WO2014047819A1 - 指示导频状态的方法和设备 - Google Patents

指示导频状态的方法和设备 Download PDF

Info

Publication number
WO2014047819A1
WO2014047819A1 PCT/CN2012/082072 CN2012082072W WO2014047819A1 WO 2014047819 A1 WO2014047819 A1 WO 2014047819A1 CN 2012082072 W CN2012082072 W CN 2012082072W WO 2014047819 A1 WO2014047819 A1 WO 2014047819A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot state
precoded pilot
scheduling
scheduled
precoded
Prior art date
Application number
PCT/CN2012/082072
Other languages
English (en)
French (fr)
Inventor
汪凡
马雪利
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/082072 priority Critical patent/WO2014047819A1/zh
Priority to CN201280001427.2A priority patent/CN104160776B/zh
Priority to CN201380003662.8A priority patent/CN103947277B/zh
Priority to PCT/CN2013/070419 priority patent/WO2014048077A1/zh
Publication of WO2014047819A1 publication Critical patent/WO2014047819A1/zh
Priority to US14/666,150 priority patent/US9203487B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals

Definitions

  • the present invention relates to the field of communications and, more particularly, to a method of indicating a pilot state, a radio network controller, a base station, a user equipment, and a system. Background technique
  • Wideband Code Division Multiple Access is a widely used wireless communication technology, and is responsible for the 3rd Generation Partnership Project (3rd Generation Partnership Project). Formulated and in continuous evolution. In the Rel-5 version and subsequent versions of the WCDMA protocol, high-speed data access (High Speed Packet Access) is introduced to support higher data traffic. HSPA is currently evolving toward HSPA+ and other key technologies, including higher-order multiple input multiple output (MIMO) technology and more carrier aggregation.
  • MIMO multiple input multiple output
  • Downlink 4 Antenna MIMO is discussed in the 3GPP Radio Access Network (Radio Access Network, called “RAN”) #53 conference to further improve cell throughput.
  • Radio Access Network called “RAN” #53 conference to further improve cell throughput.
  • the Primary Common Pilot Channel (P-CPICH) and the Secondary Common Pilot Channel (S-CPICH) " ) is used to support channel status information (Cell Status Information, "CSI") estimation and data demodulation.
  • CSI Cell Status Information
  • more S-CPICH channels may be supported for CSI estimation; and scheduled non-precoded pilots may also be scheduled (also called scheduling pilots or demodulation commons). Pilot) is used as data demodulation.
  • Scheduling non-precoded pilots is only transmitted during data transmission, since scheduling non-precoded pilots tends to be higher than the common pilot power transmitted on antennas 3 and 4, thereby facilitating user equipment (User Equipment, For the "UE", the scheduling of non-precoded pilots is used for more accurate channel estimation to facilitate better data demodulation performance.
  • scheduling non-precoded pilots does not improve the performance of the 4-MIMO MIMO UE.
  • scheduling non-pre-coded pilots may not be transmitted, thereby reducing interference to other UEs, especially terminals that do not support 4-OFDM, due to scheduling non-pre-coded pilots to it. They are pure interference.
  • scheduling non-precoded pilots can improve the performance of 4 MIMO terminals.
  • the non-precoded pilot can be shared by the High Speed Downlink Shared Channel (HS-DSCH) shared control channel (Shared Control Channel for HS-DSCH, the tube is called "HS" -SCCH" Signaling is activated or deactivated. If the network is based on a certain condition, for example, the signal-to-noise ratio of the 4-band MIMO UE is low, and the scheduling non-pre-coded pilot may not be sent, the scheduling non-pre-coded pilot may be deactivated by the HS-SCCH signaling; otherwise, Scheduling non-precoded pilots can be activated by HS-SCCH signaling.
  • HS-DSCH High Speed Downlink Shared Channel
  • HS-SCCH Shared Control Channel for HS-DSCH, the tube is called "HS" -SCCH”
  • the UE when the cell is configured with downlink MIMO, the UE does not initially know whether the scheduled non-precoded pilot is activated or deactivated. The UE knows whether the scheduling non-precoded pilot is activated or deactivated, which is beneficial for the UE to accurately utilize the information of scheduling non-precoded pilots, and improve the accuracy of four MIMO data detection. Since scheduling non-precoded pilots is determined by the base station and is typically a small cell level parameter, it can be determined by the situation of multiple UEs. Therefore, when the UE is configured as a downlink MIMO state by the Radio Network Controller ("Radio Network Controller"), it is possible to schedule whether the non-precoded pilot is activated or deactivated.
  • Radio Network Controller Radio Network Controller
  • the UE cannot determine whether the scheduled non-precoded pilot is active or deactivated based on the actual state of the base station.
  • the base station needs to send HS-SCCH signaling to notify the UE to schedule the activation or deactivation of non-precoded pilots almost every time the UE configures downlink 4 MIMO. Therefore, a lot of HS-SCCH signaling is required to complete this function, and the physical layer dynamic signaling overhead is added.
  • the base station since the base station sends the HS-SCCH signaling, it needs to wait for the UE to send an acknowledgment (Acknowledgment, the tube is called "ACK"). After scheduling data for 4 MIMO UEs, it also brings delay in scheduling. Summary of the invention
  • the embodiments of the present invention provide a method for indicating a pilot state, a radio network controller, a base station, a user equipment, and a system, which can reduce physical layer signaling overhead.
  • a method for indicating a pilot state including: receiving, by a radio network controller, an RNC, scheduling non-precoded pilot state information sent by a base station, where the scheduling non-precoded pilot state information indicates scheduling non-precoding The active or deactivated state of the frequency; the RNC sends four multiple-input multiple-output MIMO mode configuration signaling to the user equipment UE, where the configuration signaling carries the scheduled non-pre-coded pilot state information, so that the UE is configured as 4 When the MIMO mode is sent, the scheduled non-precoded pilot state is obtained according to the scheduled non-precoded pilot state information.
  • the radio network controller RNC receives the scheduled non-precoded pilot state information sent by the base station, where the RNC receives the base station, after the base station changes the scheduled non-precoded pilot state, Scheduling non-precoded pilot state information.
  • a method for indicating a pilot state including: transmitting, by a base station, scheduling non-precoded pilot state information to a radio network controller RNC, the scheduling non-precoded pilot state information indicating scheduling non-precoded pilots The activated state or the deactivated state, so that the RNC sends, to the first user equipment UE, four-input multiple-input multiple-output MIMO mode configuration signaling that carries the scheduled non-precoded pilot state information, so that the first UE is configured as When the MIMO mode is transmitted, the non-precoded pilot state is acquired according to the scheduled non-precoded pilot state information.
  • the method before the sending, by the base station, the scheduling of the non-pre-coded pilot state information to the radio network controller RNC, the method further includes: the base station notifying the second UE to change the scheduling non-pre-coded pilot state, The second UE indicates a UE that has been configured in a 4-OFDM mode.
  • the method further The method includes: when the current scheduled non-precoded pilot state is inconsistent with the scheduled non-precoded pilot state acquired by the first UE according to the scheduled non-precoded pilot state information, the base station notifies the first UE to change scheduling non-precoding Pilot status.
  • a method for indicating a pilot state including: receiving, by a user equipment UE, four-issue multiple-input multiple-output MIMO mode configuration signaling sent by a radio network controller RNC, where the configuration signaling carries the RNC to receive from a base station Scheduling non-precoded pilot state information, the scheduled non-precoded pilot state information indicating scheduling an active state or a deactivated state of the non-precoded pilot; when the UE is configured to be in a 4-transmit MIMO mode according to the configuration signaling, A scheduling non-precoded pilot state is obtained according to the scheduled non-precoded pilot state information.
  • the scheduling non-precoded pilot state information is sent by the base station after changing a scheduled non-precoded pilot state.
  • the method further includes: receiving, by the UE, change scheduling non-precoded pilot state signaling sent by the base station, and scheduling non-precoded pilot state signaling according to the change, and changing a scheduling non-precoded pilot state, wherein the change Scheduling non-precoded pilot state signaling for the base station in the current scheduling non- The precoded pilot state is transmitted when the UE is inconsistent with the scheduled non-precoded pilot state acquired by the scheduled non-precoded pilot state information.
  • a method for indicating a pilot state including: receiving, by a user equipment UE, four-input multiple-input multiple-output MIMO mode configuration signaling sent by a radio network controller RNC; When the MIMO mode is transmitted, it is determined that the scheduled non-precoded pilot state is deactivated.
  • the method further includes: receiving, by the UE, the change scheduled non-precoded pilot state signaling sent by the base station, and according to The change schedules non-precoded pilot state signaling, and changes the scheduled non-precoded pilot state to be activated, wherein the change schedules the non-precoded pilot state signaling to determine, by the base station, that the current scheduled non-precoded pilot state is Sent when activated.
  • a method for indicating a pilot state including:
  • the UE After the UE is configured to perform the 4-OFDM MIMO mode and determines that the scheduled non-precoded pilot state is deactivated, if it is determined that the current scheduled non-precoded pilot state is active, the UE sends the change scheduled non-precoded pilot state signaling to the UE, The UE is caused to change the scheduling non-precoded pilot state to be active.
  • a radio network controller including: a receiving module, configured to receive scheduling non-precoded pilot state information sent by a base station, where the scheduling non-precoded pilot state information indicates scheduling non-precoded pilots An activation state or a deactivation state; the sending module, configured to send, to the user equipment UE, four-output multiple-input multiple-output MIMO mode configuration signaling, where the configuration signaling carries the scheduled non-pre-coded pilot state information, so that the UE is configured to When the MIMO mode is transmitted, the non-precoded pilot state is acquired according to the scheduled non-precoded pilot state information.
  • the receiving module is specifically configured to receive the scheduled non-precoded pilot state information that is sent by the base station after changing a scheduling non-precoded pilot state.
  • a base station including: a determining module, configured to determine scheduling non-precoded pilot state information, where the scheduled non-precoded pilot state information indicates an active state or a deactivated state of scheduling non-precoded pilots a sending module, configured to send the scheduled non-precoded pilot state information to the radio network controller RNC, so that the RNC sends, to the first user equipment UE, four multiple input multiple outputs that carry the scheduled non-precoded pilot state information.
  • the MIMO mode configures signaling, so that the first UE acquires a scheduled non-precoded pilot state according to the scheduled non-precoded pilot state information when configured in a 4-OFDM mode.
  • the sending module is further configured to determine the tone in the determining module Before the non-precoded pilot state information, the second UE is notified to change the scheduled non-precoded pilot state, where the second UE indicates the UE that has been configured to the 4 MIMO mode.
  • the sending module is further configured to send the scheduled non-precoded pilot state information to the radio network controller RNC. After the current scheduled non-precoded pilot state is inconsistent with the scheduled non-precoded pilot state acquired by the first UE according to the scheduled non-precoded pilot state information, the first UE is notified to change the scheduled non-precoded pilot. status.
  • a user equipment including: a receiving module, configured to receive four-issue multiple-input multiple-output MIMO mode configuration signaling sent by a radio network controller RNC, where the configuration signaling carries a scheduling that is received by the RNC from a base station Non-precoded pilot state information, the scheduled non-precoded pilot state information indicates an active state or a deactivated state of the scheduled non-precoded pilot; and a processing module, configured to configure the four-MIMO mode when configured according to the configuration signaling And acquiring a scheduled non-precoded pilot state according to the scheduled non-precoded pilot state information.
  • the scheduling non-precoded pilot state information is sent by the base station after changing a scheduled non-precoded pilot state.
  • the receiving module is further configured to: when the processing module acquires the scheduling non-pre-coded pilot state information according to the scheduling After precoding the pilot state, receiving the change scheduling non-precoded pilot state signaling sent by the base station, the processing module is further configured to schedule the non-precoded pilot state signaling according to the change, and change the scheduled non-precoded pilot state.
  • the change scheduling non-precoded pilot state signaling is inconsistent with the scheduled non-precoded pilot state obtained by the base station in the current scheduled non-precoded pilot state and the user equipment according to the scheduled non-precoded pilot state information.
  • the ninth aspect provides a user equipment, including: a receiving module, configured to receive four-input multiple-input multiple-output MIMO mode configuration signaling sent by a radio network controller RNC; and a processing module, configured to configure according to the configuration signaling When the MIMO mode is 4, the scheduled non-precoded pilot state is determined to be deactivated.
  • the receiving module is further configured to: after the processing module determines that the scheduled non-precoded pilot state is deactivated, receive the change scheduled non-precoded pilot state signaling sent by the base station, where the processing is performed.
  • the module is further configured to schedule the non-precoded pilot state signaling according to the change, and change the scheduled non-precoded pilot state to be activated, where the change schedules the non-precoded pilot state signaling to determine that the current scheduling is not pre-determined by the base station.
  • the coded pilot status is sent when activated.
  • the tenth aspect provides a base station, including: a determining module, configured to determine a current scheduled non-precoded pilot state after the user equipment UE is configured to perform a 4-MIMO mode and determine that the scheduled non-precoded pilot state is deactivated. And a sending module, configured to send, to the UE, change scheduling non-precoded pilot state signaling, so that the UE changes the scheduled non-precoded pilot state to be activated.
  • a radio network controller including: a receiver, configured to receive scheduling non-precoded pilot state information sent by a base station, where the scheduled non-precoded pilot state information indicates scheduling non-precoded pilots An activation state or a deactivation state; a processor, configured to determine four-issue multiple-input multiple-output MIMO mode configuration signaling, the configuration signaling carrying the scheduled non-pre-coded pilot state information; and a transmitter, configured to the user equipment UE The configuration signaling is sent, so that the UE acquires a scheduled non-precoded pilot state according to the scheduled non-precoded pilot state information when configured in a 4-OFDM mode.
  • the receiver is specifically configured to receive the scheduled non-precoded pilot state information that is sent by the base station after changing a scheduled non-precoded pilot state.
  • a base station including: a processor, configured to determine scheduling non-precoded pilot state information, where the scheduled non-precoded pilot state information indicates scheduling an activation state or deactivation of a non-precoded pilot a transmitter, configured to send the scheduled non-precoded pilot state information to the radio network controller RNC, so that the RNC sends, to the first user equipment UE, four multiple inputs with the scheduled non-precoded pilot state information.
  • the MIMO mode configuration signaling is output, so that the first UE acquires the scheduled non-precoded pilot state according to the scheduled non-precoded pilot state information when configured in the 4-OFDM mode.
  • the transmitter is further configured to notify the second UE to change a scheduled non-precoded pilot state before the processor determines the scheduled non-precoded pilot state information, where the second The UE indicates a UE that has been configured to a 4-shot MIMO mode.
  • the transmitter is further configured to send the scheduling non-precoded pilot to the radio network controller RNC.
  • the first UE is notified to change the scheduling non-precoding. Pilot status.
  • a user equipment including: a receiver, configured to receive four-output multiple-input multiple-output MIMO mode configuration signaling sent by a radio network controller RNC, where the configuration signaling carries the RNC receiving from the base station Scheduling non-precoded pilot state information, the scheduling non-precoded pilot The status information indicates that the activation state or the deactivation state of the non-precoded pilot is scheduled.
  • the processor is configured to: when the configuration is configured according to the configuration signaling to the MIMO mode, obtain the scheduling non-pre-based according to the scheduled non-precoded pilot state information. Encode pilot status.
  • the scheduling non-precoded pilot state information is sent by the base station after changing a scheduled non-precoded pilot state.
  • the receiver is further configured to obtain, according to the scheduled non-precoded pilot state information
  • the processor After scheduling the non-precoded pilot state, receiving the change scheduling non-precoded pilot state signaling sent by the base station, the processor is further configured to schedule the non-precoded pilot state signaling according to the change, and change the scheduling non-precoding guide.
  • a frequency state where the change scheduling non-precoded pilot state signaling is a scheduled non-precoded pilot obtained by the base station in the current scheduled non-precoded pilot state and the user equipment according to the scheduled non-precoded pilot state information. Sent when the status is inconsistent.
  • a user equipment including: a receiver, configured to receive four-input multiple-input multiple-output MIMO mode configuration signaling sent by a radio network controller RNC; and a processor, configured to perform signaling according to the configuration When configured in 4-shot MIMO mode, it is determined that the scheduled non-precoded pilot state is deactivated.
  • the receiver is further configured to: after the processor determines that the scheduled non-precoded pilot state is deactivated, receive the change scheduled non-precoded pilot state signaling sent by the base station, where the process is performed.
  • the device is further configured to schedule the non-precoded pilot state signaling according to the change, and change the scheduled non-precoded pilot state to be activated, where the change schedules the non-precoded pilot state signaling to determine that the current scheduling is not pre-determined by the base station.
  • the coded pilot status is sent when activated.
  • a base station including: a processor, configured to determine a current scheduled non-precoded pilot after the user equipment UE is configured to perform a 4-MIMO mode and determine that the scheduled non-precoded pilot state is deactivated The state is activated; the transmitter is configured to send, to the UE, change scheduling non-precoded pilot state signaling, so that the UE changes the scheduled non-precoded pilot state to be active.
  • a system comprising the radio network controller in the first aspect or the first possible implementation manner of the sixth aspect, the seventh aspect or the first or second A base station in a possible implementation, and a user equipment in the first or second possible implementation of the eighth aspect or the eighth aspect.
  • a system comprising the user equipment in the first possible implementation of the ninth aspect or the ninth aspect, and the base station in the tenth aspect.
  • the method for indicating a pilot state, the radio network controller, the base station, the user equipment, and the system in the embodiment of the present invention by using the RNC, send, to the UE, the scheduled non-precoded pilot state information that is received by the RNC from the base station.
  • the MIMO mode configuration signaling may be used to enable the UE to obtain a scheduling non-precoded pilot state according to the scheduled non-precoded pilot state information when configured in a 4-MIMO mode, and reduce the base station to send the HS-SCCH signaling to notify the UE that the scheduling is not pre-
  • the probability of encoding the pilot state can reduce the physical layer signaling overhead and reduce the delay for the UE to acquire the non-precoded pilot state in the 4-OFDM mode.
  • FIG. 1 is a schematic flowchart of a method of indicating a pilot state according to an embodiment of the present invention.
  • 2 is a schematic diagram of downlink 4-transmit MIMO pilot and data transmission.
  • FIG. 3 is another schematic flowchart of a method for indicating a pilot state according to an embodiment of the present invention.
  • 4 is a schematic flow chart of a method of indicating a pilot state according to another embodiment of the present invention.
  • FIG. 5 is another schematic flowchart of a method of indicating a pilot state according to another embodiment of the present invention.
  • FIG. 6 is still another schematic flowchart of a method of indicating a pilot state according to another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a method of indicating a pilot state according to still another embodiment of the present invention.
  • FIG. 8 is another schematic flowchart of a method of indicating a pilot state according to still another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a method of indicating a pilot state, in accordance with an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a method of indicating a pilot state according to still another embodiment of the present invention.
  • 11 is another schematic flow diagram of a method of indicating a pilot state in accordance with yet another embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of a method of indicating a pilot state according to still another embodiment of the present invention.
  • Figure 13 is a schematic block diagram of a radio network controller in accordance with an embodiment of the present invention.
  • FIG. 14 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • Figure 15 is a schematic block diagram of a user equipment in accordance with an embodiment of the present invention.
  • FIG. 16 is a schematic block diagram of a user equipment according to another embodiment of the present invention.
  • FIG. 17 is a schematic block diagram of a base station according to another embodiment of the present invention.
  • FIG. 18 is a schematic block diagram of a radio network controller in accordance with yet another embodiment of the present invention.
  • 19 is a schematic block diagram of a base station according to still another embodiment of the present invention.
  • 20 is a schematic block diagram of a user equipment according to still another embodiment of the present invention.
  • 21 is a schematic block diagram of a user equipment according to still another embodiment of the present invention.
  • FIG. 22 is a schematic block diagram of a base station according to still another embodiment of the present invention. detailed description
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • General Packet Radio Service General Packet Radio Service
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • USB Worldwide Interoperability for Microwave Access
  • a user equipment may be referred to as a terminal, a mobile station ("Mobile”("MS”), and a mobile terminal ( Mobile Terminal), etc.
  • the user equipment can communicate with one or more core networks via a Radio Access Network (“RAN"), for example, the user equipment can be a mobile phone (or “cellular”"Telephone", a computer with a mobile terminal, etc., for example, the user device can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice and/or data with the wireless access network.
  • RAN Radio Access Network
  • the base station may be a base station in GSM or CDMA (Base Transceiver Station, called "BTS"), or may be a base station in WCDMA (NodeB, a cylinder called “NB"), or may be
  • the evolved base station (Evolutional Node B, referred to as ' ⁇ or e-NodeB') in the LTE is not limited to the present invention. However, for convenience of description, the following embodiments will be described by taking the base station NodeB and the user equipment UE as an example. .
  • scheduling non-pre-coded pilots is also referred to as scheduling pilots and demodulating common pilots.
  • scheduling pilots and demodulating common pilots For convenience of description, the following embodiments use scheduling non-pre-coded pilots as an example for description.
  • FIG. 1 shows a schematic flow diagram of a method 100 of indicating a pilot state in accordance with an embodiment of the present invention. As shown in FIG. 1, the method 100 includes:
  • the radio network controller RNC receives scheduling non-precoded pilot state information sent by the base station, where the scheduled non-precoded pilot state information indicates that an active state or a deactivated state of the non-precoded pilot is scheduled;
  • the RNC sends four-output multiple-input multiple-output MIMO mode configuration signaling to the user equipment UE, where the configuration signaling carries the scheduled non-pre-coded pilot state information, so that the UE is configured according to the scheduling when configured in the 4-MIMO mode.
  • the non-precoded pilot state information acquires a scheduled non-precoded pilot state.
  • the 4-shot MIMO mode supports scheduling non-precoded pilots for data demodulation.
  • the antenna 3 and the antenna 4 can transmit not only common pilots, namely S-CPICH2 and S-CPICH3, but also scheduled non-precoded pilots. Since scheduling non-precoded pilots tends to be higher than the common pilot power transmitted on antenna 3 and antenna 4, it helps the UE to use the scheduled non-precoded pilots for more accurate channel estimation, resulting in better data demodulation. performance. However, in a scenario where the signal-to-noise ratio is low, scheduling non-pre-coded pilots does not improve the performance of 4-transmitted MIMO UEs.
  • scheduling non-pre-coded pilots may not be transmitted to reduce interference to other UEs.
  • the base station can decide whether to activate the scheduling non-precoded pilot according to the condition of the cell, so that there are two types of scheduling non-precoded pilot states, that is, an active state and a deactivated state.
  • the RNC in order to enable the UE to learn to schedule the non-pre-coded pilot state when configured in the 4-OFDM mode, the RNC first receives the scheduled non-pre-coded pilot state information sent by the base station, and the scheduled non-pre-coded pilot state.
  • the information indicates that the activation state or the deactivation state of the non-precoded pilot is scheduled, and then the RNC sends the UE with the 4 MIMO mode configuration signaling carrying the scheduled non-precoded pilot state information, so that the UE is configured to perform 4-MIMO.
  • the mode acquires a scheduling non-precoded pilot state according to the scheduled non-precoded pilot state information.
  • the UE can obtain the scheduled non-precoded pilot state information when configured in the 4-OFDM mode.
  • the non-precoded pilot state is scheduled. Therefore, the base station does not need to send the HS-SCCH signaling to notify the UE to schedule the activation or deactivation of the non-precoded pilot.
  • the method for indicating the pilot state in the embodiment of the present invention sends, by using the RNC, the MIMO mode configuration signaling that carries the scheduled non-precoded pilot state information received by the RNC from the base station, and the UE can be configured to send 4
  • the MIMO mode acquires the scheduling non-precoded pilot state according to the scheduled non-precoded pilot state information, and prevents the base station from transmitting the HS-SCCH signaling to notify the UE to schedule the non-precoded pilot state, thereby reducing the physical layer signaling overhead. And reducing the delay of the UE acquiring the non-precoded pilot state in the 4-shot MIMO mode.
  • the RNC receives the scheduled non-precoded pilot state information sent by the base station.
  • the base station sends the scheduled non-precoded pilot status information to the Iub interface signaling to
  • the base station indicates that the non-precoded pilot state information is scheduled by using 1 bit or 1 cell in the Iub interface signaling, that is, using 1 bit or 1 cell in the Iub interface signaling to indicate that the non-precoded pilot is scheduled. Activated or deactivated.
  • the RNC receives the scheduled non-precoded pilot state information through the Iub interface signaling.
  • the RNC sends four MIMO mode configuration signaling to the UE, and the configuration signaling carries the scheduled non-precoded pilot state information.
  • the RNC configures the UE into a 4-OFDM MIMO mode through Radio Resource Control (Radio Resource Control), and the RNC carries the scheduled non-precoded pilot previously received from the base station in the RRC signaling. status information.
  • the RNC indicates the scheduled non-precoded pilot state information by using 1 bit or 1 cell in the RRC signaling, that is, using 1 bit or 1 cell in the RRC signaling to indicate that the non-precoded pilot is scheduled to be activated. Status or deactivation status. Because the RRC signaling carries the scheduled non-precoded pilot state information, the UE can learn the active state or the deactivated state of the scheduled non-precoded pilot while the 4 MIMO mode configuration is successful.
  • Radio Resource Control Radio Resource Control
  • the base station can use 4 MIMO scheduling data while the 4 MIMO mode configuration is successful, and the UE can also use the scheduled non-precoding according to the activated or deactivated state of the scheduled non-precoded pilot.
  • the pilot demodulates 4 MIMO data, thus reducing the delay in scheduling.
  • the RRC signaling is used to carry the scheduling non-precoded pilot state, and the base station is also prevented from transmitting the physical layer signaling to schedule the activation state or the deactivation state of the non-precoded pilot, thereby saving the physical layer signaling overhead.
  • S110 includes:
  • the RNC receives the tone sent by the base station after changing a scheduled non-precoded pilot state. Non-precoded pilot status information.
  • the base station may change the scheduled non-precoded pilot state according to the cell condition, that is, the HS-SCCH signaling is used to notify that the currently configured 4 MIMO mode is configured.
  • the UE changes the scheduling non-precoded pilot state.
  • the base station notifies the RNC of the changed scheduled non-precoded pilot state, so that the RNC can transmit the current scheduled non-precoded pilot state to the UE when configuring 4 MIMO for the subsequent UE.
  • the scheduled non-precoded pilot state initially determined by the base station is the current scheduled non-precoded pilot state, that is, the base station initially sends to the RNC.
  • the scheduled non-precoded pilot state information indicates the current scheduled non-precoded pilot state.
  • the RNC sends the 4 MIMO mode configuration signaling that carries the scheduled non-precoded pilot state information received by the RNC from the base station to the UE, so that the UE can be configured in the 4-MIMO mode.
  • the scheduling non-precoded pilot state is obtained, and the base station is prevented from transmitting the HS-SCCH signaling to notify the UE to schedule the non-precoded pilot state, thereby reducing the physical delay.
  • the method for indicating the pilot state is described in detail from the perspective of the RNC in conjunction with FIG. 1 to FIG. 3, and the method for indicating the pilot state will be described in detail from the perspective of the base station in conjunction with FIG. 4 to FIG.
  • FIG. 4 shows a schematic flow diagram of a method 200 of indicating a pilot state in accordance with another embodiment of the present invention. As shown in FIG. 4, the method 200 includes:
  • the base station sends scheduling non-precoded pilot state information to the radio network controller RNC, where the scheduled non-precoded pilot state information indicates that an active state or a deactivated state of the non-precoded pilot is scheduled, so that the RNC is to the first user.
  • the device UE sends four-input multiple-input multiple-output MIMO mode configuration signaling that carries the scheduled non-precoded pilot state information, so that the first UE is configured according to the scheduled non-precoded pilot state information when configured in the 4-MIMO mode. Acquire scheduling non-precoded pilot states.
  • the first UE represents a UE to be configured in a 4-OFDM mode.
  • the base station sends scheduling non-pre-coded pilot state information to the RNC, and the scheduled non-pre-coded pilot state information indicates scheduling non-precoding.
  • the active or deactivated state of the frequency such that the RNC sends to the first UE Carrying the 4-OFDM MIMO mode configuration signaling that schedules the non-precoded pilot state information, so that the first UE acquires the scheduled non-precoded pilot state according to the scheduled non-precoded pilot state information when configured in the 4-OFDM mode.
  • the base station does not need to send the HS-SCCH signaling to notify the first UE to schedule the activation or deactivation state of the non-precoded pilot, and the base station can use the 4 MIMO scheduling data while the 4 MIMO mode configuration is successful.
  • a UE may also demodulate 4 MIMO data with or without scheduling non-precoded pilots according to the learned activation state or deactivation state of the scheduled non-precoded pilots, thereby reducing the scheduling delay.
  • the base station sends the scheduled non-precoded pilot state information to the RNC through the Iub interface signaling.
  • the base station indicates that the non-precoded pilot state information is scheduled by using 1 bit or 1 cell in the Iub interface signaling, that is, using 1 bit or 1 cell in the Iub interface signaling to indicate that the non-precoded pilot is scheduled. Activated or deactivated.
  • the base station sends the scheduling non-pre-coded pilot state information to the RNC, and the RNC may send the 4-axis MIMO mode configuration that carries the scheduled non-pre-coded pilot state information to the UE.
  • Signaling so that the UE acquires a scheduling non-precoded pilot state according to the scheduled non-precoded pilot state information when configured in a 4-OFDM mode, and prevents the base station from transmitting the HS-SCCH signaling to notify the UE to schedule non-precoded pilots.
  • the state can reduce the physical layer signaling overhead and reduce the delay for the UE to acquire the non-precoded pilot state in the 4-OFDM mode.
  • the method 200 further includes:
  • the base station notifies the second UE to change the scheduled non-pre-coded pilot state, where the second UE indicates the UE that has been configured to the 4-transmit MIMO mode.
  • the base station may change the scheduling non-precoded pilot state according to the cell condition.
  • the base station notifies the second UE through the HS-SCCH signaling when determining to change the scheduled non-precoded pilot state, that is, the UE configured to the 4 MIMO mode, and changes the scheduled non-precoded pilot state.
  • the base station sends the scheduled non-precoded pilot state information to the RNC, and notifies the RNC of the latest scheduled non-precoded pilot state, so that when the RNC configures four MIMO for the first UE, the current scheduling can be
  • the precoded pilot state is transmitted to the UE.
  • the method 200 further includes:
  • the current non-precoded pilot state is scheduled and the first UE is not precoded according to the scheduling.
  • the base station notifies the first
  • the UE changes the scheduling non-precoded pilot state.
  • the RNC allocates the first UE to the 4-OFDM MIMO mode through RRC signaling, and the delivery time may be as long as several hundred ms.
  • the base station may change.
  • the scheduling of the non-pre-coded pilot state is performed, that is, after the first UE is configured to the 4-OFDM mode, the current scheduled non-precoded pilot state may be obtained by the first UE according to the scheduled non-precoded pilot state information. Scheduling non-precoded pilot states that are inconsistent.
  • the base station can further notify the first UE to change the scheduled non-precoded pilot state, that is, the base station can further notify the first UE to correctly schedule the non-precoded pilot state through the HS-SCCH signaling.
  • the base station needs to consider the situation of the entire cell to determine the activation and deactivation of the scheduled non-precoded pilot, the scheduling of the non-precoded pilot state changes does not occur frequently, and the RRC signaling is configured in the RNC to configure the four-shot MIMO. During the mode, the probability that the base station changes its scheduling non-precoded pilot state will be lower, so this situation does not occur frequently.
  • the base station sends the scheduling non-precoded pilot state information to the RNC, so that the RNC can send the 4 MIMO mode configuration signaling carrying the scheduled non-precoded pilot state information to the UE.
  • the probability that the base station sends the HS-SCCH signaling to notify the UE to schedule the non-precoded pilot state is reduced, thereby reducing the physical layer signaling overhead. And reducing the delay in acquiring the non-precoded pilot state by the UE and reducing the delay on the scheduling.
  • a method for indicating a pilot state is described in detail from the perspective of an RNC.
  • a method for indicating a pilot state is described in detail from the perspective of a base station, which will be described below in conjunction with FIG. Figure 8.
  • a method of indicating a pilot state is described in detail from the perspective of a UE.
  • FIG. 7 shows a schematic flow diagram of a method 300 of indicating a pilot state in accordance with yet another embodiment of the present invention. As shown in FIG. 7, the method 300 includes:
  • the user equipment UE receives four-output multiple-input multiple-output MIMO mode configuration signaling sent by the radio network controller RNC, where the configuration signaling carries scheduled non-pre-coded pilot state information received by the RNC from the base station, where the scheduling is not pre-coded.
  • the pilot state information indicates scheduling an active state or a deactivated state of the non-precoded pilot;
  • the non-precoded pilot state information acquires a scheduled non-precoded pilot state.
  • the base station needs to send the HS-SCCH signaling to notify the UE to schedule the non-precoded pilot state.
  • the UE receives the configuration signaling of the 4 MIMO mode that carries the scheduled non-precoded pilot state information sent by the RNC, and then the UE according to the UE
  • the configuration signaling is configured in a 4-OFDM mode, and the scheduling non-pre-coded pilot state is obtained according to the scheduled non-precoded pilot state information.
  • the UE can acquire the scheduled non-precoded pilot state when configured in the 4-MIMO mode. Therefore, the base station is no longer required to send HS-SCCH signaling to inform the UE to schedule the activation or deactivation of the non-precoded pilot.
  • the UE receives the 4-transmit MIMO mode configuration signal sent by the RNC through the RRC signaling.
  • the RNC carries the scheduled non-precoded pilot state information previously received from the base station in the RRC signaling.
  • the RNC indicates the scheduled non-precoded pilot state information by using 1 bit or 1 cell in the RRC signaling, that is, using 1 bit or 1 cell in the RRC signaling to indicate that the non-precoded pilot is scheduled to be activated. Status or deactivation status. Since the RRC signaling carries the scheduling non-precoded pilot state information, the UE can know the active state or the deactivated state of the scheduled non-precoded pilot while the 4 MIMO mode configuration is successful.
  • the base station can use 4 MIMO scheduling data while the 4 MIMO mode configuration is successful, and the UE can also use the scheduled non-precoding according to the activated or deactivated state of the scheduled non-precoded pilot.
  • the pilot demodulates 4 MIMO data, thus reducing the delay in scheduling.
  • the method for indicating a pilot state in the embodiment of the present invention receives, by the UE, 4-signal MIMO mode configuration signaling that carries scheduled non-pre-coded pilot state information, and the UE is configured according to the MIMO mode. Scheduling the non-precoded pilot state information to obtain the scheduling non-precoded pilot state, and avoiding the base station transmitting the HS-SCCH signaling to notify the UE to schedule the non-precoded pilot state, thereby reducing the physical layer signaling overhead and reducing the UE acquisition. Delay in scheduling non-precoded pilot states in MIMO mode.
  • the scheduling non-precoded pilot state information is sent by the base station after changing a scheduled non-precoded pilot state.
  • the base station may change the scheduling non-precoded pilot state according to the condition of the cell, that is, notify the UE that has been configured to the 4 MIMO mode to change the scheduled non-precoded pilot by using the HS-SCCH signaling.
  • the RNC is notified to the RNC of the latest scheduled non-precoded pilot state, so that by receiving configuration signaling that carries the scheduled non-precoded pilot state information sent by the RNC, the UE can configure the four-MIMO mode. Get the current scheduled non-precoded pilot state.
  • the method 300 further includes:
  • the UE receives the change scheduled non-precoded pilot state signaling sent by the base station, and schedules the non-precoded pilot state signaling according to the change, and changes the scheduled non-precoded pilot state, where the change schedule is not pre-
  • the coded pilot state signaling is sent by the base station when the current scheduled non-precoded pilot state is inconsistent with the scheduled non-precoded pilot state acquired by the UE according to the scheduled non-precoded pilot state information.
  • the delivery time may be as long as several hundred ms.
  • the base station may change its scheduling non-pre- Coding the pilot state, that is, after the UE is configured to the 4-OFDM MIMO mode, the current scheduled non-precoded pilot state may be inconsistent with the scheduled non-precoded pilot state acquired by the UE according to the scheduled non-precoded pilot state information.
  • the base station may change its scheduling non-pre- Coding the pilot state, that is, after the UE is configured to the 4-OFDM MIMO mode, the current scheduled non-precoded pilot state may be inconsistent with the scheduled non-precoded pilot state acquired by the UE according to the scheduled non-precoded pilot state information.
  • the base station may further send the change scheduling non-precoded pilot state signaling to the UE, the UE receives the change scheduled non-precoded pilot state signaling, and schedules non-precoded pilot state signaling according to the change. And changing the scheduling non-precoded pilot state to be consistent with the current scheduled non-precoded pilot state.
  • the UE receives the 4 MIMO mode configuration signaling that is sent by the RNC and carries the scheduled non-precoded pilot state information, and the UE is configured according to the scheduling when configured in the 4 MIMO mode.
  • the precoding pilot state information acquires a scheduling non-precoded pilot state, which reduces the probability that the base station sends the HS-SCCH signaling to notify the UE to schedule the non-precoded pilot state, thereby reducing the physical layer signaling overhead and reducing the UE acquisition scheduling.
  • the delay of the non-precoded pilot state reduces the delay on the scheduling.
  • UE2 is a UE that has been configured to be in a 4-MIMO mode in a cell
  • UE1 is A UE to be configured in a 4-shot MIMO mode in a cell.
  • the NodeB notifies the UE2 to change the scheduled non-precoded pilot state by using HS-SCCH signaling. For example, the NodeB determines to schedule non-precoded pilot activation according to the current situation of the entire cell, and the NodeB notifies the UE2 to schedule non-precoded pilot activation by HS-SCCH signaling.
  • the NodeB sends a scheduling non-precoded pilot state information to the RNC. For example, when determining that the scheduled non-precoded pilot is activated, the NodeB sends scheduling non-precoded pilot state information to the RNC through lub signaling, indicating that the scheduling non-precoded pilot is activated.
  • the RNC sends RRC signaling to the UE1, configures the UE1 into a 4-MIMO mode, and carries the scheduled non-pre-coded pilot state information in the RRC signaling.
  • the RNC carries the received scheduling non-precoded pilot state information indicating the scheduling of non-precoded pilot activation in the RRC signaling.
  • the UE1 receives the RRC signaling sent by the RNC, configures the MIMO signaling according to the RRC signaling, and acquires the scheduled non-precoded pilot state according to the scheduled non-precoded pilot state information carried by the RRC signaling. For example, UE1 acquires a scheduled non-precoded pilot to an active state according to the scheduled non-precoded pilot state information indicating that the non-precoded pilot activation is scheduled.
  • the NodeB uses 4 MIMO scheduling data while the 4 MIMO mode is successfully configured. For example, when scheduling non-precoded pilot activation, scheduling non-precoded pilots can be sent directly.
  • UE1 demodulates 4 MIMO data accordingly. For example, if the learned scheduling non-precoded pilot is in an active state, the scheduled non-precoded pilot is used to demodulate 4 MIMO data; if the learned scheduled non-precoded pilot is in a deactivated state, no scheduling is used. The coded pilot demodulates 4 MIMO data.
  • FIG. 10 shows a schematic flow diagram of a method 400 of indicating a pilot state in accordance with yet another embodiment of the present invention. As shown in FIG. 10, the method 400 includes:
  • the user equipment UE receives four multiple input multiple output MIMO mode configuration signalings sent by the radio network controller RNC.
  • the UE determines to schedule the non-precoded pilot state to be deactivated when configured according to the configuration signaling to the 4-MIMO mode.
  • the UE when the UE is configured to perform the MIMO mode, the UE determines that the scheduled non-precoded pilot state is deactivated, that is, the UE determines that the initial state of scheduling the non-precoded pilot is deactivated.
  • the base station when the current scheduled non-precoded pilot state is deactivated, the base station is not required to retransmit the HS-SCCH signaling to notify the UE to schedule the non-precoded pilot state.
  • the method for indicating a pilot state in the embodiment of the present invention determines that the scheduling non-precoded pilot state is deactivated when the UE is configured in the 4-MIMO mode, and reduces the base station transmitting the HS-SCCH signaling to notify the UE that the scheduling is not performed. Precoding the probability of the pilot state, thereby reducing the physical layer signaling overhead and reducing the delay for the UE to acquire the non-precoded pilot state in the 4-shot MIMO mode.
  • the method 400 further includes:
  • the UE receives the change scheduling non-precoded pilot state signaling sent by the base station, and schedules the non-precoded pilot state signaling according to the change, and changes the scheduling non-precoded pilot state to be activated, where the change scheduling is not
  • the precoded pilot state signaling is sent by the base station when it determines that the current scheduled non-precoded pilot state is active.
  • the base station After the UE determines that the scheduled non-precoded pilot state is deactivated, if the current scheduled non-precoded pilot state is deactivated, the base station is not required to retransmit the HS-SCCH signaling to notify the UE to schedule the non-precoded pilot state, the base station The 4 MIMO scheduling data can be used immediately, and the UE can also demodulate without using the scheduled non-precoded pilot accordingly.
  • the base station sends a change scheduling non-precoded pilot state signaling to the UE, that is, the base station sends the HS-SCCH signaling to notify the UE to schedule the non-precoded pilot state to be activated, and the UE
  • the non-precoded pilot state signaling is scheduled according to the change, and the scheduled non-precoded pilot state is changed to be active.
  • the method of indicating the pilot state is described in detail from the perspective of the UE in conjunction with FIG. 10 and FIG. 11, and the method of indicating the pilot state will be described in detail from the perspective of the base station in conjunction with FIG.
  • FIG. 12 shows a schematic flow diagram of a method 500 of indicating a pilot state in accordance with yet another embodiment of the present invention. As shown in FIG. 12, the method 500 includes:
  • S510 After the user equipment UE is configured to perform a 4-OFDM mode and determine that the scheduled non-precoded pilot state is deactivated, if the current scheduled non-precoded pilot state is determined to be active, the base station sends a change scheduling non-precoding to the UE. Pilot status signaling, causing the UE to change the scheduled non-precoded pilot state to active.
  • the UE determines that the scheduling non-precoded pilot state is deactivated when configured in the 4-OFDM mode, and therefore, if the current scheduled non-precoded pilot state is deactivated, the base station does not need to send the HS again.
  • the SCCH signaling notifies the UE to schedule the non-precoded pilot state. If the current scheduled non-precoded pilot state is active, the base station sends a change scheduling non-precoded pilot state signaling to the UE, that is, the base station sends the HS-SCCH signaling. Notifying the UE to schedule the non-precoded pilot state to be activated, The UE is configured to schedule non-precoded pilot state signaling according to the change, and change the scheduled non-precoded pilot state to be active.
  • the UE has UE1 configured in a 4-MIMO mode.
  • the NodeB determines to schedule the non-precoded pilot deactivation according to the current situation of the entire cell.
  • the NodeB informs the UE1 to schedule the non-precoded pilot to be deactivated through the HS-SCCH signaling.
  • the RNC configures the UE2 as a 4-MIMO MIMO mode,
  • UE2 initially considers scheduling non-precoded pilots to be deactivated. Because the UE2 default value is consistent with the current state, the NodeB does not need to send HS-SCCH signaling to UE2 to inform it to schedule non-precoded pilot deactivation. If the NodeB determines to change the scheduled non-precoded pilot state to be active, the NodeB informs UE1 and UE2 to schedule non-precoded pilot activation by HS-SCCH signaling. When the RNC allocates UE3 to 4-transmit MIMO mode, UE3 initially considers scheduling non-precoded pilots to be deactivated. Because
  • the UE3 default value is inconsistent with the current state, and the NodeB needs to send HS-SCCH signaling to UE3 to inform its scheduled non-precoded pilot to be activated.
  • the method for indicating a pilot state in the embodiment of the present invention determines that the scheduling non-precoded pilot state is deactivated when the UE is configured in the four-MIMO mode, and reduces that the base station sends the HS-SCCH signaling to notify the UE to schedule non-precoding.
  • the probability of the pilot state can reduce the physical layer signaling overhead and reduce the delay for the UE to acquire the non-precoded pilot state in the 4-OFDM mode.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • a method for indicating a pilot state according to an embodiment of the present invention is described in detail above with reference to FIG. 1 to FIG. 12, and a radio network controller, a base station, and a user equipment according to an embodiment of the present invention will be described below with reference to FIG. 13 to FIG. .
  • FIG. 13 shows a schematic block diagram of a radio network controller 600 in accordance with an embodiment of the present invention.
  • the radio network controller 600 includes:
  • the receiving module 610 is configured to receive scheduling non-precoded pilot state information sent by the base station, where the scheduled non-precoded pilot state information indicates that an active state or a deactivated state of the non-precoded pilot is scheduled;
  • the sending module 620 is configured to send, to the user equipment UE, four-input multiple-input multiple-output mode configuration signaling, where the configuration signaling carries the scheduled non-pre-coded pilot state information, so that the UE is configured according to the 4-issue mode.
  • the scheduling non-precoded pilot state information acquires a scheduled non-precoded pilot state.
  • the receiving module 610 receives the scheduled non-pre-coded pilot state information sent by the base station, and the scheduled non-pre-coded pilot.
  • the status information indicates that the active state or the deactivated state of the non-precoded pilot is scheduled, and then the sending module 620 sends the 4-key mode configuration signaling carrying the scheduled non-precoded pilot state information to the UE, so that the UE is configured to In the 4-issue mode, the scheduling non-pre-coded pilot state is obtained according to the scheduled non-precoded pilot state information.
  • the base station Since the UE can obtain the scheduled non-precoded pilot state from the scheduled non-precoded pilot state information when configured in the 4-switch mode, the base station does not need to send the HS-SCCH signaling to notify the UE to schedule non-precoding. The activation or deactivation state of the pilot.
  • the radio network controller of the embodiment of the present invention can enable the UE to be configured in the 4-issue mode by transmitting the 4-issue mode configuration signaling that carries the scheduled non-pre-coded pilot state information received by the RNC from the base station. Acquiring a non-pre-coded pilot state according to the scheduled non-precoded pilot state information, preventing the base station from transmitting the HS-SCCH signaling to notify the UE to schedule the non-precoded pilot state, thereby reducing physical layer signaling overhead and reducing the UE Obtain the delay of scheduling non-precoded pilot states in 4 rounds.
  • the receiving module 610 is specifically configured to receive the scheduled non-precoded pilot state information that is sent by the base station after changing the scheduled non-precoded pilot state. And the RNC is notified to the RNC of the latest scheduled non-precoded pilot state, so that when the RNC configures 4 rounds for the subsequent UE, the receiving module 610 can transmit the current scheduled non-precoded pilot state to the RNC. UE.
  • the radio network controller 600 may correspond to a radio network controller in a method of indicating a pilot state according to an embodiment of the present invention, and the above and other operations of respective modules in the radio network controller 600 and/or For the purpose of implementing the corresponding processes of the respective methods in FIG. 1 to FIG. 9 , the functions are not described herein.
  • FIG. 14 shows a schematic block diagram of a base station 700 in accordance with an embodiment of the present invention.
  • the base station 700 includes:
  • the determining module 710 is configured to determine scheduling non-precoded pilot state information, where the scheduled non-precoded pilot state information indicates that an active state or a deactivated state of the non-precoded pilot is scheduled;
  • the sending module 720 is configured to send the scheduled non-precoded pilot state information to the radio network controller RNC, so that the RNC sends, to the first user equipment UE, four multiple input multiple outputs that carry the scheduled non-precoded pilot state information.
  • the MIMO mode configures signaling to enable the first UE to acquire a scheduled non-precoded pilot state according to the scheduled non-precoded pilot state information when configured in a 4-OFDM mode.
  • the first UE represents a UE to be configured in a 4-transmit MIMO mode.
  • the sending module 720 sends the scheduling non-pre-coded pilot state information to the RNC, so that the RNC sends the non-pre-coded pilot status information to the first UE.
  • the 4-signal multiple-input multiple-output MIMO mode configuration signaling that encodes the pilot state information, so that the first UE acquires the scheduled non-pre-coded pilot state according to the scheduled non-precoded pilot state information when configured in the 4-OFDM mode.
  • the base station does not need to send the HS-SCCH signaling to notify the first UE to schedule the activation or deactivation of the non-precoded pilot, and the base station can use the 4 MIMO scheduling data while the 4 MIMO mode configuration is successful.
  • a UE may also demodulate 4 MIMO data with or without scheduling non-precoded pilots according to the learned activation state or deactivation state of the scheduled non-precoded pilots, thereby reducing the scheduling delay.
  • the base station in the embodiment of the present invention can send the scheduled non-pre-coded pilot state information to the RNC, so that the RNC can send the 4 MIMO mode configuration signaling carrying the scheduled non-pre-coded pilot state information to the UE, so that the UE Obtaining a scheduling non-precoded pilot state according to the scheduled non-precoded pilot state information when configured in a 4-OFDM mode, avoiding the base station transmitting the HS-SCCH signaling to notify the UE to schedule a non-precoded pilot state, thereby reducing physical The layer signaling overhead, and reduces the delay for the UE to acquire the non-precoded pilot state in the 4-transmit MIMO mode.
  • the sending module 720 is further configured to notify the second UE to change the scheduled non-precoded pilot state, where the determining module 710 determines the scheduled non-precoded pilot state information, where The second UE represents a UE that has been configured to a 4-shot MIMO mode.
  • the base station When the base station determines to change the scheduled non-precoded pilot state, the base station notifies the second UE by using the HS-SCCH signaling, that is, the UE that has been configured to perform the MIMO mode, and changes the scheduling non-precoded pilot state. And the base station sends the scheduled non-precoded pilot state information to the RNC, and notifies the RNC of the latest scheduled non-precoded pilot state, so that the RNC can configure the 4th MIMO for the first UE.
  • the pre-scheduled non-precoded pilot state is transmitted to the UE.
  • the sending module 720 is further configured to: after transmitting the scheduled non-precoded pilot state information to the radio network controller RNC, currently scheduling the non-precoded pilot state with the first UE. And when the scheduled non-precoded pilot states acquired according to the scheduled non-precoded pilot state information are inconsistent, the first UE is notified to change the scheduled non-precoded pilot state.
  • the base station 700 may correspond to a base station in a method of indicating a pilot state according to an embodiment of the present invention, and the above and other operations and/or functions of respective modules in the base station 700 are respectively implemented in order to implement FIG. 1 to FIG. The corresponding process of each method in 9 is not repeated here.
  • FIG 15 shows a schematic block diagram of a user equipment 800 in accordance with an embodiment of the present invention.
  • the user equipment 800 includes:
  • the receiving module 810 is configured to receive four-input multiple-input multiple-output MIMO mode configuration signaling sent by the radio network controller RNC, where the configuration signaling carries the scheduled non-pre-coded pilot state information received by the RNC from the base station, where the scheduling is not pre-
  • the coded pilot state information indicates that an active state or a deactivated state of the non-precoded pilot is scheduled;
  • the processing module 820 is configured to acquire a scheduling non-pre-coded pilot state according to the scheduled non-pre-coded pilot state information when configured according to the configuration signaling to the 4-transmit MIMO mode.
  • the receiving module 810 receives the configuration signaling of the 4 MIMO mode that carries the scheduled non-pre-coded pilot state information sent by the RNC, and then The processing module 820 is configured to perform a 4-OFDM MIMO mode according to the configuration signaling, and acquires a scheduled non-pre-coded pilot state according to the scheduled non-pre-coded pilot state information.
  • the UE can acquire the scheduled non-precoded pilot state when configured in the 4-MIMO mode. Therefore, the base station is no longer required to transmit HS-SCCH signaling to inform the UE to schedule the activation or deactivation of the non-precoded pilot.
  • the user equipment of the embodiment of the present invention receives the 4-ary MIMO mode configuration signaling that carries the scheduled non-pre-coded pilot state information sent by the RNC, and configures the non-pre-coded pilot state according to the scheduling when configured in the 4-OFDM mode.
  • the information acquisition schedules the non-pre-coded pilot state, and prevents the base station from transmitting the HS-SCCH signaling to notify the UE to schedule the non-pre-coded pilot state, thereby reducing the physical layer signaling overhead and reducing the UE's acquisition of the 4-transmission MIMO mode.
  • the delay in encoding the pilot state is not limited to the pilot state.
  • the scheduling non-precoded pilot state information is that the base station is in the Transmitted after scheduling the non-precoded pilot state.
  • the receiving module 810 is further configured to: after the processing module 820 acquires the scheduled non-precoded pilot state according to the scheduled non-precoded pilot state information, receive the change schedule sent by the base station.
  • Non-precoding pilot state signaling the processing module 820 is further configured to: schedule non-precoded pilot state signaling according to the change, and change a scheduled non-precoded pilot state, where the change schedules a non-precoded pilot state message And transmitting, when the current scheduled non-precoded pilot state is inconsistent with the scheduled non-precoded pilot state acquired by the user equipment according to the scheduled non-precoded pilot state information.
  • User equipment 800 in accordance with an embodiment of the present invention may correspond to user equipment in a method of indicating a pilot state according to an embodiment of the present invention, and the above and other operations and/or functions of respective modules in user equipment 800 are respectively implemented in order to implement a map.
  • the corresponding processes of the respective methods in 1 to 9 are not described here.
  • FIG. 16 shows a schematic block diagram of a user equipment 900 in accordance with another embodiment of the present invention.
  • the user equipment 900 includes:
  • the receiving module 910 is configured to receive four-output multiple input multiple output MIMO mode configuration signaling sent by the radio network controller RNC.
  • the processing module 920 is configured to determine that the scheduled non-precoded pilot state is deactivated when configured according to the configuration signaling to the 4-MIMO mode.
  • the processing module 920 determines that the scheduled non-precoded pilot state is deactivated when configured in the 4-MIMO mode, that is, the UE determines that the initial state of scheduling the non-precoded pilot is deactivated.
  • the base station is not required to retransmit the HS-SCCH signaling to inform the UE to schedule the non-precoded pilot state.
  • the user equipment in the embodiment of the present invention determines that the scheduling non-precoded pilot state is deactivated when configured in the 4-MIMO mode, and reduces the base station transmitting the HS-SCCH signaling to notify the UE to schedule the non-precoded pilot state.
  • the probability of the physical layer signaling overhead is reduced, and the delay of scheduling the non-precoded pilot state in the 4-transmit MIMO mode is reduced.
  • the receiving module 910 is further configured to: after the processing module 920 determines that the scheduled non-precoded pilot state is deactivated, receive the change scheduled non-precoded pilot state signaling sent by the base station.
  • the processing module 920 is further configured to schedule the non-precoded pilot state signaling according to the change, and change the scheduled non-precoded pilot state to be activated, where the change scheduling non-precoded pilot state signaling is determined by the base station.
  • the current scheduled non-precoded pilot state is sent when activated.
  • User equipment 900 in accordance with an embodiment of the present invention may correspond to user equipment in a method of indicating a pilot state according to an embodiment of the present invention, and the above and other operations and/or functions of respective modules in user equipment 900 are respectively implemented in order to implement a map. 10 to the corresponding flow of each method in FIG. 12, for the sake of cleaning, no further details are provided herein.
  • FIG. 17 shows a schematic block diagram of a base station 1000 in accordance with another embodiment of the present invention.
  • the base station 1000 includes:
  • the determining module 1010 is configured to determine, after the user equipment UE is configured to perform a 4-MIMO mode and determine that the scheduling non-precoded pilot state is deactivated, determine that the current scheduled non-precoded pilot state is active;
  • the sending module 1020 is configured to send, to the UE, change scheduling non-pre-coded pilot state signaling, so that the UE changes the scheduled non-pre-coded pilot state to be activated.
  • the UE determines that the scheduled non-precoded pilot state is deactivated when configured in the 4-OFDM mode, and therefore, if the determining module 1010 determines that the current scheduled non-precoded pilot state is deactivated, the base station does not The HS-SCCH signaling needs to be sent to notify the UE to schedule the non-precoded pilot state. If the determining module 1010 determines that the current scheduled non-precoded pilot state is active, the sending module 1020 sends a change scheduled non-precoded pilot status message to the UE.
  • the HS-SCCH signaling is sent to notify the UE to schedule the non-precoded pilot state to be activated, so that the UE schedules the non-precoded pilot state signaling according to the change, and changes the scheduled non-precoded pilot state to be activated.
  • the base station 1000 may correspond to a base station in a method of indicating a pilot state according to an embodiment of the present invention, and the above and other operations and/or functions of respective modules in the base station 1000 are respectively implemented in order to implement FIG. 10 to FIG. The corresponding process of each method in 12, for the sake of cleaning, will not be repeated here.
  • FIG. 18 shows a schematic block diagram of a radio network controller 1100 in accordance with yet another embodiment of the present invention.
  • the radio network controller 1100 includes:
  • the receiver 1110 is configured to receive scheduled non-precoded pilot state information sent by the base station, where the scheduled non-precoded pilot state information indicates an active state or a deactivated state of the scheduled non-precoded pilot; and the processor 1120 is configured to determine 4 transmitting multiple input multiple output MIMO mode configuration signaling, where the configuration signaling carries the scheduled non-precoded pilot state information;
  • the transmitter 1130 is configured to send the configuration signaling to the user equipment UE, so that the UE acquires a scheduling non-precoded pilot state according to the scheduled non-precoded pilot state information when configured in a 4-OFDM mode.
  • the radio network controller of the embodiment of the present invention by transmitting, to the UE, the 4-input MIMO mode configuration signaling that carries the scheduled non-pre-coded pilot state information received by the RNC from the base station, may enable the UE to configure the 4-MIMO MIMO mode according to the Scheduling the non-precoded pilot state information to obtain the scheduling non-precoded pilot state, and avoiding the base station transmitting the HS-SCCH signaling to notify the UE to schedule the non-precoded pilot state, thereby reducing the physical layer signaling overhead and reducing the UE acquisition. Delay in scheduling non-precoded pilot states in MIMO mode.
  • the receiver 1110 is specifically configured to receive the scheduled non-precoded pilot state information that is sent by the base station after changing the scheduled non-precoded pilot state.
  • the radio network controller 1100 may correspond to a radio network controller in a method of indicating a pilot state according to an embodiment of the present invention, and the above and other operations of respective modules in the radio network controller 1100 and/or For the purpose of implementing the corresponding processes of the respective methods in FIG. 1 to FIG. 9 , the functions are not described herein.
  • FIG. 19 shows a schematic block diagram of a base station 1200 in accordance with yet another embodiment of the present invention. As shown in FIG. 19, the base station 1200 includes:
  • the processor 1210 is configured to determine scheduling non-precoded pilot state information, where the scheduled non-precoded pilot state information indicates that an active state or a deactivated state of the non-precoded pilot is scheduled;
  • the transmitter 1220 is configured to send the scheduled non-precoded pilot state information to the radio network controller RNC, so that the RNC sends, to the first user equipment UE, four multiple input multiple outputs that carry the scheduled non-precoded pilot state information.
  • the MIMO mode configures signaling to enable the first UE to acquire a scheduled non-precoded pilot state according to the scheduled non-precoded pilot state information when configured in a 4-OFDM mode.
  • the base station in the embodiment of the present invention by sending the scheduling non-pre-coded pilot state information to the RNC, may enable the RNC to send the OFDM mode configuration signaling carrying the scheduled non-pre-coded pilot state information to the UE, so that the UE is configured.
  • the overhead is reduced, and the delay of the UE acquiring the non-precoded pilot state in the 4-OFDM mode is reduced.
  • the transmitter 1220 is further configured to notify the second UE to change the scheduled non-precoded pilot state, before the processor 1210 determines the scheduled non-precoded pilot state information, where
  • the second UE represents a UE that has been configured to a 4-shot MIMO mode.
  • the transmitter 1220 is further configured to perform control on a wireless network.
  • the RNC After transmitting the scheduled non-precoded pilot state information, the RNC notifies that the current scheduled non-precoded pilot state is inconsistent with the scheduled non-precoded pilot state obtained by the first UE according to the scheduled non-precoded pilot state information.
  • the first UE changes the scheduled non-precoded pilot state.
  • the base station 1200 may correspond to a base station in a method for indicating a pilot state according to an embodiment of the present invention, and the above and other operations and/or functions of respective modules in the base station 1200 are respectively implemented in order to implement FIG. 1 to FIG. The corresponding process of each method in 9 is not repeated here.
  • FIG. 20 shows a schematic block diagram of a user equipment 1300 in accordance with yet another embodiment of the present invention. As shown in FIG. 20, the user equipment 1300 includes:
  • Receiver 1310 configured to receive four-output multiple input multiple output sent by the radio network controller RNC
  • the configuration signaling carries scheduled non-precoded pilot state information received by the RNC from the base station, and the scheduled non-precoded pilot state information indicates scheduling an activated state or a deactivated state of the non-precoded pilot;
  • the processor 1320 is configured to acquire a scheduling non-pre-coded pilot state according to the scheduled non-pre-coded pilot state information when configured according to the configuration signaling into a 4-MIMO mode.
  • the user equipment of the embodiment of the present invention obtains four-MIMO MIMO mode configuration signaling that carries the scheduled non-pre-coded pilot state information that is sent by the RNC, and is configured according to the scheduled non-pre-coded pilot state information when configured in the four-MIMO mode. Scheduling the non-pre-coded pilot state, avoiding the base station transmitting the HS-SCCH signaling to notify the UE to schedule the non-pre-coded pilot state, thereby reducing the physical layer signaling overhead and reducing the UE acquiring the 4-second MIMO mode scheduling non-precoding guide The delay of the frequency state.
  • the scheduling non-precoded pilot state information is sent by the base station after changing a scheduled non-precoded pilot state.
  • the receiver 1310 is further configured to: after the processor 1320 acquires the scheduled non-precoded pilot state according to the scheduled non-precoded pilot state information, receive the change schedule sent by the base station.
  • Non-precoded pilot state signaling the processor 1320 is further configured to: schedule non-precoded pilot state signaling according to the change, and change a scheduled non-precoded pilot state, where the change schedules a non-precoded pilot state signal And transmitting, when the current scheduled non-precoded pilot state is inconsistent with the scheduled non-precoded pilot state acquired by the user equipment according to the scheduled non-precoded pilot state information.
  • the user equipment 1300 may correspond to a user equipment in a method for indicating a pilot state according to an embodiment of the present invention, and the foregoing of each module in the user equipment 1300
  • FIG. 21 shows a schematic block diagram of a user equipment 1400 in accordance with yet another embodiment of the present invention.
  • the user equipment 1400 includes:
  • the receiver 1410 is configured to receive four-output multiple input multiple output sent by the radio network controller RNC.
  • the processor 1420 is configured to determine that the scheduled non-precoded pilot state is deactivated when configured according to the configuration signaling to the 4-MIMO mode.
  • the user equipment in the embodiment of the present invention determines that the scheduling non-precoding pilot state is deactivated when configured in the 4-MIMO mode, and reduces the probability that the base station sends the HS-SCCH signaling to notify the UE to schedule the non-precoded pilot state. Therefore, the physical layer signaling overhead can be reduced, and the delay of scheduling the non-precoded pilot state in the 4-transmit MIMO mode by the UE is reduced.
  • the receiver 1410 is further configured to: after the processor 1420 determines that the scheduled non-precoded pilot state is deactivated, receive the change scheduled non-precoded pilot state signaling sent by the base station.
  • the processor 1420 is further configured to schedule the non-precoded pilot state signaling according to the change, and change the scheduled non-precoded pilot state to be activated, where the change scheduling non-precoded pilot state signaling is determined by the base station.
  • the current scheduled non-precoded pilot state is sent when activated.
  • User equipment 1400 in accordance with an embodiment of the present invention may correspond to user equipment in a method of indicating a pilot state according to an embodiment of the present invention, and the above and other operations and/or functions of respective modules in user equipment 1400 are respectively implemented in order to implement a map 10 to the corresponding flow of each method in FIG. 12, for the sake of cleaning, no further details are provided herein.
  • FIG. 22 shows a schematic block diagram of a base station 1500 in accordance with yet another embodiment of the present invention. As shown in FIG. 22, the base station 1500 includes:
  • the processor 1510 is configured to determine, after the user equipment UE is configured to perform a 4-MIMO mode and determine that the scheduled non-precoded pilot state is deactivated, to determine that the current scheduled non-precoded pilot state is active, and the transmitter 1520 is configured to The UE sends a change scheduled non-precoded pilot state signaling such that the UE changes the scheduled non-precoded pilot state to be active.
  • the base station 1500 may correspond to a base station in a method of indicating a pilot state according to an embodiment of the present invention, and the above and other operations and/or functions of respective modules in the base station 1500 are respectively implemented in order to implement FIG. 10 to FIG. The corresponding process of each method in 12, for the sake of cleaning, will not be repeated here. It should be understood that a system including a radio network controller, a base station, or a user equipment in the foregoing embodiments should also be covered by the scope of the present invention.
  • the term "and/or” is merely an association relationship describing an associated object, indicating that there may be three relationships.
  • a and / or B can mean: A exists separately, there are A and B, and there are three cases of B alone.
  • the character " /" in this article generally indicates that the contextual object is an "or" relationship.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit, if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium. Based on such understanding, the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, and a read only memory (ROM,
  • RAM random access memory
  • disk disk or optical disk, etc., which can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种指示导频状态的方法、无线网络控制器、基站、用户设备和系统。该方法包括:RNC接收基站发送的调度非预编码导频状态信息,该调度非预编码导频状态信息指示调度非预编码导频的激活状态或去激活状态;该RNC向UE发送4发MIMO模式配置信令,该配置信令携带该调度非预编码导频状态信息,使得该UE在配置为4发MIMO模式时根据该调度非预编码导频状态信息获取调度非预编码导频状态。本发明实施例的指示导频状态的方法、无线网络控制器、基站、用户设备和系统,能够降低物理层信令开销,并降低UE获取4发MIMO模式下调度非预编码导频状态的时延。

Description

指示导频状态的方法和设备 技术领域
本发明涉及通信领域, 并且更具体地, 涉及指示导频状态的方法、 无线 网络控制器、 基站、 用户设备和系统。 背景技术
宽带码分多址 ( Wideband Code Division Multiple Access , 筒称为 "WCDMA" ) 为目前广泛使用的无线通信技术, 由第三代移动通信伙伴计划 ( 3rd Generation Partnership Project, 筒称为 "3GPP" )负责制定, 并处于持续 演进中。 在 WCDMA协议 Rel-5版本及后续版本中, 引入了高速数据接入 ( High Speed Packet Access , 筒称为 "HSPA" )技术, 用以支持更高的数据业 务传输。 目前 HSPA正在向 HSPA+等方向演进, 包含支持更高阶的多输入多 输出 ( Multiple Input Multiple Output, 筒称为 "MIMO" )技术, 以及更多载波 聚合等关键技术。
下行 4天线 MIMO在 3GPP无线接入网络( Radio Access Network, 筒 称为" RAN" ) #53次会议讨论立项, 旨在进一步提高小区吞吐量。 在已经支 持的下行 2 发 MIMO 系统中, 主公共导频信道 ( Primary Common Pilot Channel, 筒称为 "P-CPICH" )和辅公共导频信道 ( Secondary Common Pilot Channel , 筒称为 "S-CPICH" ) 用来支持信道状态信息 ( Channel Status Information, 筒称为 "CSI" )估计和数据解调。 而在下行 4发 MIMO中, 可 能支持更多的 S-CPICH信道, 用来做 CSI估计; 并支持调度非预编码导频 ( Scheduled non-precoded pilot, 也可称为调度导频或解调公共导频)用作数 据解调。 调度非预编码导频仅在数据传输的时候发送, 由于调度非预编码导 频往往比天线 3和天线 4上发送的公共导频功率更高,从而有助于用户设备 ( User Equipment, 筒称为" UE" )利用调度非预编码导频进行更加准确的信 道估计, 以利于得到更好的数据解调性能。
在某些条件下,如 UE的信干噪比( Signal to Interference plus Noise Ratio, 筒称为 "SINR" )较低的场景, 调度非预编码导频对 4发 MIMO UE性能提升 不大, 因此可以在这种情况下不发送调度非预编码导频, 从而降低对其它 UE的干扰, 尤其是不支持 4发 MIMO的终端, 由于调度非预编码导频对它 们是纯干扰, 这种情况下不发调度非预编码导频就能在一定程度上提高不支 持 4发 MIMO终端的性能。
3GPP 达成一致, 调度非预编码导频可通过高速下行共享信道(High Speed Downlink Shared Channel,筒称为 "HS-DSCH" )的共享控制信道( Shared Control Channel for HS-DSCH, 筒称为 "HS-SCCH" )信令激活或去激活。 如 果网络基于某种条件, 如 4发 MIMO UE的信噪比较低, 判定调度非预编码 导频可以不发, 则可通过 HS-SCCH信令去激活调度非预编码导频; 反之, 则可以通过 HS-SCCH信令激活调度非预编码导频。
目前当小区配置下行 4发 MIMO时, UE初始不知道调度非预编码导频 是激活还是去激活。 UE获知调度非预编码导频是激活还是去激活状态, 有 利于 UE准确的利用调度非预编码导频存在的信息,提高 4发 MIMO数据检 测的精度。 由于调度非预编码导频是否激活由基站决定, 并且是个典型地小 区级参数, 可由多个 UE的情况来确定。 因此 UE被无线网络控制器(Radio Network Controller, 筒称为 "RNC" )配置为下行 MIMO状态时, 调度非预编 码导频是激活还是去激活皆有可能。
UE无法根据基站的实际状态判定调度非预编码导频是激活还是去激活 状态。 基站几乎每次在 UE配置下行 4发 MIMO时, 都需要发送 HS-SCCH 信令来通知 UE调度非预编码导频的激活或去激活状态。 因此, 需要很多 HS-SCCH信令来完成这个功能, 增加了物理层动态信令的开销; 而且, 由 于基站发送 HS-SCCH信令后需要等待 UE发送确认(Acknowledgment, 筒 称为" ACK" )后才能给 4发 MIMO UE调度数据, 也带来调度上的时延。 发明内容
本发明实施例提供了一种指示导频状态的方法、无线网络控制器、基站、 用户设备和系统, 能够降低物理层信令开销。
第一方面, 提供了一种指示导频状态的方法, 包括: 无线网络控制器 RNC接收基站发送的调度非预编码导频状态信息, 该调度非预编码导频状 态信息指示调度非预编码导频的激活状态或去激活状态; 该 RNC向用户设 备 UE发送 4发多输入多输出 MIMO模式配置信令,该配置信令携带该调度 非预编码导频状态信息,使得该 UE在配置为 4发 MIMO模式时根据该调度 非预编码导频状态信息获取调度非预编码导频状态。 在第一种可能的实现方式中, 无线网络控制器 RNC接收基站发送的调 度非预编码导频状态信息, 具体实现为: 该 RNC接收该基站在改变调度非 预编码导频状态后发送的该调度非预编码导频状态信息。
第二方面, 提供了一种指示导频状态的方法, 包括: 基站向无线网络控 制器 RNC发送调度非预编码导频状态信息, 该调度非预编码导频状态信息 指示调度非预编码导频的激活状态或去激活状态, 使得该 RNC向第一用户 设备 UE发送携带该调度非预编码导频状态信息的 4发多输入多输出 MIMO 模式配置信令,以使该第一 UE在配置为 4发 MIMO模式时根据该调度非预 编码导频状态信息获取调度非预编码导频状态。
在第一种可能的实现方式中, 在该基站向无线网络控制器 RNC发送调 度非预编码导频状态信息之前, 该方法还包括: 该基站通知第二 UE改变调 度非预编码导频状态, 其中, 该第二 UE表示已配置为 4发 MIMO模式的 UE。
在第二种可能的实现方式中, 结合第二方面或第二方面的第一种可能的 实现方式, 在该基站向无线网络控制器 RNC发送调度非预编码导频状态信 息之后, 该方法还包括: 在当前调度非预编码导频状态与该第一 UE根据该 调度非预编码导频状态信息获取的调度非预编码导频状态不一致时, 该基站 通知该第一 UE改变调度非预编码导频状态。
第三方面, 提供了一种指示导频状态的方法, 包括: 用户设备 UE接收 无线网络控制器 RNC发送的 4发多输入多输出 MIMO模式配置信令, 该配 置信令携带该 RNC从基站接收的调度非预编码导频状态信息, 该调度非预 编码导频状态信息指示调度非预编码导频的激活状态或去激活状态; 该 UE 在根据该配置信令配置为 4发 MIMO模式时, 根据该调度非预编码导频状 态信息获取调度非预编码导频状态。
在第一种可能的实现方式中, 该调度非预编码导频状态信息为该基站在 改变调度非预编码导频状态后发送的。
在第二种可能的实现方式中, 结合第三方面或第三方面的第一种可能的 实现方式, 在该 UE根据该调度非预编码导频状态信息获取调度非预编码导 频状态之后, 该方法还包括: 该 UE接收该基站发送的改变调度非预编码导 频状态信令, 并根据该改变调度非预编码导频状态信令, 改变调度非预编码 导频状态, 其中, 该改变调度非预编码导频状态信令为该基站在当前调度非 预编码导频状态与该 UE根据该调度非预编码导频状态信息获取的调度非预 编码导频状态不一致时发送的。
第四方面, 提供了一种指示导频状态的方法, 包括: 用户设备 UE接收 无线网络控制器 RNC发送的 4发多输入多输出 MIMO模式配置信令; 该 UE在根据该配置信令配置为 4发 MIMO模式时, 确定调度非预编码导频状 态为去激活。
在第一种可能的实现方式中, 在该 UE确定调度非预编码导频状态为去 激活之后, 该方法还包括: 该 UE接收基站发送的改变调度非预编码导频状 态信令, 并根据该改变调度非预编码导频状态信令, 改变调度非预编码导频 状态为激活, 其中, 该改变调度非预编码导频状态信令为该基站在确定当前 调度非预编码导频状态为激活时发送的。
第五方面, 提供了一种指示导频状态的方法, 包括: 基站在用户设备
UE配置为 4发 MIMO模式并确定调度非预编码导频状态为去激活之后, 若 确定当前调度非预编码导频状态为激活, 则向该 UE发送改变调度非预编码 导频状态信令, 使得该 UE改变调度非预编码导频状态为激活。
第六方面, 提供了一种无线网络控制器, 包括: 接收模块, 用于接收基 站发送的调度非预编码导频状态信息, 该调度非预编码导频状态信息指示调 度非预编码导频的激活状态或去激活状态; 发送模块, 用于向用户设备 UE 发送 4发多输入多输出 MIMO模式配置信令, 该配置信令携带该调度非预 编码导频状态信息,使得该 UE在配置为 4发 MIMO模式时根据该调度非预 编码导频状态信息获取调度非预编码导频状态。
在第一种可能的实现方式中, 该接收模块具体用于接收该基站在改变调 度非预编码导频状态后发送的该调度非预编码导频状态信息。
第七方面, 提供了一种基站, 包括: 确定模块, 用于确定调度非预编码 导频状态信息,该调度非预编码导频状态信息指示调度非预编码导频的激活 状态或去激活状态; 发送模块, 用于向无线网络控制器 RNC发送该调度非 预编码导频状态信息, 使得该 RNC向第一用户设备 UE发送携带该调度非 预编码导频状态信息的 4发多输入多输出 MIMO模式配置信令, 以使该第 一 UE在配置为 4发 MIMO模式时根据该调度非预编码导频状态信息获取调 度非预编码导频状态。
在第一种可能的实现方式中, 该发送模块还用于在该确定模块确定该调 度非预编码导频状态信息之前, 通知第二 UE改变调度非预编码导频状态, 其中, 该第二 UE表示已配置为 4发 MIMO模式的 UE。
在第二种可能的实现方式中, 结合第七方面或第七方面的第一种可能的 实现方式, 该发送模块还用于在该向无线网络控制器 RNC发送调度非预编 码导频状态信息之后, 在当前调度非预编码导频状态与该第一 UE根据该调 度非预编码导频状态信息获取的调度非预编码导频状态不一致时,通知该第 一 UE改变调度非预编码导频状态。
第八方面, 提供了一种用户设备, 包括: 接收模块, 用于接收无线网络 控制器 RNC发送的 4发多输入多输出 MIMO模式配置信令, 该配置信令携 带该 RNC从基站接收的调度非预编码导频状态信息, 该调度非预编码导频 状态信息指示调度非预编码导频的激活状态或去激活状态; 处理模块, 用于 在根据该配置信令配置为 4发 MIMO模式时, 根据该调度非预编码导频状 态信息获取调度非预编码导频状态。
在第一种可能的实现方式中, 该调度非预编码导频状态信息为该基站在 改变调度非预编码导频状态后发送的。
在第二种可能的实现方式中, 结合第八方面或第八方面的第一种可能的 实现方式, 该接收模块还用于在该处理模块根据该调度非预编码导频状态信 息获取调度非预编码导频状态之后,接收该基站发送的改变调度非预编码导 频状态信令, 该处理模块还用于根据该改变调度非预编码导频状态信令, 改 变调度非预编码导频状态, 其中, 该改变调度非预编码导频状态信令为该基 站在当前调度非预编码导频状态与该用户设备根据该调度非预编码导频状 态信息获取的调度非预编码导频状态不一致时发送的。
第九方面, 提供了一种用户设备, 包括: 接收模块, 用于接收无线网络 控制器 RNC发送的 4发多输入多输出 MIMO模式配置信令; 处理模块, 用 于在根据该配置信令配置为 4发 MIMO模式时, 确定调度非预编码导频状 态为去激活。
在第一种可能的实现方式中, 该接收模块还用于在该处理模块确定调度 非预编码导频状态为去激活之后,接收基站发送的改变调度非预编码导频状 态信令, 该处理模块还用于根据该改变调度非预编码导频状态信令, 改变调 度非预编码导频状态为激活, 其中, 该改变调度非预编码导频状态信令为该 基站在确定当前调度非预编码导频状态为激活时发送的。 第十方面, 提供了一种基站, 包括: 确定模块, 用于在用户设备 UE配 置为 4发 MIMO模式并确定调度非预编码导频状态为去激活之后, 确定当 前调度非预编码导频状态为激活; 发送模块, 用于向该 UE发送改变调度非 预编码导频状态信令, 使得该 UE改变调度非预编码导频状态为激活。
第十一方面, 提供了一种无线网络控制器, 包括: 接收器, 用于接收基 站发送的调度非预编码导频状态信息, 该调度非预编码导频状态信息指示调 度非预编码导频的激活状态或去激活状态; 处理器, 用于确定 4发多输入多 输出 MIMO模式配置信令, 该配置信令携带该调度非预编码导频状态信息; 发送器, 用于向用户设备 UE发送该配置信令, 使得该 UE在配置为 4发 MIMO模式时根据该调度非预编码导频状态信息获取调度非预编码导频状 态。
在第一种可能的实现方式中, 该接收器具体用于接收该基站在改变调度 非预编码导频状态后发送的该调度非预编码导频状态信息。
第十二方面, 提供了一种基站, 包括: 处理器, 用于确定调度非预编码 导频状态信息,该调度非预编码导频状态信息指示调度非预编码导频的激活 状态或去激活状态; 发送器, 用于向无线网络控制器 RNC发送该调度非预 编码导频状态信息, 使得该 RNC向第一用户设备 UE发送携带该调度非预 编码导频状态信息的 4发多输入多输出 MIMO模式配置信令, 以使该第一 UE在配置为 4发 MIMO模式时根据该调度非预编码导频状态信息获取调度 非预编码导频状态。
在第一种可能的实现方式中, 该发送器还用于在该处理器确定该调度非 预编码导频状态信息之前,通知第二 UE改变调度非预编码导频状态,其中, 该第二 UE表示已配置为 4发 MIMO模式的 UE。
在第二种可能的实现方式中, 结合第十二方面或第十二方面的第一种可 能的实现方式, 该发送器还用于在该向无线网络控制器 RNC发送调度非预 编码导频状态信息之后, 在当前调度非预编码导频状态与该第一 UE根据该 调度非预编码导频状态信息获取的调度非预编码导频状态不一致时,通知该 第一 UE改变调度非预编码导频状态。
第十三方面, 提供了一种用户设备, 包括: 接收器, 用于接收无线网络 控制器 RNC发送的 4发多输入多输出 MIMO模式配置信令, 该配置信令携 带该 RNC从基站接收的调度非预编码导频状态信息, 该调度非预编码导频 状态信息指示调度非预编码导频的激活状态或去激活状态; 处理器, 用于在 根据该配置信令配置为 4发 MIMO模式时, 根据该调度非预编码导频状态 信息获取调度非预编码导频状态。
在第一种可能的实现方式中, 该调度非预编码导频状态信息为该基站在 改变调度非预编码导频状态后发送的。
在第二种可能的实现方式中, 结合第十三方面或第十三方面的第一种可 能的实现方式,该接收器还用于在该处理器根据该调度非预编码导频状态信 息获取调度非预编码导频状态之后,接收该基站发送的改变调度非预编码导 频状态信令, 该处理器还用于根据该改变调度非预编码导频状态信令, 改变 调度非预编码导频状态, 其中, 该改变调度非预编码导频状态信令为该基站 在当前调度非预编码导频状态与该用户设备根据该调度非预编码导频状态 信息获取的调度非预编码导频状态不一致时发送的。
第十四方面, 提供了一种用户设备, 包括: 接收器, 用于接收无线网络 控制器 RNC发送的 4发多输入多输出 MIMO模式配置信令; 处理器, 用于 在根据该配置信令配置为 4发 MIMO模式时, 确定调度非预编码导频状态 为去激活。
在第一种可能的实现方式中, 该接收器还用于在该处理器确定调度非预 编码导频状态为去激活之后,接收基站发送的改变调度非预编码导频状态信 令, 该处理器还用于根据该改变调度非预编码导频状态信令, 改变调度非预 编码导频状态为激活, 其中, 该改变调度非预编码导频状态信令为该基站在 确定当前调度非预编码导频状态为激活时发送的。
第十五方面, 提供了一种基站, 包括: 处理器, 用于在用户设备 UE配 置为 4发 MIMO模式并确定调度非预编码导频状态为去激活之后, 确定当 前调度非预编码导频状态为激活; 发送器, 用于向该 UE发送改变调度非预 编码导频状态信令, 使得该 UE改变调度非预编码导频状态为激活。
第十六方面, 提供了一种系统, 该系统包括第六方面或第六方面的第一 种可能的实现方式中的无线网络控制器, 第七方面或第七方面的第一种或第 二种可能的实现方式中的基站, 以及第八方面或第八方面的第一种或第二种 可能的实现方式中的用户设备。
第十七方面, 提供了一种系统, 该系统包括第九方面或第九方面的第一 种可能的实现方式中的用户设备, 以及第十方面中的基站。 基于上述技术方案, 本发明实施例的指示导频状态的方法、 无线网络控 制器、 基站, 用户设备和系统, 通过 RNC向 UE发送携带 RNC从基站接收 的调度非预编码导频状态信息的 4发 MIMO模式配置信令,可以使 UE在配 置为 4发 MIMO模式时根据该调度非预编码导频状态信息获取调度非预编 码导频状态, 降低基站发送 HS-SCCH信令通知 UE调度非预编码导频状态 的概率,从而能够降低物理层信令开销, 并降低 UE获取 4发 MIMO模式下 调度非预编码导频状态的时延。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是根据本发明实施例的指示导频状态的方法的示意性流程图。
图 2是下行 4发 MIMO导频与数据发送示意图。
图 3是根据本发明实施例的指示导频状态的方法的另一示意性流程图。 图 4是根据本发明另一实施例的指示导频状态的方法的示意性流程图。 图 5是根据本发明另一实施例的指示导频状态的方法的另一示意性流程 图。
图 6是根据本发明另一实施例的指示导频状态的方法的又一示意性流程 图。
图 7是根据本发明又一实施例的指示导频状态的方法的示意性流程图。 图 8是根据本发明又一实施例的指示导频状态的方法的另一示意性流程 图。
图 9是根据本发明实施例的指示导频状态的方法的示意图。
图 10是根据本发明又一实施例的指示导频状态的方法的示意性流程图。 图 11是根据本发明又一实施例的指示导频状态的方法的另一示意性流 程图。
图 12是根据本发明又一实施例的指示导频状态的方法的示意性流程图。 图 13是根据本发明实施例的无线网络控制器的示意性框图。
图 14是根据本发明实施例的基站的示意性框图。 图 15是根据本发明实施例的用户设备的示意性框图。
图 16是根据本发明另一实施例的用户设备的示意性框图。
图 17是根据本发明另一实施例的基站的示意性框图。
图 18是根据本发明又一实施例的无线网络控制器的示意性框图。
图 19是根据本发明又一实施例的基站的示意性框图。
图 20是根据本发明又一实施例的用户设备的示意性框图。
图 21是根据本发明又一实施例的用户设备的示意性框图。
图 22是根据本发明又一实施例的基站的示意性框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
应理解, 本发明实施例的技术方案可以应用于各种通信系统, 例如: 全 球移动通讯( Global System of Mobile communication , 筒称为 "GSM" )系统、 码分多址(Code Division Multiple Access, 筒称为 "CDMA" ) 系统、 宽带码 分多址( Wideband Code Division Multiple Access , 筒称为 "WCDMA" )系统、 通用分组无线业务(General Packet Radio Service, 筒称为 "GPRS" )、 长期演 进(Long Term Evolution, 筒称为 "LTE" ) 系统、 LTE频分双工 (Frequency Division Duplex,筒称为" FDD" )系统、 LTE 时分双工( Time Division Duplex, 筒称为 "TDD" )、 通用移动通信系统 ( Universal Mobile Telecommunication System, 筒称为 "UMTS" ),全球互联微波接入( Worldwide Interoperability for Microwave Access , 筒称为 "WiMAX" )通信系统等。
还应理解,在本发明实施例中,用户设备( User Equipment,筒称为 "UE" ) 可称之为终端 ( Terminal ), 移动台 ( Mobile Station, 筒称为 "MS" )、 移动终 端 (Mobile Terminal ) 等, 该用户设备可以经无线接入网 (Radio Access Network, 筒称为 "RAN" ) 与一个或多个核心网进行通信, 例如, 用户设备 可以是移动电话(或称为"蜂窝"电话)、 具有移动终端的计算机等, 例如, 用户设备还可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动 装置, 它们与无线接入网交换语音和 /或数据。 在本发明实施例中, 基站可以是 GSM 或 CDMA 中的基站 (Base Transceiver Station , 筒称为 "BTS" ), 也可以是 WCDMA中的基站( NodeB , 筒称为 "NB" ), 还可以是 LTE中的演进型基站(Evolutional Node B, 筒称为 'ΈΝΒ或 e-NodeB" ), 本发明并不限定。 但为描述方便, 下述实施例将以基 站 NodeB和用户设备 UE为例进行说明。
在本发明实施例中,调度非预编码导频也称为调度导频、解调公共导频, 为描述方便, 下述实施例以调度非预编码导频为例进行说明。
图 1示出了根据本发明实施例的指示导频状态的方法 100的示意性流程 图。 如图 1所示, 该方法 100包括:
S110, 无线网络控制器 RNC接收基站发送的调度非预编码导频状态信 息, 该调度非预编码导频状态信息指示调度非预编码导频的激活状态或去激 活状态;
S120, 该 RNC向用户设备 UE发送 4发多输入多输出 MIMO模式配置 信令, 该配置信令携带该调度非预编码导频状态信息, 使得该 UE在配置为 4发 MIMO模式时根据该调度非预编码导频状态信息获取调度非预编码导频 状态。
4发 MIMO模式支持调度非预编码导频用作数据解调。 如图 2所示, 天 线 3和天线 4不但可以发送公共导频, 即 S-CPICH2和 S-CPICH3 , 还可以 发送调度非预编码导频。 由于调度非预编码导频往往比天线 3和天线 4上发 送的公共导频功率更高, 从而有助于 UE利用调度非预编码导频进行更加准 确的信道估计, 得到更好的数据解调性能。 然而, 在信噪比较低的场景, 调 度非预编码导频对 4发 MIMO UE性能提升不大, 因此可以在这种情况下不 发送调度非预编码导频, 以降低对其它 UE的干扰。 基站可以根据小区的情 况决定是否激活调度非预编码导频,这样,调度非预编码导频状态就有两种, 即激活状态和去激活状态。 在本发明实施例中, 为了使 UE在配置为 4发 MIMO模式时获知调度非预编码导频状态, RNC首先接收基站发送的调度 非预编码导频状态信息,该调度非预编码导频状态信息指示调度非预编码导 频的激活状态或去激活状态, 然后, RNC向 UE发送携带该调度非预编码导 频状态信息的 4发 MIMO模式配置信令, 使得该 UE在配置为 4发 MIMO 模式时根据该调度非预编码导频状态信息获取调度非预编码导频状态。 由于 UE在配置为 4发 MIMO模式时就能从该调度非预编码导频状态信息中获取 调度非预编码导频状态, 因此, 基站不需要再发送 HS-SCCH信令通知 UE 调度非预编码导频的激活或去激活状态。
这样, 本发明实施例的指示导频状态的方法, 通过 RNC向 UE发送携 带 RNC从基站接收的调度非预编码导频状态信息的 4发 MIMO模式配置信 令,可以使 UE在配置为 4发 MIMO模式时根据该调度非预编码导频状态信 息获取调度非预编码导频状态, 避免了基站发送 HS-SCCH信令通知 UE调 度非预编码导频状态, 从而能够降低物理层信令开销, 并降低 UE获取 4发 MIMO模式下调度非预编码导频状态的时延。
在 S110中, RNC接收基站发送的调度非预编码导频状态信息。
具体而言, 基站通过 Iub 口信令将调度非预编码导频状态信息发送给
RNC。 例如, 基站通过 Iub口信令中 1个比特或 1个信元表示调度非预编码 导频状态信息, 即利用 Iub口信令中 1个比特或 1个信元指示调度非预编码 导频为激活状态或去激活状态。 RNC通过该 Iub口信令接收到该调度非预编 码导频状态信息。
在 S120中, RNC向 UE发送 4发 MIMO模式配置信令, 该配置信令携 带该调度非预编码导频状态信息。
具体而言, RNC通过无线资源控制 (Radio Resource Control, 筒称为 "RRC" )信令将 UE配置为 4发 MIMO模式, RNC在 RRC信令中携带先前 从基站接收的调度非预编码导频状态信息。 例如, RNC通过 RRC信令中 1 个比特或 1个信元表示该调度非预编码导频状态信息,即利用 RRC信令中 1 个比特或 1 个信元指示调度非预编码导频为激活状态或去激活状态。 由于 RRC信令中携带了调度非预编码导频状态信息, UE可以在 4发 MIMO模式 配置成功的同时,获知调度非预编码导频的激活状态或者去激活状态。这样, 基站可以在 4发 MIMO模式配置成功的同时使用 4发 MIMO调度数据, UE 也可以根据获知的调度非预编码导频的激活状态或去激活状态,相应地使用 或不使用调度非预编码导频解调 4发 MIMO数据, 因此, 降低了调度上的 时延。 并且, 使用 RRC信令来承载调度非预编码导频状态, 也避免了基站 发送物理层信令通知调度非预编码导频的激活状态或去激活状态, 节省了物 理层信令开销。
在本发明实施例中, 如图 3所示, 可选地, S110包括:
S111 , 该 RNC接收该基站在改变调度非预编码导频状态后发送的该调 度非预编码导频状态信息。
具体而言, 调度非预编码导频是否激活由基站决定, 换句话说, 基站根 据小区状况可能会改变调度非预编码导频状态, 即通过 HS-SCCH信令通知 当前已配置 4发 MIMO模式的 UE改变调度非预编码导频状态。基站在改变 的调度非预编码导频状态通知给 RNC, 这样, RNC在为之后的 UE配置 4 发 MIMO时, 就能把当前的调度非预编码导频状态传输给该 UE。
应理解, 若基站一直没有改变调度非预编码导频状态, 则基站一开始确 定的调度非预编码导频状态就是当前的调度非预编码导频状态, 也就是说, 基站一开始发送给 RNC的调度非预编码导频状态信息就指示当前的调度非 预编码导频状态。
本发明实施例的指示导频状态的方法, 通过 RNC向 UE发送携带 RNC 从基站接收的调度非预编码导频状态信息的 4发 MIMO模式配置信令, 可 以使 UE在配置为 4发 MIMO模式时获取调度非预编码导频状态,避免了基 站发送 HS-SCCH信令通知 UE调度非预编码导频状态, 从而能够降低物理 时延。
上文中结合图 1至图 3, 从 RNC的角度详细描述了指示导频状态的方 法, 下面将结合图 4至图 6, 从基站的角度详细描述指示导频状态的方法。
图 4示出了根据本发明另一实施例的指示导频状态的方法 200的示意性 流程图。 如图 4所示, 该方法 200包括:
S210, 基站向无线网络控制器 RNC发送调度非预编码导频状态信息, 该调度非预编码导频状态信息指示调度非预编码导频的激活状态或去激活 状态, 使得该 RNC向第一用户设备 UE发送携带该调度非预编码导频状态 信息的 4发多输入多输出 MIMO模式配置信令, 以使该第一 UE在配置为 4 发 MIMO模式时根据该调度非预编码导频状态信息获取调度非预编码导频 状态。
在本发明实施例中, 第一 UE表示待配置为 4发 MIMO模式的 UE。 为 了使第一 UE在配置为 4发 MIMO模式时获知调度非预编码导频状态,基站 向 RNC发送调度非预编码导频状态信息, 该调度非预编码导频状态信息指 示调度非预编码导频的激活状态或去激活状态, 这样, RNC向第一 UE发送 携带该调度非预编码导频状态信息的 4发 MIMO模式配置信令, 从而使第 一 UE在配置为 4发 MIMO模式时根据该调度非预编码导频状态信息获取调 度非预编码导频状态。 因此,基站不需要再发送 HS-SCCH信令通知第一 UE 调度非预编码导频的激活或去激活状态, 并且, 基站可以在 4发 MIMO模 式配置成功的同时使用 4发 MIMO调度数据,第一 UE也可以根据获知的调 度非预编码导频的激活状态或去激活状态,相应地使用或不使用调度非预编 码导频解调 4发 MIMO数据, 因此, 降低了调度上的时延。
具体而言, 基站将调度非预编码导频状态信息通过 Iub 口信令发送给 RNC。 例如, 基站通过 Iub口信令中 1个比特或 1个信元表示调度非预编码 导频状态信息, 即利用 Iub口信令中 1个比特或 1个信元指示调度非预编码 导频为激活状态或去激活状态。
这样, 本发明实施例的指示导频状态的方法, 通过基站向 RNC发送调 度非预编码导频状态信息, 可以使 RNC向 UE发送携带该调度非预编码导 频状态信息的 4发 MIMO模式配置信令, 以使 UE在配置为 4发 MIMO模 式时根据该调度非预编码导频状态信息获取调度非预编码导频状态,避免了 基站发送 HS-SCCH信令通知 UE调度非预编码导频状态, 从而能够降低物 理层信令开销,并降低 UE获取 4发 MIMO模式下调度非预编码导频状态的 时延。
在本发明实施例中, 如图 5所示, 可选地, 在 S210之前, 该方法 200 还包括:
S220, 该基站通知第二 UE改变调度非预编码导频状态, 其中, 该第二 UE表示已配置为 4发 MIMO模式的 UE。
具体而言, 基站根据小区状况可能会改变调度非预编码导频状态。 基站 在确定改变调度非预编码导频状态时通过 HS-SCCH信令通知第二 UE, 即 已配置为 4发 MIMO模式的 UE, 改变调度非预编码导频状态。 并且, 基站 发送调度非预编码导频状态信息给 RNC, 把最新的调度非预编码导频状态 通知给 RNC, 这样, RNC在为第一 UE配置 4发 MIMO时, 就能把当前的 调度非预编码导频状态传输给该 UE。
在本发明实施例中, 如图 6所示, 可选地, 在 S210之后, 该方法 200 还包括:
S230, 在当前调度非预编码导频状态与该第一 UE根据该调度非预编码 导频状态信息获取的调度非预编码导频状态不一致时, 该基站通知该第一
UE改变调度非预编码导频状态。
具体而言, RNC将第一 UE配为 4发 MIMO模式是通过 RRC信令, 其 下发时间可能长达数百 ms, 在 RNC下发 RRC信令配置 4发 MIMO模式过 程中, 基站可能改变了其调度非预编码导频状态, 即在第一 UE配置为 4发 MIMO模式后, 可能会出现当前调度非预编码导频状态与第一 UE根据该调 度非预编码导频状态信息获取的调度非预编码导频状态不一致的情况。在这 种情况下, 基站可以再通知第一 UE改变调度非预编码导频状态, 即基站可 以再通过 HS-SCCH信令通知第一 UE正确的调度非预编码导频状态。然而, 由于基站需要考虑整个小区的情况来判定调度非预编码导频的激活与去激 活, 所以调度非预编码导频状态改变不会频繁发生, 而在 RNC下发 RRC信 令配置 4发 MIMO模式的过程中, 基站改变其调度非预编码导频状态的概 率会更低, 所以这种情况不会频繁地发生。
本发明实施例的指示导频状态的方法, 通过基站向 RNC发送调度非预 编码导频状态信息, 可以使 RNC向 UE发送携带该调度非预编码导频状态 信息的 4发 MIMO模式配置信令, 以使 UE在配置为 4发 MIMO模式时获 取调度非预编码导频状态, 降低了基站发送 HS-SCCH信令通知 UE调度非 预编码导频状态的概率, 从而能够降低物理层信令开销, 并降低 UE获取调 度非预编码导频状态的时延而降低调度上的时延。
应理解, 在本发明实施例中, RNC侧描述的 RNC、 基站和 UE的交互 及相关特性、 功能等与基站侧的描述相应, 为了筒洁, 在此不再赘述。
上文中结合图 1至图 3, 从 RNC的角度详细描述了指示导频状态的方 法, 结合图 4至图 6, 从基站的角度详细描述了指示导频状态的方法, 下面 将结合图 7和图 8, 从 UE的角度详细描述指示导频状态的方法。
图 7示出了根据本发明又一实施例的指示导频状态的方法 300的示意性 流程图。 如图 7所示, 该方法 300包括:
S310, 用户设备 UE接收无线网络控制器 RNC发送的 4发多输入多输 出 MIMO模式配置信令, 该配置信令携带该 RNC从基站接收的调度非预编 码导频状态信息, 该调度非预编码导频状态信息指示调度非预编码导频的激 活状态或去激活状态;
S320,该 UE在根据该配置信令配置为 4发 MIMO模式时,根据该调度 非预编码导频状态信息获取调度非预编码导频状态。
现有技术中, UE在刚配置为 4发 MIMO模式时, 不知道调度非预编码 导频是激活还是非激活, 因此还需要基站发送 HS-SCCH信令通知 UE调度 非预编码导频状态。 在本发明实施例中, 在基站向 RNC发送调度非预编码 导频状态信息后, UE接收 RNC发送的携带该调度非预编码导频状态信息的 4发 MIMO模式的配置信令,然后 UE根据该配置信令配置为 4发 MIMO模 式,并根据该调度非预编码导频状态信息获取调度非预编码导频状态。这样, UE在配置为 4发 MIMO模式时就能获取调度非预编码导频状态。 因此, 不 再需要基站发送 HS-SCCH信令通知 UE调度非预编码导频的激活或去激活 状态。
具体而言, UE接收 RNC通过 RRC信令发送的 4发 MIMO模式配置信 令。 RNC在 RRC信令中携带先前从基站接收的调度非预编码导频状态信息。 例如, RNC通过 RRC信令中 1个比特或 1个信元表示该调度非预编码导频 状态信息, 即利用 RRC信令中 1个比特或 1个信元指示调度非预编码导频 为激活状态或去激活状态。 由于 RRC信令中携带了调度非预编码导频状态 信息, UE在 4发 MIMO模式配置成功的同时, 就能获知调度非预编码导频 的激活状态或者去激活状态。 这样, 基站可以在 4发 MIMO模式配置成功 的同时使用 4发 MIMO调度数据, UE也可以根据获知的调度非预编码导频 的激活状态或去激活状态,相应地使用或不使用调度非预编码导频解调 4发 MIMO数据, 因此, 降低了调度上的时延。
因此, 本发明实施例的指示导频状态的方法, 通过 UE接收 RNC发送 的携带调度非预编码导频状态信息的 4发 MIMO模式配置信令,以及 UE在 配置为 4发 MIMO模式时根据该调度非预编码导频状态信息获取调度非预 编码导频状态, 避免了基站发送 HS-SCCH信令通知 UE调度非预编码导频 状态,从而能够降低物理层信令开销, 并降低 UE获取 4发 MIMO模式下调 度非预编码导频状态的时延。
在本发明实施例中, 可选地, 该调度非预编码导频状态信息为该基站在 改变调度非预编码导频状态后发送的。
基站根据小区状况可能会改变调度非预编码导频状态, 即通过 HS-SCCH信令通知已配置为 4发 MIMO模式的 UE改变调度非预编码导频 给 RNC,把最新的调度非预编码导频状态通知给 RNC,这样,通过接收 RNC 发送的携带调度非预编码导频状态信息的配置信令 , UE在配置为 4发 MIMO 模式时, 就能获取当前的调度非预编码导频状态。
在本发明实施例中, 如图 8所示, 可选地, 在 S320之后, 该方法 300 还包括:
S330, 该 UE接收该基站发送的改变调度非预编码导频状态信令, 并根 据该改变调度非预编码导频状态信令, 改变调度非预编码导频状态, 其中, 该改变调度非预编码导频状态信令为该基站在当前调度非预编码导频状态 与该 UE根据该调度非预编码导频状态信息获取的调度非预编码导频状态不 一致时发送的。
由于 RNC将 UE配为 4发 MIMO模式是通过 RRC信令,其下发时间可 能长达数百 ms, 在 RNC下发 RRC信令配置 4发 MIMO模式过程中, 基站 可能改变了其调度非预编码导频状态, 即在 UE配置为 4发 MIMO模式后, 可能会出现当前调度非预编码导频状态与 UE根据该调度非预编码导频状态 信息获取的调度非预编码导频状态不一致的情况。 在这种情况下, 基站可以 再向 UE发送改变调度非预编码导频状态信令, UE接收该改变调度非预编 码导频状态信令, 并根据该改变调度非预编码导频状态信令, 改变调度非预 编码导频状态, 使其与当前调度非预编码导频状态一致。
本发明实施例的指示导频状态的方法, 通过 UE接收 RNC发送的携带 调度非预编码导频状态信息的 4发 MIMO模式配置信令,以及 UE在配置为 4发 MIMO模式时根据该调度非预编码导频状态信息获取调度非预编码导频 状态, 降低了基站发送 HS-SCCH信令通知 UE调度非预编码导频状态的概 率, 从而能够降低物理层信令开销, 并降低 UE获取调度非预编码导频状态 的时延而降低调度上的时延。
应理解, 在本发明实施例中, RNC侧或基站侧描述的 RNC、基站和 UE 的交互及相关特性、 功能等与 UE侧的描述相应, 为了筒洁, 在此不再赘述。
以上分别从 RNC、 基站和 UE的角度详细描述了指示导频状态的方法, 下面将结合具体的例子详细描述本发明实施例。 应注意, 这些例子只是为了 帮助本领域技术人员更好地理解本发明实施例, 而非限制本发明实施例的范 围。
如图 9所示, UE2为小区中已经配置为 4发 MIMO模式的 UE, UE1为 小区中待配置为 4发 MIMO模式的 UE。
901 , NodeB通过 HS-SCCH信令通知 UE2改变调度非预编码导频状态。 例如, NodeB ^据目前整个小区的情况确定调度非预编码导频激活, NodeB 通过 HS-SCCH信令通知 UE2调度非预编码导频激活。
902, NodeB向 RNC发送调度非预编码导频状态信息。 例如, NodeB在 确定调度非预编码导频激活时, 通过 lub 口信令向 RNC发送调度非预编码 导频状态信息, 指示调度非预编码导频激活。
903, RNC向 UE1发送 RRC信令, 将 UE1配置为 4发 MIMO模式, 并在 RRC信令中携带调度非预编码导频状态信息。 例如, RNC在 RRC信 令中携带接收的指示调度非预编码导频激活的调度非预编码导频状态信息。
904, UE1接收 RNC发送的 RRC信令,根据 RRC信令配置为 4发 MIMO 模式, 并根据 RRC信令携带的调度非预编码导频状态信息获取调度非预编 码导频状态。 例如, UE1根据指示调度非预编码导频激活的调度非预编码导 频状态信息获取调度非预编码导频为激活状态。
905 , NodeB在 4发 MIMO模式配置成功的同时使用 4发 MIMO调度数 据。 例如, 在调度非预编码导频激活时, 直接可以发送调度非预编码导频。
906, UE1相应地解调 4发 MIMO数据。 例如, 若获知的调度非预编码 导频为激活状态, 则使用调度非预编码导频解调 4发 MIMO数据; 若获知 的调度非预编码导频为去激活状态, 则不使用调度非预编码导频解调 4发 MIMO数据。
下面结合图 10至图 12, 详细描述另一指示导频状态的方法。
图 10示出了根据本发明又一实施例的指示导频状态的方法 400的示意 性流程图。 如图 10所示, 该方法 400包括:
S410, 用户设备 UE接收无线网络控制器 RNC发送的 4发多输入多输 出 MIMO模式配置信令;
S420,该 UE在根据该配置信令配置为 4发 MIMO模式时,确定调度非 预编码导频状态为去激活。
在本发明实施例中, UE在配置为 4发 MIMO模式时, 确定调度非预编 码导频状态为去激活, 也就是说, UE确定调度非预编码导频的初始状态为 去激活。 这样, 在当前调度非预编码导频状态为去激活时, 不需要基站再发 送 HS-SCCH信令通知 UE调度非预编码导频状态。 因此, 本发明实施例的指示导频状态的方法, 通过 UE在配置为 4发 MIMO 模式时, 确定调度非预编码导频状态为去激活, 降低了基站发送 HS-SCCH信令通知 UE调度非预编码导频状态的概率, 从而能够降低物理 层信令开销,并降低 UE获取 4发 MIMO模式下调度非预编码导频状态的时 延。
在本发明实施例中, 如图 11所示, 可选地, 在 S420之后, 该方法 400 还包括:
S430, 该 UE接收基站发送的改变调度非预编码导频状态信令, 并根据 该改变调度非预编码导频状态信令, 改变调度非预编码导频状态为激活, 其 中, 该改变调度非预编码导频状态信令为该基站在确定当前调度非预编码导 频状态为激活时发送的。
在 UE确定调度非预编码导频状态为去激活之后, 若当前调度非预编码 导频状态为去激活, 则不需要基站再发送 HS-SCCH信令通知 UE调度非预 编码导频状态, 基站可以立即使用 4发 MIMO调度数据, UE也可以相应地 不使用调度非预编码导频进行解调。 若当前调度非预编码导频状态为激活, 则基站要向 UE发送改变调度非预编码导频状态信令,即基站发送 HS-SCCH 信令通知 UE调度非预编码导频状态为激活, UE根据该改变调度非预编码 导频状态信令, 改变调度非预编码导频状态为激活。
上文中结合图 10和图 11 , 从 UE的角度详细描述了指示导频状态的方 法, 下面将结合图 12, 从基站的角度详细描述指示导频状态的方法。
图 12示出了根据本发明又一实施例的指示导频状态的方法 500的示意 性流程图。 如图 12所示, 该方法 500包括:
S510,基站在用户设备 UE配置为 4发 MIMO模式并确定调度非预编码 导频状态为去激活之后, 若确定当前调度非预编码导频状态为激活, 则向该 UE发送改变调度非预编码导频状态信令, 使得该 UE改变调度非预编码导 频状态为激活。
在本发明实施例中, UE在配置为 4发 MIMO模式时确定调度非预编码 导频状态为去激活, 因此, 若当前调度非预编码导频状态为去激活, 则基站 不需要再发送 HS-SCCH信令通知 UE调度非预编码导频状态, 若当前调度 非预编码导频状态为激活, 则基站向 UE发送改变调度非预编码导频状态信 令, 即基站发送 HS-SCCH信令通知 UE调度非预编码导频状态为激活, 以 使 UE根据该改变调度非预编码导频状态信令, 改变调度非预编码导频状态 为激活。
应理解, 在本发明实施例中, UE侧描述的基站和 UE的交互及相关特 性、 功能等与基站侧的描述相应, 为了筒洁, 在此不再赘述。
下面将结合具体的例子详细描述本发明实施例。 应注意, 这些例子只是 为了帮助本领域技术人员更好地理解本发明实施例, 而非限制本发明实施例 的范围。
例如, 小区中有已配置为 4发 MIMO模式的 UE1 , NodeB根据目前整 个小区的情况确定调度非预编码导频去激活, NodeB通过 HS-SCCH信令通 知 UE1调度非预编码导频去激活。在 RNC将 UE2配为 4发 MIMO模式时,
UE2初始地认为调度非预编码导频去激活。 因为 UE2默认值和当前状态一 致, 因此, NodeB不需要发送 HS-SCCH信令给 UE2通知其调度非预编码导 频去激活。 如果 NodeB确定改变调度非预编码导频状态为激活, NodeB通 过 HS-SCCH信令通知 UE1和 UE2调度非预编码导频激活。在 RNC将 UE3 配为 4发 MIMO模式时, UE3初始地认为调度非预编码导频去激活。 因为
UE3默认值和当前状态不一致, NodeB需要发送 HS-SCCH信令给 UE3通知 其调度非预编码导频被激活。
本发明实施例的指示导频状态的方法,通过 UE在配置为 4发 MIMO模 式时, 确定调度非预编码导频状态为去激活, 降低了基站发送 HS-SCCH信 令通知 UE调度非预编码导频状态的概率, 从而能够降低物理层信令开销, 并降低 UE获取 4发 MIMO模式下调度非预编码导频状态的时延。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
上文中结合图 1至图 12,详细描述了根据本发明实施例的指示导频状态 的方法, 下面将结合图 13至图 22, 描述根据本发明实施例的无线网络控制 器、 基站和用户设备。
图 13示出了根据本发明实施例的无线网络控制器 600的示意性框图。 如图 13所示, 该无线网络控制器 600包括:
接收模块 610, 用于接收基站发送的调度非预编码导频状态信息, 该调 度非预编码导频状态信息指示调度非预编码导频的激活状态或去激活状态; 发送模块 620 , 用于向用户设备 UE发送 4发多输入多输出 ΜΙΜΟ模式 配置信令, 该配置信令携带该调度非预编码导频状态信息, 使得该 UE在配 置为 4发 ΜΙΜΟ模式时根据该调度非预编码导频状态信息获取调度非预编 码导频状态。
在本发明实施例中,为了使 UE在配置为 4发 ΜΙΜΟ模式时获知调度非 预编码导频状态,接收模块 610接收基站发送的调度非预编码导频状态信息, 该调度非预编码导频状态信息指示调度非预编码导频的激活状态或去激活 状态, 然后, 发送模块 620向 UE发送携带该调度非预编码导频状态信息的 4发 ΜΙΜΟ模式配置信令,使得该 UE在配置为 4发 ΜΙΜΟ模式时根据该调 度非预编码导频状态信息获取调度非预编码导频状态。 由于 UE在配置为 4 发 ΜΙΜΟ模式时就能从该调度非预编码导频状态信息中获取调度非预编码 导频状态, 因此, 基站不需要再发送 HS-SCCH信令通知 UE调度非预编码 导频的激活或去激活状态。
因此, 本发明实施例的无线网络控制器, 通过向 UE发送携带 RNC从 基站接收的调度非预编码导频状态信息的 4发 ΜΙΜΟ模式配置信令, 可以 使 UE在配置为 4发 ΜΙΜΟ模式时根据该调度非预编码导频状态信息获取调 度非预编码导频状态, 避免了基站发送 HS-SCCH信令通知 UE调度非预编 码导频状态,从而能够降低物理层信令开销, 并降低 UE获取 4发 ΜΙΜΟ模 式下调度非预编码导频状态的时延。
在本发明实施例中, 可选地, 该接收模块 610具体用于接收该基站在改 变调度非预编码导频状态后发送的该调度非预编码导频状态信息。 给 RNC, 把最新的调度非预编码导频状态通知给 RNC, 这样, RNC在为之 后的 UE配置 4发 ΜΙΜΟ时,该接收模块 610就能把当前的调度非预编码导 频状态传输给该 UE。
根据本发明实施例的无线网络控制器 600可对应于根据本发明实施例的 指示导频状态的方法中的无线网络控制器, 并且无线网络控制器 600中的各 个模块的上述和其它操作和 /或功能分别为了实现图 1至图 9中的各个方法的 相应流程, 为了筒洁, 在此不再赘述。
图 14示出了根据本发明实施例的基站 700的示意性框图。如图 14所示, 该基站 700包括: 确定模块 710, 用于确定调度非预编码导频状态信息, 该调度非预编码 导频状态信息指示调度非预编码导频的激活状态或去激活状态;
发送模块 720, 用于向无线网络控制器 RNC发送该调度非预编码导频 状态信息, 使得该 RNC向第一用户设备 UE发送携带该调度非预编码导频 状态信息的 4发多输入多输出 MIMO模式配置信令,以使该第一 UE在配置 为 4发 MIMO模式时根据该调度非预编码导频状态信息获取调度非预编码 导频状态。
在本发明实施例中, 第一 UE表示待配置为 4发 MIMO模式的 UE。 为 了使第一 UE在配置为 4发 MIMO模式时获知调度非预编码导频状态,发送 模块 720向 RNC发送调度非预编码导频状态信息, 这样, RNC向第一 UE 发送携带该调度非预编码导频状态信息的 4发多输入多输出 MIMO模式配 置信令,从而使第一 UE在配置为 4发 MIMO模式时根据该调度非预编码导 频状态信息获取调度非预编码导频状态。因此,基站不需要再发送 HS-SCCH 信令通知第一 UE调度非预编码导频的激活或去激活状态, 并且, 基站可以 在 4发 MIMO模式配置成功的同时使用 4发 MIMO调度数据, 第一 UE也 可以根据获知的调度非预编码导频的激活状态或去激活状态,相应地使用或 不使用调度非预编码导频解调 4发 MIMO数据, 因此, 降低了调度上的时 延。
这样, 本发明实施例的基站, 通过向 RNC发送调度非预编码导频状态 信息, 可以使 RNC 向 UE发送携带该调度非预编码导频状态信息的 4发 MIMO模式配置信令,以使 UE在配置为 4发 MIMO模式时根据该调度非预 编码导频状态信息获取调度非预编码导频状态, 避免了基站发送 HS-SCCH 信令通知 UE调度非预编码导频状态, 从而能够降低物理层信令开销, 并降 低 UE获取 4发 MIMO模式下调度非预编码导频状态的时延。
在本发明实施例中, 可选地, 该发送模块 720还用于在该确定模块 710 确定该调度非预编码导频状态信息之前, 通知第二 UE改变调度非预编码导 频状态, 其中, 该第二 UE表示已配置为 4发 MIMO模式的 UE。
基站在确定改变调度非预编码导频状态时通过 HS-SCCH信令通知第二 UE,即已配置为 4发 MIMO模式的 UE,改变调度非预编码导频状态。并且, 基站发送调度非预编码导频状态信息给 RNC, 把最新的调度非预编码导频 状态通知给 RNC, 这样, RNC在为第一 UE配置 4发 MIMO时, 就能把当 前的调度非预编码导频状态传输给该 UE。
在本发明实施例中, 可选地, 该发送模块 720还用于在向无线网络控制 器 RNC发送调度非预编码导频状态信息之后, 在当前调度非预编码导频状 态与该第一 UE根据该调度非预编码导频状态信息获取的调度非预编码导频 状态不一致时, 通知该第一 UE改变调度非预编码导频状态。
根据本发明实施例的基站 700可对应于根据本发明实施例的指示导频状 态的方法中的基站,并且基站 700中的各个模块的上述和其它操作和 /或功能 分别为了实现图 1至图 9中的各个方法的相应流程, 为了筒洁, 在此不再赘 述。
图 15示出了根据本发明实施例的用户设备 800的示意性框图。 如图 15 所示, 该用户设备 800包括:
接收模块 810, 用于接收无线网络控制器 RNC发送的 4发多输入多输 出 MIMO模式配置信令, 该配置信令携带该 RNC从基站接收的调度非预编 码导频状态信息, 该调度非预编码导频状态信息指示调度非预编码导频的激 活状态或去激活状态;
处理模块 820, 用于在根据该配置信令配置为 4发 MIMO模式时, 根据 该调度非预编码导频状态信息获取调度非预编码导频状态。
在本发明实施例中,在基站向 RNC发送调度非预编码导频状态信息后, 接收模块 810接收 RNC发送的携带该调度非预编码导频状态信息的 4发 MIMO模式的配置信令, 然后处理模块 820根据该配置信令配置为 4发 MIMO模式,并根据该调度非预编码导频状态信息获取调度非预编码导频状 态。这样, UE在配置为 4发 MIMO模式时就能获取调度非预编码导频状态。 因此, 不再需要基站发送 HS-SCCH信令通知 UE调度非预编码导频的激活 或去激活状态。
因此, 本发明实施例的用户设备, 通过接收 RNC发送的携带调度非预 编码导频状态信息的 4发 MIMO模式配置信令, 在配置为 4发 MIMO模式 时根据该调度非预编码导频状态信息获取调度非预编码导频状态,避免了基 站发送 HS-SCCH信令通知 UE调度非预编码导频状态, 从而能够降低物理 层信令开销,并降低 UE获取 4发 MIMO模式下调度非预编码导频状态的时 延。
在本发明实施例中, 可选地, 该调度非预编码导频状态信息为该基站在 改变调度非预编码导频状态后发送的。
在本发明实施例中, 可选地, 该接收模块 810还用于在该处理模块 820 根据该调度非预编码导频状态信息获取调度非预编码导频状态之后,接收该 基站发送的改变调度非预编码导频状态信令, 该处理模块 820还用于根据该 改变调度非预编码导频状态信令, 改变调度非预编码导频状态, 其中, 该改 变调度非预编码导频状态信令为该基站在当前调度非预编码导频状态与该 用户设备根据该调度非预编码导频状态信息获取的调度非预编码导频状态 不一致时发送的。
根据本发明实施例的用户设备 800可对应于根据本发明实施例的指示导 频状态的方法中的用户设备, 并且用户设备 800中的各个模块的上述和其它 操作和 /或功能分别为了实现图 1至图 9中的各个方法的相应流程,为了筒洁, 在此不再赘述。
图 16示出了根据本发明另一实施例的用户设备 900的示意性框图。 如 图 16所示, 该用户设备 900包括:
接收模块 910, 用于接收无线网络控制器 RNC发送的 4发多输入多输 出 MIMO模式配置信令;
处理模块 920, 用于在根据该配置信令配置为 4发 MIMO模式时, 确定 调度非预编码导频状态为去激活。
在本发明实施例中, 处理模块 920在配置为 4发 MIMO模式时, 确定 调度非预编码导频状态为去激活, 也就是说, UE确定调度非预编码导频的 初始状态为去激活。 这样, 在当前调度非预编码导频状态为去激活时, 不需 要基站再发送 HS-SCCH信令通知 UE调度非预编码导频状态。
因此, 本发明实施例的用户设备, 通过在配置为 4发 MIMO模式时, 确定调度非预编码导频状态为去激活, 降低了基站发送 HS-SCCH信令通知 UE调度非预编码导频状态的概率, 从而能够降低物理层信令开销, 并降低 UE获取 4发 MIMO模式下调度非预编码导频状态的时延。
在本发明实施例中, 可选地, 该接收模块 910还用于在该处理模块 920 确定调度非预编码导频状态为去激活之后,接收基站发送的改变调度非预编 码导频状态信令, 该处理模块 920还用于根据该改变调度非预编码导频状态 信令, 改变调度非预编码导频状态为激活, 其中, 该改变调度非预编码导频 状态信令为该基站在确定当前调度非预编码导频状态为激活时发送的。 根据本发明实施例的用户设备 900可对应于根据本发明实施例的指示导 频状态的方法中的用户设备, 并且用户设备 900中的各个模块的上述和其它 操作和 /或功能分别为了实现图 10至图 12中的各个方法的相应流程,为了筒 洁, 在此不再赘述。
图 17示出了根据本发明另一实施例的基站 1000的示意性框图。如图 17 所示, 该基站 1000包括:
确定模块 1010, 用于在用户设备 UE配置为 4发 MIMO模式并确定调 度非预编码导频状态为去激活之后, 确定当前调度非预编码导频状态为激 活;
发送模块 1020, 用于向该 UE发送改变调度非预编码导频状态信令, 使 得该 UE改变调度非预编码导频状态为激活。
在本发明实施例中, UE在配置为 4发 MIMO模式时确定调度非预编码 导频状态为去激活, 因此, 若确定模块 1010确定当前调度非预编码导频状 态为去激活, 则基站不需要再发送 HS-SCCH信令通知 UE调度非预编码导 频状态, 若确定模块 1010确定当前调度非预编码导频状态为激活, 则发送 模块 1020向 UE发送改变调度非预编码导频状态信令, 即发送 HS-SCCH信 令通知 UE调度非预编码导频状态为激活, 以使 UE根据该改变调度非预编 码导频状态信令, 改变调度非预编码导频状态为激活。
根据本发明实施例的基站 1000可对应于根据本发明实施例的指示导频 状态的方法中的基站, 并且基站 1000中的各个模块的上述和其它操作和 /或 功能分别为了实现图 10至图 12中的各个方法的相应流程, 为了筒洁, 在此 不再赘述。
图 18示出了根据本发明又一实施例的无线网络控制器 1100的示意性框 图。 如图 18所示, 该无线网络控制器 1100包括::
接收器 1110, 用于接收基站发送的调度非预编码导频状态信息, 该调度 非预编码导频状态信息指示调度非预编码导频的激活状态或去激活状态; 处理器 1120, 用于确定 4发多输入多输出 MIMO模式配置信令, 该配 置信令携带该调度非预编码导频状态信息;
发送器 1130, 用于向用户设备 UE发送该配置信令, 使得该 UE在配置 为 4发 MIMO模式时根据该调度非预编码导频状态信息获取调度非预编码 导频状态。 本发明实施例的无线网络控制器, 通过向 UE发送携带 RNC从基站接 收的调度非预编码导频状态信息的 4发 MIMO模式配置信令,可以使 UE在 配置为 4发 MIMO模式时根据该调度非预编码导频状态信息获取调度非预 编码导频状态, 避免了基站发送 HS-SCCH信令通知 UE调度非预编码导频 状态,从而能够降低物理层信令开销, 并降低 UE获取 4发 MIMO模式下调 度非预编码导频状态的时延。
在本发明实施例中, 可选地, 该接收器 1110具体用于接收该基站在改 变调度非预编码导频状态后发送的该调度非预编码导频状态信息。
根据本发明实施例的无线网络控制器 1100可对应于根据本发明实施例 的指示导频状态的方法中的无线网络控制器, 并且无线网络控制器 1100 中 的各个模块的上述和其它操作和 /或功能分别为了实现图 1至图 9中的各个方 法的相应流程, 为了筒洁, 在此不再赘述。
图 19示出了根据本发明又一实施例的基站 1200的示意性框图。如图 19 所示, 该基站 1200包括:
处理器 1210,用于确定调度非预编码导频状态信息,该调度非预编码导 频状态信息指示调度非预编码导频的激活状态或去激活状态;
发送器 1220, 用于向无线网络控制器 RNC发送该调度非预编码导频状 态信息, 使得该 RNC向第一用户设备 UE发送携带该调度非预编码导频状 态信息的 4发多输入多输出 MIMO模式配置信令,以使该第一 UE在配置为 4发 MIMO模式时根据该调度非预编码导频状态信息获取调度非预编码导频 状态。
本发明实施例的基站, 通过向 RNC发送调度非预编码导频状态信息, 可以使 RNC向 UE发送携带该调度非预编码导频状态信息的 4发 MIMO模 式配置信令,以使 UE在配置为 4发 MIMO模式时根据该调度非预编码导频 状态信息获取调度非预编码导频状态, 避免了基站发送 HS-SCCH信令通知 UE调度非预编码导频状态, 从而能够降低物理层信令开销, 并降低 UE获 取 4发 MIMO模式下调度非预编码导频状态的时延。
在本发明实施例中, 可选地, 该发送器 1220还用于在该处理器 1210确 定该调度非预编码导频状态信息之前, 通知第二 UE改变调度非预编码导频 状态, 其中, 该第二 UE表示已配置为 4发 MIMO模式的 UE。
在本发明实施例中, 可选地, 该发送器 1220还用于在向无线网络控制 器 RNC发送调度非预编码导频状态信息之后, 在当前调度非预编码导频状 态与该第一 UE根据该调度非预编码导频状态信息获取的调度非预编码导频 状态不一致时, 通知该第一 UE改变调度非预编码导频状态。
根据本发明实施例的基站 1200可对应于根据本发明实施例的指示导频 状态的方法中的基站, 并且基站 1200中的各个模块的上述和其它操作和 /或 功能分别为了实现图 1至图 9中的各个方法的相应流程, 为了筒洁, 在此不 再赘述。
图 20示出了根据本发明又一实施例的用户设备 1300的示意性框图。如 图 20所示, 该用户设备 1300包括:
接收器 1310, 用于接收无线网络控制器 RNC发送的 4发多输入多输出
MIMO模式配置信令, 该配置信令携带该 RNC从基站接收的调度非预编码 导频状态信息,该调度非预编码导频状态信息指示调度非预编码导频的激活 状态或去激活状态;
处理器 1320, 用于在根据该配置信令配置为 4发 MIMO模式时, 根据 该调度非预编码导频状态信息获取调度非预编码导频状态。
本发明实施例的用户设备, 通过接收 RNC发送的携带调度非预编码导 频状态信息的 4发 MIMO模式配置信令, 在配置为 4发 MIMO模式时根据 该调度非预编码导频状态信息获取调度非预编码导频状态,避免了基站发送 HS-SCCH信令通知 UE调度非预编码导频状态, 从而能够降低物理层信令 开销, 并降低 UE获取 4发 MIMO模式下调度非预编码导频状态的时延。
在本发明实施例中, 可选地, 该调度非预编码导频状态信息为该基站在 改变调度非预编码导频状态后发送的。
在本发明实施例中, 可选地, 该接收器 1310还用于在该处理器 1320根 据该调度非预编码导频状态信息获取调度非预编码导频状态之后,接收该基 站发送的改变调度非预编码导频状态信令, 该处理器 1320还用于根据该改 变调度非预编码导频状态信令, 改变调度非预编码导频状态, 其中, 该改变 调度非预编码导频状态信令为该基站在当前调度非预编码导频状态与该用 户设备根据该调度非预编码导频状态信息获取的调度非预编码导频状态不 一致时发送的。
根据本发明实施例的用户设备 1300可对应于根据本发明实施例的指示 导频状态的方法中的用户设备, 并且用户设备 1300 中的各个模块的上述和 其它操作和 /或功能分别为了实现图 1至图 9中的各个方法的相应流程,为了 筒洁, 在此不再赘述。
图 21示出了根据本发明又一实施例的用户设备 1400的示意性框图。如 图 21所示, 该用户设备 1400包括:
接收器 1410, 用于接收无线网络控制器 RNC发送的 4发多输入多输出
MIMO模式配置信令;
处理器 1420, 用于在根据该配置信令配置为 4发 MIMO模式时, 确定 调度非预编码导频状态为去激活。
本发明实施例的用户设备, 通过在配置为 4发 MIMO模式时, 确定调 度非预编码导频状态为去激活, 降低了基站发送 HS-SCCH信令通知 UE调 度非预编码导频状态的概率, 从而能够降低物理层信令开销, 并降低 UE获 取 4发 MIMO模式下调度非预编码导频状态的时延。
在本发明实施例中, 可选地, 该接收器 1410还用于在该处理器 1420确 定调度非预编码导频状态为去激活之后,接收基站发送的改变调度非预编码 导频状态信令, 该处理器 1420还用于根据该改变调度非预编码导频状态信 令, 改变调度非预编码导频状态为激活, 其中, 该改变调度非预编码导频状 态信令为该基站在确定当前调度非预编码导频状态为激活时发送的。
根据本发明实施例的用户设备 1400可对应于根据本发明实施例的指示 导频状态的方法中的用户设备, 并且用户设备 1400 中的各个模块的上述和 其它操作和 /或功能分别为了实现图 10至图 12中的各个方法的相应流程,为 了筒洁, 在此不再赘述。
图 22示出了根据本发明又一实施例的基站 1500的示意性框图。如图 22 所示, 该基站 1500包括:
处理器 1510, 用于在用户设备 UE配置为 4发 MIMO模式并确定调度 非预编码导频状态为去激活之后, 确定当前调度非预编码导频状态为激活; 发送器 1520, 用于向该 UE发送改变调度非预编码导频状态信令, 使得 该 UE改变调度非预编码导频状态为激活。
根据本发明实施例的基站 1500可对应于根据本发明实施例的指示导频 状态的方法中的基站, 并且基站 1500中的各个模块的上述和其它操作和 /或 功能分别为了实现图 10至图 12中的各个方法的相应流程, 为了筒洁, 在此 不再赘述。 应理解, 包括前述各实施例中的无线网络控制器、 基站或用户设备的系 统也应涵盖在本发明的保护范围之内。
应理解,在本发明实施例中, 术语"和 /或"仅仅是一种描述关联对象的关 联关系,表示可以存在三种关系。 例如, A和 /或 B, 可以表示: 单独存在 A, 同时存在 A和 B, 单独存在 B这三种情况。 另外, 本文中字符" /", 一般表 示前后关联对象是一种"或"的关系。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为了描述的方便和筒洁, 上述 描述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对 应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另外, 所显示或讨论的相互之间的 耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或 通信连接, 也可以是电的, 机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本发明实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以是两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件 功能单元的形式实现。 所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分, 或者该技术方 案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在 一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算 机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM,
Read-Only Memory )、 随机存取存储器 ( RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到各种等效的修改或替换, 这些修改或替换都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以权利要求的保护范围为准。

Claims

权利要求
1.一种指示导频状态的方法, 其特征在于, 包括:
无线网络控制器 RNC接收基站发送的调度非预编码导频状态信息, 所 述调度非预编码导频状态信息指示调度非预编码导频的激活状态或去激活 状态;
所述 RNC向用户设备 UE发送 4发多输入多输出 MIMO模式配置信令, 所述配置信令携带所述调度非预编码导频状态信息, 使得所述 UE在配置为 4发 MIMO模式时根据所述调度非预编码导频状态信息获取调度非预编码导 频状态。
2.根据权利要求 1所述的方法,其特征在于,所述无线网络控制器 RNC 接收基站发送的调度非预编码导频状态信息, 包括:
所述 RNC接收所述基站在改变调度非预编码导频状态后发送的所述调 度非预编码导频状态信息。
3.—种指示导频状态的方法, 其特征在于, 包括:
基站向无线网络控制器 RNC发送调度非预编码导频状态信息, 所述调 度非预编码导频状态信息指示调度非预编码导频的激活状态或去激活状态, 使得所述 RNC向第一用户设备 UE发送携带所述调度非预编码导频状态信 息的 4发多输入多输出 MIMO模式配置信令, 以使所述第一 UE在配置为 4 发 MIMO模式时根据所述调度非预编码导频状态信息获取调度非预编码导 频状态。
4.根据权利要求 3所述的方法, 其特征在于, 在所述基站向无线网络控 制器 RNC发送调度非预编码导频状态信息之前, 所述方法还包括:
所述基站通知第二 UE 改变调度非预编码导频状态, 其中, 所述第二 UE表示已配置为 4发 MIMO模式的 UE。
5.根据权利要求 3或 4所述的方法, 其特征在于, 在所述基站向无线网 络控制器 RNC发送调度非预编码导频状态信息之后, 所述方法还包括: 在当前调度非预编码导频状态与所述第一 UE根据所述调度非预编码导 频状态信息获取的调度非预编码导频状态不一致时, 所述基站通知所述第一 UE改变调度非预编码导频状态。
6.—种指示导频状态的方法, 其特征在于, 包括:
用户设备 UE接收无线网络控制器 RNC发送的 4发多输入多输出 MIMO 模式配置信令, 所述配置信令携带所述 RNC从基站接收的调度非预编码导 频状态信息, 所述调度非预编码导频状态信息指示调度非预编码导频的激活 状态或去激活状态;
所述 UE在根据所述配置信令配置为 4发 MIMO模式时,根据所述调度 非预编码导频状态信息获取调度非预编码导频状态。
7.根据权利要求 6所述的方法, 其特征在于, 所述调度非预编码导频状 态信息为所述基站在改变调度非预编码导频状态后发送的。
8.根据权利要求 6或 7所述的方法, 其特征在于, 在所述 UE根据所述 调度非预编码导频状态信息获取调度非预编码导频状态之后, 所述方法还包 括:
所述 UE接收所述基站发送的改变调度非预编码导频状态信令, 并根据 所述改变调度非预编码导频状态信令, 改变调度非预编码导频状态, 其中, 所述改变调度非预编码导频状态信令为所述基站在当前调度非预编码导频 频状态不一致时发送的。
9.一种指示导频状态的方法, 其特征在于, 包括:
用户设备 UE接收无线网络控制器 RNC发送的 4发多输入多输出 MIMO 模式配置信令;
所述 UE在根据所述配置信令配置为 4发 MIMO模式时,确定调度非预 编码导频状态为去激活。
10.根据权利要求 9所述的方法, 其特征在于, 在所述 UE确定调度非 预编码导频状态为去激活之后, 所述方法还包括:
所述 UE接收基站发送的改变调度非预编码导频状态信令, 并根据所述 改变调度非预编码导频状态信令,改变调度非预编码导频状态为激活,其中, 所述改变调度非预编码导频状态信令为所述基站在确定当前调度非预编码 导频状态为激活时发送的。
11.一种指示导频状态的方法, 其特征在于, 包括:
基站在用户设备 UE配置为 4发 MIMO模式并确定调度非预编码导频状 态为去激活之后, 若确定当前调度非预编码导频状态为激活, 则向所述 UE 发送改变调度非预编码导频状态信令, 使得所述 UE改变调度非预编码导频 状态为激活。
12.—种无线网络控制器, 其特征在于, 包括:
接收模块, 用于接收基站发送的调度非预编码导频状态信息, 所述调度 非预编码导频状态信息指示调度非预编码导频的激活状态或去激活状态; 发送模块,用于向用户设备 UE发送 4发多输入多输出 MIMO模式配置 信令, 所述配置信令携带所述调度非预编码导频状态信息, 使得所述 UE在 配置为 4发 MIMO模式时根据所述调度非预编码导频状态信息获取调度非 预编码导频状态。
13.根据权利要求 12所述的无线网络控制器, 其特征在于, 所述接收模 非预编码导频状态信息。
14.一种基站, 其特征在于, 包括:
确定模块, 用于确定调度非预编码导频状态信息, 所述调度非预编码导 频状态信息指示调度非预编码导频的激活状态或去激活状态;
发送模块, 用于向无线网络控制器 RNC发送所述调度非预编码导频状 态信息, 使得所述 RNC向第一用户设备 UE发送携带所述调度非预编码导 频状态信息的 4发多输入多输出 MIMO模式配置信令,以使所述第一 UE在 配置为 4发 MIMO模式时根据所述调度非预编码导频状态信息获取调度非 预编码导频状态。
15.根据权利要求 14所述的基站, 其特征在于, 所述发送模块还用于在 所述确定模块确定所述调度非预编码导频状态信息之前, 通知第二 UE改变 调度非预编码导频状态, 其中, 所述第二 UE表示已配置为 4发 MIMO模式 的 UE。
16.根据权利要求 14或 15所述的基站, 其特征在于, 所述发送模块还 用于在所述向无线网络控制器 RNC发送调度非预编码导频状态信息之后, 在当前调度非预编码导频状态与所述第一 UE根据所述调度非预编码导频状 态信息获取的调度非预编码导频状态不一致时, 通知所述第一 UE改变调度 非预编码导频状态。
17.—种用户设备, 其特征在于, 包括:
接收模块, 用于接收无线网络控制器 RNC发送的 4发多输入多输出 MIMO模式配置信令, 所述配置信令携带所述 RNC从基站接收的调度非预 编码导频状态信息, 所述调度非预编码导频状态信息指示调度非预编码导频 的激活状态或去激活状态;
处理模块, 用于在根据所述配置信令配置为 4发 MIMO模式时, 根据 所述调度非预编码导频状态信息获取调度非预编码导频状态。
18.根据权利要求 17所述的用户设备, 其特征在于, 所述调度非预编码 导频状态信息为所述基站在改变调度非预编码导频状态后发送的。
19.根据权利要求 17或 18所述的用户设备, 其特征在于, 所述接收模 块还用于在所述处理模块根据所述调度非预编码导频状态信息获取调度非 预编码导频状态之后, 接收所述基站发送的改变调度非预编码导频状态信 令, 所述处理模块还用于根据所述改变调度非预编码导频状态信令, 改变调 度非预编码导频状态, 其中, 所述改变调度非预编码导频状态信令为所述基 站在当前调度非预编码导频状态与所述用户设备根据所述调度非预编码导 频状态信息获取的调度非预编码导频状态不一致时发送的。
20.—种用户设备, 其特征在于, 包括:
接收模块, 用于接收无线网络控制器 RNC发送的 4发多输入多输出 MIMO模式配置信令;
处理模块, 用于在根据所述配置信令配置为 4发 MIMO模式时, 确定 调度非预编码导频状态为去激活。
21.根据权利要求 20所述的用户设备, 其特征在于, 所述接收模块还用 于在所述处理模块确定调度非预编码导频状态为去激活之后,接收基站发送 的改变调度非预编码导频状态信令,所述处理模块还用于根据所述改变调度 非预编码导频状态信令, 改变调度非预编码导频状态为激活, 其中, 所述改 变调度非预编码导频状态信令为所述基站在确定当前调度非预编码导频状 态为激活时发送的。
22.—种基站, 其特征在于, 包括:
确定模块,用于在用户设备 UE配置为 4发 MIMO模式并确定调度非预 编码导频状态为去激活之后, 确定当前调度非预编码导频状态为激活; 所述 UE改变调度非预编码导频状态为激活。
23.—种无线网络控制器, 其特征在于, 包括:
接收器, 用于接收基站发送的调度非预编码导频状态信息, 所述调度非 预编码导频状态信息指示调度非预编码导频的激活状态或去激活状态; 处理器, 用于确定 4发多输入多输出 MIMO模式配置信令, 所述配置 信令携带所述调度非预编码导频状态信息;
发送器, 用于向用户设备 UE发送所述配置信令, 使得所述 UE在配置 为 4发 MIMO模式时根据所述调度非预编码导频状态信息获取调度非预编 码导频状态。
24.根据权利要求 23所述的无线网络控制器, 其特征在于, 所述接收器 预编码导频状态信息。
25.—种基站, 其特征在于, 包括:
处理器, 用于确定调度非预编码导频状态信息, 所述调度非预编码导频 状态信息指示调度非预编码导频的激活状态或去激活状态;
发送器, 用于向无线网络控制器 RNC发送所述调度非预编码导频状态 信息, 使得所述 RNC向第一用户设备 UE发送携带所述调度非预编码导频 状态信息的 4发多输入多输出 MIMO模式配置信令,以使所述第一 UE在配 置为 4发 MIMO模式时根据所述调度非预编码导频状态信息获取调度非预 编码导频状态。
26.根据权利要求 25所述的基站, 其特征在于, 所述发送器还用于在所 述处理器确定所述调度非预编码导频状态信息之前, 通知第二 UE改变调度 非预编码导频状态, 其中, 所述第二 UE表示已配置为 4发 MIMO模式的 UE。
27.根据权利要求 25或 26所述的基站, 其特征在于, 所述发送器还用 于在所述向无线网络控制器 RNC发送调度非预编码导频状态信息之后, 在 当前调度非预编码导频状态与所述第一 UE根据所述调度非预编码导频状态 信息获取的调度非预编码导频状态不一致时, 通知所述第一 UE改变调度非 预编码导频状态。
28.—种用户设备, 其特征在于, 包括:
接收器,用于接收无线网络控制器 RNC发送的 4发多输入多输出 MIMO 模式配置信令, 所述配置信令携带所述 RNC从基站接收的调度非预编码导 频状态信息, 所述调度非预编码导频状态信息指示调度非预编码导频的激活 状态或去激活状态;
处理器, 用于在根据所述配置信令配置为 4发 MIMO模式时, 根据所 述调度非预编码导频状态信息获取调度非预编码导频状态。
29.根据权利要求 28所述的用户设备, 其特征在于, 所述调度非预编码 导频状态信息为所述基站在改变调度非预编码导频状态后发送的。
30.根据权利要求 28或 29所述的用户设备, 其特征在于, 所述接收器 码导频状态之后, 接收所述基站发送的改变调度非预编码导频状态信令, 所 码导频状态, 其中, 所述改变调度非预编码导频状态信令为所述基站在当前 调度非预编码导频状态与所述用户设备根据所述调度非预编码导频状态信 息获取的调度非预编码导频状态不一致时发送的。
31.—种用户设备, 其特征在于, 包括:
接收器,用于接收无线网络控制器 RNC发送的 4发多输入多输出 MIMO 模式配置信令;
处理器, 用于在根据所述配置信令配置为 4发 MIMO模式时, 确定调 度非预编码导频状态为去激活。
32.根据权利要求 31所述的用户设备, 其特征在于, 所述接收器还用于 在所述处理器确定调度非预编码导频状态为去激活之后,接收基站发送的改 变调度非预编码导频状态信令, 所述处理器还用于根据所述改变调度非预编 码导频状态信令, 改变调度非预编码导频状态为激活, 其中, 所述改变调度 非预编码导频状态信令为所述基站在确定当前调度非预编码导频状态为激 活时发送的。
33.—种基站, 其特征在于, 包括:
处理器,用于在用户设备 UE配置为 4发 MIMO模式并确定调度非预编 码导频状态为去激活之后, 确定当前调度非预编码导频状态为激活; 述 UE改变调度非预编码导频状态为激活。
34.—种系统, 其特征在于, 所述系统包括根据权利要求 12或 13所述 的无线网络控制器, 根据权利要求 14至 16中任一项所述的基站, 以及根据 权利要求 17至 19中任一项所述的用户设备。
35.一种系统, 其特征在于, 所述系统包括根据权利要求 20或 21所述 的用户设备, 以及根据权利要求 22所述的基站。
PCT/CN2012/082072 2012-09-26 2012-09-26 指示导频状态的方法和设备 WO2014047819A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2012/082072 WO2014047819A1 (zh) 2012-09-26 2012-09-26 指示导频状态的方法和设备
CN201280001427.2A CN104160776B (zh) 2012-09-26 2012-09-26 指示导频状态的方法和设备
CN201380003662.8A CN103947277B (zh) 2012-09-26 2013-01-14 指示导频状态的方法和设备
PCT/CN2013/070419 WO2014048077A1 (zh) 2012-09-26 2013-01-14 指示导频状态的方法和设备
US14/666,150 US9203487B2 (en) 2012-09-26 2015-03-23 Method and device for indicating pilot state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/082072 WO2014047819A1 (zh) 2012-09-26 2012-09-26 指示导频状态的方法和设备

Publications (1)

Publication Number Publication Date
WO2014047819A1 true WO2014047819A1 (zh) 2014-04-03

Family

ID=50386805

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2012/082072 WO2014047819A1 (zh) 2012-09-26 2012-09-26 指示导频状态的方法和设备
PCT/CN2013/070419 WO2014048077A1 (zh) 2012-09-26 2013-01-14 指示导频状态的方法和设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070419 WO2014048077A1 (zh) 2012-09-26 2013-01-14 指示导频状态的方法和设备

Country Status (3)

Country Link
US (1) US9203487B2 (zh)
CN (1) CN104160776B (zh)
WO (2) WO2014047819A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10735121B2 (en) * 2017-02-02 2020-08-04 Qualcomm Incorporated Unified spatial operation for dynamic medium sharing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100284357A1 (en) * 2003-02-06 2010-11-11 Fiona Wilson ALLOCATION OF SUB CHANNELS OF MlMO CHANNELS OF A WIRELESS NETWORK
CN102170330A (zh) * 2011-04-29 2011-08-31 中兴通讯股份有限公司 测量参考信号的发送方法及系统
CN102264159A (zh) * 2010-05-26 2011-11-30 中兴通讯股份有限公司 多输入多输出mimo模式的切换方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101272578A (zh) * 2007-03-23 2008-09-24 中兴通讯股份有限公司 一种漂移无线网络控制器报告mimo不支持能力方法
US8135436B2 (en) * 2009-03-13 2012-03-13 Intel Mobile Communications GmbH Mobile radio communication devices and methods for controlling a mobile radio communication device
CN102378321B (zh) * 2010-08-04 2016-06-15 中兴通讯股份有限公司 一种关闭小区辅天线节能时的无线资源重配置方法及系统
CN102469588A (zh) * 2010-11-05 2012-05-23 中兴通讯股份有限公司 一种传递mimo辅公共导频信道功率偏移的方法及装置
CN102791041B (zh) 2011-05-16 2015-06-03 中兴通讯股份有限公司 跨无线网络控制器的多入多出模式修改方法
US8885590B2 (en) * 2012-05-18 2014-11-11 Futurewei Technologies, Inc. Systems and methods for scheduling multiple-input and multiple-output (MIMO) high-speed downlink packet access (HSDPA) pilot channels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100284357A1 (en) * 2003-02-06 2010-11-11 Fiona Wilson ALLOCATION OF SUB CHANNELS OF MlMO CHANNELS OF A WIRELESS NETWORK
CN102264159A (zh) * 2010-05-26 2011-11-30 中兴通讯股份有限公司 多输入多输出mimo模式的切换方法及系统
CN102170330A (zh) * 2011-04-29 2011-08-31 中兴通讯股份有限公司 测量参考信号的发送方法及系统

Also Published As

Publication number Publication date
WO2014048077A1 (zh) 2014-04-03
CN104160776A (zh) 2014-11-19
US9203487B2 (en) 2015-12-01
CN104160776B (zh) 2018-05-18
US20150195017A1 (en) 2015-07-09

Similar Documents

Publication Publication Date Title
US11128416B2 (en) Feedback information transmission method and apparatus
US11096212B2 (en) Data transmission method, terminal device, base station, and communications system
US10313073B2 (en) Transmission of reference signals
EP3598676B1 (en) Method for transmitting data, terminal device, and network device
JP6038317B2 (ja) Ri報告を制御するための方法および装置
EP3606236B1 (en) Method and apparatus for determining transport block size
WO2012134334A1 (en) Methods, apparatuses, and systems for flexible rank adaptation in a wireless communication network
US10827321B2 (en) Control information transmission method and apparatus
JP7249405B2 (ja) V2xトラフィックに対応するための制御チャネル構造設計
CN110710252B (zh) 无线通信系统中终端的d2d操作方法和使用所述方法的终端
WO2017174034A1 (zh) 一种功率配置方法及设备
EP3579482B1 (en) Methods and corresponding devices for improved dci detection
CN107710819B (zh) 无线通信的方法、网络设备和终端设备
CN115189821B (zh) 传输配置指示tci状态的确定方法、装置及终端设备
EP2680653A1 (en) Method of handling resource allocation in TDD system and related communication device
TW201817265A (zh) 信息傳輸方法和裝置
JP2021500776A (ja) チャネル品質指標cqiの計算方法、端末装置、及びネットワーク装置
US9203487B2 (en) Method and device for indicating pilot state
WO2021088038A1 (zh) 一种参考信号测量方法、资源指示方法及装置
CN108781205B (zh) 一种信息处理方法及装置
WO2023040610A1 (zh) 信道状态参数的传输方法和通信装置
CN115150029B (zh) 物理上行共享信道重复传输方法、装置及可读存储介质
JP6162265B2 (ja) 基準信号の送信
CN103947277B (zh) 指示导频状态的方法和设备
CN116981111A (zh) 组播业务传输方法、设备、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885492

Country of ref document: EP

Kind code of ref document: A1