WO2013064044A1 - 预编码控制指示反馈方法、用户设备及基站 - Google Patents

预编码控制指示反馈方法、用户设备及基站 Download PDF

Info

Publication number
WO2013064044A1
WO2013064044A1 PCT/CN2012/083660 CN2012083660W WO2013064044A1 WO 2013064044 A1 WO2013064044 A1 WO 2013064044A1 CN 2012083660 W CN2012083660 W CN 2012083660W WO 2013064044 A1 WO2013064044 A1 WO 2013064044A1
Authority
WO
WIPO (PCT)
Prior art keywords
pci
precoding matrix
precoding
cqi
data
Prior art date
Application number
PCT/CN2012/083660
Other languages
English (en)
French (fr)
Inventor
徐文颖
马雪利
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013064044A1 publication Critical patent/WO2013064044A1/zh
Priority to US14/266,579 priority Critical patent/US9197305B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0623Auxiliary parameters, e.g. power control [PCB] or not acknowledged commands [NACK], used as feedback information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection

Definitions

  • the present invention relates to the field of multiple input multiple output MIMO communication technologies, and in particular, to a precoding control indication feedback method, a user equipment, and a base station.
  • MIMO Multiple Input Multiple Output
  • MIMO Multiple Input Multiple Output
  • the channel capacity increases linearly as the number of antennas increases. This increase in channel capacity does not consume additional bandwidth and does not consume additional transmit power, and is therefore an effective means of increasing channel and system capacity.
  • the base station node NodeB transmits data to the user node UE through the physical layer HS-DSCH (High Speed Downlink Shared Channel), and simultaneously passes the HS-SCCH (High Speed Physical Downlink Shared Control Channel, high-speed physical layer).
  • HS-DSCH High Speed Downlink Shared Channel
  • HS-SCCH High Speed Physical Downlink Shared Control Channel, high-speed physical layer
  • the downlink shared control channel transmits control information related to the HS-DSCH to the UE, etc.; the UE demodulates, decodes, and the like data on the HS-DSCH by using control information carried on the HS-SCCH; - the SCCH reception condition, and the ACK/NACK information is generated by correctly decoding the data on the HS-DSCH; in addition, the UE also measures the downlink channel condition, generates a CQI (Channel Quality Indicator) information, and selects the precoding.
  • CQI Channel Quality Indicator
  • the precoding matrix of the protocol is set to be a precoding matrix when the channel capacity is maximum, and a PCI (Precoding Control Indication) is generated according to the sequence number of the precoding matrix; the UE carries ACK/NACK information, CQI information, and PCI information.
  • Uplink High-Speed Dedicated Physical Control Channel, HS-DPCCH Uplink High-Speed Dedicated Physical Control Channel
  • the NodeB On the channel, sent to the NodeB; and the NodeB will use the CQI information fed back by the UE as the basis for the service scheduling, and according to the pre-coding matrix pair corresponding to the reported PCI
  • the data to be transmitted is subjected to precoding processing, and the corresponding transmitting antenna is selected and sent to the UE according to the precoding processing result.
  • a single-stream, multi-stream data transmission mode where, a single stream means that each transmitting antenna transmits the same data block, and a multi-stream means that each transmitting antenna transmits a different data block.
  • the base station performs single-stream or multi-stream switching according to the actual situation of the channel quality to ensure the power requirement of the receiving end.
  • the single-stream transmission mode when the signal transmitted by each transmitting antenna experiences a difference in shadow fading due to the change of the position of each transmitting antenna or the channel quality, or the polarization direction of the antenna is inconsistent, the receiving power of the receiving end will be Extremely unbalanced, there may even be extreme scenarios where the receiving end can only receive the power of one transmitting antenna. These will cause the MIMO single stream to have a probabilistic negative gain compared to the traditional single-shot HSDPA (High Speed Downlink Packet Access), which affects the communication quality.
  • HSDPA High Speed Downlink Packet Access
  • an embodiment of the present invention provides a precoding control indication feedback method, a user equipment, and a base station, and the technical solution is as follows:
  • the embodiment of the present invention provides a precoding control indication feedback method, including: calculating a channel capacity value corresponding to each precoding matrix in a precoding matrix set;
  • the to-be-used PCI, the channel quality indicator CQI for identifying the downlink channel quality, and the ACK/NACK of the identification data decoding result are carried on the uplink high-speed dedicated physical channel HS-DPCCH, and fed back to the corresponding base station node to indicate the base station node selection.
  • the precoding matrix set includes: an antenna switching precoding matrix and an original precoding matrix in a precoding protocol; the antenna switching precoding matrix causes the base station node to preprocess the data to be transmitted as one-dimensional data, and further utilizes The single antenna mode transmits data to be transmitted.
  • the embodiment of the present invention further provides a precoding control indication feedback method, including: receiving feedback information sent by a user node by using an uplink high-speed dedicated physical channel HS-DPCCH, where the feedback information includes a PCI to be used, and an identifier.
  • the channel quality of the downlink channel quality indicates the CQI and the ACK/NACK of the identification data decoding result;
  • the single antenna mode is selected to transmit the data to be transmitted; otherwise, the MIMO single stream mode is selected to send the data to be transmitted.
  • the embodiment of the present invention further provides a user equipment, including: a precoding control indication feedback system; and the precoding control indication feedback system, including:
  • a channel capacity calculation module configured to calculate a channel capacity value corresponding to each precoding matrix in the precoding matrix set
  • the PCI determining mode is used to use the sequence number of the precoding matrix corresponding to the maximum channel capacity value as the inactive precoding control indication PCI;
  • a feedback information sending module configured to carry the inactive PCI, the channel quality indicator CQI that identifies the downlink channel quality, and the ACK/NACK of the identifier data decoding result on the uplink high-speed dedicated physical channel HS-DPCCH, and feed back to the corresponding base station a node, to indicate that the base station node selects a MIMO single stream mode or a single antenna mode to send data to be sent;
  • the precoding matrix set includes: an antenna switching precoding matrix and an original precoding matrix in a precoding protocol; the antenna switching precoding matrix causes the base station node to preprocess the data to be transmitted as one-dimensional data, and further utilizes The single antenna mode transmits data to be transmitted.
  • An embodiment of the present invention further provides a base station, including: a data precoding system;
  • the data precoding system includes:
  • the feedback information receiving module is configured to receive feedback information sent by the user node by using an uplink high-speed dedicated physical channel HS-DPCCH, where the feedback information includes a PCI to be used, a channel quality indicator CQI that identifies a downlink channel quality, and identifier data decoding. Resulting ACK/NACK;
  • a precoding matrix determining module configured to obtain a current precoding matrix in the precoding matrix set corresponding to the to-be-used PCI; and an analysis processing module, configured to: when the precoding processing result is one-dimensional data, select a single antenna mode to send to be sent Data; otherwise, select MIMO single stream mode to send data to be sent.
  • an antenna switching precoding matrix is added in the original precoding matrix set.
  • the precoding matrix is traversed, and the sequence number of the precoding matrix that maximizes the channel capacity is obtained.
  • the base station node is instructed to select the MIMO single stream mode or the single antenna mode to transmit the data to be transmitted according to the to-be-used channel shape.
  • the method of changing the precoding matrix enables the base station node to select a data transmission mode adapted to the standby channel according to the PCI fed back by the user node, thereby effectively reducing the probability negative gain of the MIMO single stream relative to the traditional single-issue HSDPA, and improving the communication quality. .
  • FIG. 1 is a first flow chart of a precoding control indication feedback method according to an embodiment of the present invention
  • FIG. 2 is a second flowchart of a precoding control indication feedback method according to an embodiment of the present invention.
  • FIG. 3 is a third flowchart diagram of a precoding control indication feedback method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a first structure of a precoding control indication PCI bearer on an HS-DPCCH according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a second structure of a precoding control indication PCI bearer on an HS-DPCCH according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a third structure of a precoding control indication PCI bearer on an HS-DPCCH according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a fourth structure of a precoding control indication PCI bearer on an HS-DPCCH according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a precoding control indication feedback system in a user equipment according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a data precoding system in a base station according to an embodiment of the present invention.
  • the embodiment of the present invention provides a precoding control indication feedback method, a user equipment, and a base station, so that the base station node selects an appropriate data transmission mode to send data according to the actual situation of the channel, and is effective. Provide communication quality.
  • the method of the pre-coding control indication feedback may include:
  • the user node calculates a channel capacity value corresponding to each precoding matrix in the precoding matrix set.
  • the base station node transmits data to the user node through the HS-DSCH of the physical layer, and simultaneously transmits control information related to the HS-DSCH through the HS-SCCH, and the user node uses the control information carried on the HS-SCCH. Demodulating, decoding, etc. the data on the HS-DSCH; then the user node generates ACK/NACK information according to the reception of the data information on the HS-SCCH and the correct decoding of the data on the HS-DSCH; The user node also measures the downlink channel condition and generates channel quality indicator CQI information.
  • the user node traverses each precoding matrix in the precoding matrix set pre-agreed with the base station node, and calculates a channel capacity value corresponding to each precoding matrix. Further, the subsequent precoding control indication PCI is determined according to the size of the channel capacity value.
  • the pre-set precoding matrix set includes: an antenna switching precoding matrix and an original precoding matrix in a precoding protocol; the antenna switching precoding matrix causes a base station node to preprocess data to be transmitted as one-dimensional data Then, the data to be transmitted is transmitted by using a single antenna.
  • the original precoding matrix in the precoding protocol may enable the base station node to send the data precoding processing result to the multidimensional data corresponding to the number of base station transmitting antennas, and then use the MIMO single stream manner to send the to-be-sent data.
  • the channel capacity corresponding to each precoding matrix in the preset precoding matrix set is calculated.
  • the value can be as follows:
  • the SNR value SNR in this embodiment is a general term for the signal to noise ratio value SNR, the signal to interference ratio SIR, and the signal to interference and noise ratio SINR.
  • the manner of calculating the SNR value of the SNR may be:
  • SNR useful signal energy / noise energy
  • y is the received signal matrix
  • X is the transmitted signal matrix
  • h is the wireless channel matrix
  • V is the precoding matrix
  • n is the noise matrix
  • the MIMO single stream channel capacity formula is:
  • Q is the channel capacity value corresponding to the precoding matrix with sequence number i
  • SN is the signal to noise ratio corresponding to the precoding matrix with sequence number i.
  • calculation method of the channel capacity value is not limited to the above manner, and other calculation manners may be selected according to different application scenarios, which is reasonable.
  • the sequence number of the precoding matrix corresponding to the maximum channel capacity value is used as the standby precoding control indication PCI.
  • the value of the to-be-used channel corresponding to the pre-coding matrix is the largest, it indicates that if the base station node performs pre-coding processing on the data to be transmitted according to the pre-coding matrix, and the data to be transmitted is sent, the obtained throughput is processed in the same manner as using other pre-coding matrices.
  • the throughput is large, and there is relatively good communication quality.
  • the preset precoding All matrices in the matrix set are numbered consecutively in a specific order, for example, If there are 6 precoding matrices, the consecutive numbers may be 000, 001, 010, 011, 100, 101, that is, each precoding matrix corresponds to only one serial number. At the same time, both the user node and the base station node know the correspondence between the precoding matrix and the sequence number.
  • the inactive PCG channel quality indicator CQI and the ACK/NACK are carried on the HS-DPCCH, and are fed back to the corresponding base station node, to instruct the base station node to select the MIMO single stream mode or the single antenna mode to send the to-be-sent data.
  • the user node After the user node forms the inactive precoding control indication PCI according to the channel capacity, the inactive PCI, the channel quality indicator CQI identifying the downlink channel quality, and the ACK/NACK of the identification data decoding result are carried as the feedback information in the uplink high speed.
  • the dedicated physical channel HS-DPCCH is fed back to the corresponding base station node to instruct the base station node to perform subsequent data transmission.
  • the PCI to be used needs to increase the number of bits to support the extension of the matrix codebook.
  • the number of added bits is set according to the number of antenna switching precoding matrices that are added, so that the total bits corresponding to the PCI to be used can identify the sequence number of each precoding matrix in the preset precoding matrix set.
  • the PCI needs to be jointly coded with the CQI, and the ACK/NACK is carried on the HS-DPCCH. Therefore, when the number of PCI corresponding bits is increased, the PCI is to be used.
  • the CQI and the ACK/NACK need to be changed when they are carried on the HS-DPCCH. The following four methods are available:
  • the PCI feedback period of the existing precoding protocol is not changed, and the joint coding mode of the CQI and the PCI is changed, so that the total number of bits after the joint coding does not change.
  • the specific manner may be:
  • the CQI and the inactive PCI are jointly encoded by using a preset CQI/PCI joint coding method with a fixed number of bits after the CQI and the inactive PCI are jointly encoded, and the coding result and the ACK/NACK are carried according to the original information.
  • the mode is carried on the HS-DPCCH.
  • the joint coding mode of CQI and PCI is reset, so that the joint coding of PCI and CQI is used, and the total number of bits of the joint coding result is inevitably accompanied by ACK/ relative to the original joint coding mode.
  • the NACK can be carried in the HS-DPCCH according to the original information bearer.
  • the CQI and PCI joint coding modes in the existing precoding protocol are not changed, and the feedback period of the standby PCI is increased.
  • the specific method may be: The bits corresponding to one PCI to be used are distributed in a plurality of original CQI/PCI joint codings in a preset ratio, and each joint coding result and ACK/NACK are carried on the HS-DPCCH according to the original information bearer mode.
  • the CQI and PCI joint coding modes are not changed, and the bits corresponding to one PCI to be used are distributed in a plurality of consecutive joint coding according to a specific ratio, and each coding result and ACK/NACK are carried according to the original information bearer mode.
  • On the HS-DPCCH it can be understood that, in the case of joint coding, if the number of bits corresponding to PCI is insufficient, a specific bit can be added to meet the requirement of joint coding.
  • the bits corresponding to the two inactive PCIs are distributed in multiple consecutive original CQI/PCI joint coding units in units of original PCI bit numbers, and each joint coding result and ACK/NACK are carried in the original information bearer mode on the HS. -DPCCH.
  • the feedback period of the standby PCI is minimized by distributing the bits corresponding to the two PCIs to be used in multiple consecutive original CQI/PCI joint coding units in the number of bits corresponding to the original PCI. Effectively feedback the purpose of standby PCI.
  • the original PCI bit number and CQI in a standby PCI are jointly coded according to the original CQI/PCI joint coding mode, and the joint coding result and the ACK/NACK are carried on the HS-DPCCH according to the original information bearer mode, and will be used at the same time.
  • the number of remaining PCI bits is carried in the idle domain of the DPCCH (Dedicated Physical Control Channel) adjacent to the PCI timing.
  • the idle field of the DPCCH refers to: a TFCI (Transport Format Combination Indicator) field or an FBI (Feedback Information) field.
  • TFCI Transport Format Combination Indicator
  • FBI Field Information
  • the number of PCI corresponding bits can be increased.
  • the inactive PCI, CQI, and ACK/NACK are effectively carried on the HS-DPCCH, and then fed back to the base station node. It can be understood by those skilled in the art that in the case where the number of PCI corresponding bits is increased, the specific manner in which the feedback information is carried in the HS-DPCCH is not limited to the above four.
  • a precoding control indication feedback method may include:
  • the base station node receives feedback information sent by the user node through the HS-DPCCH.
  • the feedback information includes a PCI to be used, a channel quality indicator CQI that identifies the downlink channel quality, and an ACK/NACK that identifies the data decoding result.
  • the base station node extracts the inactive PCI from the feedback information of the user node, and obtains a current precoding matrix in the precoding matrix set corresponding to the PCI to be used, and the inactive precoding matrix maximizes the channel capacity value.
  • the data to be transmitted is multiplied with the current precoding matrix to complete the precoding process.
  • the base station node can also directly determine whether the current precoding matrix corresponding to the PCI to be used is any one of the antenna switching precoding matrices. If the current precoding matrix is an antenna switching matrix, the precoding matrix is used for preprocessing. It is also reasonable to obtain one-dimensional data after the encoding process and directly transmit the data to be transmitted according to the single antenna mode.
  • an antenna switching pre-program is added in the original precoding matrix set.
  • Code matrix when the user node constructs PCI, it will traverse all precoding matrices, and will make the serial number of the J ⁇ 3 ⁇ 4 pre-2 encoding matrix with the largest channel capacity as the PCI value, and carry it in HS-DPCCH along with CQI, ACK/NACK. And transmitting to the base station node, to instruct the base station node to select the MIMO single stream mode or the single antenna mode to send the to-be-sent data according to the to-be-used channel shape.
  • the base station node selects a data transmission mode that adapts to the standby channel according to the PCI fed back by the user node, thereby effectively reducing the MIMO single stream relative to the traditional single transmission.
  • HSDPA has a probabilistic negative gain that improves communication quality.
  • the adaptation scenario of the solution provided by the present invention is not limited to the 2 ⁇ 2 ⁇ system, for example, it can also be applied to 3 X 3 MIMO. System, etc.
  • the 2 ⁇ 2 ⁇ system has two antennas for the base station node and the user node.
  • the MIMO single-stream mode is that when the base station node transmits data, the two transmit antennas simultaneously transmit the same data block.
  • the base station node In the 2 ⁇ 2 ⁇ system, for the base station node to use the MIMO single-stream mode to transmit data, when the base station node has two transmit antenna positions changed or the channel quality, etc., the difference between the shadow fading experienced by the signals transmitted by the two transmit antennas is too large, or the antenna When the polarization directions are inconsistent, the power of the two transmit antennas received by the user node will be extremely unbalanced. There may even be extreme scenarios.
  • the user node can only receive the power of one transmit antenna, which causes the MIMO single stream to appear compared to the traditional single-shot HSDPA. Probabilistic negative gain, which greatly affects communication quality.
  • the present invention provides a precoding control indication feedback method, which effectively provides a communication quality for a 2 ⁇ 2 ⁇ system by means of a base station node selecting an appropriate data transmission mode according to channel conditions, and a precoding control indication from the perspective of a user node
  • the feedback method as shown in FIG. 3, may include:
  • the set of precoding matrix preset by the user node and the base station node may include:
  • sequence numbers corresponding to the precoding matrix of the preset precoding matrix from left to right are: 000, 001, 010, 011, 100, 101. It can be understood that the sequence number allocation manner of the precoding matrix is not limited to the above sequence, and the order of the precoding matrix sets may be changed according to actual conditions, so that each precoding matrix corresponds to a specific sequence number.
  • the original precoding matrix in the precoding protocol includes:
  • the newly added antenna switching precoding matrix includes:
  • the precoding process is performed by using any original precoding matrix, and the precoding process is two-dimensional data, so that the base station node sends the data to be transmitted according to the MIMO single stream mode; and the precoding matrix is switched by using any antenna.
  • the precoding process, the precoding process results in one-dimensional data, and the base station node transmits the data to be transmitted according to the single antenna mode.
  • the user node After receiving the data and control signaling sent by the base station node, the user node generates ACK/NACK information according to the decoding result, and measures the downlink channel condition to generate a CQI; and traverses six preset precoding matrix sets.
  • the precoding matrix calculates a value of the inactive channel capacity corresponding to each precoding matrix.
  • the specific calculation method of the MIMO single-stream channel capacity value may be as described in the above embodiment, and is not limited to the foregoing manner, and details are not described herein again.
  • the sequence number of the precoding matrix corresponding to the maximum channel capacity value is selected as the standby precoding control indication PCI.
  • the precoding matrix corresponding to the maximum channel capacity value is:
  • the sequence number corresponding to the precoding matrix is 001, and the precoding control to be instructed indicates that the PCI is 001; if the precoding matrix corresponding to the maximum channel capacity value is:
  • the precoding matrix corresponds to a sequence number of 101, and the inactive precoding control indicates that the PCI is 101.
  • the configured inactive PCI, CQI, and ACK/NACK are carried on the HS-DPCCH, and are fed back to the corresponding base station node.
  • the inactive PCI is carried on the HS-DPCCH along with the CQI and the ACK/NACK, and is fed back to the base station node.
  • the PCI is a 2 bit/TTI (Transmission Time Interval) and is jointly encoded with 20 bits of CQI and transmitted by the HS-DPCCH channel. That is, at this time, the PCI has 2 bits to identify the sequence number of each precoding matrix. Now, two antenna switching precoding matrices are added. In order to make the total bits corresponding to the PCI identify each precoding matrix in the preset precoding matrix set including the antenna switching precoding matrix, the PCI to be used needs to increase lbit. To support the extension of the precoding protocol.
  • TTI Transmission Time Interval
  • the manner in which the PCI, the CQI, and the ACK/NACK are to be carried on the HS-DPCCH may include:
  • the CQI reporting data type includes typeA and typeB, that is, typeA and typeB alternate on HS-DPCCH.
  • the two types are sent according to the pattern corresponding to the configuration parameter, for example: AABAAB ... or
  • the (20, 10) of the type A corresponding to the MIMO single stream can be changed to (20, 11) and the type B (20, 7) Change to (20,8) and encode accordingly.
  • the coding result and ACK/NACK can be carried on the HS-DPCCH in the original information bearer mode.
  • Pci 0 pci x pci 2 represents 3 bits of a PCI, and mod2 operation means modulo 2.
  • Mi m is the sequence in Table 1 below, me ⁇ 0, 1, 3, 4, 5, 7, 8, 9 ⁇ .
  • the encoding process may be: serially connecting PCI and CQI bits:
  • Pci 0 pci x pci 2 represents 3 bits of a PCI, and mod2 operation means modulo 2.
  • Mi m is the sequence ⁇ ' J , me ⁇ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11 ⁇ in Table 2 below.
  • the method may specifically be:
  • the 3 bits corresponding to a valid PCI1 are distributed in two consecutive original CQI/PCI joint coding, that is, the 2-bit and CQI of the 3-bit standby PCI1 are jointly coded according to the original precoding protocol, and are carried in consecutive One of the two TTIs; at the same time, since only 1 bit remains in the PCI to be used, 1 bit (pre-agreed 1 or 0) is added to form a complete 2-bit original PCI, and then combined with the CQI according to the original precoding protocol. , carried on the other of the two consecutive TTIs, the minimum effective period can be 4ms.
  • each joint coding result and ACK/NACK are carried on the HS-DPCCH in the original information bearer manner.
  • the method may specifically be:
  • PCI1 and PCI2 6-bit data are distributed in three consecutive original CQI/PCI joint encodings, which are as follows: 2 bits and CQI of the 3 bits of the two PCIs are respectively in accordance with the original
  • the coding protocol is jointly coded and carried on two of the three consecutive TTIs; the remaining 1 bits of the two PCIs are combined into 2 bits and the CQI is jointly coded according to the original precoding protocol, and carried on the remaining one of the consecutive three TTIs. .
  • each joint coding result and ACK/NACK are carried on the HS-DPCCH in the original information bearer manner.
  • the method may specifically be:
  • the 2-bit number and CQI in a 3-bit standby PCI are jointly encoded according to the original CQI/PCI joint coding mode, and the joint coding result and ACK/NACK are carried on the HS-DPCCH according to the original information bearer mode, and will be The number of remaining bits of PCI is carried in the idle domain of the DPCCH adjacent to the standby PCI timing. It can be understood that if the user node does not send the uplink DPDCH, the TFCI domain is idle, the PCI uses the TFCI domain; if the user node does not feed back the FBI, the FBI domain is idle, the PCI uses the FBI domain; if the TFCI domain and the FBI domain are idle at the same time, Domains can be used.
  • the DPCCH near the PCI timing to be used is defined as: DPCCH coincident with the time span of the subframe in which the PCI is to be used, where the timing of the DPCCH slot and the initial DPCCH slot are coincident.
  • the difference range can be: mx256chips mx256chips + 2x2560chips
  • 2560chips 2560chips 2560chips where "" means rounding down and ⁇ means rounding up.
  • the coincident DPCCH slot has at least 3 slots and at most 4 slots, and the DPCCH slot that completely falls within the time span of the subframe in which the PCI is located is preferentially selected.
  • the base station node extracts the inactive PCI from the received user feedback information, determines the current precoding matrix corresponding to the inactive PCI, and if the current precoding matrix is If any one of the original precoding matrices is used, the result of precoding processing the data to be transmitted by using the current precoding matrix is two-dimensional data, and the base station node needs to select the MIMO single stream mode to send the data to be transmitted; and if the current precoding matrix The precoding moment for the antenna switching is one-dimensional data, and the base station node needs to transmit the data to be transmitted by using the single antenna mode.
  • the MIMO precoding matrix set is extended, and the antenna switching precoding matrix is added.
  • the user node traverses the extended precoding matrix set, and selects the serial number corresponding to the precoding matrix with the largest channel capacity as the standby PCI report. Therefore, the base station node can send the data to be sent according to the optimal mode in the MIMO single stream mode or the single antenna mode to be used in the PCI, to solve the power imbalance of the two transmit antennas received by the user node, and the MIMO single stream mode to the single antenna mode.
  • the handover reduces the probabilistic negative gain of MIMO compared to the traditional single-shot HSDPA, improving the communication quality.
  • the single antenna mode can be switched to the MIMO single stream mode according to the selected current precoding matrix.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a A computer device (which may be a personal computer, server, or network device, etc.) performs all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a medium that can store program codes, such as a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the embodiment of the present invention further provides a user equipment, including: a precoding control indication feedback system;
  • the precoding control indication feedback system includes:
  • the channel capacity calculation module 110 is configured to calculate a channel capacity value corresponding to each precoding matrix in the precoding matrix set;
  • the PCI determining module 120 is configured to use the sequence number of the precoding matrix corresponding to the maximum channel capacity value as the standby precoding control indication PCI;
  • the feedback information sending module 130 is configured to carry the to-be-used PCI, the channel quality indicator CQI that identifies the downlink channel quality, and the ACK/NACK of the identifier data decoding result on the uplink high-speed dedicated physical channel HS-DPCCH, and feed back the corresponding a base station node, to instruct the base station node to select a MIMO single stream mode or a single antenna mode to send data to be sent;
  • the precoding matrix set includes: an antenna switching precoding matrix and an original precoding matrix in a precoding protocol; the antenna switching precoding matrix causes the base station node to preprocess the data to be transmitted as one-dimensional data, and further utilizes The single antenna mode transmits data to be transmitted.
  • the precoding control indication feedback system in the user equipment traverses all the precoding matrices in the precoding matrix set including the antenna switching precoding matrix, and calculates the inactive channel capacity value corresponding to each precoding matrix.
  • the sequence number of the precoding matrix that maximizes the channel capacity value is used as the PCI value, and is sent to the base station along with the CQI and ACK/NACK bearers on the HS-DPCCH, indicating that the base station selects the MIMO single stream mode and the single antenna mode according to the inactive PCI.
  • the better mode sends the data to be sent, thereby reducing the probability of negative MIMO single stream relative to the traditional single-shot HSDPA, and improving the communication quality.
  • the feedback information sending module 130 is specifically configured to:
  • the CQI and the inactive PCI are jointly encoded by using a preset CQI/PCI joint coding method with a fixed number of bits after the CQI and the inactive PCI are jointly encoded, and the coding result is combined with the ACK/NACK.
  • the number of bits corresponding to a PCI to be used is distributed in a plurality of consecutive original CQI/PCI joint coding according to a preset ratio, and each joint coding result and ACK/NACK are carried on the HS-DPCCH according to the original information bearer mode. ;
  • the bits corresponding to the two inactive PCIs are distributed in multiple consecutive original CQI/PCI joint coding units in units of original bit numbers, and each joint coding result and ACK/NACK are carried in the original information bearing mode in the HS- On the DPCCH;
  • the original PCI bit number and CQI in a standby PCI are jointly coded according to the original CQI/PCI joint coding mode, and the joint coding result and the ACK/NACK are carried on the HS-DPCCH according to the original information bearer mode, and will be used at the same time.
  • the PCI remaining bit number is carried in an idle domain of the dedicated physical control channel DPCCH adjacent to the PCI timing; the idle domain of the DPCCH includes a transport format combination indication TFCI domain and/or feedback information FBI domain.
  • the feedback information sending module can perform other methods for carrying the PCI, CQI, and ACK/NACK to be carried on the HS-DPCCH, and is not limited to the above four modes.
  • the channel capacity calculation module 110 includes:
  • a signal to noise ratio determining unit configured to determine a signal to noise ratio value SNR corresponding to the precoding matrix of the precoding matrix in the current channel
  • a channel capacity determining unit configured to substitute the signal to noise ratio value SNR into a MIMO single stream channel capacity formula, and determine a channel capacity value corresponding to the precoding matrix
  • the MIMO single stream channel capacity formula is:
  • Q is the channel capacity value corresponding to the precoding matrix with sequence number i
  • SN is the signal to noise ratio corresponding to the precoding matrix with sequence number i.
  • the channel capacity calculation module calculates the mode of the to-be-used channel corresponding to the pre-coding matrix, and may select other modes according to actual conditions, and is not limited to the above manner.
  • an embodiment of the present invention further provides a base station, including: a data precoding system;
  • the data precoding system includes:
  • the feedback information receiving module 210 is configured to receive the user node through the uplink high-speed dedicated physical channel
  • the feedback information sent by the HS-DPCCH where the feedback information includes a PCI to be used, a channel quality indicator CQI for identifying a downlink channel quality, and an ACK/NACK for identifying a data decoding result;
  • the precoding matrix determining module 220 is configured to obtain a current precoding matrix in the precoding matrix set corresponding to the to-be-used PCI; and the analyzing processing module 240 is configured to: when the precoding processing result is one-dimensional data, select a single antenna mode to send Data to be sent; otherwise, MIMO single stream mode is selected to send data to be sent.
  • the data precoding system in the base station After receiving the inactive PCI sent by the user equipment, the data precoding system in the base station performs precoding processing on the data to be transmitted according to the precoding matrix corresponding to the PCI to be used, and the precoding processing result is one-dimensional data. Next, select single antenna mode to send data to be sent, otherwise select MIMO single stream mode to send data to be sent.
  • the base station selects a data transmission mode adapted to the to-be-used channel according to the standby PCI fed back by the user equipment, thereby effectively reducing the probability negative gain of the MIMO single stream relative to the conventional single-issue HSDPA, and improving the communication quality.
  • precoding module 230 is specifically configured to:
  • the data to be transmitted is multiplied with the current precoding matrix to complete the precoding process.
  • the disclosed systems, devices, and methods may be implemented in other manners without departing from the spirit and scope of the application.
  • the embodiment to be used is merely an exemplary example and should not be construed as limiting, and the specific content given should not limit the purpose of the application.
  • the division of the unit or subunit is only a logical function division, and the actual implementation may have another division manner, for example, a plurality of units or a plurality of subunits are combined.
  • multiple units may or may be combined or integrated into another system, or some features may be omitted or not implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种预编码控制指示反馈方法、用户设备及基站。该方法包括:计算预编码矩阵集中的各个预编码矩阵对应的信道容量值;将最大信道容量值所对应预编码矩阵的序列号作为待用预编码控制指示PCI;将待用PCI、标识下行信道质量的信道质量指示CQI以及标识数据译码结果的ACK/NACK承载在上行链路高速专用物理信道HS-DPCCH上,反馈给对应的基站节点,以指示基站节点选择MIMO单流模式或单天线模式发送待发送数据。与现有技术相比,通过增加天线切换预编码矩阵的方式,可以有效降低MIMO单流相对于传统单发HSDPA出现概率性负增益,提高通信质量。

Description

预编码控制指示反馈方法、 用户设备及基站 本申请要求于 2011 年 11 月 1 日提交中国专利局、 申请号为 201110340047.9、 发明名称为"预编码控制指示反馈方法、 用户设备及基站"的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及多输入多输出 MIMO通信技术领域, 特别是涉及一种预编码控 制指示反馈方法、 用户设备及基站。
背景技术
MIMO ( Multiple Input Multiple Output, 多输入多输出)技术是指在发射端 和接收端使用多个天线, 充分利用空间传播中的多径分量, 在同一频带上使用 多个数据通道发送信号, 从而使得信道容量随着天线数量的增加而线性增加。 这种信道容量的增加不占用额外的带宽, 也不消耗额外的发射功率, 因此是增 加信道和系统容量的一种有效的手段。
在 MIMO技术中, 基站节点 NodeB 通过物理层 HS-DSCH ( High Speed Downlink Shared Channel, 高速下行共享信道 )发送数据给用户节点 UE, 同时 通过 HS-SCCH ( High Speed Physical Downlink Shared Control Channel, 高速物 理层下行共享控制信道 ) 向 UE发送和 HS-DSCH相关的控制信令等; UE则利 用承载在 HS-SCCH上的控制信息对 HS-DSCH上的数据进行解调、 译码等; 然 后 UE根据 HS-SCCH接收情况, 以及对 HS-DSCH上的数据译码正确与否生成 ACK/NACK信息; 另外, UE还测量下行信道状况, 生成 CQI ( Channel Quality Indicator, 信道质量指示)信息, 并选择预编码协议的预编码矩阵集中使得信道 容量最大时的预编码矩阵, 根据该预编码矩阵的序列号生成 PCI ( Precoding Control Indication, 预编码控制指示); UE将 ACK/NACK信息、 CQI信息和 PCI 信息承载在 HS-DPCCH ( Uplink High-Speed Dedicated Physical Control Channel, 上行链路高速专用物理控制信道)信道上, 发送给 NodeB; 而 NodeB将根据 UE 反馈的 CQI信息作为业务调度的依据, 并根据上报的 PCI对应的预编码矩阵对 待发送的数据进行预编码处理, 并根据预编码处理结果选择相应的发射天线发 送给 UE。
MIMO技术应用中, 存在单流、 多流的数据发送方式; 其中, 单流是指各 个发射天线发送同一数据块, 而多流指各个发射天线发送各个不相同的数据 块。 在数据发送过程中, 基站会根据信道质量的实际情况进行单流或多流的切 换, 以保证接收端的功率需求。 对于单流发送方式而言, 当由于各发射天线位 置改变或信道质量等原因, 造成各发射天线发送的信号经历的阴影衰落差异过 大, 或者天线极化方向不一致时, 接收端所接收功率将极度不平衡, 甚至可能 存在极端场景, 接收端只能收到一个发射天线的功率。 这些都会导致 MIMO单 流相对于传统单发 HSDPA ( High Speed Downlink Packet Access , 高速下行链路 分组接入) 出现概率性负增益, 影响通信质量。
发明内容
为解决上述技术问题, 本发明实施例提供了一种预编码控制指示反馈方 法、 用户设备及基站, 技术方案如下:
一方面, 本发明实施例提供一种预编码控制指示反馈方法, 包括: 计算预编码矩阵集中的各个预编码矩阵对应的信道容量值;
PCI;
将待用 PCI、 标识下行信道质量的信道质量指示 CQI以及标识数据译码结 果的 ACK/NACK承载在上行链路高速专用物理信道 HS-DPCCH上, 反馈给对 应的基站节点, 以指示基站节点选择 MIMO单流模式或单天线模式发送待发送 数据;
其中, 所述预编码矩阵集中包括: 天线切换预编码矩阵以及预编码协议中 的原始预编码矩阵; 所述天线切换预编码矩阵使得基站节点对待发送数据预编 码处理结果为一维数据, 进而利用单天线模式发送待发送数据。
另一方面, 本发明实施例还一种预编码控制指示反馈方法, 包括: 接收用户节点通过上行链路高速专用物理信道 HS-DPCCH发送的反馈信 息, 所述反馈信息中包含待用 PCI、 标识下行信道质量的信道质量指示 CQI以 及标识数据译码结果的 ACK/NACK;
获得所述待用 PCI对应的预编码矩阵集中的当前预编码矩阵; 当预编码处理结果为一维数据时, 选择单天线模式发送待发送数据; 否则, 选择 MIMO单流模式发送待发送数据。
本发明实施例还提供一种用户设备, 包括: 预编码控制指示反馈系统; 所述预编码控制指示反馈系统, 包括:
信道容量计算模块, 用于计算预编码矩阵集中的各个预编码矩阵对应的信 道容量值;
PCI确定模 用于将最大信道容量值所对应预编码矩阵的序列号作为待用 预编码控制指示 PCI;
反馈信息发送模块, 用于将待用 PCI、 标识下行信道质量的信道质量指示 CQI 以及标识数据译码结果的 ACK/NACK承载在上行链路高速专用物理信道 HS-DPCCH上, 反馈给对应的基站节点, 以指示基站节点选择 MIMO单流模式 或单天线模式发送待发送数据;
其中, 所述预编码矩阵集中包括: 天线切换预编码矩阵以及预编码协议中 的原始预编码矩阵; 所述天线切换预编码矩阵使得基站节点对待发送数据预编 码处理结果为一维数据, 进而利用单天线模式发送待发送数据。
本发明实施例还提供一种基站, 包括: 数据预编码系统;
所述数据预编码系统, 包括:
反馈信息接收模块, 用于接收用户节点通过上行链路高速专用物理信道 HS-DPCCH发送的反馈信息, 所述反馈信息中包含待用 PCI、 标识下行信道质 量的信道质量指示 CQI以及标识数据译码结果的 ACK/NACK;
预编码矩阵确定模块, 用于获得所述待用 PCI对应的预编码矩阵集中的当 前预编码矩阵; 分析处理模块, 用于当预编码处理结果为一维数据时, 选择单天线模式发 送待发送数据; 否则, 选择 MIMO单流模式发送待发送数据。
本发明实施例所提供的方案中, 在原始预编码矩阵集中增加天线切换预编 码矩阵, 当用户节点构造 PCI时, 将遍历所有预编码矩阵, 并将使得信道容量 最大的预编码矩阵的序列号作为 PCI 值, 并连同 CQI、 ACK/NACK承载在 HS-DPCCH上发送给基站节点, 以指示基站节点根据待用信道状¾选择 MIMO 单流模式或者单天线模式发送待发送数据。 与现有技术相比, 通过增加天线切 换预编码矩阵的方式, 使得基站节点根据用户节点所反馈的 PCI, 选择适应待用 信道的数据发送模式, 进而可以有效降低 MIMO单流相对于传统单发 HSDPA 出现概率性负增益, 提高通信质量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单的介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1 为本发明实施例所提供的一种预编码控制指示反馈方法的第一种流程 图;
图 2 为本发明实施例所提供的一种预编码控制指示反馈方法的第二种流程 图;
图 3 为本发明实施例所提供的一种预编码控制指示反馈方法的第三种流程 图;
图 4为本发明实施例所提供的预编码控制指示 PCI承载在 HS-DPCCH上的 第一种结构示意图;
图 5为本发明实施例所提供的预编码控制指示 PCI承载在 HS-DPCCH上的 第二种结构示意图;
图 6为本发明实施例所提供的预编码控制指示 PCI承载在 HS-DPCCH上的 第三种结构示意图;
图 7为本发明实施例所提供的预编码控制指示 PCI承载在 HS-DPCCH上的 第四种结构示意图;
图 8 为本发明实施例所提供的一种用户设备中预编码控制指示反馈系统的 结构示意图;
图 9为本发明实施例所提供的一种基站中数据预编码系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅是本发明一部分实施例, 而不是全 部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性 劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
在多输入多输出 MIMO系统中, 对于 MIMO单流发送方式而言, 当由于基 站各发射天线位置改变或信道质量等原因, 造成各发射天线发送的信号经历的 阴影衰落差异过大, 或者天线极化方向不一致时, 作为接收端的用户节点接收 到的各发射天线的功率将极度不平衡, 甚至可能存在极端场景, 用户节点只能 接收到一个发射天线的发射功率。 这导致 MIMO单流相对于传统单发 HSDPA 出现概率性负增益, 极大影响通信质量。 为了解决现有技术所存在的问题, 本 发明实施例提供了一种预编码控制指示反馈方法、 用户设备及基站, 以使得基 站节点根据信道的实际情况, 选择适当的数据发送模式发送数据, 有效提供通 信质量。
下面首先对本发明所提供的一种预编码控制指示反馈方法进行介绍。
从用户节点的角度进行介绍, 一种预编码控制指示反馈方法, 如图 1所示, 可以包括:
S101, 用户节点计算预编码矩阵集中的各个预编码矩阵对应的信道容量值。 在 MIMO系统中,基站节点通过物理层的 HS-DSCH发送数据给用户节点, 同时通过 HS-SCCH发送和 HS-DSCH相关的控制信令等; 用户节点则利用承载 在 HS-SCCH上的控制信息对 HS-DSCH上的数据进行解调、 译码等; 然后用户 节点根据 HS-SCCH上数据信息的接收情况, 以及对 HS-DSCH上的数据译码正 确与否生成 ACK/NACK信息; 另外, 用户节点还测量下行信道状况, 生成信道 质量指示 CQI信息; 同时, 用户节点将遍历与基站节点预先约定设置的预编码 矩阵集中的各个预编码矩阵, 计算各个预编码矩阵所对应的信道容量值, 进而 才艮据信道容量值的大小确定出后续的预编码控制指示 PCI。
其中, 所述预先设置的预编码矩阵集中包括: 天线切换预编码矩阵以及预 编码协议中的原始预编码矩阵; 所述天线切换预编码矩阵使得基站节点对待发 送数据预编码处理结果为一维数据, 进而利用单天线方式发送待发送数据。 可 以理解的是, 所述预编码协议中的原始预编码矩阵可以使得基站节点对待发送 数据预编码处理结果为与基站发射天线数量相对应的多维数据, 进而利用 MIMO单流方式发送待发送数据。
其中, 计算预先设置的预编码矩阵集中的各个预编码矩阵对应的信道容量 值的方式可以为:
SlOla, 确定所述预编码矩阵集中预编码矩阵在当前信道中所对应的信噪比 值 SNR;
需要说明的是, 本实施例所述信噪比值 SNR为信噪比值 SNR、 信干比值 SIR以及信干噪比值 SINR的统称。 其中, 计算所述信噪比值 SNR的方式可以 为:
SNR=有用信号能量 /噪声能量;
设系统为 y=hvx+n;
y为接收信号矩阵, X为发送信号矩阵, h为无线信道矩阵, V为预编码矩 阵, n为噪声矩阵。
SNR=|hvx|2/|n|2
本领域人员可以理解的是, 信噪比值 SNR的计算方式并不局限于本实施例 所述的方法。
SlOlb, 将所述信噪比值 SNR代入 MIMO单流信道容量公式, 确定所述预 编码矩阵对应的信道容量值。
所述 MIMO单流信道容量公式为:
CHogzCl+SNR ( 1 )
其中, Q为序列号为 i的预编码矩阵对应的信道容量值, SN 为序列号为 i 的预编码矩阵对应的信噪比值。
需要说明的是, 信道容量值的计算方式并不局限于上述方式, 其可以根据 不同应用场景选择其他的计算方式, 这都是合理的。
S102, 将最大信道容量值所对应预编码矩阵的序列号作为待用预编码控制 指示 PCI。
当预编码矩阵对应的待用信道容量值最大时, 表明如果基站节点按照该预 编码矩阵对待发送数据进行预编码处理后发送该待发送数据, 所得到吞吐量相 对利用其他预编码矩阵进行相同处理的吞吐量较大, 进而存在相对较好的通信 质量。
因此, 在逐一遍历预设的预编码矩阵集中的预编码矩阵后, 选择最大信道 容量值所对应的预编码矩阵的序列号作为待用预编码控制指示 PCL 需要说明的 是, 预设的预编码矩阵集中的所有矩阵都按照特定顺序进行了连续编号, 例如, 如果存在 6个预编码矩阵, 则连续编号可以为 000、 001、 010、 011、 100、 101 , 也就是, 每个预编码矩阵都对应唯——个序列号。 同时, 用户节点和基站节点 双方都得知预编码矩阵与序列号的对应关系。
S103, 将待用 PCL信道质量指示 CQI以及 ACK/NACK承载在 HS-DPCCH 上, 反馈给对应的基站节点, 以指示基站节点选择 MIMO单流模式或单天线模 式发送待发送数据。
当用户节点根据信道容量构成待用预编码控制指示 PCI后, 则将待用 PCI、 标识下行信道质量的信道质量指示 CQI 以及标识数据译码结果的 ACK/NACK 作为反馈信息承载在上行链路高速专用物理信道 HS-DPCCH上, 反馈给对应的 基站节点, 以指示基站节点进行后续的数据发送。
可以理解的是, 由于在预编码协议中的原始预编码矩阵的基础上, 增加了 特定的天线切换预编码矩阵, 所以待用 PCI需要增加一定的比特数目来支持矩 阵码本的扩展。 而所增加的比特数目根据所增加的天线切换预编码矩阵的数量 进行设定, 使得待用 PCI所对应的总比特可以标识出预设预编码矩阵集中的每 个预编码矩阵的序列号。
进一步的, 由于将 PCI反馈给基站节点之前, PCI需要与 CQI进行联合编 码后, 连同 ACK/NACK承载在 HS-DPCCH上, 因此, 待用 PCI对应比特数目 增多的情况下, 将待用 PCI、 CQI以及 ACK/NACK承载在 HS-DPCCH上时需 要发生相应的变化, 具体可以如下四种方式:
( 1 )不改变现有预编码协议的 PCI反馈周期, 改变 CQI和 PCI的联合编码 方式, 使得联合编码后的总比特数目不变, 该方式具体可以为:
利用预先设置的、对 CQI和待用 PCI联合编码后比特数不变的待用 CQI/PCI 联合编码方式, 对 CQI和待用 PCI进行联合编码, 并将编码结果与 ACK/NACK 按照原始信息承载方式承载在 HS-DPCCH上。
该方式中, 对 CQI和 PCI的联合编码方式进行重新设定, 使得对待用 PCI 和 CQI进行联合编码后, 相对于利用原始联合编码方式而言, 联合编码结果的 总比特数不免进而连同 ACK/NACK按照原始信息承载方式承载在 HS-DPCCH 即可。
( 2 )不改变现有预编码协议中的 CQI和 PCI联合编码方式, 加大待用 PCI 的反馈周期, 该方式具体可以为: 将一个待用 PCI对应的比特按照预设比例分布在连续多次的原始 CQI/PCI 联合编码中, 并将每次联合编码结果与 ACK/NACK按照原始信息承载方式承载 在 HS-DPCCH上。
该方式中, 不改变 CQI和 PCI联合编码方式, 将一个待用 PCI对应的比特 按照特定的比例分布在连续多次联合编码中, 并将每次编码结果与 ACK/NACK 按照原始信息承载方式承载在 HS-DPCCH上。 可以理解的是, 对于联合编码过 程中, PCI对应的比特数不足的情况下, 可以补充特定的比特, 以满足联合编码 的需求。
( 3 )不改变现有预编码协议中的 CQI和 PCI联合编码方式, 尽量缩短 PCI 反馈周期, 有效反馈待用 PCI, 该方式具体可以为:
将两个待用 PCI所对应的比特以原始 PCI比特数目为单位分布在多次连续 的原始 CQI/PCI联合编码中, 并将每次联合编码结果与 ACK/NACK按照原始信 息承载方式承载在 HS-DPCCH上。
该方式中, 通过将两个待用 PCI所对应的比特以原始 PCI所对应的比特数 目为单位分布在多次连续的原始 CQI/PCI联合编码中的方式尽量缩短待用 PCI 的反馈周期, 达到有效反馈待用 PCI的目的。
( 4 )不改变现有预编码协议中的 CQI和 PCI联合编码方式, 充分利用协议 字段资源, 有效反馈待用 PCI, 该方式具体可以为:
将一个待用 PCI中的原始 PCI比特数和 CQI按照原始 CQI/PCI联合编码方 式进行联合编码, 并将联合编码结果与 ACK/NACK按照原始信息承载方式承载 在 HS-DPCCH上, 同时将待用 PCI 剩余比特数承载在待用 PCI 定时相邻的 DPCCH ( Dedicated Physical Control Channel, 专有物理控制信道)的空闲域中。
该方式中, DPCCH的空闲域是指: TFCI ( Transport Format Combination Indicator, 传输格式组合指示)域或者 FBI ( Feedback Information, 反馈信息) 域。 如果用户节点不发送上行 DPDCH ( Dedicated Physical Data Channel, 专用 物理数据信道)时, TFCI域空闲, PCI使用 TFCI域; 如果用户节点不反馈 FBI 时 , FBI域空闲, PCI使用 FBI域; 如果 TFCI域和 FBI域同时空闲, 两域均可 使用。 可以理解的是, 所谓待用 PCI定时相邻的 DPCCH可根据用户节点 PCI 计算时间和基站处理时延进行设定。
通过上述任意一种承载方式, 都可以在 PCI对应比特数目增多的情况下, 将待用 PCI、 CQI以及 ACK/NACK有效承载在 HS-DPCCH上, 进而反馈给基 站节点。 本领域人员可以理解的是, 在 PCI对应比特数目增多的情况下, 反馈 信息承载在 HS-DPCCH的具体方式并不局限于上述四种。
从基站的角度进行介绍, 一种预编码控制指示反馈方法, 如图 2 所示, 可 以包括:
5201 , 基站节点接收用户节点通过 HS-DPCCH发送的反馈信息。
其中, 所述反馈信息中包含待用 PCI、 标识下行信道质量的信道质量指示 CQI以及标识数据译码结果的 ACK/NACK。
5202, 获得所述待用 PCI对应的预编码矩阵集中的当前预编码矩阵。
基站节点从用户节点的反馈信息中, 提取待用 PCI, 并获得待用 PCI对应的 预编码矩阵集中的当前预编码矩阵, 该待用预编码矩阵使得信道容量值最大。
将待发送数据与当前预编码矩阵进行相乘处理, 完成预编码处理。
5204, 判读所述预编码处理结果是否为一维数据, 如果是, 则执行 S205; 否则, 执行 S206。
5205, 选择单天线模式发送待发送数据。 后, 如果预编码处理结果为一维数据, 表明待用预编码矩阵为天线切换预编码 矩阵, 此时, 只需利用单天线发送的方式即可。
5206 , 选择 MIMO单流模式发送待发送数据。 后, 预编码处理结果为多维数据, 表明当前预编码矩阵为原始预编码协议中的 原始预编码矩阵, 此时, 需要利用基站节点相应数量的发射天线, 按照 MIMO 单流模式发送待发送数据。
可以理解的是, 基站节点也可以直接判断待用 PCI对应的当前预编码矩阵 是否为天线切换预编码矩阵中的任意一个, 如果当前预编码矩阵为天线切换矩 阵, 则利用该预编码矩阵进行预编码处理后得到一维数据, 直接按照单天线模 式发送待发送数据, 也是合理的。
本发明实施例所提供的方案中, 在原始预编码矩阵集中增加天线切换预编 码矩阵, 当用户节点构造 PCI时, 将遍历所有预编码矩阵, 并将使得信道容量 最大的 J丄¾预 2 编码矩阵的序列号作为 PCI 值, 并连同 CQI、 ACK/NACK承载在 HS-DPCCH上发送给基站节点, 以指示基站节点根据待用信道状¾选择 MIMO 单流模式或者单天线模式发送待发送数据。 与现有技术相比, 通过增加天线切 换预编码矩阵的方式, 使得基站节点根据用户节点所反馈的 PCI, 选择适应待用 信道的数据发送模式, 进而可以有效降低 MIMO单流相对于传统单发 HSDPA 出现概率性负增益, 提高通信质量。
下面以 2χ2ΜΙΜΟ系统为例,对本发明所提供的预编码控制指示反馈方法进 行详细介绍, 当然, 本发明所提供的方案的适应场景并不局限于 2χ2ΜΙΜΟ 系 统, 例如: 其还可以适用于 3 X 3MIMO系统等。
其中, 2χ2ΜΙΜΟ系统为基站节点和用户节点各具有两天线, 此时的 MIMO 单流模式为基站节点在发送数据时, 两发射天线同时发送相同的数据块。
在 2χ2ΜΙΜΟ系统中, 对于基站节点使用 MIMO单流模式发送数据而言, 当由于基站节点两发射天线位置改变或信道质量等原因, 造成两发射天线发送 的信号经历的阴影衰落差异过大, 或者天线极化方向不一致时, 用户节点接收 到的两发射天线功率将极度不平衡, 甚至可能存在极端场景, 用户节点只能收 到一个发射天线的功率, 这导致 MIMO单流相对于传统单发 HSDPA出现概率 性负增益, 极大影响通信质量。 本发明提供了一种预编码控制指示反馈方法, 通过基站节点根据信道状况选择适当数据发送模式的方式, 有效提供了通信质 对于 2χ2ΜΙΜΟ系统, 从用户节点的角度而言, 一种预编码控制指示反馈方 法, 如图 3所示, 可以包括:
S301 , 依次计算预编码矩阵集中的 6个预编码矩阵对应的信道容量值。 需要说明的是, 在 2χ2ΜΙΜΟ系统中, 用户节点与基站节点预先约定设置的 预编码矩阵集可以包括:
Figure imgf000012_0003
Figure imgf000012_0002
Figure imgf000012_0001
该预设的预编码矩阵集中的预编码矩阵从左到右对应的序列号依次为: 000、 001、 010、 011、 100、 101。 可以理解的是, 预编码矩阵的序列号分配方 式并不局限于上述顺序, 可以根据实际情况更改预编码矩阵集的排列顺序, 进 而使得每个预编码矩阵对应特定的序列号。
其中, 预编码协议中原始预编码矩阵包括:
Figure imgf000013_0001
在预编码协议的基础上, 新增加的天线切换预编码矩阵包括:
Figure imgf000013_0003
可以理解的是, 利用任一原始预编码矩阵进行预编码处理, 预编码处理结 果为二维数据, 进而使得基站节点按照 MIMO单流模式发送待发送数据; 而利 用任一天线切换预编码矩阵进行预编码处理, 预编码处理结果为一维数据, 进 而使得基站节点按照单天线模式发送待发送数据。 同时, 根据实际应用场景, 在预编码协议的基础上, 同时增加上述两个天线切换预编码矩阵, 或者只增加 这两个天线切换预编码矩阵中的任意一个, 都是合理的。
当用户节点接收到基站节点发送的数据和控制信令后, 则根据译码结果生 成 ACK/NACK信息, 并测量下行信道状况, 生成 CQI; 同时, 将遍历预设的预 编码矩阵集中的 6个预编码矩阵, 计算每个预编码矩阵对应的待用信道容量值。 其中, MIMO 单流信道容量值的具体计算方式可以如上述实施例所述的方式当 然并不局限于上述方式, 在此不再赘述。
S302, 选择 6个预编码矩阵中使得待用信道容量值最大的预编码矩阵的序 列号作为待用 PCI。
当用户节点确定各预编码矩阵所对应的当前信道容量后, 则选择最大信道 容量值对应的预编码矩阵的序列号作为待用预编码控制指示 PCI。 例如: 最大信 道容量值对应的预编码矩阵为:
Figure imgf000013_0002
该预编码矩阵对应的序列号为 001 , 则待用预编码控制指示 PCI为 001; 如果最大信道容量值所对应的预编码矩阵为:
该预编码矩阵对应的序列号为 101 , 则待用预编码控制指示 PCI为 101。
S303, 将所构造的待用 PCI、 CQI以及 ACK/NACK承载在 HS-DPCCH上, 反馈给对应的基站节点。
当用户节点构造 PCI后, 则将该待用 PCI连同 CQI以及 ACK/NACK承载 在 HS-DPCCH上, 反馈给基站节点。
其中, 在仅仅存在原始预编码矩阵时, PCI为 2bit/TTI ( Transmission Time Interval, 传输时间间隔), 并与 CQI联合编码为 20bit, 由 HS-DPCCH信道承载 传输。 也就是, 此时 PCI具有 2比特即可标识出每个预编码矩阵的序列号。 而 现在增加了 2个天线切换预编码矩阵, 为了使得 PCI对应的总比特可以标识出 包含天线切换预编码矩阵的预设预编码矩阵集中的每个预编码矩阵, 所以待用 PCI需要增加 lbit, 来支持预编码协议的扩展。
相应的, 对于 2χ2ΜΙΜΟ系统而言, 将待用 PCI、 CQI以及 ACK/NACK承 载在 HS-DPCCH上的方式具体可以包括:
( 1 )不改变现有预编码协议的 PCI反馈周期, 改变 CQI和 PCI的联合编码 方式:
本领域人员可以理解的是, 对于 MIMO单流而言, CQI上报数据类型包括 typeA和 typeB, 也就是, HS-DPCCH上 typeA和 typeB会交替出现。 其中, 两 种类型按照与配置参数对应的图样进行发送, 例如: AABAAB ... ...或
AABBAABB ... ...。 因此, 本实施例中, 为了保证 CQI和待用 PCI联合编码结果 仍为 20bit, 可以将 MIMO单流对应的 typeA的( 20,10 )变为 ( 20,11 )且 typeB 的 (20,7 ) 变为 (20,8 ) 进行相应的编码。 如图 4 所示, 可以将编码结果与 ACK/NACK按照原始信息承载方式承载在 HS-DPCCH上。
其中, 对于该方式中所提供的最优编码序列 (b,a ) =(20,8), 其编码过程可 以为 将 PCI和 CQI各 bit串联得到:
Figure imgf000014_0001
将上述式(2 ) 中得到的 a向量各元素和下表 1中选出来的多个列向量各元 素代入如下公式:
Figure imgf000015_0001
/ = 0,...,19 ( 3 )
pci0 pcix pci2代表的是一个 PCI的 3个 bit, mod2操作表示求模 2。 Mi m为如 下表 1中的序列, m e {0,1,3,4,5,7,8,9}。
Figure imgf000015_0002
表 1 同时, 对于该方式中所提供的最优编码序列 (b,a ) =(20,11), 其编码过程可 以为: 将 PCI和 CQI各 bit串联得到:
0 αλ α2 α3 α4 α5 α6 αΊ as α9 aw ) = [pci。 pcix pci2 cqi0 cqix cqi2 cqi3 cqi4 cqi5 cqi6 cqi7 ) ( 4 ) 将上述式(4 ) 中得到的 a向量各元素和下表 2中选出来的多个列向量各元 素代入如下公式: b = ∑(an xM + al0 xM - mod 2
Figure imgf000016_0001
pci0 pcix pci2代表的是一个 PCI的 3个 bit, mod2操作表示求模 2。 Mi m为如 下表 2中的序歹' J , m e {0,1,2,3,4,5,6,7,8,9,11}。
i Mlj0 Mu Mlj2 Mlj3 Mlj4 Mlj5 Mlj6 Mlj7 Mlj8 Mlj9 Muo
0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0 0 0 0
4 0 0 0 0 0 1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 1 0 0 0 0
6 0 0 0 0 0 0 0 0 1 0 1 0
7 0 0 0 0 0 0 0 0 0 1 1 0
8 1 0 1 0 0 0 1 1 1 0 1 0
9 1 1 0 1 0 0 0 1 1 1 1 1
10 0 1 1 0 1 0 0 0 1 1 1 0
11 1 0 1 1 0 1 0 0 0 1 0 0
12 1 1 0 1 1 0 1 0 0 0 0 1
13 1 1 1 0 1 1 0 1 0 0 0 0
14 0 1 1 1 0 1 1 0 1 0 1 0
15 0 0 1 1 1 0 1 1 0 1 0 0
16 0 0 0 1 1 1 0 1 1 0 1 1 17 1 0 0 0 1 1 1 0 1 1 1 1
18 0 1 0 0 0 1 1 1 0 1 0 1
19 1 1 1 1 1 1 1 1 1 1 1 1
表 2
( 2 )不改变现有预编码协议中的 CQI和 PCI联合编码方式, 加大待用 PCI 的反馈周期, 如图 5所示, 该方式具体可以为:
将一个有效的 PCI1所对应的 3比特分布在连续两次的原始 CQI/PCI联合编 码中, 即将 3比特的待用 PCI1中 2比特和 CQI按照原始预编码协议规定进行联 合编码, 承载在连续的两次 TTI中的一个上; 同时由于待用 PCI只剩余 1比特, 所以补充 1比特(事先约定 1或者 0 ), 构成完整的 2比特原始 PCI, 进而和 CQI 按照原始预编码协议规定进行联合编码, 承载在连续两次 TTI 中的另一个上, 此时最小有效周期可以为 4ms。
进而, 将每次联合编码结果与 ACK/NACK按照原始信息承载方式承载在 HS-DPCCH上。
( 3 )不改变现有预编码协议中的 CQI和 PCI联合编码方式, 尽量缩短待用 PCI反馈周期, 有效反馈待用 PCI, 如图 6所示, 该方式具体可以为:
将 2个有效的待用 PCI: PCI1和 PCI2的 6比特数据分布在连续的三次的原 始 CQI/PCI联合编码中, 具体为: 分别将两个 PCI的 3比特中的 2比特和 CQI 按照原始预编码协议进行联合编码, 承载在连续三次 TTI 中的其中两个上; 两 个 PCI各剩余 1比特组合成 2比特和 CQI按照原始预编码协议进行联合编码, 承载在连续三次 TTI中的剩余一个上。
进而, 将每次联合编码结果与 ACK/NACK按照原始信息承载方式承载在 HS-DPCCH上。
( 4 )不改变现有预编码协议中的 CQI和 PCI联合编码方式, 充分利用协议 字段资源, 有效反馈待用 PCI, 如图 7所示, 该方式具体可以为:
将一个 3比特待用 PCI中的 2比特数和 CQI按照原始 CQI/PCI联合编码方 式进行联合编码, 并将联合编码结果与 ACK/NACK按照原始信息承载方式承载 在 HS-DPCCH上, 同时将待用 PCI 剩余比特数承载在待用 PCI 定时相邻的 DPCCH的空闲域。 可以理解的是, 如果用户节点不发送上行 DPDCH时, TFCI域空闲, PCI 使用 TFCI域; 如果用户节点不反馈 FBI时, FBI域空闲, PCI使用 FBI域; 如 果 TFCI域和 FBI域同时空闲, 两域均可使用。
综合考虑终端 PCI计算时间和基站处理时延, 待用 PCI定时附近的 DPCCH 定义为: 与待用 PCI所在子帧时间跨度有重合的 DPCCH时 其中,重合 DPCCH 时隙与起始 DPCCH时隙的定时差范围可以为: mx256chips mx256chips + 2x2560chips
2560chips 2560chips 其中, 」表示向下取整, π表示向上取整。
其中预编码协议规定 HS-DPCCH和 DPCCH 定时差为 m*256chip, m = (TTX diff/256 ) + 101, TTX diff =0, 256, ..... , 38144。 重合的 DPCCH时隙至少 3 个 slot, 至多 4个 slot, 优先选择完整落于 PCI所在子帧时间跨度的 DPCCH时 隙。
相应的, 对于 2χ2ΜΙΜΟ系统而言, 从基站节点的角度而言, 基站节点从所 接收的用户反馈信息中提取待用 PCI, 确定待用 PCI对应的当前预编码矩阵, 并 如果当前预编码矩阵为原始预编码矩阵中的任意一个, 则利用当前预编码矩阵 对待发送数据进行预编码处理的结果为二维数据, 此时基站节点需要选择 MIMO单流模式发送待发送数据; 而如果当前预编码矩阵为天线切换预编码矩 为一维数据, 此时基站节点需利用单天线模式发送待发送数据。
对于 2χ2ΜΙΜΟ系统而言, 扩展 MIMO预编码矩阵集, 增加天线切换预编 码矩阵, 用户节点将遍历扩展后的预编码矩阵集, 选择使得信道容量最大的预 编码矩阵对应序列号作为待用 PCI上报, 从而基站节点能够根据待用 PCI选择 MIMO单流模式或单天线模式中最优的模式发送待发送数据, 以解决用户节点 接收到的两发射天线功率不平衡时, MIMO单流模式向单天线模式的切换, 减 少 MIMO相对传统单发 HSDPA的概率性负增益, 提高通信质量。 可以理解的 是, 同时两发射天线功率平衡后, 可以根据所选定的当前预编码矩阵, 从单天 线模式切换到 MIMO单流模式。 通过以上的方法实施例的描述, 所属领域的技术人员可以清楚地了解到本 发明可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过硬件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案本 质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该计 算机软件产品存储在一个存储介质中 , 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述 方法的全部或部分步骤。 而前述的存储介质包括: 只读存储器(ROM )、 随机存 取存储器 (RAM )、 磁碟或者光盘等各种可以存储程序代码的介质。
相应于上面的方法实施例, 本发明实施例还提供一种用户设备, 包括: 预编码控制指示反馈系统;
所述预编码控制指示反馈系统, 包括:
信道容量计算模块 110, 用于计算预编码矩阵集中的各个预编码矩阵对应的 信道容量值;
PCI确定模块 120, 用于将最大信道容量值所对应预编码矩阵的序列号作为 待用预编码控制指示 PCI;
反馈信息发送模块 130, 用于将待用 PCI、 标识下行信道质量的信道质量指 示 CQI以及标识数据译码结果的 ACK/NACK承载在上行链路高速专用物理信 道 HS-DPCCH上, 反馈给对应的基站节点, 以指示基站节点选择 MIMO单流模 式或单天线模式发送待发送数据;
其中, 所述预编码矩阵集中包括: 天线切换预编码矩阵以及预编码协议中 的原始预编码矩阵; 所述天线切换预编码矩阵使得基站节点对待发送数据预编 码处理结果为一维数据, 进而利用单天线模式发送待发送数据。
在构造 PCI时, 用户设备中的预编码控制指示反馈系统, 将遍历包含天线 切换预编码矩阵的预编码矩阵集中的所有预编码矩阵, 计算每个预编码矩阵所 对应的待用信道容量值,将使得信道容量值最大的预编码矩阵的序列号作为 PCI 值, 并连同 CQI、 ACK/NACK承载在 HS-DPCCH上发送给基站, 指示基站根据 待用 PCI选择 MIMO单流模式和单天线模式中较优的模式发送待发送数据, 进 而降低 MIMO单流相对于传统单发 HSDPA出现概率性负增益, 提高通信质量。
更进一步的, 反馈信息发送模块 130, 具体用于:
利用预先设置的、对 CQI和待用 PCI联合编码后比特数不变的待用 CQI/PCI 联合编码方式, 对 CQI和待用 PCI进行联合编码, 并将编码结果与 ACK/NACK 按照原始信息承载方式承载在 HS-DPCCH上;
或者,
将一个待用 PCI 所对应的比特数按照预设比例分布在连续多次的原始 CQI/PCI联合编码中, 并将每次联合编码结果与 ACK/NACK按照原始信息承载 方式承载在 HS-DPCCH上;
或者,
将两个待用 PCI所对应的比特以原始比特数目为单位分布在多次连续的原 始 CQI/PCI联合编码中, 并将每次联合编码结果与 ACK/NACK按照原始信息承 载方式承载在 HS-DPCCH上;
或者,
将一个待用 PCI中的原始 PCI比特数和 CQI按照原始 CQI/PCI联合编码方 式进行联合编码, 并将联合编码结果与 ACK/NACK按照原始信息承载方式承载 在 HS-DPCCH上, 同时将待用 PCI剩余比特数承载在待用 PCI定时相邻的专有 物理控制信道 DPCCH的空闲域中; 所述 DPCCH的空闲域包括传输格式组合指 示 TFCI域和 /或反馈信息 FBI域。
可以理解的是, 该反馈信息发送模块可以釆取其他的方式实现将待用 PCI、 CQI以及 ACK/NACK承载在 HS-DPCCH上, 并不局限于上述四种方式。
更进一步的, 所述信道容量计算模块 110, 包括:
信噪比确定单元, 用于确定所述预编码矩阵集中预编码矩阵在当前信道中 所对应的信噪比值 SNR;
信道容量确定单元, 用于将所述信噪比值 SNR代入 MIMO单流信道容量公 式, 确定所述预编码矩阵对应的信道容量值;
所述 MIMO单流信道容量公式为:
C1=log2(l + SNR1)
其中, Q为序列号为 i的预编码矩阵对应的信道容量值, SN 为序列号为 i 的预编码矩阵对应的信噪比值。
可以理解的是, 信道容量计算模块计算预编码矩阵所对应的待用信道容量 的方式, 可以根据实际情况选择其他的方式, 并不局限于上述方式。
同时, 本发明实施例还提供一种基站, 包括: 数据预编码系统;
所述数据预编码系统, 包括:
反馈信息接收模块 210, 用于接收用户节点通过上行链路高速专用物理信道 HS-DPCCH发送的反馈信息, 所述反馈信息中包含待用 PCI、 标识下行信道质 量的信道质量指示 CQI以及标识数据译码结果的 ACK/NACK;
预编码矩阵确定模块 220, 用于获得所述待用 PCI对应的预编码矩阵集中的 当前预编码矩阵; 分析处理模块 240, 用于当预编码处理结果为一维数据时, 选择单天线模式 发送待发送数据; 否则, 选择 MIMO单流模式发送待发送数据。
基站中的数据预编码系统在接收到用户设备发送的待用 PCI后, 则会根据 待用 PCI对应的预编码矩阵对待发送数据进行预编码处理, 并在预编码处理结 果为一维数据的情况下, 选择单天线模式发送待发送数据, 否则选择 MIMO单 流模式发送待发送数据。 基站根据用户设备所反馈的待用 PCI, 选择适应待用信 道的数据发送模式, 进而可以有效降低 MIMO单流相对于传统单发 HSDPA出 现概率性负增益, 提高通信质量。
更进一步的, 所述预编码模块 230, 具体用于:
将待发送数据与当前预编码矩阵进行相乘处理, 完成预编码处理。
对于装置或系统实施例而言, 由于其基本相应于方法实施例, 所以相关之 处参见方法实施例的部分说明即可。 以上所描述的装置或系统实施例仅仅是示 的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地 方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分 或者全部模块来实现本实施例方案的目的。 本领域普通技术人员在不付出创造 性劳动的情况下, 即可以理解并实施。
在本发明所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和方 法, 在没有超过本申请的精神和范围内, 可以通过其他的方式实现。 待用的实 施例只是一种示范性的例子, 不应该作为限制, 所给出的具体内容不应该限制 本申请的目的。 例如, 所述单元或子单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个单元或多个子单元结合一起。 另 外, 多个单元可以或组件可以结合或者可以集成到另一个系统, 或一些特征可 以忽略, 或不执行。
另外, 所描述系统, 装置和方法以及不同实施例的示意图, 在不超出本申 请的范围内, 可以与其它系统, 模块, 技术或方法结合或集成。 另一点, 所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置 或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。
以上所述仅是本发明的具体实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权利要求书
1、 一种预编码控制指示反馈方法, 其特征在于, 包括:
计算预编码矩阵集中的各个预编码矩阵对应的信道容量值;
将最大信道容量值所对应预编码矩阵的序列号作为待用预编码控制指示
PCI;
将所述待用 PCI、 标识下行信道质量的信道质量指示 CQI以及标识数据译 码结果的 ACK/NACK承载在上行链路高速专用物理信道 HS-DPCCH上, 反馈 给对应的基站节点, 以指示基站节点选择 MIMO单流模式或单天线模式发送待 发送数据;
其中, 所述预编码矩阵集中包括: 天线切换预编码矩阵以及预编码协议中 的原始预编码矩阵; 所述天线切换预编码矩阵使得基站节点对待发送数据预编 码处理结果为一维数据, 进而利用单天线模式发送待发送数据。
2、 根据权利要求 1所述的方法, 其特征在于, 所述将待用 PCI、 标识下行 信道质量的信道质量指示 CQI以及标识数据译码结果的 ACK/NACK承载在上 行链路高速专用物理信道 HS-DPCCH上的方式为:
利用预先设置的、对 CQI和待用 PCI联合编码后比特数不变的待用 CQI/PCI 联合编码方式, 对 CQI和待用 PCI进行联合编码, 并将编码结果与 ACK/NACK 按照原始信息承载方式承载在 HS-DPCCH上;
或者,
将一个待用 PCI所对应的比特数按照预设比例分布在连续多次的原始
CQI/PCI联合编码中, 并将每次联合编码结果与 ACK/NACK按照原始信息承载 方式承载在 HS-DPCCH上;
或者,
将两个待用 PCI所对应的比特以原始 PCI比特数目为单位分布在多次连续 的原始 CQI/PCI联合编码中, 并将每次联合编码结果与 ACK/NACK按照原始信 息承载方式承载在 HS-DPCCH上;
或者,
将一个待用 PCI中的原始 PCI比特数和 CQI按照原始 CQI/PCI联合编码方 式进行联合编码, 并将联合编码结果与 ACK/NACK按照原始信息承载方式承载 在 HS-DPCCH上, 同时将待用 PCI剩余比特数承载在待用 PCI定时相邻的专有 物理控制信道 DPCCH的空闲域中; 所述 DPCCH的空闲域包括传输格式组合指 示 TFCI域和 /或反馈信息 FBI域。
3、 根据权利要求 2所述的方法, 其特征在于, 计算预编码矩阵集中的预编 码矩阵对应的信道容量值, 包括:
确定所述预编码矩阵集中预编码矩阵在当前信道中所对应的信噪比值
SNR;
将所述信噪比值 SNR代入 MIMO单流信道容量公式, 确定所述预编码矩阵 对应的信道容量值;
所述 MIMO单流信道容量公式为:
C1=log2(l + SNR1)
其中, Q为序列号为 i的预编码矩阵对应的信道容量值, SN 为序列号为 i 的预编码矩阵对应的信噪比值。
4、 根据权利要求 1所述的方法, 其特征在于, 在具有两发射天线的多输入 多输出 MIMO系统中, 所述天线切换预编码矩阵包括:
Figure imgf000024_0001
5、 一种预编码控制指示反馈方法, 其特征在于, 包括:
接收用户节点通过上行链路高速专用物理信道 HS-DPCCH发送的反馈信 息, 所述反馈信息中包含待用 PCI、 标识下行信道质量的信道质量指示 CQI以 及标识数据译码结果的 ACK/NACK;
获得所述待用 PCI对应的预编码矩阵集中的当前预编码矩阵; 当预编码处理结果为一维数据时, 选择单天线模式发送待发送数据; 否则, 选择 MIMO单流模式发送待发送数据。
6、 根据权利要求 5所述的方法, 其特征在于, 所述利用当前预编码矩阵对 待发送数据进行预编码处理, 包括:
将待发送数据与当前预编码矩阵进行相乘处理, 完成预编码处理。
7、 一种用户设备, 其特征在于, 包括: 预编码控制指示反馈系统; 所述预编码控制指示反馈系统, 包括:
信道容量计算模块, 用于计算预编码矩阵集中的各个预编码矩阵对应的信 道容量值;
PCI确定模 用于将最大信道容量值所对应预编码矩阵的序列号作为待用 预编码控制指示 PCI;
反馈信息发送模块, 用于将待用 PCI、 标识下行信道质量的信道质量指示 CQI 以及标识数据译码结果的 ACK/NACK承载在上行链路高速专用物理信道 HS-DPCCH上, 反馈给对应的基站节点, 以指示基站节点选择 MIMO单流模式 或单天线模式发送待发送数据;
其中, 所述预编码矩阵集中包括: 天线切换预编码矩阵以及预编码协议中 的原始预编码矩阵; 所述天线切换预编码矩阵使得基站节点对待发送数据预编 码处理结果为一维数据, 进而利用单天线模式发送待发送数据。
8、根据权利要求 7所述的用户设备, 其特征在于, 所述反馈信息发送模块, 具体用于:
利用预先设置的、对 CQI和待用 PCI联合编码后比特数不变的待用 CQI/PCI 联合编码方式, 对 CQI和待用 PCI进行联合编码, 并将编码结果与 ACK/NACK 按照原始信息承载方式承载在 HS-DPCCH上;
或者,
将一个待用 PCI 所对应的比特数按照预设比例分布在连续多次的原始 CQI/PCI联合编码中, 并将每次联合编码结果与 ACK/NACK按照原始信息承载 方式承载在 HS-DPCCH上;
或者,
将两个待用 PCI所对应的比特以原始比特数目为单位分布在多次连续的原 始 CQI/PCI联合编码中, 并将每次联合编码结果与 ACK/NACK按照原始信息承 载方式承载在 HS-DPCCH上;
或者,
将一个待用 PCI中的原始 PCI比特数和 CQI按照原始 CQI/PCI联合编码方 式进行联合编码, 并将联合编码结果与 ACK/NACK按照原始信息承载方式承载 在 HS-DPCCH上, 同时将待用 PCI剩余比特数承载在待用 PCI定时相邻的专有 物理控制信道 DPCCH的空闲域中; 所述 DPCCH的空闲域包括传输格式组合指 示 TFCI域和 /或反馈信息 FBI域。
9、根据权利要求 8所述的用户设备, 其特征在于, 所述信道容量计算模块, 包括:
信噪比确定单元, 用于确定所述预编码矩阵集中预编码矩阵在当前信道中 所对应的信噪比值 SNR; 信道容量确定单元, 用于将所述信噪比值 SNR代入 MIMO单流信道容量公 式, 确定所述预编码矩阵对应的信道容量值;
所述 MIMO单流信道容量公式为:
C1=log2(l + SNR1)
其中, 为序列号为 i的预编码矩阵对应的信道容量值, SNR1为 序列号为 i的预编码矩阵对应的信噪比值。
10、 一种基站, 其特征在于, 包括: 数据预编码系统;
所述数据预编码系统, 包括:
反馈信息接收模块, 用于接收用户节点通过上行链路高速专用物理信道 HS-DPCCH发送的反馈信息, 所述反馈信息中包含待用 PCI、 标识下行信道质 量的信道质量指示 CQI以及标识数据译码结果的 ACK/NACK;
预编码矩阵确定模块, 用于获得所述待用 PCI对应的预编码矩阵集中的当 前预编码矩阵; 分析处理模块, 用于当预编码处理结果为一维数据时, 选择单天线模式发 送待发送数据; 否则, 选择 MIMO单流模式发送待发送数据。
11、 根据权利要求 10所述的基站, 其特征在于, 所述预编码模块, 具体用 于:
将待发送数据与当前预编码矩阵进行相乘处理, 完成预编码处理。
PCT/CN2012/083660 2011-11-01 2012-10-29 预编码控制指示反馈方法、用户设备及基站 WO2013064044A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/266,579 US9197305B2 (en) 2011-11-01 2014-04-30 Precoding control indication feedback method, user equipment, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110340047.9 2011-11-01
CN201110340047.9A CN103095420B (zh) 2011-11-01 2011-11-01 预编码控制指示反馈方法、用户设备及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/266,579 Continuation US9197305B2 (en) 2011-11-01 2014-04-30 Precoding control indication feedback method, user equipment, and base station

Publications (1)

Publication Number Publication Date
WO2013064044A1 true WO2013064044A1 (zh) 2013-05-10

Family

ID=48191316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083660 WO2013064044A1 (zh) 2011-11-01 2012-10-29 预编码控制指示反馈方法、用户设备及基站

Country Status (3)

Country Link
US (1) US9197305B2 (zh)
CN (1) CN103095420B (zh)
WO (1) WO2013064044A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI413907B (zh) * 2010-06-02 2013-11-01 Realtek Semiconductor Corp 一種用於訊號傳輸之省電方法及裝置
WO2015039298A1 (zh) * 2013-09-18 2015-03-26 华为技术有限公司 多入多出信号处理方法、装置和基站
CN106330270B (zh) * 2015-06-15 2019-10-11 上海诺基亚贝尔股份有限公司 在基于毫米波通信的通信系统中实施波束追踪的方法
WO2017111778A1 (en) * 2015-12-23 2017-06-29 Intel IP Corporation Multiband data delivery device and method
TWI640172B (zh) * 2016-05-12 2018-11-01 國立臺灣大學 多輸入多輸出系統中天線子陣列彈性配置系統與其選擇方法
CN108282201B (zh) * 2017-01-05 2022-07-15 中兴通讯股份有限公司 一种用户终端调度方法及装置、通信系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801097A (zh) * 2010-01-08 2010-08-11 中兴通讯股份有限公司 物理上行共享信道调度信息的指示方法
CN102158263A (zh) * 2010-02-11 2011-08-17 索尼公司 基于码书的信道信息反馈方法、设备和系统
CN102170664A (zh) * 2010-02-25 2011-08-31 中兴通讯股份有限公司 在多载波系统中管理载波信息的方法和系统
CN102208969A (zh) * 2010-03-31 2011-10-05 华为技术有限公司 重传方法、装置及通信系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558594A (zh) 2006-10-02 2009-10-14 交互数字技术公司 编码信道质量指示符及预编码控制信息比特的方法和设备
CN101932109A (zh) 2009-06-18 2010-12-29 华为技术有限公司 一种预编码控制指示的发送方法及装置
CN101931508B (zh) 2009-06-23 2013-06-26 华为技术有限公司 DC-HSDPA和TxAA并存场景的PCI编码方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101801097A (zh) * 2010-01-08 2010-08-11 中兴通讯股份有限公司 物理上行共享信道调度信息的指示方法
CN102158263A (zh) * 2010-02-11 2011-08-17 索尼公司 基于码书的信道信息反馈方法、设备和系统
CN102170664A (zh) * 2010-02-25 2011-08-31 中兴通讯股份有限公司 在多载波系统中管理载波信息的方法和系统
CN102208969A (zh) * 2010-03-31 2011-10-05 华为技术有限公司 重传方法、装置及通信系统

Also Published As

Publication number Publication date
US20140233513A1 (en) 2014-08-21
CN103095420A (zh) 2013-05-08
US9197305B2 (en) 2015-11-24
CN103095420B (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
US9838099B2 (en) Methods and arrangements for signaling control information in a communication system
CN113574815A (zh) 用于多传输点(trp)传输的低开销信道状态信息(csi)反馈
JP5989801B2 (ja) マルチアンテナ無線通信システムにおける時間多重化チャネル状態情報通知
JP5788026B2 (ja) 送信装置、受信装置及びその通信方法
KR20120112368A (ko) 채널 품질 정보의 전송 방법 및 이를 위한 장치
US10917155B2 (en) Mobile station, base station, and communication control method
WO2014101242A1 (zh) 报告信道状态信息csi的方法、用户设备和基站
US9197305B2 (en) Precoding control indication feedback method, user equipment, and base station
CN113796054B (zh) 用于无线接收站点的能力指示的系统和方法
TWI538428B (zh) 在網路中通信的方法、副站台及主站台
CN113316910A (zh) 用于发信号通知pdsch分集的系统和方法
WO2013169191A2 (en) Channel quality reporting in a communications system
WO2017076220A1 (zh) 一种信道状态信息csi反馈方法、终端及基站
WO2011082641A1 (zh) 一种传输信道质量信息的系统、终端及方法
WO2012162885A1 (zh) 多用户多输入输出的传输方法、用户设备及基站
CN109478972B (zh) 切换状态的方法、网络设备和终端设备
US9137071B2 (en) MIMO system
WO2012171292A1 (zh) 一种上行mimo模式间切换方法、装置及设备
WO2011097753A1 (zh) 天线相关上行反馈方法
US20220263547A1 (en) Tx mu-mimo capability for mcs
EP4207649A1 (en) Interference reporting method and apparatus
WO2011109933A1 (zh) 多输入多输出无线通信系统中反馈信道信息的方法和装置
WO2013020524A1 (zh) 辅流数据块长的确定方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846069

Country of ref document: EP

Kind code of ref document: A1