049408A1 (fr) Procede et systeme de conversion electrique continu-continu entre reseaux d'alimentation electrique relies a une machine electrique tournante de vehicule automobile
FR2926684A1 (fr) Systeme d'alimentation electrique d'un vehicule , notamment d'un vehicule automobile hybride
WO2024099917A1 (fr) Système électrique d'alimentation pour véhicule
WO2024115200A1 (fr) Systeme electrique d'alimentation pour vehicule
EP4349638A1 (fr) Dispositif de multiplication de points de charge à partir d'une borne de recharge de véhicules électriques
FR3045241A1 (fr) Dispositif de recharge ameliore pour la recharge d'un equipement electrique, notamment d'un vehicule electrique
WO2016079300A2 (fr) Module électronique de puissance, convertisseur bitensions et machine électrique tournante polyphasée bitensions de véhicule automobile
WO2009112733A1 (fr) Equipement de maintien de la tension pour vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12794416

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012794416

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14355303

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014539386

Country of ref document: JP

Kind code of ref document: A