WO2012162885A1 - 多用户多输入输出的传输方法、用户设备及基站 - Google Patents

多用户多输入输出的传输方法、用户设备及基站 Download PDF

Info

Publication number
WO2012162885A1
WO2012162885A1 PCT/CN2011/075088 CN2011075088W WO2012162885A1 WO 2012162885 A1 WO2012162885 A1 WO 2012162885A1 CN 2011075088 W CN2011075088 W CN 2011075088W WO 2012162885 A1 WO2012162885 A1 WO 2012162885A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
layers
base station
user
served
Prior art date
Application number
PCT/CN2011/075088
Other languages
English (en)
French (fr)
Inventor
张翼
张元涛
周华
吴建明
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2014513026A priority Critical patent/JP2014520431A/ja
Priority to EP11866886.2A priority patent/EP2717637A4/en
Priority to CN201180070892.7A priority patent/CN103535092A/zh
Priority to PCT/CN2011/075088 priority patent/WO2012162885A1/zh
Priority to KR1020137034377A priority patent/KR20140018399A/ko
Publication of WO2012162885A1 publication Critical patent/WO2012162885A1/zh
Priority to US14/086,568 priority patent/US20140078997A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • Multi-user multiple input and output transmission method user equipment and base station
  • the present invention relates to the field of communications, and in particular, to a multi-user multiple input multiple output (MU-MIMO) transmission method, user equipment, and base station.
  • MU-MIMO multi-user multiple input multiple output
  • LTE Long Term Evolution
  • LTE-A dvanced Long Term Evolution Advanced Program
  • RRH Remote Radio Head
  • Relay Remote Radio Head
  • FIG. 1 shows a schematic of this scenario.
  • the macro base station 101 and the RRHs 102-107 have the same cell indication, and are connected by optical fibers.
  • the RRH is only a radio frequency unit and has no central processing and scheduling capabilities.
  • the macro base station processes the data of the entire heterogeneous network, and transmits the RRH related information to the base station of the macro cell through the optical fiber to have higher transmission power, and provides coverage of the entire cell.
  • the RRH has a lower transmit power and provides hot spot coverage.
  • the macro base station and the RRH can use the same time-frequency resources to transmit data, and the system capacity is improved by this multiplexing.
  • the data transmission of the macro cell interferes with the data transmission of the RRH on the same resource. Therefore, interference coordination schemes are needed to further reduce interference and optimize system performance.
  • the traditional Almost Blank Subframe (ABS) scheme can be used to reduce mutual interference of data transmission.
  • FIG. 2 shows an example diagram of an ABS transmission scheme.
  • the Macro transmission point is vacant 1, 3, 5, 7, 9 subframes, and the RRH transmission point preferentially schedules the edge user to transmit in the vacant subframe corresponding to the Macro transmission point, and the other subframe scheduling center user transmits.
  • RRH Users of the cell can transmit reliably. It guarantees the reuse of cell center users and increases system capacity compared to traditional homogeneous networks.
  • the central user of the RRH transmission point is still interfered by the base station of the Macro cell, which reduces the capacity of the central user of the RRH cell.
  • the edge user of the RRH transmission point it has exclusive resources, and the system cannot obtain the multiplexing gain. It can be seen that the interference of the Macro transmission point to the RRH cell user limits the further improvement of the system capacity.
  • Multi-user Multiple Input Multiple Output (MU-MIMO) technology utilizes the orthogonality of the spatial domain to reduce interference between users and improve the capacity of the system. It can be used in heterogeneous networks to further increase system capacity. According to the characteristics of the distributed antenna, if a certain user is only served by a part of the antenna, from the perspective of joint virtual MIMO, the joint channel of these users is a reduced rank channel, and this scenario is more suitable for using MU-MIMO technology.
  • MU-MIMO technology has the following characteristics in heterogeneous networks: (1) Interference between users is not equal. This is because the macro base station has a higher transmit power, which interferes with RRH users on the same resource; the RRH has a lower transmit power, and it has less interference to Macro users on the same resource. (2) RRH users transmit data at the same time-frequency resource with less interference between each other. (3) The data transmission of the Macro cell interferes with all RRH users.
  • Figure 3 shows a schematic diagram of the interference scenario in a heterogeneous network. As can be seen from the figure, the enhanced MU-MIMO technology focuses on suppressing the interference of the Macro Base station to RRH users.
  • the inventors have found that the defects of the prior art are: In a heterogeneous network, distributed antennas constitute a virtual MIMO system, and information transmitted by the virtual MIMO system may contain information of multiple users;
  • the code-to-layer mapping method is not limited and optimized, and the compromise between feedback overhead, feedback accuracy, and system signaling overhead cannot be obtained.
  • the embodiment of the invention provides a multi-user multi-input and output transmission method, a user equipment and a base station, and aims to restrict and optimize the mapping manner of the codeword to the layer, and improve the system. System performance.
  • a multi-user multiple input and output transmission method includes:
  • the user equipment receives a signaling indication sent by the base station to support the user usage layer indication, where the signaling indication includes a starting layer identifier number and a layer number of the user equipment;
  • the received resource is demodulated according to the starting layer identification number and the number of layers of the user equipment; wherein, in the resource, the data corresponding to the same user equipment uses a continuous layer identification number.
  • a multi-user multiple input and output transmission method includes:
  • the user equipment provides feedback information based on the location of the user equipment for providing relevant interference information.
  • a multi-user multiple input and output transmission method includes:
  • the base station configures, for the user equipment, a signaling indication that supports the user to use the layer identifier, where the signaling indication includes the starting layer identifier number and the number of layers of the user equipment;
  • the user equipment sending the signaling indication to the user equipment, so that the user equipment demodulates the received resource according to the starting layer identifier number and the number of layers; wherein, in the resource, the same one
  • the user device's data uses a continuous layer identification number.
  • a user equipment is provided, where the user equipment includes:
  • a signaling receiver which receives a signaling indication sent by the base station to support a user usage layer indication, where the signaling indication includes a starting layer identifier number and a layer number of the user equipment;
  • the resource demodulator demodulates the received resource according to the starting layer identifier number and the number of layers of the user equipment; wherein, in the resource, data corresponding to the same user equipment is marked by a continuous layer number.
  • a user equipment is provided, where the user equipment includes:
  • a base station configured to provide feedback information according to the location of the user equipment, for providing related interference information.
  • a base station includes: a signaling configurator, configured to configure, for a user equipment, a signaling indication that supports a user to use a layer indication, where the signaling indication includes the user The starting layer identification number of the device and the number of layers;
  • a signaling transmitter configured to send the signaling indication to the user equipment, so that the user equipment demodulates the received resource according to the starting layer identifier number and the number of layers;
  • the data corresponding to the same user equipment uses a continuous layer identification number.
  • a computer readable program wherein when the program is executed in a user equipment, the program causes a computer to perform a transmission mode as described above in the user equipment Configuration method.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a configuration method of a transmission mode as described above in a user equipment.
  • a computer readable program wherein when the program is executed in a base station, the program causes a computer to execute a configuration method of a transmission mode as described above in the base station .
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a configuration method of a transmission mode as described above in a base station.
  • An advantageous effect of the embodiment of the present invention is that the base station configures and sends a signaling indication that supports the user to use the layer indication, and the user equipment demodulates the received resource according to the initial layer identifier number and the number of layers in the signaling indication.
  • the codeword-to-layer mapping mode can be further limited and optimized to better achieve a compromise between feedback overhead, feedback accuracy, and system signaling overhead.
  • FIG. 1 is a schematic diagram of a scenario composed of a macro base station and a remote radio head in a heterogeneous network
  • FIG. 2 is an exemplary diagram of an ABS transmission scheme
  • FIG. 3 is a schematic diagram of an interference scenario in a heterogeneous network
  • FIG. 4 is a codeword-to-layer mapping relationship of SU-MIMO in an LTE-A system
  • FIG. 5 is a schematic diagram of resources used by a DM-RS in each resource block in an LTE-A system
  • FIG. 6 is an implementation of the present invention
  • FIG. 7 is a diagram showing an example of code-to-layer mapping when indicating information according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of DM-RS resource configuration according to an embodiment of the present invention
  • FIG. 9 is a diagram showing an example of a codeword-to-layer mapping in the case of feedback information according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a transmission method according to an embodiment of the present invention.
  • FIG. 11 is still another schematic flowchart of a transmission method according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 13 is still another schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 14 is still another schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • 16 is a schematic diagram of still another structure of a base station according to an embodiment of the present invention.
  • FIG. 17 is a diagram showing an example of a system structure of a user equipment according to an embodiment of the present invention.
  • FIG. 18 is a diagram showing an example of another system configuration of a user equipment according to an embodiment of the present invention. detailed description
  • FIG. 4 is a codeword-to-layer mapping relationship in an LTE-A Single User Multiple Input Multiple Output (SU-MIMO) system.
  • the system has a maximum of 2 code words (CW, Code Word) and 8 layers (Layer), each of which contains up to four layers.
  • CW code words
  • Layer layers
  • CQI Channel Quality Indicator
  • ACK/NACK acknowledgment message
  • a distributed antenna constitutes a virtual MIMO system.
  • the information transmitted by the virtual MIMO system may contain information of multiple users, and its code-to-layer mapping method needs further limitation and optimization. A compromise between feedback overhead, feedback accuracy, and system signaling overhead is well achieved.
  • the Demodulation Reference Signal (DM-RS) is an important reference signal in the LTE-A system.
  • the user equipment uses the DM-RS to estimate the equivalent channel on the MIMO transmission layer and then demodulates the data information based on this equivalent channel.
  • Figure 5 is a schematic diagram of resources used by a DM-RS on each resource block in an LTE-A system.
  • the equivalent channel can be estimated by distinguishing different transport layers by using joint frequency division and code division.
  • the LTE-A system stipulates that when the user performs MU-MIMO transmission, each user occupies no more than 2 layers, and the number of layers is not more than 4, and supports up to 4 users to transmit at the same time.
  • the LTE-A system can adopt the transparent MU-MIMO mode, that is, the user equipment does not know whether there are other user equipments and it occupies the same resources to transmit data.
  • the rank indication of the user equipment is greater than 2, it must work in single-user mode, and the corresponding rank number is the number of layers transmitted; when the rank indication of the user is not greater than 2, it may work in single-user or multiple User mode, the transport layer sequence number it uses is indicated by signaling.
  • the data transmitted by the Macro cell may interfere with the RRH user.
  • MU-MIMO technology can reduce interference between users.
  • the Macro cell performs data transmission in the null space of the RRH, so only part of the data stream can be selected.
  • the limit on the number of layers and the number of layers per user may limit further increases in system capacity and therefore require enhanced DM-RS configuration to support. If the receiving end can know the number of layers used by the system, the receiving end can use advanced receiving algorithms to further suppress interference and improve system performance.
  • FIG. 6 is a schematic flowchart of a transmission method according to an embodiment of the present invention. As shown in FIG. 6, on the user equipment side, the method includes:
  • Step 601 The user equipment receives, by the base station, a signaling indication that is supported by the user usage layer, where the signaling indication includes a starting layer identifier number and a layer number of the user equipment.
  • Step 602 The user equipment demodulates the received resource according to the starting layer identifier number and the number of layers of the user equipment.
  • the data corresponding to the same user equipment in the resource uses a continuous layer label number.
  • antennas of multiple transmission points in a heterogeneous network constitute virtual MIMO.
  • the same time-frequency transmission resource may include data of multiple users, and the base station side needs to perform codeword-to-layer mapping on these data. Also, each user may fall back to the single-user transmission mode, so it may still be necessary for each user to satisfy the single-user codeword-to-layer mapping as described above.
  • the layer designation may also be referred to as a stream label, and the number of layers may also be referred to as a sum stream number.
  • Rel.10 MU-MIMO uses quasi-orthogonal scrambling codes for different users to distinguish users; therefore, each user's layer label is independent, and the number of layers used for each user can be called the sum layer.
  • the user's layers are sorted jointly and can be uniformly indicated.
  • the data of the same user equipment in the time-frequency transmission resource uses a continuous layer identification number.
  • the data of the user equipment 1 uses the layer identification numbers 10, 11; the data of the user equipment 2 uses the layer identification numbers 20, 21.
  • the layer labels occupied by different user equipments are interspersed with each other.
  • the data of the user equipment served by the base station is before or after the data of the user equipment served by the remote radio head.
  • Macro user The mapping order of the data stream and the RRH data stream is fixed, and thus the relative order of the Macro user and the RRH user layer is determined. For example, if a certain time-frequency resource transmits data of the Macro user, the data of the Macro user is determined. It occupies the previous data stream.
  • FIG. 7 is a diagram showing an example of codeword-to-layer mapping when indicating information according to an embodiment of the present invention.
  • the user equipment that performs MU-MIMO includes: user equipment UE 0 served by the macro base station, user equipment UE1 served by the RRH 1, and user equipment UE n served by the RRH n.
  • the layer identification number is continuous, and the data of UE 0 is before the data of other user equipments.
  • the mapping between the codeword and the layer the single-user code-to-layer mapping manner as described above can be used, and details are not described herein again.
  • the user estimates the equivalent channel according to the DM-RS port indicated by the signaling, and the reasonable configuration of the DM-RS is important for data demodulation and signaling overhead load.
  • the base station side When the user equipment performs transparent MU-MIMO, the base station side only needs to indicate the data layer label used by the user equipment; corresponding to the transparent MU-MIMO signaling design, according to each user's layer in the codeword-to-layer mapping To mark the principle of continuity, the initial layer identification number and the joint indication of the number of layers used by the user equipment can be used.
  • the user equipment when the user equipment performs opaque MU-MIMO, it is required to indicate the layer label used by the user equipment and the total number of layers used by MU-MIMO. That is, the signaling indication may further include a sum of layers; and, the user equipment demodulates the received resource according to the starting layer identification number of the user equipment, and the number of layers, and the total number of layers.
  • the layers of the user are jointly ordered and can be uniformly indicated.
  • the sum of layers can be the number of layers used by multiple users in MU-MIMO.
  • FIG. 8 is a schematic diagram of DM-RS resource configuration according to an embodiment of the present invention.
  • the Macro cell has 2 antennas
  • the RRH1 has 2 antennas
  • the RRH2 has 4 antennas.
  • the Macro user occupies one data stream
  • the RRH1 user occupies two data streams
  • the RRH2 user occupies three data streams. Therefore, the system can be regarded as an 8-antenna virtual MIMO system.
  • the total number of layers in the system is 6, the Macro user uses the first stream, the RRH1 user uses the 2-3th data stream, and the RRH2 user uses the 4-6th. Data stream.
  • the total number of layers is determined by the base station based on the total number of layers used by MU-MIMO. Macro users, as well as RRH users, are instructed according to the actual number of layers used. Table 1 shows a portion of a signaling indication of an embodiment of the present invention.
  • Macro UE Sum rank 6 (101) + first layer index (000) + used layer number (00)
  • RRH1 UE Sum rank 6 (101) + first layer index (001) + used layer number (01)
  • RRH2 UE Sum rank 6 (101) + first layer index (Oi l) + used layer number (10)
  • the signaling indication includes the first layer index and the used layer number of the user equipment, and may also include the total layer size (Sum rank) used by the MU-MIMO.
  • the signaling may include a 3-bit (up to eight layers) starting layer identification number, and a 2-bit user equipment usage and layer number indication.
  • 3-bit information can also be used to indicate the total number of layers used by MU-MIMO. This part of the information can be used to estimate interference, making it easier for the receiver to use advanced receivers to improve performance, such as the Interference Rejection Combination receiver.
  • the gain of MU-MIMO is no longer significant, so it can be assumed that each user uses up to 4 layers.
  • the number of layers of user equipment is less than or equal to four. In a specific implementation, if the number of layers of the user equipment is greater than 4, SU-MIMO can be used.
  • the sum of layers can be determined by the base station based on the location of the user equipment.
  • the method may include: if the user equipment is served by the base station, the summing layer is the user equipment and the number of layers; if the user equipment is served by the remote radio head, the summing layer is the user equipment and the number of layers, plus the service by the base station The number of user devices and layers.
  • the following actual interference scenarios are considered: The receiving end Macro user is less interfered by the RRH, and the RRH user is less interfered by other RRHs.
  • the Macro cell user can be regarded as single-user MIMO regardless of interference from other users. Table 2 shows part of another signaling indication of an embodiment of the present invention.
  • Macro UE layer 1 SU, rank 1, layer 1
  • Macro UE Sum rank (00) + Used layer number (00) + first layer index (000)
  • RRH1 UE layer 2-3 MU, sum rank 3, layer 2-3
  • RRH1 UE Sum rank (10) + Used layer number (01) + first layer index (001)
  • RRH2 UE layer 4-6 MU, sum rank 4, layer 4-6
  • RRH2 UE Sum rank (11) + Used layer number (10) + first layer index (Oi l)
  • the RRH1 user is configured to combine the Macro cell data and the self-transmitted data with the layer number of 3 MU-MIMO, which itself uses Layers 2 and 3 to transmit data; the sum of the layers is its own and the number of layers is 2 plus On the Macro UE, the number of layers is 1, and the total number of layers is 3, which is represented by Sum rank (10).
  • the RRH2 user is configured to combine the Macro cell data with the self-transmitted data and the layer 4 MU-MIMO, which itself uses layers 4, 5, 6; the sum of the layers is its own and the number of layers 3 plus the layer of the Macro UE
  • the number 1, the sum of the layers is 4, expressed by Sum rank (11). Therefore, compared with Table 1, only the 2-bit information is used to indicate the total number of layers used for MU-MIMO.
  • a starting layer indication and a combined indication of the number of layers used by the user equipment are used for transparent MU-MIMO.
  • opaque MU-MIMO there is still a need to indicate the number of layers of MU-MIMO. Since MU-MIMO only considers the interference of the Macro cell to the RRH, the MU-MIMO and the number of layers seen by a certain user are reduced. If the condition of Rel.10 MU-MIMO and the number of layers is not more than 4, it only needs 2 Bit indication. Thereby, the bits indicated by the signaling are further reduced.
  • the above is only a schematic description, but is not limited thereto. In a specific implementation, a specific implementation manner may be determined according to actual conditions.
  • the method may further include: providing, by the user equipment, the feedback information by using multiple codewords, and/or each codeword corresponding to one data stream.
  • the user equipment is a user equipment served by a base station.
  • the mapping manner of multiple codewords may be adopted, or each codeword may be corresponding to one data stream, or feedback information may be provided by using multiple codewords and each codeword corresponding to one data stream.
  • the accuracy of the channel quality information of the feedback is improved, and the problem that the traditional codeword-to-layer mapping method cannot accurately feed back the channel quality of the corresponding data stream is solved.
  • FIG. 9 is a diagram showing an example of codeword-to-layer mapping when feedback information is performed in an embodiment of the present invention.
  • the user equipment UE 0 served by the macro base station performs feedback using codeword 01, codeword 02, ... codeword 0M, and each codeword corresponds to one data stream. Feedback accuracy can be improved to improve the performance of the MU-MIMO system.
  • the user equipment demodulates the received resource according to the start layer identifier number and the number of layers in the signaling indication by receiving the signaling indication sent by the base station to support the user usage layer indication.
  • the codeword-to-layer mapping manner can be further limited and optimized to better achieve a compromise between feedback overhead, feedback accuracy, and system signaling overhead.
  • the embodiment of the present invention further provides a multi-user multi-input and output transmission method.
  • the method includes: the user equipment provides feedback information according to the location of the user equipment, to provide related interference information.
  • the user equipment side can provide enhanced feedback for MU-MIMO.
  • These enhanced feedbacks provide relevant interference information, which may be Precoding Matrix Indicator (PMI) information that is desired for MU-MIMO paired users, and change information of CQI versus single-user MIMO after enhanced MU-MIMO.
  • PMI Precoding Matrix Indicator
  • the performance of the scheme is good.
  • CQI it is also possible to use CQI to change the change information of single-user MIMO after MU-MIMO, which is relatively less expensive.
  • the method may further include: determining whether the user equipment is served by the base station or by the remote wireless headset And, if the user equipment is served by the base station, the user equipment feeds back the service information of the base station; if the user equipment is served by the remote radio head, the user equipment feeds back the interference information of the base station and the service information of the remote radio head.
  • the service information may be PMI information, CQI information, modulation and coding indication (MCS) information, or the like.
  • the interference information may be PMI information, CQI change information, etc. that are intended to be used by the macro cell pairing user. However, it is not limited to this and can be determined based on actual conditions.
  • interference between MU-MIMO paired users is not equal. Therefore, the macro cell user is hardly interfered by the RRH and does not need to feed back the MU-MIMO enhanced feedback information; and the RRH cell user needs to feed back the interference information of the Macro cell to enhance the performance of the MU-MIMO.
  • This information may be PMI information that is desired to be used by the Macro cell, and CQI information that is relatively single-user MIMO changed after MU-MIMO.
  • CQI relative single-user MIMO change information after enhanced MU-MIMO That is to say, users of different transmission point services will have different enhanced MU-MIMO feedback.
  • FIG. 10 is a schematic diagram of a transmission method according to an embodiment of the present invention, and preferably shows such an enhanced feedback manner related to UE location.
  • the user equipment UE1 served by the base station may only feed back: SU PMI/CQI information, and the user equipment UE2 served by the RRH feeds back SU ⁇ /CQ and MU BCI/delta CQI information.
  • the user equipment UE1 served by the base station does not need to feed back MU BCI/delta CQI information compared to the conventional method.
  • the method for selecting a transmission point by the UE may be implemented in multiple implementation manners, such as first RSRP measurement reporting or uplink reference signal measurement, and then the base station configures a UE corresponding transmission point through RRC signaling.
  • FIG. 11 is another schematic flowchart of the transmission method according to the embodiment of the present invention. As shown in FIG. 11, on the base station side, the method includes:
  • Step 1101 The base station configures, for the user equipment, a signaling indication that supports the user to use the layer indication, where the signaling indication includes the starting layer identifier number and the number of layers of the user equipment.
  • Step 1102 The base station sends a signaling indication to the user equipment, so that the user equipment demodulates the received resource according to the initial layer identifier number and the number of layers; wherein, in the resource, Data corresponding to the same user device uses a continuous layer identification number.
  • the data of the user equipment served by the base station before or after the data of the user equipment served by the remote radio head.
  • the signaling indication may further include a sum of layers; and, the user equipment demodulates the received resource according to the starting layer identification number and the number of layers of the user equipment, and the sum of the layers.
  • the base station may determine the total number of layers according to the total number of layers used by the multi-user multiple antennas; or the base station determines the total number of layers according to the location of the user equipment.
  • the determining, by the base station, the total number of layers according to the location of the user equipment may include: determining, if the user equipment is served by the base station, the total number of layers as the user equipment and the number of layers; if the user equipment is served by the remote wireless head, determining The summing layer is the sum of the user equipment and the number of layers, plus the number of layers of user equipment served by the base station.
  • the signaling indication that the user uses the layer indication is supported by the base station, and is sent to the user equipment, so that the user equipment receives the received information according to the initial layer identification number and the number of layers in the signaling indication. Resources are demodulated.
  • the code-to-layer mapping method can be further limited and optimized to better achieve feedback cost, feedback accuracy, and compromise of system signaling overhead.
  • FIG. 12 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the user equipment includes: a signaling receiver 1201 and a resource demodulator 1202;
  • the signaling receiver 1201 is configured to receive, by the base station, a signaling indication that is supported by the user usage layer, where the signaling indication includes a starting layer identifier number and a layer number of the user equipment;
  • the resource demodulator 1202 is configured to demodulate the received resource according to the starting layer identifier number and the number of layers of the user equipment, where, in the resource, the data corresponding to the same user equipment is used continuously. Layer identification number.
  • the data of the user equipment served by the base station is before or after the data of the user equipment served by the remote radio head.
  • FIG. 13 is still another schematic structural diagram of a user equipment according to an embodiment of the present invention. As shown in FIG. 13, the user equipment includes: a signaling receiver 1201 and a resource demodulator 1202; as described above.
  • the user equipment may further include: an information feedback device 1301;
  • the information feedback unit 1301 is configured to provide feedback information by using multiple code words and/or each code word corresponding to one data stream after demodulating the received resources.
  • the user equipment demodulates the received resource according to the start layer identifier number and the number of layers in the signaling indication by receiving the signaling indication sent by the base station to support the user usage layer indication.
  • the codeword-to-layer mapping manner can be further limited and optimized to better achieve a compromise between feedback overhead, feedback accuracy, and system signaling overhead.
  • FIG. 14 is a schematic diagram of still another configuration of the user equipment according to the embodiment of the present invention.
  • the user equipment includes: an interference feedback unit 1401; and an interference feedback unit 1401, configured to provide feedback information according to a location of the user equipment, for providing related interference information.
  • the user equipment may further include: a location determiner 1402; and a location determiner 1402, configured to determine whether the user equipment is served by the base station or by the remote wireless head;
  • the interference feedback device 1401 is specifically configured to: if the user equipment is served by the base station, feed back the service information of the base station; if the user equipment is served by the remote wireless head, feedback the interference information of the base station and the service information of the remote wireless head.
  • FIG. 15 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station includes: a signaling configurator 1501 and a signaling transmitter 1502;
  • the signaling configurator 1501 is configured to configure, for the user equipment, a signaling indication that supports a user using a layer indication, where the signaling indication includes a starting layer identifier number and a layer number of the user equipment;
  • the signaling transmitter 1502 is configured to send the signaling indication to the user equipment, so that the user equipment demodulates the received resource according to the initial layer identifier number and the number of layers; wherein, in the resource, Data corresponding to the same user device uses a continuous layer identification number.
  • FIG. 16 is a schematic diagram of still another structure of a base station according to an embodiment of the present invention.
  • the base station includes: a signaling configurator 1501 and a signaling transmitter 1502; as described above.
  • the signaling indication may further include a sum of layers.
  • the base station may further include: a total number determiner 1601;
  • the total determiner 1601 is configured to determine the total number of layers according to the total number of layers used by the multi-user multiple input and output; or determine the total number of layers according to the location of the user equipment.
  • the base station may further include: a location determiner 1602, configured to determine whether the user equipment is served by the base station or by the remote radio head;
  • the total number determiner 1601 is specifically configured to: if the user equipment is served by the base station, determine the total number of layers as the user equipment and the number of layers; if the user equipment is served by the remote wireless head, determine the total number of layers as the user equipment And the number of layers, plus the number of layers of user equipment served by the base station.
  • the signaling indication that the user uses the layer indication is supported by the base station, and is sent to the user equipment, so that the user equipment receives the received information according to the initial layer identification number and the number of layers in the signaling indication. Resources are demodulated.
  • the code-to-layer mapping method can be further limited and optimized to better achieve feedback cost, feedback accuracy, and compromise of system signaling overhead.
  • FIG. 17 is a schematic block diagram showing the system configuration of the user equipment 1700 according to the embodiment of the present invention, which includes the signaling receiver 1201 and the resource demodulator 1202 as described above.
  • Figure 18 is a schematic block diagram showing the system configuration of the user equipment 1800 of the embodiment of the present invention, including the interference feedback unit 1401 as previously described.
  • the user equipment 1700, 1800 may also include a central processing unit 100, a communication module 110, an input unit 120, an audio processing unit 130, a memory 140, a camera 150, a display 160, and a power supply 170. It is to be noted that Figures 17 and 18 are merely exemplary; other types of structures may be used in addition to or in place of the structure to implement telecommunications functions or other functions.
  • the central processing unit 100 receives input and controls various portions and operations of the user equipment.
  • Input unit 120 provides input to central processor 100.
  • the input unit 120 is, for example, a button or a touch input device.
  • the camera 150 is for taking image data and providing the taken image data to the central processing unit 100 for use in a conventional manner, for example, for storage, transfer, and the like.
  • a power source 170 is used to provide power to the user equipment.
  • the display 160 is used to display a display object such as an image or a character.
  • the display may be, for example, an LCD display, but is not limited thereto.
  • Memory 140 is coupled to central processor 100.
  • the memory 140 can be a solid state memory such as a read only memory (ROM), a random access memory (RAM), a SIM card, or the like. It may also be a memory that retains information even when the power is turned off, can be selectively erased, and is provided with more data, an example of which is sometimes referred to as an EPROM or the like. Memory 140 can also be some other type of device.
  • Memory 140 includes a buffer memory 141 (sometimes referred to as a buffer).
  • the memory 140 may include an application/function storage unit 142 for storing an application and a function program or a flow for executing an operation of the user device through the central processing unit 100.
  • the memory 140 can also include a data storage portion 143 for storing data such as contacts, digital data, pictures, sounds, and/or any other data used by the user device.
  • the driver storage portion 144 of the memory 140 may include various drivers for the communication functions of the user device and/or for performing other functions of the user device (e.g., messaging applications, address book applications, etc.).
  • the communication module 110 is a transmitter/receiver 110 that transmits and receives signals via the antenna 111.
  • a communication module (transmitter/receiver) 110 is coupled to the central processing unit 100 to provide an input signal and receive an output signal, which can be the same as in the case of a conventional mobile phone.
  • a plurality of communication modules 110 may be provided in the same user equipment.
  • a communication module (transmitter/receiver) 110 is also coupled via audio processor 130 to speaker 131 and microphone 132 to provide an audio output via speaker 131 and to receive audio input from microphone 132 to effect the usual telecommunications functions.
  • Audio processor 130 may include any suitable buffer, decoder, amplifier, or the like.
  • the audio processor 130 is also coupled to the central processing unit 100 so that it is possible to record on the local unit through the microphone 132, and it is possible to play the sound stored on the unit through the speaker 131.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a user device, the program causes a computer to execute a multi-user multiple input/output transmission method as described above in the user device.
  • An embodiment of the present invention further provides a storage medium storing a computer readable program, wherein The computer readable program causes a computer to perform a multi-user multiple input and output transmission method as described above in a user equipment.
  • the embodiment of the present invention also provides a computer readable program, wherein when the program is executed in a base station, the program causes a computer to execute a multi-user multiple input and output transmission method as described above in the base station.
  • Embodiments of the present invention also provide a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a multiuser multiple input and output transmission method as described above in a base station.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明提供一种多用户多输入多输出(MU-MIMO)的传输方法、相应的用户设备及基站,所述方法包括:用户设备接收基站发送的支持用户使用层标示的信令指示,其中该信令指示包括用户设备的起始层标示号以及和层数;根据用户设备的起始层标示号以及和层数,对接收到的资源进行解调;其中,在资源中对应同一个用户设备的数据使用连续的层标示号。本发明可以进一步对码字到层的映射方式进行限制和优化,更好地取得反馈开销、反馈准确性和系统信令开销的折中。本发明还公开了另一种多用户多输入多输出的传输方法和用户设备,所述方法包括用户设备根据所述用户设备的位置提供反馈信息,用于提供相关的干扰信息。

Description

多用户多输入输出的传输方法、 用户设备及基站 技术领域
本发明涉及一种通信领域, 特别涉及一种多用户多输入输出 (MU- MIMO, Multiple User Multiple Input Multiple Output) 的传输方法、 用户 设备及基站。 背景技术
3GPP的长期演进方案 (LTE, Long Term Evolution)沿用了传统的 同构网络, 它由六角形蜂窝系统组成。 为了进一步提高系统的容量, 下 一代无线通信系统高级长期演进方案 (LTE-A dvanced) 引入异构网络 ( Heterogeneous Network ) 0 LTE-A系统由宏小区 (Macro Cell)、 毫微微 蜂窝(Femto Cell)、微微蜂窝(Pico Cell),远端无线头(RRH, Remote Radio Head), 中继器(Relay)组成。它通过部署新的无线节点不仅提高了系统 的容量, 而且为特殊区域的用户提供更好的服务, 优化了系统性能。
在 3GPP RAN1 63会议中, 一种新的异构场景被运营商提出。 这种 实用的异构网络由宏基站和远端无线头构成。 图 1 给出这种场景的示意 图。 其中, 宏基站 101和 RRH 102~107具有相同的小区标示, 它们之间 通过光纤相连。 RRH仅为射频单元, 没有中心处理和调度能力。 宏基站 对整个异构网络的数据进行处理, 并将 RRH相关的信息通过光纤传递给 宏小区的基站具有较高的发射功率, 提供整个小区的覆盖。 RRH具 有较低的发射功率, 提供热点部分覆盖。 宏基站和 RRH可以使用相同的 时频资源来传输数据, 通过这种复用的方式提高了系统容量。 另一方面, 宏小区的数据传输会对相同资源上 RRH的数据传输造成干扰。 因此, 需 要干扰协调方案来进一步降低干扰, 优化系统性能。 传统的几乎空子帧 (ABS, Almost Blank Subframe)方案可以用来减少数据传输的相互干扰。
图 2给出 ABS传输方案的示例图。其中 Macro传输点空置 1 , 3 , 5, 7, 9子帧, RRH传输点在对应 Macro传送点空置的子帧中优先调度边缘 用户进行传输, 其它子帧调度中心用户进行传输。 通过上述技术, RRH 小区的用户能够可靠传输。 它保证了小区中心用户的复用, 相对传统的 同构网络提高了系统容量。 但是, RRH传送点的中心用户仍受到 Macro 小区基站的干扰, 它会降低 RRH小区中心用户的容量。 对于 RRH传输 点的边缘用户, 它独享资源, 系统不能获取复用增益。 由此可知, Macro 传输点对 RRH小区用户的干扰限制了系统容量的进一步提高。
多用户多输入输出(MU-MIMO, Multiple User Multiple Input Multiple Output )技术利用空间域的正交性减少用户间的干扰,提高了系统的容量。 它使用在异构网络中能进一步提高系统容量。 根据分布式天线的特点, 如果某个用户仅被部分天线服务, 从联合的虚拟 MIMO的角度来看, 这 些用户的联合信道为降秩信道,这种场景比较适合使用 MU-MIMO技术。
MU-MIMO 技术在异构网络中具有如下特性: (1 ) 用户间的干扰不 对等性。 这是因为宏基站的发射功率较高, 它对相同资源上的 RRH用户 产生干扰; RRH的发射功率较低, 它对相同资源上的 Macro用户干扰较 小。 (2) RRH用户在相同时频资源进行数据传输, 相互之间干扰较小。 (3 ) Macro小区的数据传输对所有 RRH用户都存在干扰。图 3给出异构 网络中的干扰场景示意图。 从图可知, 增强 MU-MIMO 技术重点抑制 Macro基站对 RRH用户的干扰。
但是, 在实现本发明的过程中, 发明人发现现有技术的缺陷在于: 在异构网络中, 分布式天线组成虚拟 MIMO系统, 虚拟 MIMO系统传输 的信息可能包含多个用户的信息; 但是目前的码字到层的映射方式没有 进行一定的限制和优化, 不能取得反馈开销、 反馈准确性和系统信令开 销的折中效果。
应该注意, 上面对技术背景的介绍只是为了方便对本发明的技术方 案进行清楚、 完整的说明, 并方便本领域技术人员的理解而阐述的。 不 能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技 术方案为本领域技术人员所公知。 发明内容
本发明实施例提供一种多用户多输入输出的传输方法、 用户设备及 基站, 目的在于对码字到层的映射方式进行一定的限制和优化, 提高系 统的性能。
根据本发明实施例的一个方面, 提供一种多用户多输入输出的传输 方法, 所述方法包括:
用户设备接收基站发送的支持用户使用层标示的信令指示, 所述信 令指示包括所述用户设备的起始层标示号以及和层数;
根据所述用户设备的起始层标示号以及和层数, 对接收到的资源进 行解调; 其中, 在所述资源中, 对应同一个用户设备的数据使用连续的 层标示号。
根据本发明实施例的又一个方面, 提供一种多用户多输入输出的传 输方法, 所述方法包括:
用户设备根据所述用户设备的位置提供反馈信息, 以用于提供相关 的干扰信息。
根据本发明实施例的又一个方面, 提供一种多用户多输入输出的传 输方法, 所述方法包括:
基站为用户设备配置支持用户使用层标示的信令指示, 所述信令指 示包括所述用户设备的起始层标示号以及和层数;
向所述用户设备发送所述信令指示, 使得所述用户设备根据所述起 始层标示号以及和层数, 对接收到的资源进行解调; 其中, 在所述资源 中, 对应同一个用户设备的数据使用连续的层标示号。
根据本发明实施例的又一个方面, 提供一种用户设备, 所述用户设 备包括:
信令接收器, 接收基站发送的支持用户使用层标示的信令指示, 所 述信令指示包括所述用户设备的起始层标示号以及和层数;
资源解调器, 根据所述用户设备的起始层标示号以及和层数, 对接 收到的资源进行解调; 其中, 在所述资源中, 对应同一个用户设备的数 据使用连续的层标示号。
根据本发明实施例的又一个方面, 提供一种用户设备, 所述用户设 备包括:
干扰反馈器, 用于根据所述用户设备的位置提供反馈信息, 以用于 提供相关的干扰信息。 根据本发明实施例的又一个方面, 提供一种基站, 所述基站包括: 信令配置器,用于为用户设备配置支持用户使用层标示的信令指示, 所述信令指示包括所述用户设备的起始层标示号以及和层数;
信令发送器, 用于向所述用户设备发送所述信令指示, 使得所述用 户设备根据所述起始层标示号以及和层数, 对接收到的资源进行解调; 其中, 在所述资源中, 对应同一个用户设备的数据使用连续的层标示号。
根据本发明实施例的又一个方面, 提供一种计算机可读程序, 其中 当在用户设备中执行所述程序时, 所述程序使得计算机在所述用户设备 中执行如前所述的传输模式的配置方法。
根据本发明实施例的又一个方面, 提供一种存储有计算机可读程序 的存储介质, 其中所述计算机可读程序使得计算机在用户设备中执行如 前所述的传输模式的配置方法。
根据本发明实施例的又一个方面, 提供一种计算机可读程序, 其中 当在基站中执行所述程序时, 所述程序使得计算机在所述基站中执行如 前所述的传输模式的配置方法。
根据本发明实施例的又一个方面, 提供一种存储有计算机可读程序 的存储介质, 其中所述计算机可读程序使得计算机在基站中执行如前所 述的传输模式的配置方法。
本发明实施例的有益效果在于, 通过基站配置并发送支持用户使用 层标示的信令指示, 用户设备根据信令指示中的起始层标示号以及和层 数, 对接收到的资源进行解调。 可以进一步对码字到层的映射方式进行 限制和优化, 更好地取得反馈开销、 反馈准确性和系统信令开销的折中。
参照后文的说明和附图, 详细公开了本发明的特定实施方式, 指明 了本发明的原理可以被采用的方式。 应该理解, 本发明的实施方式在范 围上并不因而受到限制。 在所附权利要求的精神和条款的范围内, 本发 明的实施方式包括许多改变、 修改和等同。
针对一种实施方式描述和 /或示出的特征可以以相同或类似的方式在 一个或更多个其它实施方式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式中的特征。
应该强调, 术语"包括 /包含"在本文使用时指特征、 整件、 步骤或组 件的存在, 但并不排除一个或更多个其它特征、 整件、 步骤或组件的存 在或附加。 附图说明
参照以下的附图可以更好地理解本发明的很多方面。 附图中的部件 不是成比例绘制的, 而只是为了示出本发明的原理。 为了便于示出和描 述本发明的一些部分, 附图中对应部分可能被放大或缩小。
在本发明的一个附图或一种实施方式中描述的元素和特征可以与一 个或更多个其它附图或实施方式中示出的元素和特征相结合。 此外, 在 附图中, 类似的标号表示几个附图中对应的部件, 并可用于指示多于一 种实施方式中使用的对应部件。
图 1是异构网络中由宏基站和远端无线头构成的场景的示意图; 图 2是 ABS传输方案的示例图;
图 3是异构网络中的干扰场景示意图;
图 4是 LTE-A系统中 SU-MIMO的码字到层的映射关系图; 图 5是 LTE-A系统中 DM-RS在每个资源块上使用的资源的示意图; 图 6是本发明实施例的传输方法的一流程示意图;
图 7是本发明实施例的指示信息时的码字到层映射的示例图; 图 8是本发明实施例的 DM-RS资源配置示意图;
图 9是本发明实施例的反馈信息时的码字到层映射的示例图; 图 10是本发明实施例的传输方法的示意图;
图 11是本发明实施例的传输方法的又一流程示意图;
图 12是本发明实施例的用户设备的一构成示意图;
图 13是本发明实施例的用户设备的又一构成示意图;
图 14是本发明实施例的用户设备的又一构成示意图;
图 15是本发明实施例的基站的一构成示意图;
图 16是本发明实施例的基站的又一构成示意图;
图 17是本发明实施例的用户设备的一系统结构的示例图;
图 18是本发明实施例的用户设备的又一系统结构的示例图。 具体实施方式
参照附图, 通过下面的说明书, 本发明的前述以及其它特征将变得 明显。 在说明书和附图中, 具体公开了本发明的特定实施方式, 其表明 了其中可以采用本发明的原则的部分实施方式, 应了解的是, 本发明不 限于所描述的实施方式, 相反, 本发明包括落入所附权利要求的范围内 的全部修改、 变型以及等同物。
图 4是 LTE-A单用户多输入输出 (SU-MIMO, Single User Multiple Input Multiple Output)系统中码字到层的映射关系图。如图 4所示, 系统 最多有 2个码字 (CW, Code Word)、 8个层 (Layer), 每个码字最多包 含四个层。对于每个码字,用户需要反馈一个信道质量指示(CQI, Channel Qualit Indicator) 信息、 确认信息 (ACK/NACK)。 这种映射方法取得了 反馈开销和反馈准确性的良好折中, 一定程度上优化了系统性能。
但是,在异构网络中,分布式天线组成虚拟 MIMO系统,虚拟 MIMO 系统传输的信息可能包含多个用户的信息, 它的码字到层的映射方式还 需要更进一步的限制和优化, 来更好地取得反馈开销、 反馈准确性和系 统信令开销的折中。
另一方面, 解调参考信号 (DM-RS, Demodulation Reference Signal) 是 LTE-A系统中重要的参考信号。 用户设备使用 DM-RS来估计 MIMO 传输层上的等效信道, 然后根据这个等效信道来解调数据信息。
图 5是 LTE-A系统中 DM-RS在每个资源块上使用的资源的示意图。 如图 5所示, 可以通过采用联合频分和码分的方法来区分不同的传输层, 估计等效信道。 为了简化对 DM-RS的支持, LTE-A系统规定用户在进行 MU-MIMO传输时, 每个用户占用层数不大于 2, 和层数不大于 4, 最多 支持 4个用户同时传输。
同时, LTE-A系统可以采用透明的 MU-MIMO方式, 也就是用户设 备不知是否还有别的用户设备和它占用相同的资源来传输数据。 当用户 设备的秩 (Rank) 指示大于 2时, 它一定工作在单用户模式, 对应的秩 数目即为传输的层数; 当用户的秩指示不大于 2 时, 它可能工作在单用 户或多用户模式, 它使用的传输层序号通过信令来指示。
在异构网络中, Macro小区传输的数据会对 RRH用户产生干扰, 通 过 MU-MIMO技术能够减少用户间的干扰。 采用 MU-MIMO技术后, Macro小区会在 RRH的零化空间进行数据传输, 因此可以仅选择部分数 据流。
并且, 每个用户占用层数和和层数的限制可能会限制系统容量的进 一步提高, 因此需要增强的 DM-RS配置来支持。 如果接收端能够已知系 统使用的和层数, 接收端可以采用先进的接收算法来进一步抑制干扰, 提高系统性能。
本发明实施例提供一种多用户多输入输出( MU-MIMO )的传输方法, 图 6是本发明实施例的传输方法的一流程示意图。 如图 6所示, 在用户 设备侧, 所述方法包括:
步骤 601, 用户设备接收基站发送的支持用户使用层标示的信令指 示, 该信令指示包括该用户设备的起始层标示号以及和层数;
步骤 602,用户设备根据该用户设备的起始层标示号以及和层数,对 接收到的资源进行解调; 其中, 在资源中对应同一个用户设备的数据使 用连续的层标示号。
在本实施例中,异构网络中的多个传输点的天线组成虚拟的 MIMO。 相同的时频传输资源上可能包括多个用户的数据, 基站侧需要对这些数 据进行码字到层的映射。 并且, 每个用户可能回退到单用户的传输方式, 所以对于每个用户可能仍然需要满足如前所述的单用户的码字到层的映 射方式。
在本实施例中, 层标示也可称为流标示, 和层数也可称为和流数。 Rel.10 MU-MIMO对不同用户使用准正交扰码来区分用户;所以每个用户 的层标示都是独立的, 对于每个用户使用的层的数量可称为和层数。 用 户的层是联合排序的, 可以统一指示。
在本实施例中, 时频传输资源中对应同一个用户设备的数据, 使用 连续的层标示号。 例如, 用户设备 1的数据使用层标示号 10、 11; 用户 设备 2的数据使用层标示号 20、 21。 由此, 不存在不同的用户设备占用 的层标示相互穿插的情形。
进一步地, 在所述资源中, 由所述基站服务的用户设备的数据、 在 由所述远端无线头服务的用户设备的数据之前或者之后。 即 Macro用户 的数据流和 RRH数据流的映射顺序是固定的, 由此 Macro用户和 RRH 用户层标示的相对顺序是确定的, 例如, 如果某段时频资源传输 Macro 用户的数据, 则该 Macro用户的数据就占据较前的数据流。
图 7是本发明实施例的指示信息时的码字到层映射的示例图。如图 7 所示,进行 MU-MIMO的用户设备包括:由宏基站服务的用户设备 UE 0, 由 RRH 1服务的用户设备 UE1 , ······由 RRH n服务的用户设备 UE n。 对于 UE 0的数据, 其层标示号是连续的, 且 UE 0的数据在其他用户设 备的数据之前。 至于码字与层之间的映射可采用如前所述的单用户的码 字到层的映射方式, 此处不再赘述。
在本实施例中, 为了保证增强 MU-MIMO系统数据的接收, 用户根 据信令指示的 DM-RS端口估计等效信道, DM-RS的合理配置对数据解 调和信令开销负荷十分重要。
当用户设备进行透明的 MU-MIMO时, 基站侧仅需指示用户设备使 用的数据层标示; 对应透明 MU-MIMO的信令设计, 根据每个用户在码 字到层映射中每个用户的层标示连续的原则, 可采用起始层标示号和该 用户设备使用的和层数联合指示。
此外, 当用户设备进行不透明的 MU-MIMO时, 需指示该用户设备 使用的层标示和 MU-MIMO总共使用的层数。 即信令指示中还可以包括 总和层数; 并且, 用户设备根据该用户设备的起始层标示号以及和层数、 和总和层数, 对接收到的资源进行解调。
在本实施例中, 对于 MU-MIMO, 用户的层是联合排序的, 可以统 一指示。 总和层数可以为 MU-MIMO中多个用户使用的层的数量。
以下通过实际例子进行详细说明。图 8是本发明实施例的 DM-RS资 源配置示意图。其中, Macro小区有 2根天线, RRH1有 2根天线, RRH2 有 4根天线。 在进行 MU-MIMO时, Macro用户占一个数据流, RRH1 用户占两个数据流, RRH2用户占 3个数据流。 由此, 可以将系统看作一 个 8天线的虚拟 MIMO系统, 系统的总和层数为 6, Macro用户使用第 1 个流, RRH1用户使用第 2-3个数据流, RRH2用户使用第 4-6个数据流。
在一个实施方式中, 总和层数由基站根据 MU-MIMO所使用的总层 数确定。 Macro用户、 以及 RRH用户都按照真实的使用的层数进行指示, 表 1示出了本发明实施例的一信令指示的部分内容。
表 1
MU-MIMO: Sum rank 6
Macro UE: layer 1
Macro UE: Sum rank 6 (101) + first layer index (000) + used layer number (00)
RRH1 UE: layer 2-3
RRH1 UE: Sum rank 6 (101) + first layer index (001) + used layer number (01)
RRH2 UE: layer 4-6
RRH2 UE: Sum rank 6 (101) + first layer index (Oi l) + used layer number (10)
如表 1 所示, 信令指示包括用户设备的起始层标示号 (first layer index) 以及和层数 (used layer number) , 还可以包括 MU-MIMO所使用 的总层数 (Sum rank)。
在本实施例中, 对于透明的 MU-MIMO, 信令可以包括 3比特 (最 多八层) 的起始层标示号, 以及 2 比特的用户设备使用的和层数指示。 对于非透明的 MU-MIMO, 还可以使用 3 比特信息进行指示 MU-MIMO 使用的总层数。 这部分信息可用来估计干扰, 便于接收端使用高级的接 收机提高性能, 比如干扰抑制合并 (Interference Rejection Combination) 接收机。
在本实施例中, 当单个用户使用的层数大于 4时, MU-MIMO的增 益不再明显, 因此可以假设每个用户最多使用 4层。 由此, 优选地, 用 户设备的和层数小于或等于 4。在具体实施时, 若用户设备的和层数大于 4, 则可使用 SU-MIMO。
在另一个实施方式中, 总和层数可以由基站根据用户设备的位置确 定。 具体可以包括: 若用户设备由基站服务, 则总和层数为用户设备的 和层数; 若用户设备由远端无线头服务, 则总和层数为用户设备的和层 数、 加上由基站服务的用户设备的和层数。 在本实施例中, 考虑到了如下实际干扰场景: 接收端 Macro用户受 到 RRH较少的干扰, 以及 RRH用户受到其它 RRH较少的干扰。在进行 MU-MIMO时, Macro小区用户可以看作单用户 MIMO, 不考虑其它用 户的干扰。 表 2示出了本发明实施例的另一信令指示的部分内容。
表 2
MU-MIMO: Sum rank 6
Macro UE: layer 1 SU, rank 1, layer 1
Macro UE: Sum rank (00) + Used layer number (00) + first layer index (000)
RRH1 UE: layer 2-3 MU, sum rank 3, layer 2-3
RRH1 UE: Sum rank (10) + Used layer number (01) + first layer index (001)
RRH2 UE: layer 4-6 MU, sum rank 4, layer 4-6
RRH2 UE: Sum rank (11) + Used layer number (10) + first layer index (Oi l)
如表 2所示, RRH1用户配置成联合 Macro小区数据和自己传输数 据的和层数为 3的 MU-MIMO, 它自己使用层 2、 3传输数据; 总和层数 为自己的和层数 2加上 Macro UE的和层数 1,总和层数为 3,采用 Sum rank (10)表示。 RRH2用户配置成联合 Macro小区数据和自己传输数据的和层 数为 4的 MU-MIMO, 它自己使用层 4、 5、 6; 总和层数为自己的和层数 3加上 Macro UE的和层数 1, 总和层数为 4, 采用 Sum rank (11)表示。 因此, 与表 1相比, 仅使用 2比特信息进行指示 MU-MIMO使用的总层 数。
在本实施例中, 对于透明的 MU-MIMO, 使用起始层标示和用户设 备使用的和层数联合指示。 对于不透明的 MU-MIMO , 仍还需要指示 MU-MIMO的和层数。 由于 MU-MIMO仅考虑 Macro小区对 RRH的干 扰, 对于某个用户看到的 MU-MIMO 和层数会减少, 如果符合 Rel.10 MU-MIMO和层数不大于 4的条件, 它仅需 2比特指示。 由此, 信令指 示的比特进一步减少。 以上仅为示意性说明, 但不限于此, 在具体实施时可根据实际情况 确定具体的实施方式。
在本实施例中, 用户设备在对接收到的资源进行解调之后, 所述方 法还可以包括: 用户设备采用多码字、 和 /或每个码字对应一个数据流的 方式提供反馈信息。
优选地, 该用户设备为由基站服务的用户设备。 可以采用多码字的 映射方式, 或者采用每个码字对应一个数据流的方式, 或者既采用多码 字、 又采用每个码字对应一个数据流的方式提供反馈信息。 由此来提高 反馈的信道质量信息的准确性, 解决传统的码字到层映射方式不能准确 反馈对应数据流的信道质量的问题。
图 9是本发明实施例的反馈信息时的码字到层映射的示例图。如图 9 所示, 由宏基站服务的用户设备 UE 0采用码字 01、 码字 02、 ……码字 0M进行反馈, 并且每个码字对应一个数据流。 可以改进反馈精度, 提高 MU-MIMO系统的性能。
由上述实施例可知, 通过接收基站发送的支持用户使用层标示的信 令指示, 用户设备根据信令指示中的起始层标示号以及和层数, 对接收 到的资源进行解调。 可以进一步对码字到层的映射方式进行限制和优化, 更好地取得反馈开销、 反馈准确性和系统信令开销的折中。
本发明实施例还提供一种多用户多输入输出的传输方法, 在用户设 备侧, 所述方法包括: 用户设备根据该用户设备的位置提供反馈信息, 以用于提供相关的干扰信息。
在本实施例中, 为了进一步提高 MU-MIMO系统的性能, 用户设备 端可以为 MU-MIMO提供增强的反馈。 这些增强的反馈提供相关的干扰 信息, 可以为希望 MU-MIMO配对用户使用的预编码矩阵指示 (PMI, Precoding Matrix Indicator) 信息、 以及使用增强 MU-MIMO后 CQI相对 单用户 MIMO的变化信息, 这种方案性能较好。 或者, 也可以为使用增 强 MU-MIMO后 CQI相对单用户 MIMO的变化信息,这种方案相对来说 反馈开销较小。
具体地, 在用户设备根据该用户设备的位置提供反馈信息之前, 所 述方法还可以包括: 用户设备确定是由基站服务, 还是由远端无线头服 并且, 若该用户设备由基站服务, 则该用户设备反馈基站的服务信 息; 若该用户设备由远端无线头服务, 则该用户设备反馈基站的干扰信 息、 以及远端无线头的服务信息。
在本实施例中, 服务信息可以为 PMI信息、 CQI信息、 调制编码指 示(MCS )信息等。干扰信息可以为希望 Macro小区配对用户使用的 PMI 信息、 CQI变化信息等。 但不限于此, 可以根据实际情况确定。
在异构网络中, 由于 MU-MIMO配对用户间的干扰具有不对等性。 所以 Macro小区用户几乎不受到 RRH的干扰,不需要反馈为 MU-MIMO 增强的反馈信息; 而 RRH小区用户需要反馈 Macro小区的干扰相关信息 来增强 MU-MIMO的性能。 这些信息可以为希望 Macro小区使用的 PMI 信息、 和使用 MU-MIMO后相对单用户 MIMO变化的 CQI信息。 或者, 也可以为使用增强 MU-MIMO后 CQI相对单用户 MIMO的变化信息。也 就是说, 不同传输点服务的用户会有不同的增强 MU-MIMO反馈。
图 10 是本发明实施例的传输方法的示意图, 优选地示出了这种与 UE位置相关的增强反馈方式。如图 10所示,由基站服务的用户设备 UE1 可以仅反馈: SU PMI/CQI信息, 而由 RRH服务的用户设备 UE2反馈 SU ΡΜΙ/CQ 以及 MU BCI/delta CQI信息。 与传统的方式相比, 由基站服务的 用户设备 UE1不需要反馈 MU BCI/delta CQI信息。
由此, 通过这种反馈方式配置, 系统达到较好的反馈开销和系统性 能的良好折中。具体的 UE选择传送点的方法可以有多种实现形式, 比如 首先 RSRP测量上报或者上行参考信号测量等, 然后基站通过 RRC信令 配置 UE对应的传送点。
本发明实施例还提供一种多用户多输入输出的传输方法, 图 11是本 发明实施例的传输方法的又一流程示意图。 如图 11所示, 在基站侧, 所 述方法包括:
步骤 1101, 基站为用户设备配置支持用户使用层标示的信令指示, , 该信令指示包括该用户设备的起始层标示号以及和层数;
步骤 1102, 基站向该用户设备发送信令指示, 使得该用户设备根据 起始层标示号以及和层数, 对接收到的资源进行解调; 其中, 在资源中, 对应同一个用户设备的数据使用连续的层标示号。
进一步地, 在所述资源中, 由基站服务的用户设备的数据、 在由远 端无线头服务的用户设备的数据之前或者之后。
进一步地, 信令指示还可以包括总和层数; 并且, 用户设备根据该 用户设备的起始层标示号以及和层数、 和该总和层数, 对接收到的资源 进行解调。
进一步地, 基站可以根据多用户多天线使用的总层数确定总和层数; 或者基站根据用户设备的位置确定总和层数。
具体地, 基站根据用户设备的位置确定总和层数, 具体可以包括: 若用户设备由基站服务, 则确定总和层数为用户设备的和层数; 若用户 设备由远端无线头服务, 则确定总和层数为用户设备的和层数、 加上由 基站服务的用户设备的和层数。
由上述实施例可知,通过基站配置支持用户使用层标示的信令指示, 并发送给该用户设备, 使得该用户设备根据信令指示中的起始层标示号 以及和层数, 对接收到的资源进行解调。 可以进一步对码字到层的映射 方式进行限制和优化, 更好地取得反馈开销、 反馈准确性和系统信令开 销的折中。
本发明实施例还提供一种用户设备, 图 12是本发明实施例的用户设 备的一构成示意图。 如图 12所示, 所述用户设备包括: 信令接收器 1201 和资源解调器 1202;
信令接收器 1201, 用于接收基站发送的支持用户使用层标示的信令 指示, 该信令指示包括该用户设备的起始层标示号以及和层数;
资源解调器 1202,用于根据该用户设备的起始层标示号以及和层数, 对接收到的资源进行解调; 其中, 在所述资源中, 对应同一个用户设备 的数据使用连续的层标示号。
进一步地, 在所述资源中, 由所述基站服务的用户设备的数据、 在 由所述远端无线头服务的用户设备的数据之前或者之后。
进一步地,该信令指示还可以包括总和层数;并且,资源解调器 1202 还可以用于根据该用户设备的起始层标示号以及和层数、 和该总和层数, 对接收到的资源进行解调。 图 13是本发明实施例的用户设备的又一构成示意图。如图 13所示, 所述用户设备包括: 信令接收器 1201和资源解调器 1202; 如上所述。
如图 13所示, 用户设备还可以包括: 信息反馈器 1301 ;
信息反馈器 1301, 用于在对接收到的资源进行解调之后, 采用多码 字、 和 /或每个码字对应一个数据流的方式提供反馈信息。
由上述实施例可知, 通过接收基站发送的支持用户使用层标示的信 令指示, 用户设备根据信令指示中的起始层标示号以及和层数, 对接收 到的资源进行解调。 可以进一步对码字到层的映射方式进行限制和优化, 更好地取得反馈开销、 反馈准确性和系统信令开销的折中。
本发明实施例还提供一种用户设备, 图 14是本发明实施例的用户设 备的又一构成示意图。如图 14所示,所述用户设备包括:干扰反馈器 1401; 干扰反馈器 1401, 用于根据用户设备的位置提供反馈信息, 以用于 提供相关的干扰信息。
进一步地,如图 14所示,该用户设备还可以包括:位置确定器 1402; 位置确定器 1402, 用于确定用户设备是由基站服务, 还是由远端无 线头服务;
并且, 干扰反馈器 1401具体用于: 若用户设备由基站服务, 则反馈 基站的服务信息; 若用户设备由远端无线头服务, 则反馈基站的干扰信 息、 以及远端无线头的服务信息。
由上述实施例可知, 通过这种反馈方式配置, 系统可以达到较好的 反馈开销和系统性能的良好折中。
本发明实施例还提供一种基站, 图 15是本发明实施例的基站的一构 成示意图。 如图 15所示, 所述基站包括: 信令配置器 1501和信令发送 器 1502;
信令配置器 1501, 用于为用户设备配置支持用户使用层标示的信令 指示, 该信令指示包括该用户设备的起始层标示号以及和层数;
信令发送器 1502, 用于向该用户设备发送该信令指示, 使得该用户 设备根据起始层标示号以及和层数, 对接收到的资源进行解调; 其中, 在所述资源中, 对应同一个用户设备的数据使用连续的层标示号。
图 16是本发明实施例的基站的又一构成示意图。 如图 16所示, 所 述基站包括: 信令配置器 1501和信令发送器 1502; 如上所述。
进一步地, 该信令指示还可以包括总和层数。 如图 16所示, 所述基 站还可以包括: 总数确定器 1601 ;
总数确定器 1601, 用于根据多用户多输入输出所使用的总层数确定 总和层数; 或者根据用户设备的位置确定总和层数。
如图 16所示, 该基站还可以包括: 位置确定器 1602, 用于确定用户 设备是由基站服务, 还是由远端无线头服务;
并且, 总数确定器 1601具体用于: 若用户设备由基站服务, 贝 I」确定 总和层数为用户设备的和层数; 若用户设备由远端无线头服务, 则确定 总和层数为用户设备的和层数、 加上由基站服务的用户设备的和层数。
由上述实施例可知,通过基站配置支持用户使用层标示的信令指示, 并发送给该用户设备, 使得该用户设备根据信令指示中的起始层标示号 以及和层数, 对接收到的资源进行解调。 可以进一步对码字到层的映射 方式进行限制和优化, 更好地取得反馈开销、 反馈准确性和系统信令开 销的折中。
图 17是本发明实施例的用户设备 1700的系统构成的示意框图, 其 中包括了如前所述的信令接收器 1201和资源解调器 1202。 图 18是本发 明实施例的用户设备 1800的系统构成的示意框图, 其中包括了如前所述 的干扰反馈器 1401。
如图 17、 18所示,用户设备 1700、 1800还可以包括中央处理器 100、 通信模块 110、 输入单元 120、 音频处理单元 130、 存储器 140、 照相机 150、 显示器 160、 电源 170。 值得注意的是, 图 17和图 18仅仅是示例 性的; 还可以使用其他类型的结构, 来补充或代替该结构, 以实现电信 功能或其他功能。
该中央处理器 100 (有时也称为控制器或操作控件,可以包括微处理 器或其他处理器装置和 /或逻辑装置) 接收输入并控制用户设备的各个部 分和操作。 输入单元 120 向中央处理器 100提供输入。 该输入单元 120 例如为按键或触摸输入装置。 照相机 150用于摄取图像数据, 并将摄取 的图像数据提供给中央处理器 100, 以按常规方式使用,例如,进行存储、 传送等。 电源 170用于向用户设备提供电力。 显示器 160用于进行图像和文 字等显示对象的显示。 该显示器例如可为 LCD显示器, 但并不限于此。
存储器 140耦合到中央处理器 100。该存储器 140可以是固态存储器, 例如, 只读存储器 (ROM)、 随机存取存储器 (RAM)、 SIM卡等。 还可 以是这样的存储器, 其即使在断电时也保存信息, 可被选择性地擦除且 设有更多数据,该存储器的示例有时被称为 EPROM等。存储器 140还可 以是某种其它类型的装置。存储器 140包括缓冲存储器 141 (有时被称为 缓冲器)。存储器 140可以包括应用 /功能存储部 142, 该应用 /功能存储部 142用于存储应用程序和功能程序或用于通过中央处理器 100执行用户设 备的操作的流程。
存储器 140还可以包括数据存储部 143,该数据存储部 143用于存储 数据, 例如联系人、 数字数据、 图片、 声音和 /或任何其他由用户设备使 用的数据。 存储器 140的驱动程序存储部 144可以包括用户设备的用于 通信功能和 /或用于执行用户设备的其他功能 (如消息传送应用、 通讯录 应用等) 的各种驱动程序。
通信模块 110 即为经由天线 111 发送和接收信号的发送机 /接收机 110。 通信模块 (发送机 /接收机) 110耦合到中央处理器 100, 以提供输 入信号和接收输出信号, 这可以和常规手机的情况相同。
基于不同的通信技术, 在同一用户设备中, 可以设置有多个通信模 块 110, 如蜂窝网络模块、 蓝牙模块和 /或无线局域网模块等。 通信模块 (发送机 /接收机) 110还经由音频处理器 130耦合到扬声器 131和麦克 风 132, 以经由扬声器 131提供音频输出, 并接收来自麦克风 132的音频 输入, 从而实现通常的电信功能。 音频处理器 130可以包括任何合适的 缓冲器、 解码器、 放大器等。 另外, 音频处理器 130还耦合到中央处理 器 100, 从而使得可以通过麦克风 132能够在本机上录音, 且使得可以通 过扬声器 131来播放本机上存储的声音。
本发明实施例还提供一种计算机可读程序, 其中当在用户设备中执 行所述程序时, 所述程序使得计算机在所述用户设备中执行如上所述的 多用户多输入输出的传输方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质, 其中 所述计算机可读程序使得计算机在用户设备中执行如上所述的多用户多 输入输出的传输方法。
本发明实施例还提供一种计算机可读程序, 其中当在基站中执行所 述程序时, 所述程序使得计算机在所述基站中执行如上所述的多用户多 输入输出的传输方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质, 其中 所述计算机可读程序使得计算机在基站中执行如上所述的多用户多输入 输出的传输方法。
本发明以上的装置和方法可以由硬件实现, 也可以由硬件结合软件 实现。 本发明涉及这样的计算机可读程序, 当该程序被逻辑部件所执行 时, 能够使该逻辑部件实现上文所述的装置或构成部件, 或使该逻辑部 件实现上文所述的各种方法或步骤。 本发明还涉及用于存储以上程序的 存储介质, 如硬盘、 磁盘、 光盘、 DVD、 flash存储器等。
以上结合具体的实施方式对本发明进行了描述, 但本领域技术人员 应该清楚, 这些描述都是示例性的, 并不是对本发明保护范围的限制。 本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和 修改, 这些变型和修改也在本发明的范围内。

Claims

权 利 要 求 书
1、 一种多用户多输入输出的传输方法, 所述方法包括:
用户设备接收基站发送的支持用户使用层标示的信令指示, 所述信 令指示包括所述用户设备的起始层标示号以及和层数;
根据所述用户设备的起始层标示号以及和层数, 对接收到的资源进 行解调; 其中, 在所述资源中, 对应同一个用户设备的数据使用连续的 层标示号。
2、 根据权利要求 1所述的方法, 其中, 在所述资源中, 由所述基站 服务的用户设备的数据、 在由所述远端无线头服务的用户设备的数据之 前或者之后。
3、 根据权利要求 2所述的方法, 其中, 所述信令指示还包括总和层 数;
并且,所述用户设备根据所述用户设备的起始层标示号以及和层数、 和所述总和层数, 对接收到的资源进行解调。
4、 根据权利要求 3所述的方法, 其中, 所述总和层数由所述基站根 据多用户多输入输出所使用的总层数确定; 或者所述总和层数由所述基 站根据所述用户设备的位置确定。
5、 根据权利要求 4所述的方法, 所述总和层数由所述基站根据所述 用户设备的位置确定, 具体包括:
若所述用户设备由所述基站服务, 则所述总和层数为所述用户设备 的和层数;
若所述用户设备由所述远端无线头服务, 则所述总和层数为所述用 户设备的和层数、 加上由所述基站服务的用户设备的和层数。
6、 根据权利要求 1所述的方法, 在对接收到的资源进行解调之后, 所述方法还包括:
所述用户设备采用多码字、 或者每个码字对应一个数据流的方式提 供反馈信息。
7、 根据权利要求 6所述的方法, 其中, 所述用户设备为由所述基站 服务的用户设备。
8、 根据权利要求 1所述的方法, 其中, 所述用户设备的和层数小于 或等于 4。
9、 一种多用户多输入输出的传输方法, 所述方法包括:
用户设备根据所述用户设备的位置提供反馈信息, 以用于提供相关 的干扰信息。
10、 根据权利要求 9所述的方法, 在所述用户设备根据所述用户设 备的位置提供反馈信息之前, 所述方法还包括:
所述用户设备确定是由基站服务, 还是由远端无线头服务; 并且, 当由所述基站服务时, 所述用户设备反馈所述基站的服务信 息; 当由所述远端无线头服务时, 所述用户设备反馈所述基站的干扰信 息、 以及所述远端无线头的服务信息。
11、 一种多用户多输入输出的传输方法, 所述方法包括:
基站为用户设备配置支持用户使用层标示的信令指示, 所述信令指 示包括所述用户设备的起始层标示号以及和层数;
向所述用户设备发送所述信令指示, 使得所述用户设备根据所述起 始层标示号以及和层数, 对接收到的资源进行解调; 其中, 在所述资源 中, 对应同一个用户设备的数据使用连续的层标示号。
12、 根据权利要求 11所述的方法, 其中, 在所述资源中, 由所述基 站服务的用户设备的数据、 在由所述远端无线头服务的用户设备的数据 之前或者之后。
13、 根据权利要求 12所述的方法, 其中, 所述信令指示还包括总和 层数;
并且,所述用户设备根据所述用户设备的起始层标示号以及和层数、 和所述总和层数, 对接收到的资源进行解调。
14、 根据权利要求 13所述的方法, 所述方法还包括:
所述基站根据多用户多天线使用的总层数确定所述总和层数; 或者 所述基站根据所述用户设备的位置确定所述总和层数。
15、 根据权利要求 14所述的方法, 所述基站根据所述用户设备的位 置确定所述总和层数, 具体包括:
若所述用户设备由所述基站服务, 则确定所述总和层数为所述用户 设备的和层数;
若所述用户设备由所述远端无线头服务, 则确定所述总和层数为所 述用户设备的和层数、 加上由所述基站服务的用户设备的和层数。
16、 一种用户设备, 所述用户设备包括:
信令接收器, 接收基站发送的支持用户使用层标示的信令指示, 所 述信令指示包括所述用户设备的起始层标示号以及和层数;
资源解调器, 根据所述用户设备的起始层标示号以及和层数, 对接 收到的资源进行解调; 其中, 在所述资源中, 对应同一个用户设备的数 据使用连续的层标示号。
17、 根据权利要求 16所述的用户设备, 其中, 在所述资源中, 由所 述基站服务的用户设备的数据、 在由所述远端无线头服务的用户设备的 数据之前或者之后。
18、 根据权利要求 16或 17所述的用户设备, 其中, 所述信令指示 还包括总和层数;
并且, 所述资源解调器还用于根据所述用户设备的起始层标示号以 及和层数、 和所述总和层数, 对接收到的资源进行解调。
19、 根据权利要求 16所述的用户设备, 所述用户设备还包括: 信息反馈器, 在对接收到的资源进行解调之后, 采用多码字、 和 /或 每个码字对应一个数据流的方式提供反馈信息。
20、 一种用户设备, 所述用户设备包括:
干扰反馈器, 用于根据所述用户设备的位置提供反馈信息, 以用于 提供相关的干扰信息。
21、 根据权利要求 20所述的用户设备, 所述用户设备还包括: 位置确定器, 确定所述用户设备是由基站服务, 还是由远端无线头 服务;
并且, 所述干扰反馈器具体用于若所述用户设备由所述基站服务, 则反馈所述基站的服务信息; 若所述用户设备由所述远端无线头服务, 则反馈所述基站的干扰信息、 以及所述远端无线头的服务信息。
22、 一种基站, 所述基站包括:
信令配置器,用于为用户设备配置支持用户使用层标示的信令指示, 所述信令指示包括所述用户设备的起始层标示号以及和层数;
信令发送器, 用于向所述用户设备发送所述信令指示, 使得所述用 户设备根据所述起始层标示号以及和层数, 对接收到的资源进行解调; 其中, 在所述资源中, 对应同一个用户设备的数据使用连续的层标示号。
23、 根据权利要求 22所述的基站, 其中, 所述信令指示还包括总和 层数; 所述基站还包括:
总数确定器, 用于根据多用户多输入输出所使用的总层数确定所述 总和层数; 或者根据所述用户设备的位置确定所述总和层数。
24、 根据权利要求 23所述的基站, 所述基站还包括:
位置确定器, 确定所述用户设备是由基站服务, 还是由远端无线头 服务;
并且, 所述总数确定器具体用于若所述用户设备由所述基站服务, 则确定所述总和层数为所述用户设备的和层数; 若所述用户设备由所述 远端无线头服务, 则确定所述总和层数为所述用户设备的和层数、 加上 由所述基站服务的用户设备的和层数。
25、 一种计算机可读程序, 其中当在用户设备中执行所述程序时, 所述程序使得计算机在所述用户设备中执行如权利要求 1至 10任意一项 所述的多用户多输入输出的传输方法。
26、 一种存储有计算机可读程序的存储介质, 其中所述计算机可读 程序使得计算机在用户设备中执行如权利要求 1至 10任意一项所述的多 用户多输入输出的传输方法。
27、 一种计算机可读程序, 其中当在基站中执行所述程序时, 所述 程序使得计算机在所述基站中执行如权利要求 11至 15任意一项所述的 多用户多输入输出的传输方法。
28、 一种存储有计算机可读程序的存储介质, 其中所述计算机可读 程序使得计算机在基站中执行如权利要求 11至 15任意一项所述的多用 户多输入输出的传输方法。
PCT/CN2011/075088 2011-06-01 2011-06-01 多用户多输入输出的传输方法、用户设备及基站 WO2012162885A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014513026A JP2014520431A (ja) 2011-06-01 2011-06-01 Mu−mimoの伝送方法、ユーザ装置及び基地局
EP11866886.2A EP2717637A4 (en) 2011-06-01 2011-06-01 METHOD FOR MULTIPLE MULTIPLE INPUT MULTIPLE OUTPUT USER MODE TRANSMISSION, USER EQUIPMENT AND BASE STATION THEREOF
CN201180070892.7A CN103535092A (zh) 2011-06-01 2011-06-01 多用户多输入输出的传输方法、用户设备及基站
PCT/CN2011/075088 WO2012162885A1 (zh) 2011-06-01 2011-06-01 多用户多输入输出的传输方法、用户设备及基站
KR1020137034377A KR20140018399A (ko) 2011-06-01 2011-06-01 다중 사용자 다중 입력 다중 출력 송신 방법, 사용자 장비 및 기지국
US14/086,568 US20140078997A1 (en) 2011-06-01 2013-11-21 Multiple user multi-input multi-output transmission method, user equipment and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/075088 WO2012162885A1 (zh) 2011-06-01 2011-06-01 多用户多输入输出的传输方法、用户设备及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/086,568 Continuation US20140078997A1 (en) 2011-06-01 2013-11-21 Multiple user multi-input multi-output transmission method, user equipment and base station

Publications (1)

Publication Number Publication Date
WO2012162885A1 true WO2012162885A1 (zh) 2012-12-06

Family

ID=47258278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075088 WO2012162885A1 (zh) 2011-06-01 2011-06-01 多用户多输入输出的传输方法、用户设备及基站

Country Status (6)

Country Link
US (1) US20140078997A1 (zh)
EP (1) EP2717637A4 (zh)
JP (1) JP2014520431A (zh)
KR (1) KR20140018399A (zh)
CN (1) CN103535092A (zh)
WO (1) WO2012162885A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016164009A1 (en) * 2015-04-08 2016-10-13 Nokia Solutions And Networks Oy Multi-user operation
US11071131B2 (en) * 2016-01-26 2021-07-20 Ntt Docomo, Inc. Base station and transmission method
US10396871B2 (en) 2017-06-15 2019-08-27 At&T Intellectual Property I, L.P. Layer mapping subset restriction for 5G wireless communication systems
WO2019200605A1 (en) 2018-04-20 2019-10-24 Qualcomm Incorporated Techniques and apparatuses for signaling regarding rate splitting using first layers and second layers
US11990957B2 (en) 2019-06-26 2024-05-21 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic MU-MIMO layer limit control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932096A (zh) * 2009-06-24 2010-12-29 中兴通讯股份有限公司 多用户多输入多输出模式下层映射信息的通知方法和系统
CN102036402A (zh) * 2009-09-30 2011-04-27 中兴通讯股份有限公司 一种基于解调导频的层映射方法及网络侧设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9055561B2 (en) * 2008-12-18 2015-06-09 Nec Laboratories America, Inc. MU-MIMO-OFDMA systems and methods for servicing overlapping co-scheduled users
KR101478316B1 (ko) * 2009-04-28 2014-12-31 한국전자통신연구원 전용 레퍼런스 시그널 전송 방법 및 전용 레퍼런스 시그널 수신 방법
WO2010147882A2 (en) * 2009-06-19 2010-12-23 Research In Motion Limited Method and system for signaling transmission layers for single user and multi user mimo
CN101997655A (zh) * 2009-08-20 2011-03-30 富士通株式会社 用于实现下行多输入多输出传输的方法和装置
WO2011025278A2 (ko) * 2009-08-26 2011-03-03 엘지전자 주식회사 다중 사용자 mimo 전송을 지원하는 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
CN102076076B (zh) * 2009-11-20 2015-11-25 夏普株式会社 一种解调参考信号的资源分配通知方法
KR101754970B1 (ko) * 2010-01-12 2017-07-06 삼성전자주식회사 무선 통신 시스템의 채널 상태 측정 기준신호 처리 장치 및 방법
CN102237961A (zh) * 2010-05-04 2011-11-09 株式会社Ntt都科摩 一种多输入多输出相关信息传输方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932096A (zh) * 2009-06-24 2010-12-29 中兴通讯股份有限公司 多用户多输入多输出模式下层映射信息的通知方法和系统
CN102036402A (zh) * 2009-09-30 2011-04-27 中兴通讯股份有限公司 一种基于解调导频的层映射方法及网络侧设备

Also Published As

Publication number Publication date
CN103535092A (zh) 2014-01-22
KR20140018399A (ko) 2014-02-12
EP2717637A4 (en) 2015-03-18
US20140078997A1 (en) 2014-03-20
JP2014520431A (ja) 2014-08-21
EP2717637A1 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
US11843557B2 (en) Electronic device and communication method for inter-cell interference coordination
JP5635096B2 (ja) シングルユーザ多入力多出力(su−mimo)とマルチユーザmimo(mu−mimo)とをサポートするための方法および装置
CN101800583B (zh) 用于多用户和多小区mimo传输的系统和方法
US8908790B2 (en) Method and apparatus for transmitting control signaling for MIMO transmission
JP5989801B2 (ja) マルチアンテナ無線通信システムにおける時間多重化チャネル状態情報通知
US8902845B2 (en) Communication control method, base station apparatus and mobile station apparatus
WO2014167992A1 (ja) 基地局装置、端末装置、無線通信システム及び集積回路
JP2015133705A (ja) Hsdpaマルチユーザmimo動作のためのシステムおよび方法
US10356771B2 (en) Method and device for transmitting downlink information in wireless communication system
WO2013000253A1 (zh) 协作多点传输系统中信息的交互方法及协作多点传输系统
JP2014515583A (ja) 無線通信システム、そのマスタ・ユニット、およびスレーブ・ユニットでアップリンク無線周波数信号を受信する方法
WO2014101242A1 (zh) 报告信道状态信息csi的方法、用户设备和基站
WO2018230191A1 (ja) 送信装置、受信装置、送信方法、受信方法及び記録媒体
WO2017050238A1 (zh) 传输方式的指示方法及装置
KR102317129B1 (ko) 복조 참조 신호 오버헤드 감소를 위한 시스템 및 방법
CN107302421B (zh) 一种功率配置方法及设备
WO2012162885A1 (zh) 多用户多输入输出的传输方法、用户设备及基站
WO2013064044A1 (zh) 预编码控制指示反馈方法、用户设备及基站
WO2017028364A1 (zh) 一种参考信号配置方法及设备
WO2014047819A1 (zh) 指示导频状态的方法和设备
CN117527010A (zh) 执行多输入多输出通信的基站和用户设备及其操作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014513026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011866886

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137034377

Country of ref document: KR

Kind code of ref document: A