WO2017174034A1 - 一种功率配置方法及设备 - Google Patents
一种功率配置方法及设备 Download PDFInfo
- Publication number
- WO2017174034A1 WO2017174034A1 PCT/CN2017/079789 CN2017079789W WO2017174034A1 WO 2017174034 A1 WO2017174034 A1 WO 2017174034A1 CN 2017079789 W CN2017079789 W CN 2017079789W WO 2017174034 A1 WO2017174034 A1 WO 2017174034A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power configuration
- antenna port
- network device
- configuration parameters
- parameter
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
- H04W52/42—TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0426—Power distribution
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0032—Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
- H04L5/0035—Resource allocation in a cooperative multipoint environment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/143—Downlink power control
Definitions
- the embodiments of the present invention relate to the field of communications technologies, and in particular, to a power configuration method and device.
- MIMO Multiple-Input Multiple-Output
- 3G third generation mobile communication system
- 4G fourth generation mobile communication system
- SFBC spatial-frequency block coding
- UE User Equipment
- the UE When the UE receives data from multiple transmission points, because the power of the downlink data channel between each transmission point and the UE is different, the power of the downlink data channel between the transmission point and the UE is generally used to pass the transmission point.
- the data transmitted by the downlink data channel is demodulated. Therefore, the UE needs to know the power of the downlink data channel between each transmission point and the UE during demodulation.
- the upper layer only configures a set of power configuration parameters for the UE, and the UE can only obtain the power of the downlink data channel between the transmission point and the UE according to the power configuration parameters, and then the data is transmitted to the UE at multiple transmission points. At the same time, the UE may not be able to demodulate the data transmitted by each transmission point more accurately.
- the embodiment of the invention provides a power configuration method and device, which are used to solve the problem that the UE cannot obtain the power of sending data by multiple transmission points.
- a power configuration method comprising: the first network device transmitting M sets of power configuration parameters to the second network device.
- the M group power configuration parameter may correspond to the M antenna port sets, and at least one of the M antenna port sets belongs to the first network device, and each group of power configuration parameters is used to calculate a corresponding antenna port set and the second
- the power of the downlink data channel between the network devices that is, each set of power configuration parameters is used to calculate the power of the downlink data channel (also can be understood as transmitted through the corresponding antenna port set) sent by the corresponding antenna port set, and M can Is an integer greater than or equal to 2.
- the first network device may send the M group power configuration parameters to the second network device, so that the second network device may separately obtain the corresponding antenna port set and the second network device according to the M group power configuration parameters.
- the power of the downlink data channel so that the second network device can demodulate the data sent by the corresponding antenna port set according to the obtained power, and obtain a more accurate demodulation result.
- the first network device may send the M group power configuration parameters to the second network device by using the high layer signaling.
- the high layer signaling may be RRC signaling, or may be other possible high layer signaling.
- the first network device may also send the M group power configuration parameters to the second network device by using physical layer signaling.
- the physical layer signaling may be control signaling of the physical layer, for example, one possible control signaling may be DCI, or physical layer signaling may be other possible signaling.
- the first network device may also send, by using the high layer signaling, a part of the power configuration parameters of the M group power configuration parameters to the second network device, and send the remaining power configuration parameters to the second network device by using physical layer signaling.
- any one of the M group power configuration parameters may include a reference signal power corresponding to the group of power configuration parameters, and further includes a first parameter And at least one of the second parameters.
- the first parameter may be used to indicate a ratio of the power of the antenna port set corresponding to the set of power configuration parameters to the power when there is a cell-specific reference signal symbol and the power of the cell-specific reference signal symbol
- the second parameter is used to calculate the A dedicated parameter of the power of the downlink data channel between the antenna port set corresponding to the group power configuration parameter and the second network device.
- the cell-specific reference signal may be, for example, a cell-level reference signal, such as a CRS, or may be other possible cell-level reference signals.
- the cell-specific reference signal can also be, for example, a user-level reference signal, such as a DM-RS, or other possible user-level reference signals.
- each set of power configuration parameters may further include identifier information for identifying the set of power configuration parameters
- the power configuration method may further include the following steps: the first network device sends, to the second network device, a correspondence between the at least one of the data flow number, the antenna port, and the codeword and the identification information of the power configuration parameter. And the first network device sends, to the second network device, a correspondence between the at least one of the number of data streams, the antenna port, and the codeword, and the identification information of the scrambling code sequence and the power configuration parameter. Relationship information.
- the first network device may send, by using physical layer signaling, a correspondence between the at least one of the data flow number, the antenna port, and the codeword, and the identifier information of the power configuration parameter, to the second network device.
- Information or information indicating a correspondence between at least one of a data stream number, an antenna port, and a codeword, and an identification code of a scrambling code sequence and a power configuration parameter for example, physical layer signaling may include a physical layer Control signaling, such as one possible control signaling, may be DCI.
- the first network device may send, by using the PDCCH/EPDCCH, a correspondence between the at least one of the data flow number, the antenna port, and the codeword, and the identifier information of the power configuration parameter, to the second network device.
- the first network device may send information indicating the corresponding correspondence relationship to the second network device, in addition to the M network power configuration parameter, so that the second network device is configured to indicate the corresponding correspondence.
- the information of the relationship can determine the set of antenna ports corresponding to the power configuration parameters of the M group, so that the data transmitted by the corresponding antenna port set can be correctly demodulated.
- the first network device sends the M group power configuration parameter to the second network device,
- the method is as follows: the first network device sends, by using the first signaling, the M group power configuration parameters to the second network device, where each group of power configuration parameters has a corresponding relationship with the antenna port set, or each group of power configuration parameters, the number of data streams, and the antenna At least one of the port and the codeword has a corresponding relationship, or the first network device sends the first power distribution to the second network device by using the first signaling.
- the first power configuration parameter is a set of power configuration parameters in the M group power configuration parameters
- each of the conversion relationship information includes a set of power configuration parameters and a first power of the M power configuration parameters except the first power configuration parameter.
- the M-1 conversion relationship information can be used to obtain the M-1 group power configuration parameters.
- the first network device may send the M group power configuration parameters to the second network device by using one signaling, reducing the number of signaling to be sent, thereby reducing the number of interactions between the devices.
- the first network device sends the M group power configuration parameter to the second network device, and the power configuration parameter itself may be sent, so that the second network device can directly obtain the power configuration parameter, or can also send the conversion relationship between the power configuration parameters.
- the information is such that the second network device can obtain other power configuration parameters according to the received conversion relationship information and the first power configuration parameter, and does not need to carry all the power configuration parameters, thereby reducing the amount of information carried by the signaling.
- the first signaling may be, for example, high layer signaling, for example, one possible high layer signaling is RRC signaling, or the first signaling may be other possible signaling, such as physical layer signaling.
- the first network device sends the M group power configuration parameter to the second network device
- the method is: the first network device sends the first power configuration parameter to the second network device by using the first signaling, and sends the M group power configuration parameter to the second network device by using the second signaling, except the first power configuration.
- the M-1 group power configuration parameter except the parameter wherein the first power configuration parameter is a set of power configuration parameters in the M group power configuration parameter, the power configuration parameter has a corresponding relationship with the antenna port set, or the power configuration parameter and data At least one of the number of the flow, the antenna port, and the codeword has a corresponding relationship; or, the first network device sends the first power configuration parameter to the second network device by using the first signaling, and The network device sends M-1 conversion relationship information, where the first power configuration parameter is a set of power configuration parameters in the M group power configuration parameters, and each conversion relationship information And including a conversion relationship between a set of power configuration parameters of the M power configuration parameters except the first power configuration parameter and the first power configuration parameter, where the M-1 conversion relationship information has a correspondence relationship with the antenna port set, or M -1 conversion relationship information has a corresponding relationship with at least one of the number of data streams, the antenna port and the codeword, and the M-1 conversion relationship information can be used to obtain the M-1 group power configuration parameter.
- the first network device may separately send the M group power configuration parameters to the second network device by using different signaling, thereby reducing the number of signaling to be sent, thereby reducing the number of interactions between the devices.
- the first network device sends the M group power configuration parameter to the second network device, and the power configuration parameter itself may be sent, so that the second network device can directly obtain the power configuration parameter, or can also send the conversion relationship between the power configuration parameters.
- the information is such that the second network device can obtain other power configuration parameters according to the received conversion relationship information and the first power configuration parameter, and does not need to carry all the power configuration parameters, thereby reducing the amount of information carried by the signaling.
- the first signaling may be, for example, high layer signaling, for example, one possible high layer signaling is RRC signaling, or the first signaling may be other possible signaling, such as physical layer signaling.
- the second signaling may be, for example, high layer signaling, such as RRC signaling, or the second signaling may be other possible signaling, such as physical layer signaling.
- the second power configuration parameter is, for example, the M group power configuration parameter. Any one of the power configuration parameters except the power configuration parameter, and the second power configuration parameter and the first power included in the M-1 conversion relationship information
- the conversion relationship information between the rate configuration parameters includes, for example, a ratio of a power of the antenna port set corresponding to the second power configuration parameter to a power of the antenna port set corresponding to the first power configuration parameter, and/or a second power configuration parameter.
- the conversion relationship information is not limited thereto, and other group power configuration parameters may be obtained according to the conversion relationship information and the first power configuration parameter.
- the power of the antenna port set corresponding to the second power configuration parameter may be the power of the downlink data channel between the antenna port set corresponding to the second power configuration parameter and the second network device, that is, The power of the downlink data channel transmitted by the antenna port set corresponding to the second power configuration parameter.
- the power of the antenna port set corresponding to the first power configuration parameter may be a power of the downlink data channel between the antenna port set corresponding to the first power configuration parameter and the second network device, that is, The power of the downlink data channel transmitted by the antenna port set corresponding to the first power configuration parameter.
- a second power configuration method may include: the second network device receiving the M group power configuration parameters sent by the first network device.
- the M group power configuration parameter corresponds to the M antenna port set, and at least one of the M antenna port sets belongs to the first network device, and each set of power configuration parameters is used to calculate a corresponding antenna port set and the second network.
- the power of the downlink data channel between the devices, that is, each set of power configuration parameters is used to calculate the power of the downlink data channel transmitted through the corresponding antenna port set, and M is an integer greater than or equal to 2.
- the first network device may send the M group power configuration parameters to the second network device, so that the second network device may separately obtain the power of the downlink data channel between the corresponding antenna port set and the second network device according to the M group power configuration parameters. Therefore, the second network device can demodulate the data sent by the corresponding antenna port set according to the acquired power, and obtain a more accurate demodulation result.
- the second network device may receive, by using the high layer signaling, the M group power configuration parameters sent by the first network device.
- the high layer signaling may be RRC signaling, or may be other possible high layer signaling.
- the second network device may also receive the M group power configuration parameters sent by the first network device by using physical layer signaling.
- the physical layer signaling may be control signaling of the physical layer, for example, one possible control signaling may be DCI, or physical layer signaling may be other possible signaling.
- the first network device may send, by using the high layer signaling, a part of the power configuration parameters of the M group of power configuration parameters to the second network device, and send the remaining power configuration parameters to the second network device by using physical layer signaling.
- the second network device can receive a part of the power configuration parameters of the M group power configuration parameters sent by the first network device by using the high layer signaling, and receive the remaining power configuration parameters sent by the second network device by using the physical layer signaling.
- any one of the M group power configuration parameters includes a reference signal power corresponding to the group of power configuration parameters, and the first parameter and At least one of the second parameters.
- the first parameter may be used to indicate a ratio of the power of the antenna port set corresponding to the set of power configuration parameters to the power when there is a cell-specific reference signal symbol and the power of the cell-specific reference signal symbol
- the second parameter is used to calculate the power of the group.
- each set of power configuration parameters may further include identifier information for identifying the set of power configuration parameters, then, The second network device may further receive, by the first network device, at least one of indicating a number of data streams, an antenna port, and a codeword. Rate information of the correspondence between the identification information of the configuration parameters.
- the second network device may receive, by using physical layer signaling, a correspondence between the at least one of the data flow number, the antenna port, and the codeword sent by the second network device, and the identifier information of the power configuration parameter.
- the information of the relationship such as physical layer signaling, may include control signaling of the physical layer, for example one possible control signaling may be DCI.
- the second network device may receive, by using the PDCCH/EPDCCH, a correspondence between the at least one of the data flow number, the antenna port, and the codeword sent by the second network device, and the identifier information of the power configuration parameter. Information.
- the second network device is further configured to: according to information used to indicate a correspondence between at least one of a data flow number, an antenna port, and a codeword, and identifier information of a power configuration parameter, and data of an antenna port set. At least one of a stream number, an antenna port, and a codeword determines an antenna port set corresponding to each of the M group power configuration parameters.
- the second network device may determine the antenna port set corresponding to the M group power configuration parameters respectively, so that after receiving the data sent by the corresponding antenna port set, the second The network device can demodulate the data according to the power of the downlink data channel obtained through the corresponding power configuration parameter, so that the demodulation result is more accurate.
- each set of power configuration parameters may further include identifier information for identifying the set of power configuration parameters, then, The second network device may further receive, by the first network device, information indicating a correspondence between at least one of the number of data streams, the antenna port, and the codeword, and the identifier information of the scrambling code sequence and the power configuration parameter.
- the second network device may receive, by using physical layer signaling, identifier information that is sent by the second network device to indicate at least one of a data flow number, an antenna port, and a codeword, and a scrambling code sequence and a power configuration parameter.
- the information of the correspondence relationship for example, physical layer signaling may include control signaling of the physical layer, for example, one possible control signaling may be DCI.
- the second network device may receive, by using the PDCCH/EPDCCH, identifier information that is used by the second network device to indicate at least one of a data flow number, an antenna port, and a codeword, and a scrambling code sequence and a power configuration parameter. Information about the correspondence between the two.
- the second network device may further be configured according to information used to indicate a correspondence between at least one of a data flow number, an antenna port, and a codeword, and an identifier information of the scrambling code sequence and a power configuration parameter, and an antenna.
- the at least one of the number of data streams, the antenna port, and the codeword of the port set and the scrambling code sequence determine the antenna port set corresponding to the M group power configuration parameters respectively.
- the second network device may determine the antenna port set corresponding to the M group power configuration parameters respectively, so that after receiving the data sent by the corresponding antenna port set, the second The network device can demodulate the data according to the power of the downlink data channel obtained through the corresponding power configuration parameter, so that the demodulation result is more accurate.
- the second network device receives the M group power configuration parameter sent by the first network device,
- the method is as follows: the second network device receives the first signaling sent by the first network device, where the first signaling carries the M group power configuration parameters.
- the first signaling may be, for example, high layer signaling, for example, one possible high layer signaling may be RRC signaling, and of course, the first signaling may be other possible signaling.
- the first network device may send the M group power configuration parameters to the second network device by using one signaling.
- the number of interactions of the signaling is reduced, and the second network device can obtain the M group power configuration parameters directly according to the first signaling, which is simple.
- the second network device may further determine, according to the correspondence between each set of power configuration parameters and the antenna port set, the antenna port set corresponding to the M group power configuration parameters, or the second network device may further configure according to each group of powers.
- the corresponding relationship between the parameter and the data stream number, the antenna port, and the codeword determines the antenna port set corresponding to the M group power configuration parameters.
- the information used to indicate the corresponding correspondence may be carried in the first signaling, or may not be carried in the first signaling, for example, may be pre-defined by a protocol, or may be configured by the first network.
- the device and the second network device negotiate in advance.
- the second network device can determine the antenna port set corresponding to the M group power configuration parameters, so that after receiving the data sent by the corresponding antenna port set, the second network device can The data is demodulated according to the power of the downlink data channel obtained through the corresponding power configuration parameters, so that the demodulation result is more accurate.
- the second network device receives the M group power configuration parameter sent by the first network device,
- the method is as follows:
- the second network device receives the first signaling sent by the first network device, where the first signaling carries the first power configuration parameter and the M-1 conversion relationship information.
- the first power configuration parameter is a set of power configuration parameters in the M group power configuration parameters, and each of the conversion relationship information includes a set of power configuration parameters and a first power of the M power configuration parameters except the first power configuration parameter.
- the conversion relationship between configuration parameters is as follows:
- the second network device receives the first signaling sent by the first network device, where the first signaling carries the first power configuration parameter and the M-1 conversion relationship information.
- the first power configuration parameter is a set of power configuration parameters in the M group power configuration parameters, and each of the conversion relationship information includes a set of power configuration parameters and a first power of the M power configuration parameters except the first power configuration parameter.
- the conversion relationship between configuration parameters is as follows:
- the second network device receives the first signaling sent
- the first signaling may be, for example, high layer signaling, for example, one possible high layer signaling may be RRC signaling, and of course, the first signaling may be other possible signaling.
- the first network device may not carry each set of power configuration parameters in the signaling, but may carry the conversion relationship information in the signaling, and the conversion relationship information may be, for example, generally smaller than the data amount of the corresponding power configuration parameter. This can reduce the amount of data carried by the signaling.
- the second network device may further determine an antenna port set corresponding to the first power configuration parameter, and obtain, in addition to the first power configuration, the M group power configuration parameters according to the M-1 conversion relationship information and the first power configuration parameter. M-1 group power configuration parameters outside the parameters.
- the second network device may obtain the M-1 group power configuration parameter.
- the second network device may further determine, according to the first power configuration parameter and the correspondence between the M-1 conversion relationship information and the antenna port set, the antenna port set corresponding to the M group power configuration parameters, or the second network device. Further, the antenna port set corresponding to the M group power configuration parameters may be determined according to the first power configuration parameter and the correspondence between the M-1 conversion relationship information and the data flow number, the antenna port, and the codeword.
- the information used to indicate the corresponding correspondence may be carried in the first signaling, or may not be carried in the first signaling, for example, may be pre-defined by a protocol, or may be configured by the first network.
- the device and the second network device negotiate in advance.
- the second network device can determine the antenna port set corresponding to the M group power configuration parameters, so that after receiving the data sent by the corresponding antenna port set, the second network device can The data is demodulated according to the power of the downlink data channel obtained through the corresponding power configuration parameters, so that the demodulation result is more accurate.
- the second network device receives the M group power configuration parameter sent by the first network device, The following manner is implemented: the second network device receives the first signaling and the second signaling sent by the first network device.
- the first signaling carries the first power configuration parameter
- the second signaling carries the M-1 group of the M group power configuration parameters except the first power configuration parameter.
- the power configuration parameter, the first power configuration parameter may be a set of power configuration parameters of the M group power configuration parameters.
- the first network device may send the M group power configuration parameters to the second network device by using different signaling, so that the second network device may more easily distinguish which set of power configuration parameters corresponds to which antenna port set, and one signaling. Also avoid carrying too much content.
- the second network device may further determine, according to the corresponding relationship between the M-1 group power configuration parameter and the antenna port set, the antenna port set corresponding to the M-1 group power configuration parameter, or the second network device may further The corresponding relationship between the power configuration parameters of the M-1 group and at least one of the number of data streams, the antenna port, and the codeword determines the antenna port set corresponding to the power configuration parameters of the M-1 group.
- the information used to indicate the corresponding correspondence may be carried in the first signaling or the second signaling, or may not be carried in any signaling, for example, may be pre-defined by a protocol, or The first network device and the second network device may be negotiated in advance.
- the second network device may determine the antenna port set corresponding to the M group power configuration parameters, so that after receiving the data sent by the corresponding antenna port set, The second network device may demodulate the data according to the power of the downlink data channel obtained through the corresponding power configuration parameter, so that the demodulation result is more accurate.
- the second network device receives the M group power configuration parameter sent by the first network device, The following manner is implemented: the second network device receives the first signaling and the second signaling sent by the first network device.
- the first signaling carries a first power configuration parameter
- the second signaling carries M-1 conversion relationship information.
- the first power configuration parameter may be a set of power configuration parameters of the M group power configuration parameters, and each of the conversion relationship information includes an M-1 group power configuration parameter and a part of the M group power configuration parameters except the first power configuration parameter. A conversion relationship between power configuration parameters.
- the first network device can separately send the first power configuration parameter and the conversion relationship information to the second network device by using different signaling, so that the second network device can more easily distinguish which set of power configuration parameters corresponds to which antenna port set. At the same time, too much content is avoided in one signaling.
- the second network device may further determine an antenna port set corresponding to the first power configuration parameter, and obtain, in addition to the first power configuration, the M group power configuration parameters according to the M-1 conversion relationship information and the first power configuration parameter. M-1 group power configuration parameters outside the parameters.
- the second network device may obtain the M-1 group power configuration parameter according to the conversion relationship information and the first power configuration parameter.
- the second network device may further determine, according to the correspondence between the M-1 conversion relationship information and the antenna port set, the antenna port set corresponding to the M-1 group power configuration parameter respectively, or the second network device may further be based on the M - A mapping relationship between the conversion relationship information and at least one of the number of data streams, the antenna port, and the codeword, and determining the antenna port set corresponding to the M-1 group power configuration parameters respectively.
- the information used to indicate the corresponding correspondence may be carried in the first signaling or the second signaling, or may not be carried in any signaling, for example, may be pre-defined by a protocol, or The first network device and the second network device may be negotiated in advance.
- the second network device may determine the antenna port set corresponding to the M group power configuration parameters, so that after receiving the data sent by the corresponding antenna port set, The second network device may demodulate the data according to the power of the downlink data channel obtained through the corresponding power configuration parameter, so that the demodulation result is more accurate.
- the second power configuration parameter is, for example, the M group power configuration parameter.
- One power configuration parameter Any one of the other power configuration parameters, the information about the conversion relationship between the second power configuration parameter and the first power configuration parameter included in the M-1 conversion relationship information may include: an antenna port corresponding to the second power configuration parameter The ratio of the power of the set to the power of the set of antenna ports corresponding to the first power configuration parameter, and/or the offset between each parameter included in the second power configuration parameter and a corresponding parameter included in the first power configuration parameter.
- the conversion relationship information is not limited thereto, and other group power configuration parameters may be obtained according to the conversion relationship information and the first power configuration parameter.
- a first type of network device can include a memory, a processor, and a transmitter.
- the memory can be used to store instructions required by the processor to perform tasks
- the processor can be used to execute instructions stored in the memory, obtain M sets of power configuration parameters
- the transmitter can be used to send M sets of power configuration parameters to the second network device.
- the M group power configuration parameter corresponds to the M antenna port set, and at least one antenna port set of the M antenna port sets belongs to the network device, and each set of power configuration parameters is used to calculate a corresponding antenna port set and the second network device.
- the power of the downlink data channel between, that is, each set of power configuration parameters is used to calculate the power of the downlink data channel transmitted through the corresponding antenna port set, and M is an integer greater than or equal to 2.
- the network device may further include a communication interface, configured to support the network device to communicate with other network devices in the communication system, such as a core network node.
- a communication interface configured to support the network device to communicate with other network devices in the communication system, such as a core network node.
- any one of the M group power configuration parameters may include a reference signal power corresponding to the group of power configuration parameters, and further includes a first parameter And at least one of the second parameters.
- the first parameter is used to indicate a ratio of the power of the antenna port set corresponding to the set of power configuration parameters to the power when there is a cell-specific reference signal symbol and the power of the cell-specific reference signal symbol
- the second parameter is used to calculate the group.
- each set of power configuration parameters may further include identifier information for identifying the set of power configuration parameters
- the transmitter further The method may be configured to: send, to the second network device, information indicating a correspondence between at least one of a data flow number, an antenna port, and a codeword, and identifier information of the power configuration parameter, or to the second network device And transmitting information indicating a correspondence between at least one of the number of data streams, the antenna port, and the codeword, and the identification information of the scrambling code sequence and the power configuration parameter.
- the transmitter may be configured to: send the M group to the second network device by using the first signaling a power configuration parameter, wherein each set of power configuration parameters has a corresponding relationship with an antenna port set, or each set of power configuration parameters has a corresponding relationship with at least one of a data flow number, an antenna port, and a codeword; or, by using the first signaling Transmitting, to the second network device, the first power configuration parameter and the M-1 conversion relationship information, where the first power configuration parameter and the M-1 conversion relationship information have a correspondence relationship with the antenna port set, or the first power configuration parameter and the The M-1 conversion relationship information has a correspondence relationship with at least one of the number of data streams, the antenna port and the codeword, and the first power configuration parameter is a set of power configuration parameters in the M group power configuration parameters, and each conversion relationship The information includes a conversion relationship between a set of power configuration parameters of the M power configuration parameters except the first power
- the transmitter may be configured to: send, by using the first signaling, the first information to the second network device And the power configuration parameter, and the M-1 group power configuration parameter of the M group power configuration parameter except the first power configuration parameter is sent to the second network device by using the second signaling, where the first power configuration parameter is the M group a set of power configuration parameters in the power configuration parameters,
- the rate configuration parameter has a corresponding relationship with the antenna port set, or the power configuration parameter has a corresponding relationship with at least one of the data stream number, the antenna port, and the codeword; or the first power is sent to the second network device by using the first signaling.
- the first power configuration parameter is a set of power configuration parameters in the M group power configuration parameters, and each conversion relationship information And including a conversion relationship between a set of power configuration parameters of the M power configuration parameters except the first power configuration parameter and the first power configuration parameter, where the M-1 conversion relationship information has a correspondence relationship with the antenna port set, or M -1 conversion relationship information has a corresponding relationship with at least one of the number of data streams, the antenna port and the codeword, and the M-1 conversion relationship information is used to obtain the M-1 group power configuration parameter.
- the second power configuration parameter is the first one of the M group power configuration parameters.
- the conversion relationship information between the second power configuration parameter and the first power configuration parameter included in the M-1 conversion relationship information includes: the second power configuration parameter corresponding to The ratio of the power of the set of antenna ports to the power of the set of antenna ports corresponding to the first power configuration parameter, and/or between the parameters included in the second power configuration parameter and the corresponding parameters included in the first power configuration parameter Offset.
- a second network device which can include a memory, a processor, and a receiver.
- the memory can be used to store instructions
- the processor can be configured to execute instructions stored in the memory, and receive, by the receiver, M sets of power configuration parameters sent by the first network device.
- the M group power configuration parameter corresponds to the M antenna port set, and at least one of the M antenna port sets belongs to the first network device, and each group of power configuration parameters is used to calculate a corresponding antenna port set and the network device.
- the power of the downlink data channel between, M is an integer greater than or equal to 2.
- any one of the M power configuration parameters includes a reference signal power corresponding to the power configuration parameter, and the first parameter and At least one of the second parameters.
- the first parameter is used to indicate a ratio of the power of the antenna port set corresponding to the set of power configuration parameters to the power when there is a cell-specific reference signal symbol and the power of the cell-specific reference signal symbol
- the second parameter is used to calculate the group.
- a dedicated parameter of the power of the downlink data channel between the set of antenna ports corresponding to the power configuration parameter and the second network device, that is, the second parameter is a downlink data channel used for calculating the antenna port set corresponding to the set of power configuration parameters Special parameters for the power.
- each set of power configuration parameters may further include identifier information for identifying the set of power configuration parameters, and the receiver further The information that is sent by the first network device to indicate a correspondence between at least one of the data flow number, the antenna port, and the codeword and the identification information of the power configuration parameter may be received.
- the processor may be further configured to: according to information used to indicate a correspondence between at least one of a data flow number, an antenna port, and a codeword and identification information of a power configuration parameter, and a number of data streams of the cell, At least one of an antenna port and a codeword determines an antenna port set corresponding to each of the M group power configuration parameters.
- each set of power configuration parameters further includes identifier information for identifying the set of power configuration parameters
- the receiver may further And configured to receive, by the first network device, information indicating a correspondence between at least one of a data flow number, an antenna port, and a codeword, and an identifier information of a scrambling code sequence and a power configuration parameter.
- the processor may be further configured to: according to information used to indicate at least one of the number of data streams, the antenna port, and the codeword, and the correspondence between the scrambling code sequence and the identification information of the power configuration parameter, and the antenna port. Number of sets And determining, according to at least one of the number of streams, the antenna port, and the codeword, and the scrambling code sequence, the antenna port set corresponding to the M group power configuration parameters respectively.
- the receiver may be further configured to receive the first signaling sent by the first network device, where A signaling carries M sets of power configuration parameters.
- the processor may be further configured to determine, according to the correspondence between each set of power configuration parameters and the antenna port set, the antenna port set corresponding to the M group power configuration parameters, or according to each group of power configuration parameters and the number of data streams, And determining, by the correspondence between at least one of the antenna port and the codeword, the antenna port set corresponding to the M group power configuration parameters.
- the receiver may be further configured to receive the first signaling sent by the first network device, where The signaling carries the first power configuration parameter and the M-1 conversion relationship information.
- the processor may be further configured to determine an antenna port set corresponding to the first power configuration parameter, and obtain, in addition to the first power configuration parameter, the M group power configuration parameter according to the M-1 conversion relationship information and the first power configuration parameter. Outer M-1 group power configuration parameters.
- the processor may be further configured to determine, according to the first power configuration parameter and the correspondence between the M-1 conversion relationship information and the antenna port set, the antenna port set corresponding to the M group power configuration parameters respectively, or according to the first power
- the configuration parameter and the correspondence between the M-1 conversion relationship information and at least one of the number of data streams, the antenna port, and the codeword determine the antenna port set corresponding to the M group power configuration parameters.
- the receiver may be further configured to receive the first signaling and the first sent by the first network device The second signaling, where the first signaling carries the first power configuration parameter, and the second signaling carries the M-1 power configuration parameter of the M power configuration parameter other than the first power configuration parameter, the first power
- the configuration parameter is a set of power configuration parameters in the M group power configuration parameters.
- the processor may be configured to determine, according to the corresponding relationship between the M-1 group power configuration parameter and the antenna port set, the antenna port set corresponding to the M-1 group power configuration parameter, or according to the M-1 group power configuration parameter and The correspondence between at least one of the number of data streams, the antenna port, and the codeword determines an antenna port set corresponding to each of the power configuration parameters of the M-1 group.
- the receiver may be further configured to receive the first signaling and the first sent by the first network device The second signaling, where the first signaling carries the first power configuration parameter, the second signaling carries the M-1 conversion relationship information, and the first power configuration parameter is a set of power configuration parameters of the M group power configuration parameters, each The conversion relationship information includes a conversion relationship between the M-1 group power configuration parameters and the first power configuration parameters of the M group power configuration parameters except the first power configuration parameter.
- the processor may be further configured to determine an antenna port set corresponding to the first power configuration parameter, and obtain, in addition to the first power configuration parameter, the M group power configuration parameter according to the M-1 conversion relationship information and the first power configuration parameter. Outer M-1 group power configuration parameters. Further, the processor may be further configured to determine, according to the correspondence between the M-1 conversion relationship information and the antenna port set, the antenna port set corresponding to the M-1 group power configuration parameters respectively, or according to the M-1 conversion relationship information. And corresponding to the at least one of the number of data streams, the antenna port, and the codeword, determining an antenna port set corresponding to each of the M-1 group power configuration parameters.
- the second power configuration parameter is the first one of the M power configuration parameters Any one of the power configuration parameters except the power configuration parameter, and the conversion relationship information between the second power configuration parameter and the first power configuration parameter included in the M-1 conversion relationship information includes: an antenna corresponding to the second power configuration parameter The power of the port set and the first work The ratio of the power of the antenna port set corresponding to the rate configuration parameter, and/or the offset between each parameter included in the second power configuration parameter and the corresponding parameter included in the first power configuration parameter.
- a third network device which network device can comprise a module for performing the method of the first aspect.
- a fourth network device comprising a module for performing the method of the second aspect.
- 1A is a schematic diagram of an implementation of SFBC
- FIG. 1B is a schematic diagram of a scenario of cooperative transmission of multiple antenna stations
- FIG. 3 is another possible flowchart of a power configuration method according to an embodiment of the present invention.
- FIG. 4 is a flowchart of a first method for calculating power according to a power configuration parameter according to an embodiment of the present invention
- FIG. 5 is a flowchart of a second method for calculating power according to a power configuration parameter according to an embodiment of the present invention
- FIG. 6 is a flowchart of a third method for calculating power according to a power configuration parameter according to an embodiment of the present invention.
- FIG. 7 is a schematic structural diagram of a first network device according to an embodiment of the present disclosure.
- FIG. 8 is a schematic structural diagram of a second network device according to an embodiment of the present disclosure.
- FIG. 9 is a schematic structural block diagram of a first network device according to an embodiment of the present disclosure.
- FIG. 10 is a block diagram of a possible structure of a second network device according to an embodiment of the present invention.
- GSM Global System for Mobile communications
- CDMA Code Division Multiple Access
- TDMA Time Division Multiple Access
- WCDMA Wideband Code Division Multiple Access Wireless
- FDMA Frequency Division Multiple Addressing
- OFDM Orthogonal Frequency Division Multiple Access
- SC-FDMA single carrier frequency division multiple access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- the embodiment of the present invention can combine the existing MIMO technology (including the diversity technology for improving transmission reliability and the multi-stream technology for improving transmission data rate) with coordinated multi-point transmission with the existing CoMP as a background, so as to better combine Service user.
- the embodiments of the present invention are applicable to scenarios of a homogeneous network and a heterogeneous network, and are not limited to the types of transmission points, for example, can be applied to a macro base station and a macro base station, a micro base station and a micro base station, and between a macro base station and a micro base station. Multi-point coordinated transmission.
- the embodiments of the present invention can be applied to a Time Division Duplexing (TDD) system, and can also be used in a Frequency Division Duplexing (FDD) system, which can be used in a single carrier system or in a single carrier system.
- TDD Time Division Duplexing
- FDD Frequency Division Duplexing
- Multi-carrier systems and can be universally applied to high frequency (above 6 GHz band) or low frequency communication systems (below 6GHz band).
- a terminal device which is a device that provides voice and/or data connectivity to a user, for example, may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
- the terminal device can communicate with the core network via a Radio Access Network (RAN) to exchange voice and/or data with the RAN.
- the terminal device may include a UE, a wireless terminal device, a mobile terminal device, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile Station, a Remote Station, and a Pickup Station.
- Access Point AP
- Remote Terminal Access Terminal, User Terminal, User Agent, User Device, etc.
- a mobile phone or "cellular” phone
- a computer with a mobile terminal device
- a portable, pocket, handheld, computer built-in or in-vehicle mobile device For example, Personal Communication Service (PCS) phones, cordless phones, Session Initiation Protocol (SIP) phones, Wireless Local Loop (WLL) stations, Personal Digital Assistants (PDAs), etc. .
- PCS Personal Communication Service
- SIP Session Initiation Protocol
- WLL Wireless Local Loop
- PDAs Personal Digital Assistants
- a network device for example comprising a base station (e.g., an access point), may specifically refer to a device in the access network that communicates over the air interface with the wireless terminal device over one or more sectors.
- the base station can be used to convert the received air frame to an Internet Protocol (IP) packet as a router between the wireless terminal device and the rest of the access network, wherein the remainder of the access network can include an IP network.
- IP Internet Protocol
- the base station can also coordinate attribute management of the air interface.
- the base station may be a Radio Network Controller (RNC) or a Base Station Controller (BSC), or may be an evolved base station in an evolved LTE system (LTE-Advanced, LTE-A). (NodeB or eNB or e-NodeB, evolutional Node B), the embodiment of the present invention is not limited.
- CoMP Coordinated Multiple Points Transmission/Reception
- PUSCH Physical Uplink Shared Channel
- SFBC LTE system generally adopts SFBC as the transmit diversity scheme of two antenna ports.
- the basic idea is that the information bits to be transmitted enter the space frequency encoder in units of two symbols after constellation mapping.
- the SFBC of the 2 antenna is, the antenna 1 subcarrier 1 transmits x 1 , and the antenna 2 subcarrier 1 transmits Antenna 1 subcarrier 2 transmits x 2 , antenna 2 subcarrier 2 transmits The information bits to be transmitted pass through the constellation mapping and enter the space frequency encoder in units of two symbols.
- diversity techniques are commonly used to combat fading and improve link reliability.
- Multi-point SFBC transmission that is, antennas of two or more transmission points distributed, transmits signals in the form of SFBC.
- Multi-point multi-stream transmission that is, two or more transmission points of the distribution are independently pre-coded, so that different data streams and different code blocks can be transmitted to the same terminal device. Under CoMP technology, different transmission points generally transmit the same data stream to the same terminal device.
- MIMO technology can also be called multi-antenna technology, which can improve system reliability by spatial diversity, spatial multiplexing to improve system capacity, and beamforming to improve cell coverage.
- the basic technology of the physical layer of the LTE system includes MIMO technology.
- a user-level reference signal such as a demodulation reference signal
- data is also transmitted on different antenna ports, for example, one or more antenna ports such as antenna port 5, antenna port 7, and antenna port 8. These antenna ports for transmitting data are also called data ports. .
- the receiving end can perform channel estimation and data demodulation by using the DM-RS transmitted on the same antenna port as the data port.
- LTE introduces a new transmission mode, Transport Mode 9, which supports eight antenna ports and supports multi-user MIMO transmission.
- the base station needs to indicate the precoding layer corresponding to the data of the user's physical downlink shared channel (such as PDSCH in LTE) in the physical downlink control channel (PDCCH) in the physical downlink control channel (PDCCH) in LTE.
- the number and the antenna port number corresponding to the DM-RS the terminal device can obtain the number of layers of the received PDSCH data and the corresponding antenna port of each layer by detecting the corresponding indication field in the PDCCH, and the DM-RS sent by the terminal device through the antenna port.
- Channel estimation is performed, and then data demodulation of the PDSCH is performed.
- LTE introduced an antenna port quasi-co-site in order to support multi-point coordinated transmission.
- LTE system it is simply referred to as the concept of QCL.
- Signals sent from the QCL's antenna port will pass the same large-scale fading.
- Large-scale fading includes delay spread, Doppler spread, Doppler shift, average channel gain, and average delay.
- a new transmission mode that is, the transmission mode 10 is defined in the version 11, and the physical downlink shared channel resource element mapping is mainly introduced.
- the quasi-co-location indication which is referred to as PQI (PDSCH RE Mapping and QCL Indicator) in the LTE system, is used to indicate from which base station the downlink data is sent, and the corresponding large-scale feature of the channel is consistent with which group of antenna ports.
- the UE can know, according to the PQI, the PDSCH mapping message element configured by the Radio Resource Control (RRC) signaling, which radio channel parameter corresponding to which group of antenna ports is to be used for demodulating the downlink data.
- RRC Radio Resource Control
- the PQI in LTE Release 11 since the PQI in LTE Release 11 only supports a set of parameters, it means that the PDSCH can only be sent from a group of QCL antenna ports, which limits the application range of the transmission mode 10, such as in a distributed MIMO system, or a multi-site coordinated transmission system.
- Multiple non-QCL antenna ports can only be combined into the same QCL through single frequency network (SFN) technology (ie, multiple antenna ports/base stations transmitting the same modulated data on the same time-frequency resource)
- SFN single frequency network
- the aggregated antenna port performs SFN transmission for a single user. For example, two geographically separated antenna ports belong to two QCL sets respectively.
- the two antenna ports can only be virtualized into a composite antenna port, and then the data is transmitted to the terminal device. It is not supported for multiple MIMO transmissions such as multi-stream transmission or transmit diversity transmission for a single user in the same time domain symbol in multiple antenna ports belonging to different QCL antenna port sets.
- a transmission point is a device that can transmit data to a terminal device.
- the concept of a transmission point is equivalent to a set of antenna ports, and one transmission point can be regarded as a set of antenna ports.
- the set of antenna ports here can be a hardware concept or a logical concept.
- one antenna port set may include one or more antenna ports.
- the transmission point may be a base station, that is, one antenna port set corresponds to one base station, then different base stations may be regarded as different transmission points, or the transmission point may be a cell, that is, one antenna port set corresponds to one cell, then different cells can be seen.
- Different transmission points, or one cell may also include multiple transmission points, that is, one cell includes multiple A set of antenna ports, for example, a plurality of indoor baseband processing units (BBUs) and a remote radio unit (RRU) can be deployed in the coverage of one cell, and the antennas corresponding to each group of BBU+RRUs
- BBUs indoor baseband processing units
- RRU remote radio unit
- the port set can be regarded as a transmission point, and so on.
- the embodiment of the present invention does not limit the concept of the transmission point, as long as each transmission point can separately transmit data to the terminal device.
- each set of power configuration parameters may correspond to one transmission point, that is, corresponding to one antenna port set.
- the cells may correspond to multiple sets of power configuration parameters.
- a set of power configuration parameters may correspond to a set of antenna ports, and a power configuration parameter of an antenna port set may be used to obtain power of a downlink data channel between the antenna port set and the terminal device, or may be understood as a The power configuration parameters of the antenna port set can be used to obtain the power of the downlink data channel sent by the antenna port set.
- Different sets of antenna ports may correspond to the same set of power configuration parameters, and of course may also correspond to different power configuration parameters.
- the downlink data channel may include a PDSCH, or may also include other possible downlink data channels.
- the first network device may include a base station, or may also include a normal terminal device, or may also include a terminal device that undertakes a relay task, and the like.
- the second network device may include a normal terminal device, or may also include a terminal device that undertakes a relay task, or may also include a base station, and the like.
- the type of the first network device and the type of the second network device may be the same or may be different.
- the first network device and the second network device may both be base stations, or may be terminal devices, or may have other possible settings.
- system and “network” in the embodiments of the present invention may be used interchangeably, and “cell” and “carrier” may be used interchangeably, and the concepts of "number of data streams” and “number of transmission layers” may be used. Used interchangeably.
- Multiple means two or more.
- the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
- FIG. 1B is a schematic diagram of a scenario for coordinated transmission of multiple antenna sites.
- the terminal device takes a mobile phone as an example.
- the left ring represents the coverage of the cell 1.
- the cell 1 includes two transmission points, which are respectively the transmission point 1 and the transmission point 2 shown in FIG. 1B, and the right ring represents the cell 2 Coverage, the cell 2 also includes two transmission points, respectively, the transmission point 3 and the transmission point 4 shown in FIG. 1B, wherein the transmission point 1, the transmission point 2, the transmission point 3, and the transmission point 4 all participate in the terminal device. Coordinated transmission.
- the terminal device calculates the power of the downlink data channel between the transmission point and the terminal device.
- two types of reference signals that is, a cell-level reference signal and a user-level reference signal may be used in the following process
- the cell-level reference signal may include, for example, a cell-specific reference signal, a possible cell.
- the dedicated reference signals are, for example, Cell-specific reference signals (CRS), which can be used for downlink channel estimation and can be used for data demodulation in non-beamforming mode.
- CRS Cell-specific reference signals
- other possible cell-specific reference signals may be included in addition to the CRS.
- the user-level reference signal may include, for example, a user-specific reference signal, one possible user-specific reference signal such as a DM-RS, and the DM-RS may be used for uplink control. And performing correlation demodulation of the data channel.
- a user-specific reference signal such as a DM-RS
- the DM-RS may be used for uplink control. And performing correlation demodulation of the data channel.
- other possible cell-specific reference signals may be included in addition to the DM-RS.
- the name in the embodiment of the present invention does not constitute a limitation on the reference signal itself.
- the CRS or the DM-RS may have other possible names as long as the corresponding functions can be implemented.
- PDSCH EPRE/DM-RS EPRE 0 dB or -3 dB;
- ⁇ A and ⁇ B both represent power
- P A is a dedicated parameter for calculating the downlink data channel power
- ⁇ A is determined as follows:
- the terminal device can assume more than one layer of spatial division multiplexing or PDSCH related to the multi-user MIMO transmission scheme for 16 Quadrature Amplitude Modulation (QAM), 64QAM, or 256QAM:
- QAM Quadrature Amplitude Modulation
- 64QAM 64QAM
- 256QAM 256QAM
- ⁇ A ⁇ power-offset + P A + 10 log 10 (2) [dB];
- ⁇ A ⁇ power-offset + P A [dB].
- ⁇ power-offset is equal to 0 dB
- P A can be understood as a dedicated parameter for calculating the power of the downlink data channel between the antenna port set and the terminal device.
- the terminal device can assume spatial multiplexing for Quadrature Phase Shift Keying (QPSK) and single antenna transmission or transmit diversity transmission mode or single layer transmission, and PDSCH transmission and multi-user MIMO
- QPSK Quadrature Phase Shift Keying
- the terminal device can assume spatial multiplexing for Quadrature Phase Shift Keying (QPSK) and single antenna transmission or transmit diversity transmission mode or single layer transmission, and PDSCH transmission and multi-user MIMO
- QPSK Quadrature Phase Shift Keying
- the PDSCH is a CRC-related physical downlink control channel (PDCCH)/enhanced physical downlink control channel scrambled by a Cell Radio Network Temporary Identifier (C-RNTI).
- PDSCH is a CRC-related physical downlink control channel (PDCCH)/enhanced physical downlink control channel scrambled by a Cell Radio Network Temporary Identifier (C-RNTI).
- EPDCCH Enhanced Physical Downlink Control Channel
- ⁇ A P' A + 10 log 10 (2) [dB];
- servCellp-a-r12 can be used to indicate the power offset of the C-RNTI modulated by the QPSK mode transmitted by the serving cell through the PDSCH, which can be understood as the value of the P A of the serving cell, and the servCellp-a-r12 can be controlled by the radio resource ( Radio Resource Control (RRC) signals the terminal device.
- RRC Radio Resource Control
- the dedicated ratio ⁇ B / ⁇ A of the cell can be determined according to Table 1, wherein the cell-specific parameter P B can be given by the higher layer signaling and the number of cell-specific antenna ports.
- the ratio of the PDSCH to the EPRE of the dedicated reference signal of the terminal device is determined as follows:
- the PDSCH EPRE on each Orthogonal Frequency Division Multiplexing (OFDM) symbol including the dedicated reference signal of the terminal device The ratio of the EPRE of the dedicated reference signal of the terminal device is a fixed value, and the value is unchanged on all OFDM symbols including the dedicated reference signal of the terminal device on the corresponding PRBs.
- the terminal device For 16QAM, 64QAM, or 256QAM, the terminal device generally Assume that the ratio is 0 dB.
- TM8 if a dedicated reference signal of the terminal device appears on the corresponding PDSCH mapped PRBs, the terminal device assumes that the PDSCH EPRE and the dedicated reference signal of the terminal device are on each OFDM symbol including the dedicated reference signal of the terminal device.
- the ratio of EPRE is 0 dB.
- the terminal device assumes that if the number of transmission layers is less than or equal to 2 on each OFDM symbol including the dedicated reference signal of the terminal device, Then the ratio of the PDSCH EPRE to the dedicated reference signal EPRE of the terminal device is 0 dB, otherwise the ratio is -3 dB.
- the dedicated reference signal of the terminal device mentioned above may include a reference signal at the cell level, or may also include a reference signal at the user level.
- a first power configuration method is provided.
- the process of the method is as follows:
- Step 201 The first network device sends M group power configuration parameters to the second network device, where the M group power configuration parameters correspond to the M antenna port sets, and at least one of the M antenna port sets belongs to the first network.
- the device, each set of power configuration parameters is used to calculate the power of the downlink data channel between the corresponding antenna port set and the second network device, where M is an integer greater than or equal to 2.
- a second power configuration method is provided.
- the process of the method is as follows:
- Step 301 The second network device receives the M group power configuration parameters sent by the first network device, where the M group power configuration parameters correspond to the M antenna port sets, and the at least one antenna port set of the M antenna port sets belongs to the first The network device, each set of power configuration parameters is used to calculate the power of the downlink data channel between the corresponding antenna port set and the second network device, where M is an integer greater than or equal to 2.
- the M antenna port sets may belong to different cells, or a part of the antenna port sets may belong to one cell.
- the first cell includes two antenna port sets in the M antenna port set, and the first cell may correspond to two sets of power configuration parameters, then the two sets of power configuration parameters may be the same or different, that is, the implementation of the present invention
- the power configuration parameters are configured according to the antenna port set, instead of being configured according to the carrier, and the same carrier may also correspond to multiple sets of power configuration parameters, and multiple sets of power configuration parameters corresponding to the same carrier. May be the same or different.
- the two antenna port sets belong to different base stations, for example.
- the antenna port set 1 belongs to the base station 1
- the antenna port set 2 belongs to the base station 2.
- the antenna port set 1 belongs to the base station 1
- the antenna port set 2 belongs to the base station 2
- the antenna port set 1 and the antenna port set 2 together, for example, cooperatively transmit the terminal device together, in this case, if An antenna port set is a cell, then the antenna port set 1 can be regarded as a coordinated cell of the antenna port set 2, and the antenna port set 2 can also be regarded as a coordinated cell of the antenna port set 1.
- the two antenna port sets belong to the same base station, for example.
- the antenna port set 1 belongs to the base station 1
- the antenna port set 2 also belongs to the base station 1.
- the antenna port set 1 and the antenna port set 2 together, for example, perform cooperative transmission for the terminal device.
- the antenna port set 1 can be regarded as a cooperative cell of the antenna port set 2
- the antenna port set 2 can also be regarded as a cooperative cell of the antenna port set 1.
- the first cell corresponds to three sets of power configuration parameters
- the second cell corresponds to a set of power configuration parameters
- the three sets of power configuration parameters corresponding to the first cell may have a set of power configuration parameters and power of the second cell.
- the configuration parameters are the same, or the three sets of power configuration parameters corresponding to the first cell may be different from the power configuration parameters corresponding to the second cell.
- the first network device is a base station
- the second network device is a terminal device
- the downlink data channel is a PDSCH.
- the base station sends the M group power configuration parameters to the terminal device through the high layer signaling, and the terminal device can receive the M group power configuration parameters sent by the base station.
- the high layer signaling may include, for example, RRC signaling, or may also include other possible higher layer signaling.
- the base station may send the M-group power configuration parameters to the terminal device in a high-level signaling, or may send the M-group power configuration parameters to the terminal device in multiple high-level signaling.
- the base station may carry the power configuration parameters of the serving cell in a high layer signaling to the terminal device, and carry the power configuration parameters of other cells in another high layer signaling. Send to the terminal device.
- the base station may directly obtain the M group power configuration parameter and send the M group power configuration parameter to the terminal device, and if the M group power configuration parameter corresponds to The set of antenna ports belongs to different base stations, and then the M group of power configuration parameters may be sent by the same base station to the terminal device.
- the base station where the serving cell of the terminal device is located may send the M group power configuration parameters to the terminal device, or may separately The corresponding power configuration parameters are sent by the different base stations to the terminal device, and the M group power configuration parameters are sent to the terminal device.
- the base station that sends the power configuration parameter to the terminal device needs to obtain corresponding power configuration parameters from other base stations in advance.
- M 2
- a set of antenna ports corresponding to a set of power configuration parameters 1 belongs to the base station 1
- another set of antenna ports corresponding to the power configuration parameter 2 belongs to the base station 2
- the base station 1 can request the base station 2 to obtain the power.
- the configuration parameter 2 can be obtained through the X2 interface, or the base station 2 can also actively send the power configuration parameter 2 to the base station 1.
- the base station 1 may transmit the power configuration parameter 1 to the terminal device, and the base station 2 may transmit the power configuration parameter 2 to the terminal device.
- the time and sequence of sending the M-group power configuration parameters are not limited in the embodiment of the present invention.
- the base station may carry the power configuration parameters of the cell served by the base station in a high layer signaling to the terminal device, and then carry the power configuration parameters of the services provided by other base stations.
- the other high-level signaling is sent to the terminal device, and then the process involves the base station acquiring the corresponding power configuration parameters from other base stations, that is, a total of three processes are involved, and the process 1 is a cell in which the base station provides the base station to serve the base station.
- the power configuration parameters are sent to the terminal device in a high-level signaling, and the process 2 is that the base station obtains corresponding power configuration parameters from other base stations, and the process 3 is that the power configuration parameters that the base station provides services to other base stations are carried in other high-level letters.
- the sequence of occurrence may be Process 1 - Process 2 - Process 3, or Process 2 - Process 1 - Process 3, or Process 1 and Process 2 may occur simultaneously. 3 Finally, or process 2 occurs first, process 1 and process 3 occur last, or there may be He may order.
- each set of power configuration parameters may include reference signal power corresponding to the set of power configuration parameters, and may further include at least one of the first parameter and the second parameter, or may further include other possible parameters.
- the reference signal power corresponding to the power configuration parameter may be used to indicate the power of the cell-specific reference signal, for example, may be the power of the CRS, or may also be used to indicate the power of the user-specific reference signal, for example, may be the power of the DM-RS.
- Whether a set of power configuration parameters is reference signal power for indicating power of the cell-specific reference signal or reference signal power for indicating power of the user-specific reference signal may be preset by a protocol, or may be required by the base station according to requirements The selection is not limited in the embodiment of the present invention.
- each set of power configuration parameters may further include identifier information corresponding to the set of power configuration parameters, or may also be referred to as index information.
- the identification information of the power configuration parameter may be used to uniquely identify a set of power configuration parameters, that is, each group of power configuration parameters corresponds to one identification information, so that multiple sets of power configuration parameters may be distinguished by the identification information.
- the first parameter for example, denoted by pb, can be used to indicate the value of the parameter P B , that is, the value used to indicate ⁇ B / ⁇ A , that is, the antenna port set corresponding to the set of power configuration parameters is in the cell-specific reference signal.
- ⁇ A may be different under different TMs or in different scenarios of the same TM value
- the corresponding network device when the configuration of the power configuration parameters may take into account the different scenarios for different configurations, the terminal device in different scenes should be known in advance how the ⁇ a value.
- a second parameter represented by pa may be used to indicate the value of the parameter P A
- P A can be understood as a downlink data channel between a set of antenna ports and the terminal device calculates the set of configuration parameters corresponding to the power
- the dedicated parameter of the power can be understood as a dedicated parameter for calculating the power of the downlink data channel between the transmission point and the terminal device corresponding to the set of power configuration parameters.
- the dedicated parameter is usually notified by higher layer signaling.
- the power of the downlink data channel between the corresponding antenna port set and the terminal device can be calculated according to the set of power configuration parameters, that is, according to the power of the group.
- the configuration parameter calculates the power of the downlink data channel between the corresponding transmission point and the terminal device.
- the calculation method can be referred to the introduction as before.
- the base station sends, by using the PDCCH/EPDCCH, information indicating a correspondence between at least one of the number of data streams, the antenna port, and the codeword and the identification information of the power configuration parameter to the terminal device, for example, the base station may be used for Means
- the information indicating the correspondence between the data stream, the antenna port, and the codeword and the identifier of the power configuration parameter is carried in the control information and sent to the terminal device, where the terminal device can receive the data for indicating Information indicating a correspondence between at least one of a stream number, an antenna port, and a codeword and identification information of a power configuration parameter, or the base station transmits, by using a PDCCH/EPDCCH, a number of data streams, an antenna port, And at least one of the codewords and the correspondence between the scrambling code sequence and the identification information of the power configuration parameters, for example, the base station may be used to indicate at least one of the number of data streams, the antenna port, and the codeword.
- the information about the correspondence between the scrambling code sequence and the identification information of the power configuration parameter is sent to the terminal device in the control information, and the terminal device can receive at least one of the number of the data stream, the antenna port, and the codeword.
- Information of the correspondence between the item and the scrambling code sequence and the identification information of the power configuration parameter That is, when the base station indicates the power configuration parameter to the terminal device, the base station may indicate together with the scrambling code sequence, or may additionally indicate the scrambling code sequence.
- the base station may send, by the base station, the terminal device, at least one of the data flow number, the antenna port, and the codeword, and the power configuration parameter. Identifying a correspondence between the information, or transmitting, to the terminal device, a correspondence between the number of the data stream, the antenna port, and the codeword, and the correspondence between the scrambling code sequence and the identification information of the power configuration parameter.
- the information may be used by the base station to send the power configuration parameter to the terminal device, and may be sent by the base station to the terminal device to indicate the data flow.
- the terminal device sends information indicating a correspondence between at least one of the number of data streams, the antenna port, and the codeword and the identification information of the power configuration parameter, or sends the number of the data stream and the antenna port to the terminal device.
- each base station may only Sending information indicating a correspondence relationship of power configuration parameters corresponding to the base station.
- the base station may not need to send the indication to the terminal device again.
- the information of the relationship because there is only one set of power configuration parameters, the terminal device can also determine the corresponding antenna port set according to the base station that transmits the set of power configuration parameters. 4 is an example in which the M group power configuration parameters are transmitted from one base station to the terminal device, and the base station transmits the corresponding relationship to the terminal device.
- the information used to indicate the correspondence between the data stream number, the antenna port, and the codeword and the identifier information of the power configuration parameter may include the number of the data stream, the antenna port, and the code.
- the information corresponding to the correspondence between the identification information of the power configuration parameters may include a plurality of sub-informments, each of the sub-information being used to represent at least one of a set of data streams, an antenna port, and a codeword, and a power configuration parameter. Correspondence between the identification information.
- the information indicating the correspondence between at least one of the number of data streams, the antenna port, and the codeword, and the identification information of the scrambling code sequence and the power configuration parameter may also include a plurality of sub-informations, each of which may include The sub-information is used to indicate a correspondence between at least one of a set of data streams, an antenna port, and a codeword, and an identification information of a scrambling code sequence and a power configuration parameter.
- the sub information may also be referred to as a state.
- the base station may send, by using Downlink Control Information (DCI), the terminal device to indicate the number of data streams, the antenna port, and Information of a correspondence between at least one of the code words and identification information of the power configuration parameters.
- DCI Downlink Control Information
- the base station may also send, by using the DCI, information for indicating a correspondence between at least one of the number of data streams, the antenna port, and the codeword, and the identifier information of the scrambling code sequence and the power configuration parameter.
- the information indicating the correspondence between at least one of the number of data streams, the antenna port, and the codeword and the identification information of the power configuration parameter is as follows.
- a possible information indicating a correspondence between at least one of a data flow number, an antenna port, and a codeword and identifier information of a power configuration parameter may be used.
- Table 2A shows information for indicating the correspondence between the number of data streams and the identification information of the antenna port and the power configuration parameter, and each value (Value) in Table 2A corresponds to a sub-information (Message).
- the message can be understood as a state, that is, a value corresponds to a state, which is equivalent to jointly coding at least one of the number of data streams, the antenna port, and the codeword with the identification information of the power configuration parameter, where the present invention is implemented.
- the coding rules in the examples can refer to the prior art.
- the value of Value can occupy 2 bits or 3 bits, or it may occupy more bits.
- Table 2A takes 2bit as an example. Value0 corresponds to 00, Value1 corresponds to 01, Value2 corresponds to 10, and Value3 corresponds to 11.
- the n PCIDs in the table to be described below all indicate the identification information of the power configuration parameters.
- the terminal device has received the M group power configuration parameters in step 1, and also knows the identification information of each group of power configuration parameters, according to the antenna port and/or the number of data streams of the antenna port set, and the The information about the identification information of the power configuration parameter, the terminal device can determine which set of antenna ports corresponds to which set of power configuration parameters, so that the power of the downlink data channel between each antenna port set and the terminal device can be obtained separately.
- the number of data streams is 1, for example, another possible information indicating a correspondence between at least one of the number of data streams, the antenna port, and the codeword and the identification information of the power configuration parameter.
- Table 2B shows information indicating the correspondence between the number of data streams and the identification information of the antenna port and the power configuration parameter.
- Each Value in Table 2B corresponds to a state, and Table 2B takes a value of For example, if the value occupies 3 bits, then Value0 corresponds to 000, Value1 corresponds to 001, Value2 corresponds to 010, and so on.
- n PCID 0 5 1 layer
- port 8 n PCID 1 6 1 layer
- port 8 n PCID 2 7 1 layer
- port 8, n PCID 3
- a possible information indicating a correspondence between at least one of a data flow number, an antenna port, and a codeword and identifier information of a power configuration parameter may be used.
- Table 3 shows information indicating the correspondence between the number of data streams and the identification information of the antenna port and the power configuration parameter.
- Each Value in Table 3 corresponds to a state, and Table 3 takes the value of Value. Take 2bit as an example.
- a possible information indicating a correspondence between at least one of a data flow number, an antenna port, and a codeword and identifier information of a power configuration parameter may be used.
- Table 4 shows information indicating the correspondence between the number of data streams and the identification information of the antenna port and the power configuration parameter.
- Each value in Table 4 corresponds to a state, and each state may include at least one state. Two sub-states, each of which can have a corresponding n PCID .
- Table 4 takes the value of Value as an example.
- a possible information indicating a correspondence between at least one of a data flow number, an antenna port, and a codeword and identifier information of a power configuration parameter may be used.
- Table 5 shows information indicating the correspondence between the number of data streams and the identification information of the antenna port and the power configuration parameter.
- Each value in Table 5 corresponds to a state, and each state may include at least one state. Two sub-states, each of which can have a corresponding n PCID .
- Table 5 takes the value of Value as an example.
- a possible information indicating a correspondence between at least one of a data flow number, an antenna port, and a codeword and identifier information of a power configuration parameter may be used.
- Table 6 shows information indicating the correspondence between the number of data streams and the identification information of the antenna port and the power configuration parameter.
- Each value in Table 6 corresponds to a state, and each state may include at least one state. Two sub-states, each of which can have a corresponding n PCID .
- Table 6 takes the value of Value as an example.
- a possible information indicating a correspondence between at least one of a data flow number, an antenna port, and a codeword and identifier information of a power configuration parameter may be used.
- Table 7 shows information indicating the correspondence between the number of data streams and the identification information of the antenna port and the power configuration parameter.
- Each value in Table 7 corresponds to a state, and each state may include at least one state. Two sub-states, each of which can have a corresponding n PCID .
- Table 7 takes the value of Value as an example.
- a possible information indicating a correspondence between at least one of a data flow number, an antenna port, and a codeword and identifier information of a power configuration parameter may be used.
- Table 8 shows information indicating the correspondence between the number of data streams and the identification information of the antenna port and the power configuration parameter.
- Each value in Table 8 corresponds to a state, and each state may include at least one state. Two sub-states, each of which can have a corresponding n PCID .
- Table 8 takes the value of Value as an example.
- a possible information indicating a correspondence between at least one of a data flow number, an antenna port, and a codeword and identifier information of a power configuration parameter may be used.
- Table 9 shows information indicating the correspondence between the number of data streams and the identification information of the antenna port and the power configuration parameter.
- Each value in Table 9 corresponds to a state, and each state may include at least one state. Two sub-states, each of which can have a corresponding n PCID .
- Table 9 takes the value of Value as an example.
- Tables 2A to 9 shown above indicate cases in which different numbers of data streams can be indicated separately.
- the situation of each data flow number may also be indicated together.
- this indication manner for example, one possible is used to indicate at least one of the data flow number, the antenna port, and the codeword, and the power configuration.
- Table 10 shows information indicating the correspondence between the number of data streams and the identification information of the antenna port and the power configuration parameter:
- Table 2A-Table 10 are examples of the information indicating the correspondence between the number of data streams and the identification information of the antenna port and the power configuration parameter. The following describes the identifier used to indicate the number of data streams and the power configuration parameters. Information of a correspondence relationship between the information and information indicating a correspondence relationship between the antenna port and the identification information of the power configuration parameter.
- a possible information for indicating a correspondence between the number of data streams and the identifier information of the power configuration parameter may refer to Table 11, where each value in Table 11 corresponds to a state, and a part of the state is further At least two sub-states may be included, each of which may have a corresponding n PCID .
- Table 11 takes the value of Value as 3 bits as an example.
- Table 11 is exemplified by the number of data streams being 1 or 2.
- another possible information for indicating a correspondence between the number of data streams and the identification information of the power configuration parameter may refer to Table 12, where each Value in Table 12 corresponds to a state, and a part of the state It may also include at least two sub-states, each of which may have a corresponding n PCID .
- Table 12 takes the value of Value as an example.
- Table 12 is exemplified by the number of data streams being 1, 2, 3 or 4.
- a possible information for indicating a correspondence between the antenna port and the identifier information of the power configuration parameter may refer to Table 13.
- Each Value in Table 13 corresponds to a state, and a part of the state may be It includes at least two sub-states, each of which may have a corresponding n PCID .
- Table 13 takes the value of Value as an example.
- Table 13 is exemplified by two antenna ports.
- Table 14 another possible information for indicating a correspondence between the antenna port and the identification information of the power configuration parameter may refer to Table 14.
- Each Value in Table 14 corresponds to a state, and the partial state is further At least two sub-states may be included, each of which may have a corresponding n PCID .
- Table 14 takes the value of Value as an example.
- Table 14 is exemplified by four antenna ports.
- the code table (CodeWord) is not used in the information indicating that the correspondence between the data stream number, the antenna port, and the codeword and the identification information of the power configuration parameter are introduced in the above table.
- codeword is not used in the information indicating that the correspondence between the data stream number, the antenna port, and the codeword and the identification information of the power configuration parameter are introduced in the above table.
- an example is given when considering a codeword.
- a possible information for indicating a correspondence between the codeword and the identifier information of the power configuration parameter may refer to Table 15, where each Value corresponds to one sub-information, that is, corresponding to one state, each state It may also include at least two sub-states, each of which may have a corresponding n PCID .
- the value of Value can occupy 2bit or 3bit, or it may occupy more bits. Table 15 shows an example where the value of Value occupies 2 bits.
- each Value corresponds to one state, and each state may include at least two.
- Sub-states, each sub-state can have a corresponding n PCID .
- Table 16 takes the value of Value as an example.
- Table 17 a possible information indicating a correspondence between at least one of the number of data streams, an antenna port, and a codeword and identification information of a power configuration parameter may be referred to Table 17, which is used to indicate streams, antenna port, codeword and a scrambling sequence corresponding configuration information to the power relationship between the identification information of the parameter table 17 corresponds to a Value for each state, each state may have a corresponding n PCID respectively.
- Table 17 takes the value of Value as 3 bits as an example.
- Table 18 another possible information for indicating a correspondence between at least one of a data stream number, an antenna port, and a codeword and identification information of a power configuration parameter may be referred to Table 18, and Table 18 indicates The information is used to indicate the correspondence between the number of data streams, the antenna port, the codeword, and the scrambling code sequence and the identification information of the power configuration parameter.
- Each value in Table 18 corresponds to a state, and each state may have a corresponding n PCID .
- Table 18 takes the value of Value as 4, for example, Value0 corresponds to 0000, Value1 corresponds to 0001, Value2 corresponds to 0010, and so on.
- n SCIDs in Table 17 and Table 18 represent scrambling code sequences.
- the terminal device may determine the antenna port set corresponding to the M group power configuration parameters respectively. That is, the terminal device determines a transmission point corresponding to each of the M group power configuration parameters.
- the terminal device generally knows at least one of the number of data streams, the antenna port, and the codeword of each antenna port set that transmits data to the terminal device, and the terminal device may be configured to indicate the number of data streams according to the indication, Information about a correspondence between at least one of an antenna port and a codeword and identification information of a power configuration parameter or according to at least one of indicating a number of data streams, an antenna port, and a codeword, and a scrambling code sequence
- the information about the correspondence between the identification information of the power configuration parameters, and the at least one of the number of data streams of the antenna port set, the antenna port, and the codeword determine the antenna port set corresponding to the M group power configuration parameters respectively.
- the terminal device For example, if the base station sends to the terminal device information indicating a correspondence between the codeword and the identification information of the power configuration parameter, the terminal device generally knows the codeword of each antenna port set that transmits data to the terminal device. The terminal device may determine, according to the n PCID included in the information indicating the correspondence between the codeword and the identifier information of the power configuration parameter, and the codeword of the antenna port set, determine the antenna port set corresponding to the M group power configuration parameters respectively. .
- the terminal device needs to know the number of data streams of the antenna port set in advance, and if the base station is to the terminal device The information is sent to indicate the correspondence between the number of data streams and the identification information of the antenna port and the power configuration parameter, and the terminal device needs to know the number of data streams of the antenna port set and the antenna port in advance, that is, the terminal device needs to know the corresponding The information is not repeated here.
- the terminal device can obtain power between the M antenna port set and the downlink data channel of the terminal device, that is, obtain the power of the downlink data channel sent by the M antenna port sets.
- the terminal device may separately demodulate the data transmitted by the M antenna port sets through the respective downlink data channels, because The data transmitted by the downlink data channel is demodulated by using the power corresponding to each downlink data channel, so the demodulation result is more accurate, and the demodulation performance of the data is improved.
- the base station may send data to the terminal device according to the control information, and the terminal device may receive data sent by the base station according to the control information, and the terminal device can also perform normal demodulation on the data.
- the base station sends the M group power configuration parameters to the terminal device by using the first signaling, and the terminal device can receive the first message. make.
- each set of power configuration parameters may have a corresponding relationship with the antenna port set, or each set of power configuration parameters may have a corresponding relationship with at least one of a data flow number, an antenna port, and a codeword.
- the corresponding relationship may be carried in the first signaling, that is, the first signaling may carry, in addition to the M group power configuration parameters, a set of power configuration parameters and antenna port sets.
- the information of the correspondence relationship, or the first signaling may further carry information indicating a correspondence relationship between each group of power configuration parameters and at least one of a data stream number, an antenna port, and a codeword, or
- the relationship may also be pre-defined by the protocol or negotiated in advance by the base station and the terminal device, so that the terminal device can determine which set of power configuration parameters corresponds to which antenna port set after receiving the first signaling, and does not need to associate the relationship. Carrying in the first signaling, saving transmission resources.
- the first signaling may be high layer signaling, for example, the first signaling may be signaling obtained by modifying signaling for indicating a PDSCH configuration information element (PDSCH-Config information element), or first The signaling may be signaling obtained by modifying signaling for indicating a quasi co-located (QCL) configuration parameter of the PDSCH.
- the quasi-co-site address means that if the two antenna port sets are QCL, the large-scale characteristics of the two antenna port sets, such as Doppler delay or Doppler frequency offset, are generally the same.
- the modification here mainly refers to adding new content to the original signaling.
- the original signaling carries only one set of power configuration parameters.
- multiple sets of power configuration parameters may be carried in the signaling. The following are examples.
- the part starting from cooperate is the new part.
- the protocol pre-specifies information for indicating a correspondence between each set of power configuration parameters and an antenna port set or for indicating at least each of the power configuration parameters and the number of data streams, antenna ports, and code words. Information about the correspondence between a piece of information that is not carried in the first signaling.
- the PDSCH common configuration in the PDSCH-Config information element can be specified.
- PDSCH-ConfigCommon and the PDSCH configuration indication (PDSCH-ConfigDedicated) are used to indicate a power configuration parameter of the first antenna port, corresponding to at least one of a data stream number, an antenna port, or a codeword of the first antenna port, and The cooperate is used to indicate a power configuration parameter of the second antenna port, corresponding to at least one of a data stream number, an antenna port, or a codeword of the second antenna port.
- a transmission point is a cell, that is, an antenna port set is a set of antenna ports of a cell
- the first antenna port may be a serving cell of the terminal device
- the second antenna port may be a coordinated cell of the terminal device.
- the protocol pre-specifies information for indicating a correspondence between each set of power configuration parameters and an antenna port set or for indicating at least each of the power configuration parameters and the number of data streams, antenna ports, and code words. Information about the correspondence between a piece of information that is not carried in the first signaling.
- a new cooperate in the signaling for indicating the QCL configuration parameter of the PDSCH may be used to indicate the power configuration parameter of the second antenna port, the number of data streams corresponding to the second antenna port, the antenna port or the code. At least one of the words. If a transmission point is a cell, that is, an antenna port set is a set of antenna ports of a cell, optionally, the second antenna port may be a coordinated cell of the terminal device, and the letter for indicating the QCL configuration parameter of the PDSCH
- the first antenna port indicated by the central unit may be the serving cell of the terminal device.
- the step 1 may be: the base station sends the first power configuration parameter and the M-1 conversion relationship information to the terminal device by using the first signaling.
- the first power configuration parameter and the M-1 conversion relationship information and the antenna port set may have a corresponding relationship, or the first power configuration parameter, the M-1 conversion relationship information, the number of data streams, and the antenna port and There may be a correspondence between at least one of the code words.
- the corresponding relationship may be carried in the first signaling, that is, the first signaling may carry the first power configuration parameter and the M-1 conversion relationship information, and may be carried to indicate the first
- the power configuration parameter and the M-1 conversion relationship information and the antenna port set may have corresponding information, or the first signaling may further carry the first power configuration parameter and the M-1 conversion relationship information and data.
- the at least one of the number of the flow, the antenna port, and the codeword may have a corresponding relationship, or the corresponding relationship may be pre-defined by the protocol or negotiated in advance by the base station and the terminal device, so that the terminal device is receiving After the first signaling, it may be determined which antenna port set the first power configuration parameter or a certain conversion relationship information corresponds to, and the corresponding relationship is not required to be carried in the first signaling, thereby saving transmission resources.
- the first power configuration parameter may be a set of power configuration parameters of the M group power configuration parameters, and each of the conversion relationship information includes a set of power configuration parameters of the M power configuration parameters except the first power configuration parameter, and the first The conversion relationship between power configuration parameters.
- the M-1 conversion relationship information is used to obtain the M-1 group power configuration parameters.
- the set of antenna ports corresponding to the first power configuration parameter is, for example, a first antenna port set.
- the first antenna port set may be, for example, a set of antenna ports provided by the base station. If the first transmission point is a cell, the first antenna port set may be, for example, a serving cell of the terminal device.
- the first signaling may be high layer signaling, for example, the first signaling may be signaling for indicating a PDSCH-Config information element, or the first signaling may be a signaling for indicating a QCL configuration parameter of the PDSCH. make.
- the second power configuration parameter is any one of the M power configuration parameters except the first power configuration parameter, and then the conversion relationship between the second power configuration parameter and the first power configuration parameter
- the information may include: a ratio of a power of the antenna port set corresponding to the second power configuration parameter to a power of the antenna port set corresponding to the first power configuration parameter, and/or each parameter included in the second power configuration parameter and the first power The offset between the corresponding parameters included in the configuration parameters.
- the content included in the conversion relationship information is not limited thereto, and other group power configuration parameters may be obtained according to the conversion relationship information and the first power configuration parameter.
- the base station may send the M group power configuration parameters themselves, or the base station may send the first power configuration parameter and the M-1 group conversion relationship information, or the base station may also send multiple powers.
- the configuration relationship and the conversion relationship information corresponding to the other power configuration parameters, if the base station sends multiple power configuration parameters, the conversion relationship information sent by the base station may be a conversion relationship information with a set of power configuration parameters, or They are conversion relationship information with different power configuration parameters.
- the M antenna port sets corresponding to the M group power configuration parameters in FIG. 5 may also belong to one base station or different base stations, and the corresponding description may refer to the relevant part of the example 1.
- FIG. 5 also sends M to the terminal device by using one base station. For example, a group power configuration parameter is used, and a correspondence relationship is sent by the base station to the terminal device.
- the terminal device can determine, according to the information carried in the first signaling, the antenna port set corresponding to the M group power configuration parameters.
- the terminal device determines, according to the information carried in the first signaling, the antenna port set corresponding to the M group power configuration parameters respectively, which is described in the following step 1 and will not be described again.
- the terminal device obtains the power of the downlink data channel between the M antenna port set and the terminal device, that is, obtains the power of the downlink data channel sent by the M antenna port sets.
- the base station sends the first power configuration parameter to the terminal device by using the first signaling, and sends the other group power configuration parameters of the M group power configuration parameters except the first power configuration parameter to the terminal device by using the second signaling.
- the first power configuration parameter is a set of power configuration parameters of the M group power configuration parameters.
- each set of power configuration parameters may have a corresponding relationship with the antenna port set, or each set of power configuration parameters may have a corresponding relationship with at least one of a data flow number, an antenna port, and a codeword.
- the corresponding relationship may be carried in the second signaling, that is, the second signaling may further carry information for indicating a correspondence between the power configuration parameter and the antenna port set, or the second signaling.
- Information for indicating a correspondence between the power configuration parameter and at least one of the number of data streams, the antenna port, and the codeword may also be carried.
- the second signaling may carry information indicating a correspondence between other group power configuration parameters and antenna port sets except the first power configuration parameter, or the second signaling may be carried to indicate Information about the correspondence between each set of power configuration parameters and the set of antenna ports, including the first power configuration parameter.
- the second signaling may further carry information indicating a correspondence between the other group power configuration parameters except the first power configuration parameter and at least one of the number of data streams, the antenna port, and the codeword.
- the second signaling may carry information indicating a correspondence between each set of power configuration parameters including the first power configuration parameter and at least one of a data stream number, an antenna port, and a codeword.
- the corresponding relationship may be pre-defined by the protocol or negotiated in advance by the base station and the terminal device, so that the terminal device can determine which group of power configuration parameters corresponds to which antenna after receiving the first signaling and the second signaling.
- the set of ports does not need to carry the corresponding relationship in the second signaling, thereby saving transmission resources.
- the set of antenna ports corresponding to the first power configuration parameter is, for example, a first antenna port set.
- the first antenna port set may be, for example, a set of antenna ports provided by the base station. If a transmission point is a cell, the first antenna port set may correspond to a serving cell of the terminal device.
- the first signaling may be, for example, higher layer signaling.
- the first signaling may be signaling used in the prior art to send the power configuration parameter of the serving cell to the terminal device.
- the second signaling may be, for example, physical layer signaling, for example, the second signaling may be DCI, or may be other possible physical layer signaling.
- the step 1 may be: the base station sends the first power configuration parameter to the terminal device by using the first signaling, and sends the M-1 conversion relationship information to the terminal device by using the second signaling.
- the first power configuration parameter and the M-1 conversion relationship information and the antenna port set may have a corresponding relationship, or the first power configuration parameter, the M-1 conversion relationship information, the number of data streams, and the antenna port and There may be a correspondence between at least one of the code words.
- the corresponding relationship may be carried in the second signaling, that is, the second signaling may further carry information for indicating a correspondence between the M-1 conversion relationship information and the antenna port set, or The second signaling may further carry information indicating a correspondence between the M-1 conversion relationship information and at least one of the number of data streams, the antenna port, and the codeword.
- Each of the conversion relationship information includes a conversion relationship between a set of power configuration parameters other than the first power configuration parameter and the first power configuration parameter of the M group power configuration parameters.
- the M-1 conversion relationship information is used to obtain the M-1 group power configuration parameters.
- the first antenna port set may be a serving cell of the terminal device, and the terminal device naturally knows that the power configuration parameter of the first antenna port set is transmitted through the first signaling, and the terminal device according to the corresponding corresponding And the second signaling can determine the set of antenna ports corresponding to each set of power configuration parameters.
- the M antenna port sets corresponding to the M group power configuration parameters in FIG. 6 may also belong to one base station or different base stations, and the corresponding description may refer to the relevant part of the example 1.
- FIG. 6 also sends M to the terminal device by using one base station. For example, a group power configuration parameter is used, and a correspondence relationship is sent by the base station to the terminal device.
- the terminal device may determine, according to the information carried in the first signaling, the antenna port set corresponding to the first power configuration parameter, and determine, according to the information carried in the second signaling, the first power in the M group power configuration parameter.
- the terminal device determines, according to the information carried in the first signaling and the second signaling, the antenna port set corresponding to the M group power configuration parameters, which is described in the following step 1 and will not be described again.
- the terminal device obtains the power of the downlink data channel between the M antenna port set and the terminal device, that is, obtains the power of the downlink data channel sent by the M antenna port sets.
- a first network device which may include a memory 701, a processor 702, and a transmitter 703.
- the processor 702 may include, for example, a central processing unit (CPU) or an application specific integrated circuit (ASIC), and may include one or more integrated circuits for controlling program execution, and may include using a field programmable gate.
- a hardware circuit developed by a Field Programmable Gate Array (FPGA) may include a baseband chip.
- the number of memories 701 may be one or more.
- the memory 701 may include a Read Only Memory (ROM), a Random Access Memory (RAM), and a disk storage, and the like.
- the memory 701 can be used to store instructions required by the processor 702 to perform tasks, and can also be used to store data.
- the transmitter 703 may belong to a radio frequency system for performing network communication with an external device, for example, may communicate with an external device through a network such as an Ethernet, a radio access network, or a wireless local area network.
- the memory 701 and the transmitter 703 may be connected to the processor 702 via the bus 700 (as shown in FIG. 7 as an example), or may be connected to the processor 702 through a dedicated connection line.
- the code corresponding to the method shown above is solidified into the chip, thereby enabling the chip to perform the method shown in the previous embodiment while it is running.
- How to design and program the processor 702 is a technique well known to those skilled in the art, and details are not described herein.
- the network device can be used to perform the method described above with respect to Figures 2-6, such as the first network device as previously described. Therefore, for the functions and the like implemented by the units in the network device, reference may be made to the description of the previous method part, and details are not described herein.
- a second network device which may include a memory 801, a processor 802, and a receiver 803.
- the processor 802 may include, for example, a CPU or an ASIC, and may include one or more integrated circuits for controlling program execution, may include hardware circuits developed using an FPGA, and may include a baseband chip.
- the number of memories 801 may be one or more.
- the memory 801 may include a ROM, a RAM, and a disk storage, and the like.
- the memory 801 can be used to store instructions required by the processor 802 to perform tasks, and can also be used to store data.
- the receiver 803 can belong to a radio frequency system for network communication with an external device, for example, via Ethernet,
- a network such as a wireless access network or a wireless local area network communicates with an external device.
- the memory 801 and the receiver 803 may be connected to the processor 802 via the bus 800 (as shown in FIG. 8 as an example), or may be connected to the processor 802 through a dedicated connection line.
- the code corresponding to the method shown above is solidified into the chip, thereby enabling the chip to perform the method shown in the previous embodiment while it is running.
- How to design and program the processor 802 is a technique well known to those skilled in the art, and details are not described herein.
- the network device can be used to perform the method described above with respect to Figures 2-6, such as a second network device as previously described. Therefore, for the functions and the like implemented by the units in the network device, reference may be made to the description of the previous method part, and details are not described herein.
- an embodiment of the present invention provides a third network device, where the network device may include a sending module 901.
- the network device may further include a processing module 902, which is shown together in FIG.
- the physical device corresponding to the sending module 901 may be the transmitter 703 in FIG. 7, and the physical device corresponding to the processing module 902 may be the processor 702 in FIG.
- the network device can be used to perform the method described above with respect to Figures 2-6, and can be, for example, a first network device. Therefore, for the functions and the like implemented by the units in the network device, reference may be made to the description of the previous method part, and details are not described herein.
- an embodiment of the present invention provides a fourth network device, where the network device may include a receiving module 1001.
- the network device may further include a processing module 1002, which is shown together in FIG.
- the physical device corresponding to the receiving module 1001 may be the receiver 803 in FIG. 8
- the physical device corresponding to the processing module 1002 may be the processor 802 in FIG. 8 .
- the network device can be used to perform the method described above with respect to Figures 2-6, and can be, for example, a second network device. Therefore, for the functions and the like implemented by the units in the network device, reference may be made to the description of the previous method part, and details are not described herein.
- the first network device may send the M group power configuration parameters to the second network device, so that the second network device may obtain the downlink data between the corresponding cell and the second network device according to the M group power configuration parameters.
- the power of the channel so that the second network device can demodulate the data sent by the corresponding cell according to the obtained power, and obtain a more accurate demodulation result.
- the disclosed apparatus and method may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit or unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to implement the embodiments of the present invention.
- the functional units in the embodiments of the present invention may be integrated into one processing unit, or each unit may also be an independent physical module.
- the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
- all or part of the technical solutions of the embodiments of the present invention may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a computer device, for example, Personal computer, server, or network device, etc.
- a processor executes all or part of the steps of the method of various embodiments of the present invention.
- the foregoing storage medium includes: a universal serial bus flash drive, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk, and the like, which can store program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种功率配置方法及设备,用于解决UE无法获得多个传输点发送数据的功率的问题。其中,一种功率配置方法包括:第一网络设备向第二网络设备发送M组功率配置参数;其中,所述M组功率配置参数对应于M个天线端口集合,所述M个天线端口集合中的至少一个天线端口集合属于所述第一网络设备,每组功率配置参数用于计算相应的天线端口集合与所述第二网络设备之间的下行数据信道的功率,M为大于等于2的整数。
Description
本申请要求在2016年4月8日提交中国专利局、申请号为201610217293.8、申请名称为“一种功率配置方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明实施例涉及通信技术领域,特别涉及一种功率配置方法及设备。
下一代移动通信系统要求大容量和高质量的数据传输。多输入多输出(Multiple-Input Multiple-Output,MIMO)技术被认为是可实现未来高速数据传输的关键技术之一,在第三代移动通信系统(3G)及第四代移动通信系统(4G)中有着广阔的应用前景。传统的集中式MIMO系统的多根发射天线均集中于基站端,与集中式MIMO不同,分布式MIMO系统的多根发射天线分布在不同的地理位置,其各对收发链路之间更加独立,具有大容量、低功耗、更好的覆盖、对人体的电磁损害较低等优势,被认为是未来无线通信系统的备选方案之一。在分布式MIMO的场景下,为了提高边缘用户的信号可靠性以及为了提高边缘小区的吞吐量,可以考虑采用多点空频块码(spatial-frequency block coding,SFBC)或者多点多流等传输方法为用户设备(User Equipment,UE)传输数据。
当UE接收来自多个传输点的数据时,因为每个传输点与UE之间的下行数据信道的功率不同,而传输点与UE之间的下行数据信道的功率一般用于对该传输点通过该下行数据信道所发送的数据进行解调,因此UE在解调时需要知道各个传输点与UE之间的下行数据信道的功率。而目前,高层只为UE配置了一组功率配置参数,UE根据这组功率配置参数只能得到一个传输点与UE之间的下行数据信道的功率,那么在有多个传输点为UE传输数据时,UE可能无法对每个传输点传输的数据进行较为准确的解调。
发明内容
本发明实施例提供一种功率配置方法及设备,用于解决UE无法获得多个传输点发送数据的功率的问题。
第一方面,提供一种功率配置方法,该方法可以包括:第一网络设备向第二网络设备发送M组功率配置参数。其中,M组功率配置参数可以对应于M个天线端口集合,M个天线端口集合中的至少一个天线端口集合属于第一网络设备,每组功率配置参数用于计算相应的天线端口集合与第二网络设备之间的下行数据信道的功率,即,每组功率配置参数用于计算相应的天线端口集合发送的(也可理解为通过相应的天线端口集合发送的)下行数据信道的功率,M可以为大于等于2的整数。
本发明实施例中,第一网络设备可以向第二网络设备发送M组功率配置参数,这样第二网络设备可以根据M组功率配置参数分别获取相应的天线端口集合与第二网络设备之间的下行数据信道的功率,从而第二网络设备可以根据获取的功率分别对相应的天线端口集合发送的数据进行解调,得到较为准确的解调结果。
可选的,第一网络设备可以通过高层信令向第二网络设备发送M组功率配置参数。
可选的,高层信令可以是RRC信令,或者也可以是其他可能的高层信令。
可选的,第一网络设备也可以通过物理层信令向第二网络设备发送M组功率配置参数。
可选的,物理层信令可以是物理层的控制信令,例如一种可能的控制信令可以是DCI,或者物理层信令也可以是其他可能的信令。
可选的,第一网络设备也可以通过高层信令向第二网络设备发送M组功率配置参数中的一部分功率配置参数,及通过物理层信令向第二网络设备发送剩余的功率配置参数。
结合第一方面,在第一方面的第一种可能的实现方式中,M组功率配置参数中的任意一组功率配置参数可以包括该组功率配置参数对应的参考信号功率,还包括第一参数及第二参数中的至少一项。其中,第一参数可以用于指示该组功率配置参数对应的天线端口集合在有小区专用参考信号符号时的功率与无小区专用参考信号符号时的功率的比值,第二参数为用于计算该组功率配置参数对应的天线端口集合与第二网络设备之间的下行数据信道的功率的专用参数。
可选的,小区专用参考信号例如可以是小区级的参考信号,例如可以是CRS,或者也可以是其他可能的小区级的参考信号。或者,小区专用参考信号例如也可以是用户级的参考信号,例如可以是DM-RS,或者也可以是其他可能的用户级的参考信号。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,每组功率配置参数还可以包括用于标识该组功率配置参数的标识信息,那么,该功率配置方法还可以包括如下一些过程:第一网络设备向第二网络设备发送用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息,或,所述第一网络设备向第二网络设备发送用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息。
可选的,第一网络设备可以通过物理层信令向第二网络设备发送用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息或用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息,例如物理层信令可以包括物理层的控制信令,例如一种可能的控制信令可以是DCI。
可选的,第一网络设备可以通过PDCCH/EPDCCH向第二网络设备发送用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息或用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息。
第一网络设备除了可以向第二网络设备发送M组功率配置参数之外,还可以向第二网络设备发送用于指示相应的对应关系的信息,这样第二网络设备根据用于指示相应的对应关系的信息才可以确定M组功率配置参数分别对应的天线端口集合,从而可以对相应的天线端口集合传输的数据进行正确解调。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,第一网络设备向第二网络设备发送M组功率配置参数,可以通过如下方式实现:第一网络设备通过第一信令向第二网络设备发送M组功率配置参数,其中每组功率配置参数与天线端口集合具有对应关系,或每组功率配置参数与数据流数、天线端口及码字中的至少一项具有对应关系,或,第一网络设备通过第一信令向第二网络设备发送第一功率配
置参数及M-1个转换关系信息,其中第一功率配置参数及M-1个转换关系信息与天线端口集合具有对应关系,或所述第一功率配置参数及所述M-1个转换关系信息与数据流数、天线端口及码字中的至少一项具有对应关系。其中,第一功率配置参数为M组功率配置参数中的一组功率配置参数,每个转换关系信息包括M组功率配置参数中除第一功率配置参数外的一组功率配置参数与第一功率配置参数之间的转换关系。M-1个转换关系信息可以用于获取M-1组功率配置参数。
即,第一网络设备可以通过一条信令向第二网络设备发送M组功率配置参数,减少需发送的信令的数量,从而减少设备间的交互次数。另外,第一网络设备向第二网络设备发送M组功率配置参数,可以发送功率配置参数本身,这样第二网络设备直接就可以获得功率配置参数,或者也可以发送功率配置参数之间的转换关系信息,这样第二网络设备可以根据接收的转换关系信息和第一功率配置参数来获得其他的功率配置参数,无需携带全部的功率配置参数,可以减少信令携带的信息量。
可选的,第一信令例如可以是高层信令,例如一种可能的高层信令为RRC信令,或者第一信令也可以是其他可能的信令,例如物理层信令。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第四种可能的实现方式中,第一网络设备向第二网络设备发送M组功率配置参数,可以通过以下方式实现:第一网络设备通过第一信令向第二网络设备发送第一功率配置参数,及,通过第二信令向第二网络设备发送M组功率配置参数中除所述第一功率配置参数之外的M-1组功率配置参数,其中,第一功率配置参数为M组功率配置参数中的一组功率配置参数,功率配置参数与天线端口集合具有对应关系,或功率配置参数与数据流数、天线端口及码字中的至少一项具有对应关系;或,第一网络设备通过第一信令向第二网络设备发送第一功率配置参数,及,通过第二信令向第二网络设备发送M-1个转换关系信息,其中,第一功率配置参数为M组功率配置参数中的一组功率配置参数,每个转换关系信息包括M组功率配置参数中除第一功率配置参数之外的一组功率配置参数与第一功率配置参数之间的转换关系,M-1个转换关系信息与天线端口集合具有对应关系,或M-1个转换关系信息与数据流数、天线端口及码字中的至少一项具有对应关系,M-1个转换关系信息可以用于获取M-1组功率配置参数。
即,第一网络设备可以通过不同的信令分别向第二网络设备发送M组功率配置参数,减少需发送的信令的数量,从而减少设备间的交互次数。另外,第一网络设备向第二网络设备发送M组功率配置参数,可以发送功率配置参数本身,这样第二网络设备直接就可以获得功率配置参数,或者也可以发送功率配置参数之间的转换关系信息,这样第二网络设备可以根据接收的转换关系信息和第一功率配置参数来获得其他的功率配置参数,无需携带全部的功率配置参数,可以减少信令携带的信息量。
可选的,第一信令例如可以是高层信令,例如一种可能的高层信令为RRC信令,或者第一信令也可以是其他可能的信令,例如物理层信令。
可选的,第二信令例如也可以是高层信令,例如为RRC信令,或者第二信令也可以是其他可能的信令,例如物理层信令。
结合第一方面的第三种可能的实现方式或第四种可能的实现方式,在第一方面的第五种可能的实现方式中,第二功率配置参数例如为M组功率配置参数中除第一功率配置参数之外的任意一组功率配置参数,M-1个转换关系信息中包括的第二功率配置参数与第一功
率配置参数之间的转换关系信息例如包括:第二功率配置参数对应的天线端口集合的功率与第一功率配置参数对应的天线端口集合的功率的比值,和/或,第二功率配置参数中包括的各参数与第一功率配置参数包括的相应的参数之间的偏置。
这里给出了几种可能的转换关系信息包括的内容,当然转换关系信息不限于此,只要根据转换关系信息和第一功率配置参数可以得到其他组功率配置参数即可。
可选的,第二功率配置参数对应的天线端口集合的功率,一种可能的理解可以是第二功率配置参数对应的天线端口集合与第二网络设备之间的下行数据信道的功率,即,通过第二功率配置参数对应的天线端口集合发送的下行数据信道的功率。同样的,第一功率配置参数对应的天线端口集合的功率,一种可能的理解可以是第一功率配置参数对应的天线端口集合与第二网络设备之间的下行数据信道的功率,即,通过第一功率配置参数对应的天线端口集合发送的下行数据信道的功率。
第二方面,提供第二种功率配置方法,该方法可以包括:第二网络设备接收第一网络设备发送的M组功率配置参数。其中,M组功率配置参数对应于M个天线端口集合,M个天线端口集合中的至少一个天线端口集合属于第一网络设备,每组功率配置参数用于计算相应的天线端口集合与第二网络设备之间的下行数据信道的功率,即,每组功率配置参数用于计算通过相应的天线端口集合发送的下行数据信道的功率,M为大于等于2的整数。
第一网络设备可以向第二网络设备发送M组功率配置参数,这样第二网络设备可以根据M组功率配置参数分别获取相应的天线端口集合与第二网络设备之间的下行数据信道的功率,从而第二网络设备可以根据获取的功率分别对相应的天线端口集合发送的数据进行解调,得到较为准确的解调结果。
可选的,第二网络设备可以通过高层信令接收第一网络设备发送的M组功率配置参数。
可选的,高层信令可以是RRC信令,或者也可以是其他可能的高层信令。
可选的,第二网络设备也可以通过物理层信令接收第一网络设备发送的M组功率配置参数。
可选的,物理层信令可以是物理层的控制信令,例如一种可能的控制信令可以是DCI,或者物理层信令也可以是其他可能的信令。
可选的,第一网络设备也可以通过高层信令向第二网络设备发送M组功率配置参数中的一部分功率配置参数,及通过物理层信令向第二网络设备发送剩余的功率配置参数,那么第二网络设备就可以通过高层信令接收第一网络设备发送的M组功率配置参数中的一部分功率配置参数,及通过物理层信令接收第二网络设备发送的剩余的功率配置参数。
结合第二方面,在第二方面的第一种可能的实现方式中,M组功率配置参数中的任意一组功率配置参数包括该组功率配置参数对应的参考信号功率,还包括第一参数及第二参数中的至少一项。第一参数可以用于指示该组功率配置参数对应的天线端口集合在有小区专用参考信号符号时的功率与无小区专用参考信号符号时的功率的比值,第二参数为用于计算该组功率配置参数对应的天线端口集合与第二网络设备之间的下行数据信道的功率的专用参数。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,每组功率配置参数还可以包括用于标识该组功率配置参数的标识信息,那么,第二网络设备还可以接收第一网络设备发送的用于指示数据流数、天线端口、及码字中的至少一项与功
率配置参数的标识信息之间的对应关系的信息。
可选的,第二网络设备可以通过物理层信令接收第二网络设备发送的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息,例如物理层信令可以包括物理层的控制信令,例如一种可能的控制信令可以是DCI。
可选的,第二网络设备可以通过PDCCH/EPDCCH接收第二网络设备发送的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息。
可选的,第二网络设备进一步可以根据用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息,以及天线端口集合的数据流数、天线端口、及码字中的至少一项,确定M组功率配置参数分别对应的天线端口集合。
即,在接收用于指示相应的对应关系的信息后,第二网络设备可以确定M组功率配置参数分别对应的天线端口集合,这样,在收到相应的天线端口集合发送的数据后,第二网络设备可以根据通过相应的功率配置参数得到的下行数据信道的功率来对数据进行解调,使得解调结果较为准确。
结合第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,每组功率配置参数还可以包括用于标识该组功率配置参数的标识信息,那么,第二网络设备还可以接收第一网络设备发送的用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息。
可选的,第二网络设备可以通过物理层信令接收第二网络设备发送的用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息,例如物理层信令可以包括物理层的控制信令,例如一种可能的控制信令可以是DCI。
可选的,第二网络设备可以通过PDCCH/EPDCCH接收第二网络设备发送的用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息。
可选的,第二网络设备进一步可以根据用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息,以及天线端口集合的数据流数、天线端口、及码字中的至少一项和扰码序列,确定M组功率配置参数分别对应的天线端口集合。
即,在接收用于指示相应的对应关系的信息后,第二网络设备可以确定M组功率配置参数分别对应的天线端口集合,这样,在收到相应的天线端口集合发送的数据后,第二网络设备可以根据通过相应的功率配置参数得到的下行数据信道的功率来对数据进行解调,使得解调结果较为准确。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第四种可能的实现方式中,第二网络设备接收第一网络设备发送的M组功率配置参数,可以通过以下方式实现:第二网络设备接收第一网络设备发送的第一信令,第一信令携带所述M组功率配置参数。
可选的,第一信令例如可以是高层信令,例如一种可能的高层信令可以是RRC信令,当然第一信令也可以是其他可能的信令。
即,第一网络设备可以通过一条信令将M组功率配置参数一并发送给第二网络设备,
减少信令的交互次数,且第二网络设备可以直接根据第一信令获得M组功率配置参数,方式较为简单。
可选的,第二网络设备进一步可以根据每组功率配置参数与天线端口集合的对应关系,确定M组功率配置参数分别对应的天线端口集合,或,第二网络设备进一步可以根据每组功率配置参数与数据流数、天线端口及码字中的至少一项的对应关系,确定M组功率配置参数分别对应的天线端口集合。
可选的,用于指示相应的对应关系的信息可以一并携带在第一信令中,或者也可以不携带在第一信令中,比如可以通过协议预先规定,或者也可以由第一网络设备和第二网络设备事先协商好,总之,第二网络设备可以确定M组功率配置参数分别对应的天线端口集合,这样,在收到相应的天线端口集合发送的数据后,第二网络设备可以根据通过相应的功率配置参数得到的下行数据信道的功率来对数据进行解调,使得解调结果较为准确。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第五种可能的实现方式中,第二网络设备接收第一网络设备发送的M组功率配置参数,可以通过以下方式实现:第二网络设备接收第一网络设备发送的第一信令,第一信令携带第一功率配置参数及M-1个转换关系信息。其中,第一功率配置参数为M组功率配置参数中的一组功率配置参数,每个转换关系信息包括M组功率配置参数中除第一功率配置参数外的一组功率配置参数与第一功率配置参数之间的转换关系。
可选的,第一信令例如可以是高层信令,例如一种可能的高层信令可以是RRC信令,当然第一信令也可以是其他可能的信令。
即,第一网络设备可以无需将每组功率配置参数都携带在信令中,而可以在信令中携带转换关系信息,转换关系信息例如一般来说可能比相应的功率配置参数的数据量小,这样可以减少信令携带的数据量。
可选的,第二网络设备进一步可以确定第一功率配置参数对应的天线端口集合,及,根据M-1个转换关系信息和第一功率配置参数获取M组功率配置参数中除第一功率配置参数外的M-1组功率配置参数。
即,第二网络设备在接收第一功率配置参数和M-1组转换关系信息后,可以得到M-1组功率配置参数。
可选的,第二网络设备进一步可以根据第一功率配置参数及M-1个转换关系信息与天线端口集合的对应关系确定M组功率配置参数分别对应的天线端口集合,或,第二网络设备进一步可以根据第一功率配置参数及M-1个转换关系信息与数据流数、天线端口及码字中的至少一项的对应关系,确定M组功率配置参数分别对应的天线端口集合。
可选的,用于指示相应的对应关系的信息可以一并携带在第一信令中,或者也可以不携带在第一信令中,比如可以通过协议预先规定,或者也可以由第一网络设备和第二网络设备事先协商好,总之,第二网络设备可以确定M组功率配置参数分别对应的天线端口集合,这样,在收到相应的天线端口集合发送的数据后,第二网络设备可以根据通过相应的功率配置参数得到的下行数据信道的功率来对数据进行解调,使得解调结果较为准确。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第六种可能的实现方式中,第二网络设备接收第一网络设备发送的M组功率配置参数,可以通过以下方式实现:第二网络设备接收第一网络设备发送的第一信令和第二信令。其中,第一信令携带第一功率配置参数,第二信令携带M组功率配置参数中除第一功率配置参数之外的M-1组
功率配置参数,第一功率配置参数可以是M组功率配置参数中的一组功率配置参数。
即,第一网络设备可以通过不同的信令将M组功率配置参数发送给第二网络设备,这样第二网络设备可以更容易分辨哪组功率配置参数对应于哪个天线端口集合,同时一条信令中也避免携带过多的内容。
可选的,第二网络设备进一步可以根据M-1组功率配置参数与天线端口集合的对应关系,确定M-1组功率配置参数分别对应的天线端口集合,或,第二网络设备进一步可以根据M-1组功率配置参数与数据流数、天线端口及码字中的至少一项的对应关系,确定M-1组功率配置参数分别对应的天线端口集合。
可选的,用于指示相应的对应关系的信息可以一并携带在第一信令或第二信令中,或者也可以不携带在任意一条信令中,比如可以通过协议预先规定,或者也可以由第一网络设备和第二网络设备事先协商好,总之,第二网络设备可以确定M组功率配置参数分别对应的天线端口集合,这样,在收到相应的天线端口集合发送的数据后,第二网络设备可以根据通过相应的功率配置参数得到的下行数据信道的功率来对数据进行解调,使得解调结果较为准确。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第七种可能的实现方式中,第二网络设备接收第一网络设备发送的M组功率配置参数,可以通过以下方式实现:第二网络设备接收第一网络设备发送的第一信令和第二信令。其中,第一信令携带第一功率配置参数,第二信令携带M-1个转换关系信息。第一功率配置参数可以是M组功率配置参数中的一组功率配置参数,每个转换关系信息包括M组功率配置参数中除第一功率配置参数之外的M-1组功率配置参数与第一功率配置参数之间的转换关系。
即,第一网络设备可以通过不同的信令将第一功率配置参数和转换关系信息分别发送给第二网络设备,这样第二网络设备可以更容易分辨哪组功率配置参数对应于哪个天线端口集合,同时一条信令中也避免携带过多的内容。
可选的,第二网络设备进一步可以确定第一功率配置参数对应的天线端口集合,及,根据M-1个转换关系信息和第一功率配置参数获取M组功率配置参数中除第一功率配置参数外的M-1组功率配置参数。
即,第二网络设备可以根据转换关系信息和第一功率配置参数得到M-1组功率配置参数。
可选的,第二网络设备进一步可以根据M-1个转换关系信息与天线端口集合的对应关系确定M-1组功率配置参数分别对应的天线端口集合,或,第二网络设备进一步可以根据M-1个转换关系信息与数据流数、天线端口及码字中的至少一项的对应关系,确定M-1组功率配置参数分别对应的天线端口集合。
可选的,用于指示相应的对应关系的信息可以一并携带在第一信令或第二信令中,或者也可以不携带在任意一条信令中,比如可以通过协议预先规定,或者也可以由第一网络设备和第二网络设备事先协商好,总之,第二网络设备可以确定M组功率配置参数分别对应的天线端口集合,这样,在收到相应的天线端口集合发送的数据后,第二网络设备可以根据通过相应的功率配置参数得到的下行数据信道的功率来对数据进行解调,使得解调结果较为准确。
结合第二方面的第五种可能的实现方式或第七种可能的实现方式,在第二方面的第八种可能的实现方式中,第二功率配置参数例如是M组功率配置参数中除第一功率配置参数
之外的任意一组功率配置参数,那么M-1个转换关系信息中包括的第二功率配置参数与第一功率配置参数之间的转换关系信息可以包括:第二功率配置参数对应的天线端口集合的功率与第一功率配置参数对应的天线端口集合的功率的比值,和/或,第二功率配置参数中包括的各参数与第一功率配置参数包括的相应的参数之间的偏置。
这里给出了几种可能的转换关系信息包括的内容,当然转换关系信息不限于此,只要根据转换关系信息和第一功率配置参数可以得到其他组功率配置参数即可。
第三方面,提供第一种网络设备,该网络设备可以包括存储器、处理器和发送器。存储器可以用于存储处理器执行任务所需的指令,处理器可以用于执行存储器所存储的指令,获得M组功率配置参数,发送器可以用于向第二网络设备发送M组功率配置参数。其中,M组功率配置参数对应于M个天线端口集合,M个天线端口集合中的至少一个天线端口集合属于该网络设备,每组功率配置参数用于计算相应的天线端口集合与第二网络设备之间的下行数据信道的功率,即,每组功率配置参数用于计算通过相应的天线端口集合发送的下行数据信道的功率,M为大于等于2的整数。
可选的,该网络设备还可以包括通信接口,用于支持该网络设备与通信系统中的其他网络设备,如核心网节点,进行通信。
结合第三方面,在第三方面的第一种可能的实现方式中,M组功率配置参数中的任意一组功率配置参数可以包括该组功率配置参数对应的参考信号功率,还包括第一参数及第二参数中的至少一项。其中,第一参数用于指示该组功率配置参数对应的天线端口集合在有小区专用参考信号符号时的功率与无小区专用参考信号符号时的功率的比值,第二参数为用于计算该组功率配置参数对应的天线端口集合与第二网络设备之间的下行数据信道的功率的专用参数。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,每组功率配置参数还可以包括用于标识该组功率配置参数的标识信息,发送器还可以用于:向第二网络设备发送用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息,或,向第二网络设备发送用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第三种可能的实现方式中,发送器可以用于:通过第一信令向第二网络设备发送M组功率配置参数,其中每组功率配置参数与天线端口集合具有对应关系,或每组功率配置参数与数据流数、天线端口及码字中的至少一项具有对应关系;或,通过第一信令向第二网络设备发送第一功率配置参数及M-1个转换关系信息,其中第一功率配置参数及M-1个转换关系信息与天线端口集合具有对应关系,或第一功率配置参数及所述M-1个转换关系信息与数据流数、天线端口及码字中的至少一项具有对应关系,第一功率配置参数为M组功率配置参数中的一组功率配置参数,每个转换关系信息包括M组功率配置参数中除第一功率配置参数外的一组功率配置参数与第一功率配置参数之间的转换关系,M-1个转换关系信息用于获取M-1组功率配置参数。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第四种可能的实现方式中,发送器可以用于:通过第一信令向第二网络设备发送第一功率配置参数,及,通过第二信令向第二网络设备发送M组功率配置参数中除第一功率配置参数之外的M-1组功率配置参数,其中,第一功率配置参数为M组功率配置参数中的一组功率配置参数,功
率配置参数与天线端口集合具有对应关系,或功率配置参数与数据流数、天线端口及码字中的至少一项具有对应关系;或,通过第一信令向第二网络设备发送第一功率配置参数,及,通过第二信令向第二网络设备发送M-1个转换关系信息,其中,第一功率配置参数为M组功率配置参数中的一组功率配置参数,每个转换关系信息包括M组功率配置参数中除第一功率配置参数之外的一组功率配置参数与第一功率配置参数之间的转换关系,M-1个转换关系信息与天线端口集合具有对应关系,或M-1个转换关系信息与数据流数、天线端口及码字中的至少一项具有对应关系,M-1个转换关系信息用于获取M-1组功率配置参数。
结合第三方面的第三种可能的实现方式或第四种可能的实现方式,在第三方面的第五种可能的实现方式中,第二功率配置参数为M组功率配置参数中除第一功率配置参数之外的任意一组功率配置参数,M-1个转换关系信息中包括的第二功率配置参数与所述第一功率配置参数之间的转换关系信息包括:第二功率配置参数对应的天线端口集合的功率与第一功率配置参数对应的天线端口集合的功率的比值,和/或,第二功率配置参数中包括的各参数与第一功率配置参数包括的相应的参数之间的偏置。
第四方面,提供第二种网络设备,该网络设备可以包括存储器、处理器和接收器。存储器可以用于存储指令,处理器可以用于执行存储器所存储的指令,通过接收器接收第一网络设备发送的M组功率配置参数。其中,M组功率配置参数对应于M个天线端口集合,M个天线端口集合中的至少一个天线端口集合属于第一网络设备,每组功率配置参数用于计算相应的天线端口集合与该网络设备之间的下行数据信道的功率,M为大于等于2的整数。
结合第四方面,在第四方面的第一种可能的实现方式中,M组功率配置参数中的任意一组功率配置参数包括该组功率配置参数对应的参考信号功率,还包括第一参数及第二参数中的至少一项。其中,第一参数用于指示该组功率配置参数对应的天线端口集合在有小区专用参考信号符号时的功率与无小区专用参考信号符号时的功率的比值,第二参数为用于计算该组功率配置参数对应的天线端口集合与第二网络设备之间的下行数据信道的功率的专用参数,即,第二参数为用于计算通过该组功率配置参数对应的天线端口集合发送的下行数据信道的功率的专用参数。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,每组功率配置参数还可以包括用于标识该组功率配置参数的标识信息,接收器还可以用于接收第一网络设备发送的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息。
进一步的,处理器还可以用于根据用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息,以及小区的数据流数、天线端口、及码字中的至少一项,确定M组功率配置参数分别对应的天线端口集合。
结合第四方面的第一种可能的实现方式,在第四方面的第三种可能的实现方式中,每组功率配置参数还包括用于标识该组功率配置参数的标识信息,接收器还可以用于接收所述第一网络设备发送的用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息。
进一步的,处理器还可以用于根据用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息,以及天线端口集合的数
据流数、天线端口、及码字中的至少一项和扰码序列,确定M组功率配置参数分别对应的天线端口集合。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第四种可能的实现方式中,接收器还可以用于接收第一网络设备发送的第一信令,第一信令携带M组功率配置参数。那么进一步的,处理器还可以用于根据每组功率配置参数与天线端口集合的对应关系,确定M组功率配置参数分别对应的天线端口集合,或,根据每组功率配置参数与数据流数、天线端口及码字中的至少一项的对应关系,确定M组功率配置参数分别对应的天线端口集合。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第五种可能的实现方式中,接收器还可以用于接收第一网络设备发送的第一信令,第一信令携带第一功率配置参数及M-1个转换关系信息。进一步的,处理器还可以用于确定第一功率配置参数对应的天线端口集合,及,根据M-1个转换关系信息和第一功率配置参数获取M组功率配置参数中除第一功率配置参数外的M-1组功率配置参数。再进一步的,处理器还可以用于根据第一功率配置参数及M-1个转换关系信息与天线端口集合的对应关系确定M组功率配置参数分别对应的天线端口集合,或,根据第一功率配置参数及M-1个转换关系信息与数据流数、天线端口及码字中的至少一项的对应关系,确定M组功率配置参数分别对应的天线端口集合。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第六种可能的实现方式中,接收器还可以用于接收第一网络设备发送的第一信令和第二信令,其中,第一信令携带第一功率配置参数,第二信令携带所述M组功率配置参数中除第一功率配置参数之外的M-1组功率配置参数,第一功率配置参数为M组功率配置参数中的一组功率配置参数。进一步的,处理器可以用于根据M-1组功率配置参数与天线端口集合的对应关系,确定M-1组功率配置参数分别对应的天线端口集合,或,根据M-1组功率配置参数与数据流数、天线端口及码字中的至少一项的对应关系,确定M-1组功率配置参数分别对应的天线端口集合。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第七种可能的实现方式中,接收器还可以用于接收第一网络设备发送的第一信令和第二信令,其中,第一信令携带第一功率配置参数,第二信令携带M-1个转换关系信息,第一功率配置参数为M组功率配置参数中的一组功率配置参数,每个转换关系信息包括M组功率配置参数中除第一功率配置参数之外的M-1组功率配置参数与第一功率配置参数之间的转换关系。进一步的,处理器还可以用于确定第一功率配置参数对应的天线端口集合,及,根据M-1个转换关系信息和第一功率配置参数获取M组功率配置参数中除第一功率配置参数外的M-1组功率配置参数。再进一步的,处理器还可以用于根据M-1个转换关系信息与天线端口集合的对应关系确定M-1组功率配置参数分别对应的天线端口集合,或,根据M-1个转换关系信息与数据流数、天线端口及码字中的至少一项的对应关系,确定M-1组功率配置参数分别对应的天线端口集合。
结合第四方面的第五种可能的实现方式或第七种可能的实现方式,在第四方面的第八种可能的实现方式中,第二功率配置参数为M组功率配置参数中除第一功率配置参数之外的任意一组功率配置参数,M-1个转换关系信息中包括的第二功率配置参数与第一功率配置参数之间的转换关系信息包括:第二功率配置参数对应的天线端口集合的功率与第一功
率配置参数对应的天线端口集合的功率的比值,和/或,第二功率配置参数中包括的各参数与第一功率配置参数包括的相应的参数之间的偏置。
第五方面,提供第三种网络设备,该网络设备可以包括用于执行第一方面的方法的模块。
第六方面,提供提供第四种网络设备,该网络设备可以包括用于执行第二方面的方法的模块。
图1A为SFBC的一种实现方式示意图;
图1B为多天线站点协同传输的场景示意图;
图2为本发明实施例提供的功率配置方法的一种可能的流程图;
图3为本发明实施例提供的功率配置方法的另一种可能的流程图;
图4为本发明实施例提供的第一种根据功率配置参数计算功率的方法的流程图;
图5为本发明实施例提供的第二种根据功率配置参数计算功率的方法的流程图;
图6为本发明实施例提供的第三种根据功率配置参数计算功率的方法的流程图;
图7为本发明实施例提供的第一网络设备的一种可能的结构示意图;
图8为本发明实施例提供的第二网络设备的一种可能的结构示意图;
图9为本发明实施例提供的第一网络设备的一种可能的结构框图;
图10为本发明实施例提供的第二网络设备的一种可能的结构框图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本文中描述的技术可用于各种通信系统,例如3G、4G或下一代通信系统,例如全球移动通信系统(Global System for Mobile communications,GSM),码分多址(Code Division Multiple Access,CDMA)系统,时分多址(Time Division Multiple Access,TDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),频分多址(Frequency Division Multiple Addressing,FDMA)系统,正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)系统,单载波频分多址(SC-FDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,长期演进(Long Term Evolution,LTE)系统,以及其他此类通信系统。
本发明实施例可以以现有的CoMP作为背景,将现有的MIMO技术(包括提高传输可靠性的分集技术和提高传输数据速率的多流技术)与协同多点传输结合起来,以更好地服务用户。
本发明实施例对于同构网络与异构网络的场景均适用,同时对于传输点的类型也不作限制,例如可以应用于宏基站与宏基站、微基站与微基站和宏基站与微基站间的多点协同传输。
本发明实施例可以应用于时分双工(Time Division Duplexing,TDD)系统中,也可以用于频分双工(Frequency Division Duplexing,FDD)系统中,既可以用于单载波系统,也可以用于多载波系统,以及可以普遍适用于高频(高于6GHz频段)或低频通信系统(低于
6GHz频段)。
以下,对本发明实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,是指向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(Radio Access Network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括UE、无线终端设备、移动终端设备、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point,AP)、远程终端设备(Remote Terminal)、接入终端设备(Access Terminal)、用户终端设备(User Terminal)、用户代理(User Agent)、或用户装备(User Device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。
2)网络设备,例如包括基站(例如,接入点),具体可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以是无线网络控制器(Radio Network Controller,RNC)或基站控制器(Base Station Controller,BSC),或者也可以是演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本发明实施例并不限定。
3)多点协作传输(Coordinated Multiple Points Transmission/Reception,CoMP),是指地理位置上分离的多个传输点协同参与向一个终端设备传输数据,例如可以通过物理下行共享信道(Physical Downlink Shared Channel,PDSCH)向终端设备传输数据,或者可以联合接收一个终端设备发送的数据,例如可以通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)接收终端设备发送的数据。
4)SFBC,LTE系统中一般采用SFBC作为两天线端口的发射分集方案,基本思想是:待发送的信息比特经过星座映射之后以两个符号为单位进入空频编码器。例如请参见图1A,2天线的SFBC为,天线1子载波1发送x1,天线2子载波1发送天线1子载波2发送x2,天线2子载波2发送待发送的信息比特经过星座映射之后以两个符号为单位进入空频编码器。在无线移动通信系统中,分集技术通常用于对抗衰落、提高链路可靠性。
多点SFBC传输,即分布的两个或者多个传输点的天线采用SFBC的方式传输信号。
5)多点多流传输:即分布的两个或者多个传输点独立进行预编码,从而可以向同一个终端设备传输不同的数据流,不同的码块。而在CoMP技术下,不同的传输点一般向同一个终端设备传输的是相同的数据流。
6)关于准共站址(Quasi Co-Located,QCL)。MIMO技术也可以称为多天线技术,可以通过空间分集提升系统可靠性、空间复用提升系统容量、波束赋形提升小区覆盖。LTE系统的物理层基本技术即包括MIMO技术。
LTE的多天线系统中,为了区分不同的信道,定义了不同的逻辑端口(port),其中,
用户级的参考信号,例如解调参考信号,在现有LTE系统中包括DM-RS(Demodulation-Reference Signal),通过天线端口5、天线端口7、天线端口8或者天线端口7-14中的一个或多个天线端口发送,所以这些用于发送DM-RS的天线端口又称为DM-RS端口。同样的,数据也会在不同的天线端口上进行发送,例如在天线端口5、天线端口7、天线端口8等一个或多个天线端口发送,这些用于发送数据的天线端口又称为数据端口。接收端可以利用与数据端口相同的天线端口上发送的DM-RS进行信道估计和数据解调。
LTE在版本10中,引入了新的传输模式,即传输模式9,支持8个天线端口,并支持多用户MIMO传输。为了支持8天线传输,基站需要在物理下行控制信道,如LTE中的物理下行控制信道(Physical Downlink Control Channel,PDCCH)中指示用户物理下行共享信道(如LTE中的PDSCH)数据对应的预编码层数以及DM-RS对应的天线端口号,终端设备通过检测PDCCH中相应的指示域,可以得到其接收的PDSCH数据包含多少层以及每层对应的天线端口,终端设备通过天线端口发送的DM-RS进行信道估计,然后进行PDSCH的数据解调。
LTE在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)版本11中,为了支持多点协作传输,引入了天线端口准共站址,在LTE系统中简称为QCL的概念。从QCL的天线端口发送出的信号会经过相同的大尺度衰落。大尺度衰落包括时延扩展、多普勒扩展、多普勒频移、平均信道增益和平均时延。为了支持终端设备从服务基站通过PDCCH接收下行控制信息,从协作基站通过PDSCH接收下行数据,版本11中定义了一种新的传输模式,即传输模式10,主要引入了物理下行共享信道资源元素映射以及准共址指示,在LTE系统中简称为PQI(PDSCH RE Mapping and QCL Indicator),用来指示下行数据是从哪一个基站发送的,其对应的信道大尺度特征与哪一组天线端口一致。UE根据PQI,结合无线资源控制(Radio Resource Control,RRC)信令配置的PDSCH映射消息元素,可以得知解调该下行数据需要使用哪一组天线端口对应的无线信道参数。
由于LTE版本11中的PQI仅支持一组参数,意味着PDSCH只能从一组QCL天线端口发送,这样限制了传输模式10的应用范围,例如在分布式MIMO系统中,或者多站点协作传输系统中,只能通过单频网络(Single Frequency Network,SFN)技术(即多个天线端口/基站在相同的时频资源上发送相同的调制数据)将多个非QCL的天线端口合成属于同一个QCL集合的天线端口,为单个用户进行SFN传输,比如两个在地理上分离的天线端口分别属于两个QCL集合,如果想在同一时域符号通过这两个天线端口向同一个终端设备发送数据,那么按照现有协议,只能把这两个天线端口虚拟化成一个合成的天线端口,然后向终端设备发送数据。而不支持分属不同QCL天线端口集合的多个天线端口在同一时域符号为单个用户进行多流传输或者发射分集传输等基本的MIMO传输。
7)传输点,是指可以向终端设备传输数据的设备。在本发明实施例中,将传输点的概念与天线端口集合等同,一个传输点可以认为是一个天线端口集合。这里的天线端口集合可以是硬件概念,或者也可以是逻辑概念。其中,一个天线端口集合可以包括一个或多个天线端口。
例如传输点可以是基站,即一个天线端口集合对应一个基站,那么不同的基站可以看作不同的传输点,或者传输点可以是小区,即一个天线端口集合对应一个小区,那么不同的小区可以看作不同的传输点,或者一个小区也可以包括多个传输点,即一个小区包括多
个天线端口集合,例如一个小区的覆盖范围内可以部署多个室内基带处理单元(Building Base band Unit,BBU)+射频拉远单元(Remote Radio Unit,RRU),则每组BBU+RRU对应的天线端口集合都可以看作一个传输点,等等,本发明实施例对于传输点的概念不作限制,只要每个传输点可以单独向终端设备传输数据即可。
本发明实施例中,每组功率配置参数可以对应于一个传输点,即对应于一个天线端口集合。
对于同一个传输点来说,在不同的时刻可以采用不同的功率配置参数。另外,同一个小区若包括多个传输点,则个小区可能对应多组功率配置参数。
8)一组功率配置参数可以对应于一个天线端口集合,一个天线端口集合的功率配置参数就可以用于获取该天线端口集合与终端设备之间的下行数据信道的功率,或者可以理解为,一个天线端口集合的功率配置参数就可以用于获取该天线端口集合发送的下行数据信道的功率。
不同的天线端口集合有可能会对应同一组功率配置参数,当然也有可能对应于不同的功率配置参数。
9)下行数据信道,例如可以包括PDSCH,或者还可以包括其他可能的下行数据信道。
10)第一网络设备,例如可以包括基站,或者也可以包括普通的终端设备,或者也可以包括承担中继(relay)任务的终端设备,等等。
第二网络设备,例如可以包括普通的终端设备,或者也可以包括承担中继任务的终端设备,或者也可以包括基站,等等。
第一网络设备的类型和第二网络设备的类型可以相同,或者也可以不同。例如在设备到设备(Device-to-Device,D2D)场景下,第一网络设备和第二网络设备可以均为基站,或者可以均为终端设备,或者也可以有其他可能的设置方式。
11)本发明实施例中的术语“系统”和“网络”可被互换使用,“小区”和“载波”可被互换使用,以及“数据流数”和“传输层数”的概念可被互换使用。“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
首先介绍一下本发明实施例的一种可能的应用场景。
请参见图1B,为多天线站点协同传输的场景示意图。例如终端设备以手机为例,左边的环表示小区1的覆盖范围,小区1内包括两个传输点,分别为图1B中所示的传输点1和传输点2,右边的环表示小区2的覆盖范围,小区2内也包括两个传输点,分别为图1B中所示的传输点3和传输点4,其中传输点1、传输点2、传输点3和传输点4均参与为终端设备进行协同传输。
接下来介绍终端设备如何计算得到传输点到终端设备之间的下行数据信道的功率。可选的,在下面的过程中可能用到两种类型的参考信号,即小区级的参考信号和用户级的参考信号,小区级的参考信号例如可以包括小区专用参考信号,一种可能的小区专用参考信号例如为小区专用参考信号(Cell-specific reference signals,CRS),CRS可以用于进行下行信道估计,及可以用于非波束赋形(beamforming)模式下的数据解调。当然,除CRS之外还可能包括其他可能的小区专用参考信号。用户级的参考信号例如可以包括用户专用参考信号,一种可能的用户专用参考信号例如为DM-RS,DM-RS可以用于进行上行控制
和进行数据信道的相关解调。当然,除DM-RS之外还可能包括其他可能的小区专用参考信号。需注意的是,本发明实施例中的名称不构成对参考信号本身的限制,例如CRS或DM-RS也可以有其他可能的名称,只要能够实现相应功能即可。
其中,对于LTE系统中的传输模式(TM)1-7以及TM8-10的回退模式下:
无小区专用参考信号的符号的情况:PDSCH每资源元素的能量(Energy Per Resource Element,EPRE)/CRS EPRE=ρA;
有小区专用参考信号的符号的情况:PDSCH EPRE/CRS EPRE=ρB;
对于LTE系统中的TM8-10,在基于用户专用参考信号解调时:
有用户专用参考信号的符号的情况:PDSCH EPRE/DM-RS EPRE=0dB或者-3dB;
有小区专用参考信号的符号的情况:PDSCH EPRE/CRS EPRE=ρB;
既没有小区专用参考信号也没有用户专用参考信号的符号的情况:PDSCH EPRE/CRS EPRE=ρA。
其中,ρA和ρB均表示功率,PA为用于计算下行数据信道功率的专用参数。
其中,ρA的确定方法如下:
1、当终端设备的传输模式为TM8-10,并且在对应PDSCH映射的物理资源块(physical resource block,PRB)上没有终端设备的专用参考信号时,或者当终端设备的传输模式为TM1-7时,终端设备可以假设对于16正交振幅调制(Quadrature Amplitude Modulation,QAM),64QAM,或者256QAM,多于1层的空分复用或者与多用户MIMO传输方案相关的PDSCH:
-当终端设备接收到带有4天线小区专用天线端口的采用发送分集方式预编码的PDSCH数据时,ρA=δpower-offset+PA+10log10(2)[dB];
-否则,ρA=δpower-offset+PA[dB]。
其中,除了多用户MIMO之外的所有PDSCH传输,δpower-offset等于0dB,PA可以理解为是用于计算天线端口集合与终端设备之间的下行数据信道的功率的专用参数。
2、对于终端设备配置的高层参数servCellp-a-r12,并且当终端设备的传输模式为TM8-10并且在对应PDSCH映射的PRB上没有终端设备的专用参考信号时,或者当终端设备的传输模式为TM1-7时,终端设备可以假设对于正交相移键控(Quadrature Phase Shift Keyin,QPSK)并且单天线传输或者发送分集传输模式或者单层传输的空间复用,并且PDSCH传输与多用户MIMO传输模式不相关,且PDSCH是通过小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)加扰的CRC相关的物理下行控制信道(Physical Downlink Control Channel,PDCCH)/增强的物理下行控制信道(Enhanced Physical Downlink Control Channel,EPDCCH)调度的:
-当终端设备接收到带有4天线小区专用天线端口的采用发送分集方式预编码的PDSCH数据时,ρA=P'A+10log10(2)[dB];
-否则,ρA=P'A[dB]。
其中PA'是通过参数servCellp-a-r12给定的。servCellp-a-r12可以用于表明服务小区通过PDSCH传输的通过QPSK方式调制的C-RNTI的功率偏移,可以理解为服务小区的PA的值,servCellp-a-r12可以通过无线资源控制(Radio Resource Control,RRC)信令通知终端设备。
ρB的确定方法如下:
小区的专用比例ρB/ρA可按照表1确定,其中小区专用参数PB可以通过高层信令和
小区专用天线端口数给定。
表1
PDSCH与终端设备的专用参考信号的EPRE的比值按照如下方式确定:
对于TM7,如果在PDSCH映射的PRB上出现了终端设备的专用参考信号,那么在包含终端设备的专用参考信号的每个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号上的PDSCH EPRE与终端设备的专用参考信号的EPRE的比值为定值,并且在对应的PRBs上包含终端设备的专用参考信号的所有OFDM符号上该值不变,对于16QAM,64QAM,或256QAM,终端设备一般会假设该比值为0dB。
对于TM8,如果在对应的PDSCH映射的PRBs上出现了终端设备的专用参考信号,终端设备会假设在包含终端设备的专用参考信号的每个OFDM符号上,PDSCH EPRE与终端设备的专用参考信号的EPRE的比值为0dB。
对于TM9-10,如果在对应的PDSCH映射的PRBs上出现了终端设备的专用参考信号,终端设备会假设在每个包含终端设备的专用参考信号的OFDM符号上,如果传输层数小于等于2,那么PDSCH EPRE与终端设备的专用参考信号EPRE的比值为0dB,否则该比值为-3dB。
其中,如上提到的终端设备的专用参考信号可以包括小区级的参考信号,或者也可以包括用户级的参考信号。
下面结合说明书附图对本发明实施例作进一步详细描述。
请参见图2,提供第一种功率配置方法,该方法的流程如下:
步骤201:第一网络设备向第二网络设备发送M组功率配置参数;其中,M组功率配置参数对应于M个天线端口集合,M个天线端口集合中的至少一个天线端口集合属于第一网络设备,每组功率配置参数用于计算相应的天线端口集合与第二网络设备之间的下行数据信道的功率,M为大于等于2的整数。
请参见图3,提供第二种功率配置方法,该方法的流程如下:
步骤301:第二网络设备接收第一网络设备发送的M组功率配置参数;其中,M组功率配置参数对应于M个天线端口集合,M个天线端口集合中的至少一个天线端口集合属于第一网络设备,每组功率配置参数用于计算相应的天线端口集合与第二网络设备之间的下行数据信道的功率,M为大于等于2的整数。
可选的,M个天线端口集合可以属于不同的小区,或者也可能其中有部分天线端口集合属于一个小区。那么例如第一小区包括了M个天线端口集合中的两个天线端口集合,则第一小区可以对应两组功率配置参数,那么这两组功率配置参数可能相同也可能不同,即,本发明实施例中在配置功率配置参数时是根据天线端口集合来配置的,而不是根据载波来配置的,同一个载波也可能对应多组功率配置参数,同一个载波对应的多组功率配置参数
可能相同也可能不同。
可选的,例如M=2,这两个天线端口集合例如属于不同的基站。例如在单链接的情况下,天线端口集合1属于基站1,而天线端口集合2属于基站2。例如在双链接的情况下,天线端口集合1属于基站1,天线端口集合2属于基站2,且天线端口集合1和天线端口集合2例如一起为终端设备进行协作传输,在这种情况下,如果一个天线端口集合为一个小区,那么天线端口集合1可以看做天线端口集合2的协作小区,天线端口集合2也可看做天线端口集合1的协作小区。
可选的,例如M=2,这两个天线端口集合例如属于同一个基站。例如在单链接的情况下,天线端口集合1属于基站1,天线端口集合2也属于基站1。例如在双链接的情况下,天线端口集合1属于基站1,天线端口集合2也属于基站1,且天线端口集合1和天线端口集合2例如一起为终端设备进行协作传输。在这种情况下,如果一个天线端口集合为一个小区,那么天线端口集合1可以看做天线端口集合2的协作小区,天线端口集合2也可看做天线端口集合1的协作小区。
可选的,例如第一小区对应三组功率配置参数,第二小区对应一组功率配置参数,那么第一小区对应的三组功率配置参数中,可能有一组功率配置参数与第二小区的功率配置参数相同,或者也可能第一小区对应的三组功率配置参数与第二小区对应的功率配置参数均不相同。
图2和图3为相应的方法,下面通过几个例子一起进行介绍。其中,以下各个例子中主要以第一网络设备是基站、第二网络设备是终端设备、下行数据信道是PDSCH为例进行介绍。
例1
请参见图4。
1、基站通过高层信令为终端设备发送M组功率配置参数,则终端设备可以接收基站发送的M组功率配置参数。
可选的,高层信令例如可以包括RRC信令,或者也可以包括其他可能的高层信令。
可选的,基站可以将M组功率配置参数承载在一条高层信令中发送给终端设备,或者也可以将M组功率配置参数承载在多条高层信令中分别发送给终端设备。比如,如果一个天线端口集合视为一个小区,那么基站可以将服务小区的功率配置参数承载在一条高层信令中发送给终端设备,以及将其他小区的功率配置参数承载在另外的高层信令中发送给终端设备。
可选的,如果M组功率配置参数对应的天线端口集合属于同一个基站,那么该基站可以直接获取M组功率配置参数并向终端设备发送M组功率配置参数,而如果M组功率配置参数对应的天线端口集合属于不同的基站,那么可以由同一个基站向终端设备发送M组功率配置参数,例如可以由终端设备的服务小区所在的基站向终端设备发送M组功率配置参数,或者也可以分别由不同的基站向终端设备发送相应的功率配置参数,共向终端设备发送M组功率配置参数即可。可选的,如果由同一个基站向终端设备发送M组功率配置参数,则向终端设备发送功率配置参数的基站需要事先从其他基站获取相应的功率配置参数。
例如M=2,其中的一组功率配置参数1对应的天线端口集合属于基站1,其中的另一种功率配置参数2对应的天线端口集合属于基站2,若由基站1向终端设备发送这两组功率配置参数,则基站1要向终端设备发送功率配置参数,那么基站1可以向基站2请求获得功率
配置参数2,如可以通过X2接口来获得,或者基站2也可以主动将功率配置参数2发送给基站1。或者,也可以由基站1向终端设备发送功率配置参数1,由基站2向终端设备发送功率配置参数2。
可选的,如果将M组功率配置参数承载在多条高层信令中分别发送给终端设备,那么发送M组功率配置参数的时间和顺序本发明实施例不作限制。例如,如果一个天线端口集合视为一个小区,那么基站可以将本基站提供服务的小区的功率配置参数承载在一条高层信令中发送给终端设备,然后将其他基站提供服务的功率配置参数承载在其他的高层信令中发送给终端设备,那么这涉及到该基站要从其他基站获取相应的功率配置参数的过程,即共涉及到3个过程,过程1为基站将本基站提供服务的小区的功率配置参数承载在一条高层信令中发送给终端设备,过程2为该基站从其他基站获取相应的功率配置参数,过程3为该基站将其他基站提供服务的功率配置参数承载在其他的高层信令中发送给终端设备,则,发生的先后顺序可以是过程1-过程2-过程3,或者也可以是过程2-过程1-过程3,或者也可以是过程1和过程2同时发生,过程3最后发生,或者也可以是过程2先发生,过程1和过程3最后发生,或者也可以有其他可能的顺序。
可选的,每组功率配置参数中可以包括该组功率配置参数对应的参考信号功率,以及还可以包括第一参数及第二参数中的至少一项,或者还可以包括其他可能的参数。其中,功率配置参数对应的参考信号功率可以用于指示小区专用参考信号的功率,例如可以是CRS的功率,或者也可以用于指示用户专用参考信号的功率,例如可以是DM-RS的功率。究竟一组功率配置参数是包括用于指示小区专用参考信号的功率的参考信号功率还是包括用于指示用户专用参考信号的功率的参考信号功率,可以由协议预先设置,或者也可以由基站根据需求进行选择,本发明实施例不限制。可选的,在本发明实施例中,每组功率配置参数还可以包括用于标识该组功率配置参数对应的标识信息,或者也可以称为索引信息。
其中,功率配置参数的标识信息可以用于唯一标识一组功率配置参数,即每组功率配置参数对应一个标识信息,从而可以通过标识信息来区分多组功率配置参数。第一参数例如用p-b表示,可以用于指示参数PB的值,即用于指示ρB/ρA的值,即用于指示该组功率配置参数对应的天线端口集合在有小区专用参考信号的符号时的功率与无小区专用参考信号的符号时的功率的比值,其中,按照如前的描述,在不同的TM下,或者在相同的TM的不同场景下,ρA都可能有不同的取值,那么相应的网络设备在配置功率配置参数时可以考虑到不同的场景进行不同的配置,终端设备在不同的场景下也应预先知晓ρA应该如何取值。另外,对于第二参数例如用p-a表示,可以用于指示参数PA的值,PA可以理解为是用于计算该组功率配置参数对应的天线端口集合与终端设备之间的下行数据信道的功率的专用参数,即可以理解为是用于计算该组功率配置参数对应的传输点与终端设备之间的下行数据信道的功率的专用参数。可选的,该专用参数通常通过高层信令通知。对于终端设备来说,在得到一组功率配置参数后,就可以根据这组功率配置参数计算得到对应的天线端口集合与该终端设备之间的下行数据信道的功率,即,可以根据这组功率配置参数计算得到对应的传输点与该终端设备之间的下行数据信道的功率。计算方式可参考如前的介绍。
2、基站通过PDCCH/EPDCCH向终端设备发送用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息,例如基站可以将用于指
示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息承载在控制信息中下发给终端设备,则终端设备可以接收用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息,或者,基站通过PDCCH/EPDCCH向终端设备发送用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息,例如基站可以将用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息承载在控制信息中下发给终端设备,则终端设备可以接收用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息。即,基站在向终端设备指示功率配置参数时,可以连同扰码序列一同指示,或者也可以额外指示扰码序列。
可选的,如果由一个基站向终端设备发送M组功率配置参数,则可以由该基站向终端设备发送用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息,或向终端设备发送用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息,该基站发送的对应关系可以涵盖M组功率配置参数的对应关系,而如果由不同的基站分别向终端设备发送功率配置参数,那么,也可以由一个基站向终端设备发送用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息,或向终端设备发送用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息,或者可以由不同的基站分别向终端设备发送用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息,或向终端设备发送用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息,其中,由不同的基站来发送用于指示对应关系的信息时,每个基站可以只发送用于指示该基站对应的功率配置参数的对应关系的信息。可选的,如果由不同的基站来发送用于指示对应关系的信息,如果某个基站只向终端设备发送了一组功率配置参数,那么这个基站也可以无需再向终端设备发送用于指示对应关系的信息,因为只有一组功率配置参数,终端设备根据发送这组功率配置参数的基站也可以确定相应的天线端口集合。其中,图4是以由一个基站向终端设备发送M组功率配置参数、且由该基站向终端设备发送对应关系为例。
可选的,用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息可以包括用于指示数据流数、天线端口、及码字中的至少一项的至少一个子信息,其中每个子信息可以包括对应的一组功率配置参数的标识信息,即可以理解为,用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息可以包括多个子信息,每个子信息都用于表示一组数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系。对于用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息来说也是同样,也可以包括多个子信息,每个子信息都用于表示一组数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系。
在本发明实施例中,子信息,也可以称为状态。可选的,基站可以通过下行控制信息(Downlink Control Information,DCI)向终端设备发送用于指示数据流数、天线端口、及
码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息。可选的,基站也可以通过DCI向终端设备发送用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息。
先以不同时指示扰码序列为例,即,用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息示例如下。
可选的,当数据流数为1时,例如一种可能的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息可参考表2A,表2A表示的是用于指示数据流数和天线端口与功率配置参数的标识信息之间的对应关系的信息,表2A中的每个值(Value)对应一个子信息(Message),或者也可以将Message理解为状态,即一个Value对应一个状态,相当于将数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息进行联合编码,其中本发明实施例中的编码规则可参考现有技术。例如Value的取值可以占用2位(bit)或3bit,或者也可能占用更多的bit。表2A以2bit为例,则Value0对应00,Value1对应01,Value2对应10,Value3对应11。以下将要介绍的表格中的nPCID均表示功率配置参数的标识信息。
[根据细则26改正07.06.2017]
表2A
表2A
值(Value) | 子信息(Message) |
0 | 1层(layer),端口(port) 7,nPCID=0 |
1 | 1层,端口 7,nPCID=1 |
2 | 1层,端口 7,nPCID=2 |
3 | 1层,端口 7,nPCID=3 |
从表2A中可以看到,当数据流数为1时,可以对应4个状态,这4个状态所对应的功率配置参数的标识信息都不相同,则表明这4个状态对应于4组功率配置参数。这样,终端设备在步骤1中已接收了M组功率配置参数,也知道每组功率配置参数的标识信息,则根据天线端口集合的天线端口和/或数据流数、以及每个状态所包括的功率配置参数的标识信息等信息,终端设备就可以确定哪个天线端口集合对应于哪组功率配置参数,从而可以分别获得各个天线端口集合与终端设备之间的下行数据信道的功率。
可替换的,当数据流数为1时,例如另一种可能的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息可参考表2B,表2B表示的是用于指示数据流数和天线端口与功率配置参数的标识信息之间的对应关系的信息,表2B中每个Value对应一个状态,表2B以Value的取值占用3bit为例,则Value0对应000,Value1对应001,Value2对应010,以此类推。
[根据细则26改正07.06.2017]
表2B
表2B
值(Value) | 子信息(Message) |
0 | 1层,端口 7,nPCID=0 |
1 | 1层,端口 7,nPCID=1 |
2 | 1层,端口 7,nPCID=2 |
3 | 1层,端口 7,nPCID=3 |
4 | 1层,端口 8,nPCID=0 |
5 | 1层,端口 8,nPCID=1 |
6 | 1层,端口 8,nPCID=2 |
7 | 1层,端口 8,nPCID=3 |
从表2B中可以看到,当数据流数为1时,可以对应8个状态,这8子状态各自都有对应的功率配置参数的标识信息。
可选的,当数据流数为2时,例如一种可能的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息可参考表3,表3表示的是用于指示数据流数和天线端口与功率配置参数的标识信息之间的对应关系的信息,表3中每个Value对应一个状态,表3以Value的取值占用2bit为例。
[根据细则26改正07.06.2017]
表3
表3
从表3中可以看到,当数据流数为2时,可以对应4个状态,这4个状态所对应的功率配置参数的标识信息都不相同,则表明这4个状态对应于4组功率配置参数。
可选的,当数据流数为3时,例如一种可能的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息可参考表4,表4表示的是用于指示数据流数和天线端口与功率配置参数的标识信息之间的对应关系的信息,表4中每个Value对应一个状态,每个状态又可以包括至少两个子状态,每个子状态可以分别有对应的nPCID。表4以Value的取值占用3bit为例。
表4
从表4中可以看到,当数据流数为3时,可以对应16个子状态,这16个子状态各自都有对应的功率配置参数的标识信息。
可选的,当数据流数为4时,例如一种可能的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息可参考表5,表5表示的是用于指示数据流数和天线端口与功率配置参数的标识信息之间的对应关系的信息,表5中每个Value对应一个状态,每个状态又可以包括至少两个子状态,每个子状态可以分别有对应的nPCID。表5以Value的取值占用3bit为例。
表5
从表5中可以看到,当数据流数为4时,可以对应16个子状态,这16个子状态各自都有对应的功率配置参数的标识信息。
可选的,当数据流数为5时,例如一种可能的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息可参考表6,表6表示的是用于指示数据流数和天线端口与功率配置参数的标识信息之间的对应关系的信息,表6中每个Value对应一个状态,每个状态又可以包括至少两个子状态,每个子状态可以分别有对应的nPCID。表6以Value的取值占用3bit为例。
表6
从表6中可以看到,当数据流数为5时,可以对应16个子状态,这16个子状态各自都有对应的功率配置参数的标识信息。
可选的,当数据流数为6时,例如一种可能的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息可参考表7,表7表示的是用于指示数据流数和天线端口与功率配置参数的标识信息之间的对应关系的信息,表7中每个Value对应一个状态,每个状态又可以包括至少两个子状态,每个子状态可以分别有对应的nPCID。表7以Value的取值占用3bit为例。
表7
从表7中可以看到,当数据流数为6时,可以对应16个子状态,这16个子状态各自都有对应的功率配置参数的标识信息。
可选的,当数据流数为7时,例如一种可能的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息可参考表8,表8表示的是用于指示数据流数和天线端口与功率配置参数的标识信息之间的对应关系的信息,表8中每个Value对应一个状态,每个状态又可以包括至少两个子状态,每个子状态可以分别有对应的nPCID。表8以Value的取值占用3bit为例。
表8
从表8中可以看到,当数据流数为7时,可以对应16个子状态,这16个子状态各自都有对应的功率配置参数的标识信息。
可选的,当数据流数为8时,例如一种可能的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息可参考表9,表9表示的是用于指示数据流数和天线端口与功率配置参数的标识信息之间的对应关系的信息,表9中每个Value对应一个状态,每个状态又可以包括至少两个子状态,每个子状态可以分别有对应的nPCID。表9以Value的取值占用3bit为例。
表9
从表9中可以看到,当数据流数为8时,可以对应16个子状态,这16个子状态各自都有对应的功率配置参数的标识信息。
上面所示的表2A-表9,表示可以分别指示不同的数据流数的情况。可选的,也可以将各个数据流数的情况一起进行指示,在这种指示方式下,例如一种可能的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息如表10所示,表10表示的是用于指示数据流数和天线端口与功率配置参数的标识信息之间的对应关系的信息:
表10
表2A-表10都是以用于指示数据流数和天线端口与功率配置参数的标识信息之间的对应关系的信息为例,下面再举例介绍用于指示数据流数与功率配置参数的标识信息之间的对应关系的信息以及用于指示天线端口与功率配置参数的标识信息之间的对应关系的信息。
可选的,例如一种可能的用于指示数据流数与功率配置参数的标识信息之间的对应关系的信息可参考表11,表11中的每个Value对应一个状态,其中的部分状态又可以包括至少两个子状态,每个子状态可以分别有对应的nPCID。表11以Value的取值占用3bit为例。另外,表11是以数据流数为1或2来举例。
表11
可选的,例如另一种可能的用于指示数据流数与功率配置参数的标识信息之间的对应关系的信息可参考表12,表12中的每个Value对应一个状态,其中的部分状态又可以包
括至少两个子状态,每个子状态可以分别有对应的nPCID。表12以Value的取值占用3bit为例。另外,表12是以数据流数为1、2、3或4来举例。
表12
可选的,例如一种可能的用于指示天线端口与功率配置参数的标识信息之间的对应关系的信息可参考表13,表13中的每个Value对应一个状态,其中的部分状态又可以包括至少两个子状态,每个子状态可以分别有对应的nPCID。表13以Value的取值占用3bit为例。另外,表13是以两个天线端口来举例。
表13
可选的,例如另一种可能的用于指示天线端口与功率配置参数的标识信息之间的对应关系的信息可参考表14,表14中的每个Value对应一个状态,其中的部分状态又可以包括至少两个子状态,每个子状态可以分别有对应的nPCID。表14以Value的取值占用3bit为例。另外,表14是以4个天线端口来举例。
表14
可选的,以上表格介绍的几种用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息中没有考虑码字(CodeWord)的情况,下面举例介绍在考虑码字时的情况。
可选的,例如一种可能的用于指示码字与功率配置参数的标识信息之间的对应关系的信息可参考表15,其中每个Value对应一个子信息,即对应一个状态,每个状态又可以包括至少两个子状态,每个子状态可以分别有对应的nPCID。Value的取值可以占用2bit或3bit,或者也可能占用更多的bit。表15以Value的取值占用2bit为例。
表15
可替换的,例如另一种可能的用于指示码字与功率配置参数的标识信息之间的对应关系的信息可参考表16,其中每个Value对应一个状态,每个状态又可以包括至少两个子状态,每个子状态可以分别有对应的nPCID。表16以Value的取值占用3bit为例。
表16
可选的,下面再介绍一下同时考虑数据流数、天线端口、码字和扰码序列的情况。例如一种可能的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息可参考表17,表17表示的是用于指示数据流数、天线端口、码字和扰码序列与功率配置参数的标识信息之间的对应关系的信息,表17中每个Value对应一个状态,每个状态可以分别有对应的nPCID。表17以Value的取值占用3bit为例。
表17
可替换的,例如另一种可能的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息可参考表18,表18表示的是用于指示数据流数、天线端口、码字和扰码序列与功率配置参数的标识信息之间的对应关系的信息,表18中每个Value对应一个状态,每个状态可以分别有对应的nPCID。表18以Value的取值占用4bit为例,则Value0对应0000,Value1对应0001,Value2对应0010,以此类推。
表18
其中,表17和表18中的nSCID表示扰码序列。
本领域技术人员自然知晓,如上的所有表格只是为了更为清楚地描述本发明实施例的技术方案而给出的示例,并不是对本发明的限定,其他可能的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息、及用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息也在本发明实施例的保护范围之内。
3、可选的,终端设备可以确定M组功率配置参数分别对应的天线端口集合。即,终端设备确定M组功率配置参数分别对应的传输点。
例如,终端设备一般来说知晓向该终端设备传输数据的各个天线端口集合的数据流数、天线端口和码字中的至少一项,则终端设备可以根据用于指示用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息或者根据用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息,以及天线端口集合的数据流数、天线端口和码字中的至少一项,确定M组功率配置参数分别对应的天线端口集合。
例如,若基站发送给终端设备的是用于指示码字与功率配置参数的标识信息之间的对应关系的信息,终端设备一般来说知晓向该终端设备传输数据的各个天线端口集合的码字,则终端设备可以根据用于指示码字与功率配置参数的标识信息之间的对应关系的信息包括的nPCID,以及天线端口集合的码字,确定M组功率配置参数分别对应的天线端口集合。当然,若基站向终端设备发送的是用于指示数据流数和功率配置参数的标识信息之间的对应关系的信息,则终端设备需要预先知晓天线端口集合的数据流数,若基站向终端设备发送的是用于指示数据流数和天线端口与功率配置参数的标识信息之间的对应关系的信息,则终端设备需要预先知晓天线端口集合的数据流数和天线端口,即终端设备需要知晓对应的信息,这里不再过多赘述。
4、可选的,终端设备可以分别获得M个天线端口集合与该终端设备的下行数据信道之间的功率,即,获得M个天线端口集合发送的下行数据信道的功率。
终端设备获得功率的方式可参考如前的介绍,此处不多赘述。可选的,在获得M个天线端口集合与该终端设备的下行数据信道之间的功率后,终端设备可以分别对M个天线端口集合通过各自的下行数据信道所传输的数据进行解调,因为是采用每个下行数据信道对应的功率对该下行数据信道所传输的数据进行解调,因此解调的结果较为准确,提高了数据的解调性能。
可选的,基站可以根据控制信息向终端设备下发数据,终端设备可以根据控制信息接收基站下发的数据,终端设备也能够对数据进行正常解调。
例2:
请参见图5。
1、基站通过第一信令向终端设备发送M组功率配置参数,则终端设备可以接收第一信
令。
可选的,每组功率配置参数与天线端口集合可以具有对应关系,或者每组功率配置参数与数据流数、天线端口及码字中的至少一项可以具有对应关系。那么可选的,这些对应关系可以一并携带在第一信令中,即第一信令除了携带M组功率配置参数之外,还可以携带用于指示每组功率配置参数与天线端口集合之间的对应关系的信息,或第一信令还可以携带用于指示每组功率配置参数与数据流数、天线端口及码字中的至少一项之间的对应关系的信息,或者,这些对应关系也可以通过协议预先规定或者由基站和终端设备事先协商好,这样,从而终端设备在接收第一信令后就可以确定哪组功率配置参数对应于哪个天线端口集合,而不必再将对应关系携带在第一信令中,节省传输资源。
可选的,第一信令可以是高层信令,例如第一信令可以是对用于指示PDSCH配置信息元素(PDSCH-Config information element)的信令进行修改后得到的信令,或者第一信令可以是对用于指示PDSCH的准共站址(quasi co-located,QCL)配置参数的信令进行修改后得到的信令。其中,准共站址是指,如果两个天线端口集合是QCL的,则这两个天线端口集合的大尺度特性,例如多普勒延迟或多普勒频偏等特性一般来说是相同的。这里的修改,主要是指在原来的信令中增加新的内容。例如,原来的信令只携带一组功率配置参数,则本发明实施例中修改该信令后可以在信令中携带多组功率配置参数。下面分别举例。
例如,以第一信令是对用于指示PDSCH-Config information element的信令进行修改后得到的信令为例,且例如M=2,对第一信令示例如下:
在该例中,从协作(cooperate)开始的部分为新增的部分。例如在该例中协议预先规定了用于指示每组功率配置参数与天线端口集合之间的对应关系的信息或用于指示每组功率配置参数与数据流数、天线端口及码字中的至少一项之间的对应关系的信息,这些信息未携带在第一信令中。
例如协议预定义时,可以规定PDSCH-Config information element中的PDSCH普通配置
(PDSCH-Configcommon)和PDSCH配置指示(PDSCH-ConfigDedicated)用于指示第一天线端口的功率配置参数,对应第一天线端口的数据流数、天线端口或码字中的至少一项,而新增的cooperate用于指示第二天线端口的功率配置参数,对应第二天线端口的数据流数、天线端口或码字中的至少一项。若一个传输点是一个小区,即一个天线端口集合是一个小区的天线端口集合,那么可选的,第一天线端口可以是终端设备的服务小区,第二天线端口可以是终端设备的协作小区。
例如,以第一信令是对用于指示PDSCH的QCL配置参数的信令进行修改后得到的信令为例,且例如M=2,对第一信令示例如下:
在该例中,从pdsch-RE-MappingQCL-ConfigId-r11开始直到optionalSetOfFields之前为新增的部分,另外该例中只示出了如何指示新增的功率配置参数,未示出如何指示原本可以指示的功率配置参数。例如在该例中协议预先规定了用于指示每组功率配置参数与天线端口集合之间的对应关系的信息或用于指示每组功率配置参数与数据流数、天线端口及码字中的至少一项之间的对应关系的信息,这些信息未携带在第一信令中。
例如协议预定义时,可以规定用于指示PDSCH的QCL配置参数的信令中新增的cooperate用于指示第二天线端口的功率配置参数,对应第二天线端口的数据流数、天线端口或码字中的至少一项。若一个传输点是一个小区,即一个天线端口集合是一个小区的天线端口集合,那么可选的,第二天线端口可以是终端设备的协作小区,而该用于指示PDSCH的QCL配置参数的信令中原本指示的第一天线端口可以是终端设备的服务小区。
可替换的,步骤1也可以是:基站通过第一信令向终端设备发送第一功率配置参数及M-1个转换关系信息。
可选的,第一功率配置参数及M-1个转换关系信息与天线端口集合之间可以具有对应关系,或第一功率配置参数及M-1个转换关系信息与数据流数、天线端口及码字中的至少一项之间可以具有对应关系。那么可选的,这些对应关系可以一并携带在第一信令中,即第一信令除了携带第一功率配置参数及M-1个转换关系信息之外,还可以携带用于指示第一功率配置参数及M-1个转换关系信息与天线端口集合之间可以具有对应关系的信息,或第一信令还可以携带用于指示第一功率配置参数及M-1个转换关系信息与数据流数、天线端口及码字中的至少一项之间可以具有对应关系的信息,或者,这些对应关系也可以通过协议预先规定或者由基站和终端设备事先协商好,这样,从而终端设备在接收第一信令后就可以确定第一功率配置参数或某个转换关系信息对应于哪个天线端口集合,而不必再将对应关系携带在第一信令中,节省传输资源。
其中,第一功率配置参数可以是M组功率配置参数中的一组功率配置参数,每个转换关系信息包括M组功率配置参数中除第一功率配置参数外的一组功率配置参数与第一功率配置参数之间的转换关系。其中,M-1个转换关系信息用于获取M-1组功率配置参数。第一功率配置参数对应的天线端口集合例如称为第一天线端口集合,可选的,第一天线端口集合例如可以是该基站提供的天线端口集合。如果第一传输点是一个小区,那么第一天线端口集合例如可以是该终端设备的服务小区。
可选的,第一信令可以是高层信令,例如第一信令可以是用于指示PDSCH-Config information element的信令,或者第一信令可以是用于指示PDSCH的QCL配置参数的信令。
可选的,例如第二功率配置参数为M组功率配置参数中除第一功率配置参数之外的任意一组功率配置参数,那么第二功率配置参数和第一功率配置参数之间的转换关系信息可以包括:第二功率配置参数对应的天线端口集合的功率与第一功率配置参数对应的天线端口集合的功率的比值,和/或,第二功率配置参数中包括的各参数与第一功率配置参数包括的相应的参数之间的偏置。当然转换关系信息所包含的内容不限于此,只要根据转换关系信息和第一功率配置参数能够得到其他组功率配置参数即可。
可选的,对于M组功率配置参数来说,基站可以均发送M组功率配置参数本身,或者基站可以发送第一功率配置参数和M-1组转换关系信息,或者基站也可以发送多个功率配置参数以及其他的功率配置参数对应的转换关系信息,那么,如果基站发送多个功率配置参数,则基站发送的转换关系信息可以是与一组功率配置参数之间的转换关系信息,或者也可以分别是与不同的功率配置参数之间的转换关系信息。
其中,图5中的M组功率配置参数对应的M个天线端口集合也可以属于一个基站或不同的基站,相应的描述可参考例1相关部分,图5也是以由一个基站向终端设备发送M组功率配置参数、且由该基站向终端设备发送对应关系为例。
2、可选的,终端设备根据第一信令携带的信息可以确定M组功率配置参数分别对应的天线端口集合。
终端设备如何根据第一信令所携带的信息确定M组功率配置参数分别对应的天线端口集合,在步骤1下面已有介绍,不多赘述。
3、可选的,终端设备分别获得M个天线端口集合与该终端设备之间的下行数据信道的功率,即,获得M个天线端口集合发送的下行数据信道的功率。
终端设备获得功率的方式可参考如前的介绍,此处不多赘述。
例3
请参见图6。
1、基站通过第一信令向终端设备发送第一功率配置参数,及,通过第二信令向终端设备发送M组功率配置参数中除第一功率配置参数之外的其他组功率配置参数。其中,第一功率配置参数为M组功率配置参数中的一组功率配置参数。
可选的,每组功率配置参数与天线端口集合可以具有对应关系,或者每组功率配置参数与数据流数、天线端口及码字中的至少一项可以具有对应关系。那么可选的,这些对应关系可以一并携带在第二信令中,即第二信令还可以携带用于指示功率配置参数与天线端口集合之间的对应关系的信息,或第二信令还可以携带用于指示功率配置参数与数据流数、天线端口及码字中的至少一项之间的对应关系的信息。可选的,第二信令可以携带用于指示除第一功率配置参数之外的其他组功率配置参数与天线端口集合之间的对应关系的信息,或者第二信令可以携带用于指示包括第一功率配置参数在内的每组功率配置参数与天线端口集合之间的对应关系的信息。可选的,第二信令还可以携带用于指示除第一功率配置参数之外的其他组功率配置参数与数据流数、天线端口及码字中的至少一项之间的对应关系的信息,或者第二信令可以携带用于指示包括第一功率配置参数在内的每组功率配置参数与数据流数、天线端口及码字中的至少一项之间的对应关系的信息。或者,这些对应关系也可以通过协议预先规定或者由基站和终端设备事先协商好,这样,从而终端设备在接收第一信令和第二信令后就可以确定哪组功率配置参数对应于哪个天线端口集合,而不必再将对应关系携带在第二信令中,节省传输资源。
第一功率配置参数对应的天线端口集合例如称为第一天线端口集合,可选的,第一天线端口集合例如可以是该基站提供的天线端口集合。如果一个传输点是一个小区,那么第一天线端口集合对应的可以是该终端设备的服务小区。
可选的,第一信令例如可以是高层信令。例如,若第一天线端口集合对应的是终端设备的服务小区,则第一信令可以是现有技术中用于向终端设备发送服务小区的功率配置参数的信令。
可选的,第二信令例如可以是物理层信令,例如第二信令可以是DCI,或者也可以是其他可能的物理层信令。
可替换的,步骤1也可以是:基站通过第一信令向终端设备发送第一功率配置参数,及,通过第二信令向终端设备发送M-1个转换关系信息。
可选的,第一功率配置参数及M-1个转换关系信息与天线端口集合之间可以具有对应关系,或第一功率配置参数及M-1个转换关系信息与数据流数、天线端口及码字中的至少一项之间可以具有对应关系。那么可选的,这些对应关系可以一并携带在第二信令中,即第二信令还可以携带用于指示M-1个转换关系信息与天线端口集合之间的对应关系的信息,或第二信令还可以携带用于指示M-1个转换关系信息与数据流数、天线端口及码字中的至少一项之间的对应关系的信息。其中每个转换关系信息包括M组功率配置参数中除第一功率配置参数之外的一组功率配置参数与第一功率配置参数之间的转换关系。其中,M-1个转换关系信息用于获取M-1组功率配置参数。
例如,第一天线端口集合对应的可以是终端设备的服务小区,那么终端设备自然知晓通过第一信令传输的是第一天线端口集合的功率配置参数,则终端设备根据相应的对应关
系和第二信令就可以确定每组功率配置参数所对应的天线端口集合。
其中,图6中的M组功率配置参数对应的M个天线端口集合也可以属于一个基站或不同的基站,相应的描述可参考例1相关部分,图6也是以由一个基站向终端设备发送M组功率配置参数、且由该基站向终端设备发送对应关系为例。
2、可选的,终端设备根据第一信令携带的信息可以确定第一功率配置参数对应的天线端口集合,以及根据第二信令携带的信息可以确定M组功率配置参数中除第一功率配置参数之外的其他组功率配置参数分别对应的天线端口集合。
终端设备如何根据第一信令和第二信令所携带的信息确定M组功率配置参数分别对应的天线端口集合,在步骤1下面已有介绍,不多赘述。
3、可选的,终端设备分别获得M个天线端口集合与该终端设备之间的下行数据信道的功率,即,获得M个天线端口集合发送的下行数据信道的功率。
终端设备获得功率的方式可参考如前的介绍,此处不多赘述。
下面结合附图介绍本发明实施例提供的设备。
请参见图7,基于同一发明构思,提供第一种网络设备,该网络设备可以包括存储器701、处理器702和发送器703。
其中,处理器702例如可以包括中央处理器(CPU)或特定应用集成电路(Application Specific Integrated Circuit,ASIC),可以包括一个或多个用于控制程序执行的集成电路,可以包括使用现场可编程门阵列(Field Programmable Gate Array,FPGA)开发的硬件电路,可以包括基带芯片。
存储器701的数量可以是一个或多个。存储器701可以包括只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)和磁盘存储器,等等。存储器701可以用于存储处理器702执行任务所需的指令,还可以用于存储数据。
发送器703可以属于射频系统,用于与外部设备进行网络通信,例如可以通过以太网、无线接入网、无线局域网等网络与外部设备进行通信。
存储器701和发送器703可以通过总线700与处理器702相连接(图7以此为例),或者也可以通过专门的连接线与处理器702连接。
通过对处理器702进行设计编程,将前述所示的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行前述实施例中的所示的方法。如何对处理器702进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
该网络设备可以用于执行上述图2-图6所述的方法,例如可以是如前所述的第一网络设备。因此,对于该网络设备中的各单元所实现的功能等,可参考如前方法部分的描述,不多赘述。
请参见图8,基于同一发明构思,提供第二种网络设备,该网络设备可以包括存储器801、处理器802和接收器803。
其中,处理器802例如可以包括CPU或ASIC,可以包括一个或多个用于控制程序执行的集成电路,可以包括使用FPGA开发的硬件电路,可以包括基带芯片。
存储器801的数量可以是一个或多个。存储器801可以包括ROM、RAM和磁盘存储器,等等。存储器801可以用于存储处理器802执行任务所需的指令,还可以用于存储数据。
接收器803可以属于射频系统,用于与外部设备进行网络通信,例如可以通过以太网、
无线接入网、无线局域网等网络与外部设备进行通信。
存储器801和接收器803可以通过总线800与处理器802相连接(图8以此为例),或者也可以通过专门的连接线与处理器802连接。
通过对处理器802进行设计编程,将前述所示的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行前述实施例中的所示的方法。如何对处理器802进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
该网络设备可以用于执行上述图2-图6所述的方法,例如可以是如前所述的第二网络设备。因此,对于该网络设备中的各单元所实现的功能等,可参考如前方法部分的描述,不多赘述。
请参见图9,基于同一发明构思,本发明实施例提供第三种网络设备,该网络设备可以包括发送模块901。可选的,该网络设备还可以包括处理模块902,在图9中一并示出。
在实际应用中,发送模块901对应的实体设备可以是图7中的发送器703,处理模块902对应的实体设备可以是图7中的处理器702。
该网络设备可以用于执行上述图2-图6所述的方法,例如可以是第一网络设备。因此,对于该网络设备中的各单元所实现的功能等,可参考如前方法部分的描述,不多赘述。
请参见图10,基于同一发明构思,本发明实施例提供第四种网络设备,该网络设备可以包括接收模块1001。可选的,该网络设备还可以包括处理模块1002,在图10中一并示出。
在实际应用中,接收模块1001对应的实体设备可以是图8中的接收器803,处理模块1002对应的实体设备可以是图8中的处理器802。
该网络设备可以用于执行上述图2-图6所述的方法,例如可以是第二网络设备。因此,对于该网络设备中的各单元所实现的功能等,可参考如前方法部分的描述,不多赘述。
本发明实施例中,第一网络设备可以向第二网络设备发送M组功率配置参数,这样第二网络设备可以根据M组功率配置参数分别获取相应的小区与第二网络设备之间的下行数据信道的功率,从而第二网络设备可以根据获取的功率分别对相应的小区发送的数据进行解调,得到较为准确的解调结果。
在本发明实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例。
在本发明实施例中的各功能单元可以集成在一个处理单元中,或者各个单元也可以均是独立的物理模块。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备,例如可以是个人计算机,服务器,或者网络设备等,
或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:通用串行总线闪存盘(Universal Serial Bus flash drive)、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以对本发明实施例的技术方案进行了详细介绍,但以上实施例的说明只是用于帮助理解本发明实施例的方法,不应理解为对本发明实施例的限制。本技术领域的技术人员可轻易想到的变化或替换,都应涵盖在本发明实施例的保护范围之内。
Claims (30)
- 一种功率配置方法,其特征在于,包括:第一网络设备向第二网络设备发送M组功率配置参数;其中,所述M组功率配置参数对应于M个天线端口集合,所述M个天线端口集合中的至少一个天线端口集合属于所述第一网络设备,每组功率配置参数用于计算相应的天线端口集合发送的下行数据信道的功率,M为大于等于2的整数。
- 如权利要求1所述的方法,其特征在于,所述M组功率配置参数中的任意一组功率配置参数包括该组功率配置参数对应的参考信号功率,还包括第一参数及第二参数中的至少一项;其中,所述第一参数用于指示该组功率配置参数对应的天线端口集合在有小区专用参考信号符号时的功率与无小区专用参考信号符号时的功率的比值,所述第二参数为用于计算该组功率配置参数对应的天线端口集合发送的下行数据信道的功率的专用参数。
- 如权利要求2所述的方法,其特征在于,每组功率配置参数还包括用于标识该组功率配置参数的标识信息;所述方法还包括:所述第一网络设备向所述第二网络设备发送用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息;或所述第一网络设备向所述第二网络设备发送用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息。
- 如权利要求1或2所述的方法,其特征在于,所述第一网络设备向第二网络设备发送M组功率配置参数,包括:所述第一网络设备通过第一信令向所述第二网络设备发送所述M组功率配置参数,其中每组功率配置参数与天线端口集合具有对应关系,或所述每组功率配置参数与数据流数、天线端口及码字中的至少一项具有对应关系;或所述第一网络设备通过第一信令向所述第二网络设备发送第一功率配置参数及M-1个转换关系信息,其中所述第一功率配置参数及所述M-1个转换关系信息与天线端口集合具有对应关系,或所述第一功率配置参数及所述M-1个转换关系信息与数据流数、天线端口及码字中的至少一项具有对应关系;其中,所述第一功率配置参数为所述M组功率配置参数中的一组功率配置参数,每个转换关系信息包括所述M组功率配置参数中除所述第一功率配置参数外的一组功率配置参数与所述第一功率配置参数之间的转换关系;其中,所述M-1个转换关系信息用于获取所述M-1组功率配置参数。
- 如权利要求1或2所述的方法,其特征在于,所述第一网络设备向第二网络设备发送M组功率配置参数,包括:所述第一网络设备通过第一信令向所述第二网络设备发送第一功率配置参数,及,通过第二信令向所述第二网络设备发送所述M组功率配置参数中除所述第一功率配置参数之外的M-1组功率配置参数;其中,所述第一功率配置参数为所述M组功率配置参数中的一组功率配置参数,功率配置参数与天线端口集合具有对应关系,或功率配置参数与数据流数、天线端口及码字中的至少一项具有对应关系;或所述第一网络设备通过第一信令向所述第二网络设备发送第一功率配置参数,及,通过第二信令向所述第二网络设备发送M-1个转换关系信息;其中,所述第一功率配置参数为所述M组功率配置参数中的一组功率配置参数,每个转换关系信息包括所述M组功率 配置参数中除所述第一功率配置参数之外的一组功率配置参数与所述第一功率配置参数之间的转换关系,所述M-1个转换关系信息与天线端口集合具有对应关系,或所述M-1个转换关系信息与数据流数、天线端口及码字中的至少一项具有对应关系;其中,所述M-1个转换关系信息用于获取所述M-1组功率配置参数。
- 如权利要求4或5所述的方法,其特征在于,第二功率配置参数为所述M组功率配置参数中除所述第一功率配置参数之外的任意一组功率配置参数;所述M-1个转换关系信息中包括的所述第二功率配置参数与所述第一功率配置参数之间的转换关系信息包括:所述第二功率配置参数对应的天线端口集合的功率与所述第一功率配置参数对应的天线端口集合的功率的比值,和/或,所述第二功率配置参数中包括的各参数与所述第一功率配置参数包括的相应的参数之间的偏置。
- 一种功率配置方法,其特征在于,包括:第二网络设备接收第一网络设备发送的M组功率配置参数;其中,所述M组功率配置参数对应于M个天线端口集合,所述M个天线端口集合中的至少一个天线端口集合属于所述第一网络设备,每组功率配置参数用于计算相应的天线端口集合发送的下行数据信道的功率,M为大于等于2的整数。
- 如权利要求7所述的方法,其特征在于,所述M组功率配置参数中的任意一组功率配置参数包括该组功率配置参数对应的参考信号功率,还包括第一参数及第二参数中的至少一项;其中,所述第一参数用于指示该组功率配置参数对应的天线端口集合在有小区专用参考信号符号时的功率与无小区专用参考信号符号时的功率的比值,所述第二参数为用于计算该组功率配置参数对应的天线端口集合发送的下行数据信道的功率的专用参数。
- 如权利要求8所述的方法,其特征在于,每组功率配置参数还包括用于标识该组功率配置参数的标识信息;所述方法还包括:所述第二网络设备接收所述第一网络设备发送的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息;所述第二网络设备根据所述用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息,以及天线端口集合的数据流数、天线端口、及码字中的至少一项,确定所述M组功率配置参数分别对应的天线端口集合。
- 如权利要求8所述的方法,其特征在于,每组功率配置参数还包括用于标识该组功率配置参数的标识信息;所述方法还包括:所述第二网络设备接收所述第一网络设备发送的用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息;所述第二网络设备根据所述用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息,以及天线端口集合的数据流数、天线端口、及码字中的至少一项和扰码序列,确定所述M组功率配置参数分别对应的天线端口集合。
- 如权利要求7或8所述的方法,其特征在于,第二网络设备接收第一网络设备发送的M组功率配置参数,包括:所述第二网络设备接收所述第一网络设备发送的第一信令,所述第一信令携带所述M 组功率配置参数;所述方法还包括:所述第二网络设备根据每组功率配置参数与天线端口集合的对应关系,确定所述M组功率配置参数分别对应的天线端口集合;或,所述第二网络设备根据每组功率配置参数与数据流数、天线端口及码字中的至少一项的对应关系,确定所述M组功率配置参数分别对应的天线端口集合。
- 如权利要求7或8所述的方法,其特征在于,第二网络设备接收第一网络设备发送的M组功率配置参数,包括:所述第二网络设备接收所述第一网络设备发送的第一信令,所述第一信令携带第一功率配置参数及M-1个转换关系信息;其中,所述第一功率配置参数为所述M组功率配置参数中的一组功率配置参数,每个转换关系信息包括所述M组功率配置参数中除所述第一功率配置参数外的一组功率配置参数与所述第一功率配置参数之间的转换关系;所述方法还包括:所述第二网络设备确定所述第一功率配置参数对应的天线端口集合,及,根据所述M-1个转换关系信息和所述第一功率配置参数获取所述M组功率配置参数中除所述第一功率配置参数外的M-1组功率配置参数;所述第二网络设备根据所述第一功率配置参数及所述M-1个转换关系信息与天线端口集合的对应关系确定所述M组功率配置参数分别对应的天线端口集合;或,所述第二网络设备根据所述第一功率配置参数及所述M-1个转换关系信息与数据流数、天线端口及码字中的至少一项的对应关系,确定所述M组功率配置参数分别对应的天线端口集合。
- 如权利要求7或8所述的方法,其特征在于,第二网络设备接收第一网络设备发送的M组功率配置参数,包括:所述第二网络设备接收所述第一网络设备发送的第一信令和第二信令;其中,所述第一信令携带第一功率配置参数,所述第二信令携带所述M组功率配置参数中除所述第一功率配置参数之外的M-1组功率配置参数;其中,所述第一功率配置参数为所述M组功率配置参数中的一组功率配置参数;所述方法还包括:所述第二网络设备根据所述M-1组功率配置参数与天线端口集合的对应关系,确定所述M-1组功率配置参数分别对应的天线端口集合;或,所述第二网络设备根据所述M-1组功率配置参数与数据流数、天线端口及码字中的至少一项的对应关系,确定所述M-1组功率配置参数分别对应的天线端口集合。
- 如权利要求7或8所述的方法,其特征在于,第二网络设备接收第一网络设备发送的M组功率配置参数,包括:所述第二网络设备接收所述第一网络设备发送的第一信令和第二信令;其中,所述第一信令携带第一功率配置参数,所述第二信令携带M-1个转换关系信息;其中,所述第一功率配置参数为所述M组功率配置参数中的一组功率配置参数,每个转换关系信息包括所述M组功率配置参数中除所述第一功率配置参数之外的M-1组功率配置参数与所述第一功率配置参数之间的转换关系;所述方法还包括:所述第二网络设备确定所述第一功率配置参数对应的天线端口集合,及,根据所述 M-1个转换关系信息和所述第一功率配置参数获取所述M组功率配置参数中除所述第一功率配置参数外的M-1组功率配置参数;所述第二网络设备根据所述M-1个转换关系信息与天线端口集合的对应关系确定所述M-1组功率配置参数分别对应的天线端口集合;或,所述第二网络设备根据所述M-1个转换关系信息与数据流数、天线端口及码字中的至少一项的对应关系,确定所述M-1组功率配置参数分别对应的天线端口集合。
- 如权利要求12或14所述的方法,其特征在于,第二功率配置参数为所述M组功率配置参数中除所述第一功率配置参数之外的任意一组功率配置参数;所述M-1个转换关系信息中包括的所述第二功率配置参数与所述第一功率配置参数之间的转换关系信息包括:所述第二功率配置参数对应的天线端口集合的功率与所述第一功率配置参数对应的天线端口集合的功率的比值,和/或,所述第二功率配置参数中包括的各参数与所述第一功率配置参数包括的相应的参数之间的偏置。
- 一种网络设备,其特征在于,包括:发送模块,用于向第二网络设备发送M组功率配置参数;其中,所述M组功率配置参数对应于M个天线端口集合,所述M个天线端口集合中的至少一个天线端口集合属于所述第一网络设备,每组功率配置参数用于计算相应的天线端口集合发送的下行数据信道的功率,M为大于等于2的整数。
- 如权利要求16所述的网络设备,其特征在于,所述M组功率配置参数中的任意一组功率配置参数包括该组功率配置参数对应的参考信号功率,还包括第一参数及第二参数中的至少一项;其中,所述第一参数用于指示该组功率配置参数对应的天线端口集合在有小区专用参考信号符号时的功率与无小区专用参考信号符号时的功率的比值,所述第二参数为用于计算该组功率配置参数对应的天线端口集合发送的下行数据信道的功率的专用参数。
- 如权利要求17所述的网络设备,其特征在于,每组功率配置参数还包括用于标识该组功率配置参数的标识信息;所述发送模块还用于:向所述第二网络设备发送用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息;或向所述第二网络设备发送用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息。
- 如权利要求16或17所述的网络设备,其特征在于,所述发送模块用于:通过第一信令向所述第二网络设备发送所述M组功率配置参数,其中每组功率配置参数与天线端口集合具有对应关系,或所述每组功率配置参数与数据流数、天线端口及码字中的至少一项具有对应关系;或通过第一信令向所述第二网络设备发送第一功率配置参数及M-1个转换关系信息,其中所述第一功率配置参数及所述M-1个转换关系信息与天线端口集合具有对应关系,或所述第一功率配置参数及所述M-1个转换关系信息与数据流数、天线端口及码字中的至少一项具有对应关系;其中,所述第一功率配置参数为所述M组功率配置参数中的一组功率配置参数,每个转换关系信息包括所述M组功率配置参数中除所述第一功率配置参数外的一组功率配置参数与所述第一功率配置参数之间的转换关系;其中,所述M-1个转换关系信 息用于获取所述M-1组功率配置参数。
- 如权利要求16或17所述的网络设备,其特征在于,所述发送模块用于:通过第一信令向所述第二网络设备发送第一功率配置参数,及,通过第二信令向所述第二网络设备发送所述M组功率配置参数中除所述第一功率配置参数之外的M-1组功率配置参数;其中,所述第一功率配置参数为所述M组功率配置参数中的一组功率配置参数,功率配置参数与天线端口集合具有对应关系,或功率配置参数与数据流数、天线端口及码字中的至少一项具有对应关系;或通过第一信令向所述第二网络设备发送第一功率配置参数,及,通过第二信令向所述第二网络设备发送M-1个转换关系信息;其中,所述第一功率配置参数为所述M组功率配置参数中的一组功率配置参数,每个转换关系信息包括所述M组功率配置参数中除所述第一功率配置参数之外的一组功率配置参数与所述第一功率配置参数之间的转换关系,所述M-1个转换关系信息与天线端口集合具有对应关系,或所述M-1个转换关系信息与数据流数、天线端口及码字中的至少一项具有对应关系;其中,所述M-1个转换关系信息用于获取所述M-1组功率配置参数。
- 如权利要求19或20所述的网络设备,其特征在于,第二功率配置参数为所述M组功率配置参数中除所述第一功率配置参数之外的任意一组功率配置参数;所述M-1个转换关系信息中包括的所述第二功率配置参数与所述第一功率配置参数之间的转换关系信息包括:所述第二功率配置参数对应的天线端口集合的功率与所述第一功率配置参数对应的天线端口集合的功率的比值,和/或,所述第二功率配置参数中包括的各参数与所述第一功率配置参数包括的相应的参数之间的偏置。
- 一种网络设备,其特征在于,包括:接收模块,用于接收第一网络设备发送的M组功率配置参数;其中,所述M组功率配置参数对应于M个天线端口集合,所述M个天线端口集合中的至少一个天线端口集合属于所述第一网络设备,每组功率配置参数用于计算相应的天线端口集合发送的下行数据信道的功率,M为大于等于2的整数。
- 如权利要求22所述的网络设备,其特征在于,所述M组功率配置参数中的任意一组功率配置参数包括该组功率配置参数对应的参考信号功率,还包括第一参数及第二参数中的至少一项;其中,所述第一参数用于指示该组功率配置参数对应的天线端口集合在有小区专用参考信号符号时的功率与无小区专用参考信号符号时的功率的比值,所述第二参数为用于计算该组功率配置参数对应的天线端口集合发送的下行数据信道的功率的专用参数。
- 如权利要求23所述的网络设备,其特征在于,每组功率配置参数还包括用于标识该组功率配置参数的标识信息;所述网络设备还包括处理模块;所述接收模块还用于:接收所述第一网络设备发送的用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息;所述处理模块用于:根据所述用于指示数据流数、天线端口、及码字中的至少一项与功率配置参数的标识信息之间的对应关系的信息,以及小区的数据流数、天线端口、及码字中的至少一项,确定所述M组功率配置参数分别对应的天线端口集合。
- 如权利要求23所述的网络设备,其特征在于,每组功率配置参数还包括用于标 识该组功率配置参数的标识信息;所述网络设备还包括处理模块;所述接收模块还用于:接收所述第一网络设备发送的用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息;所述处理模块用于:根据所述用于指示数据流数、天线端口、及码字中的至少一项和扰码序列与功率配置参数的标识信息之间的对应关系的信息,以及天线端口集合的数据流数、天线端口、及码字中的至少一项和扰码序列,确定所述M组功率配置参数分别对应的天线端口集合。
- 如权利要求22或23所述的网络设备,其特征在于,所述网络设备还包括处理模块;所述接收模块用于:接收所述第一网络设备发送的第一信令,所述第一信令携带所述M组功率配置参数;所述处理模块用于:根据每组功率配置参数与天线端口集合的对应关系,确定所述M组功率配置参数分别对应的天线端口集合;或,根据每组功率配置参数与数据流数、天线端口及码字中的至少一项的对应关系,确定所述M组功率配置参数分别对应的天线端口集合。
- 如权利要求22或23所述的网络设备,其特征在于,所述网络设备还包括处理模块;所述接收模块用于:接收所述第一网络设备发送的第一信令,所述第一信令携带第一功率配置参数及M-1个转换关系信息;所述处理模块用于:确定所述第一功率配置参数对应的天线端口集合,及,根据所述M-1个转换关系信息和所述第一功率配置参数获取所述M组功率配置参数中除所述第一功率配置参数外的M-1组功率配置参数;根据所述第一功率配置参数及所述M-1个转换关系信息与天线端口集合的对应关系确定所述M组功率配置参数分别对应的天线端口集合;或,根据所述第一功率配置参数及所述M-1个转换关系信息与数据流数、天线端口及码字中的至少一项的对应关系,确定所述M组功率配置参数分别对应的天线端口集合。
- 如权利要求22或23所述的网络设备,其特征在于,所述网络设备还包括处理模块;所述接收模块用于:接收所述第一网络设备发送的第一信令和第二信令;其中,所述第一信令携带第一功率配置参数,所述第二信令携带所述M组功率配置参数中除所述第一功率配置参数之外的M-1组功率配置参数;其中,所述第一功率配置参数为所述M组功率配置参数中的一组功率配置参数;所述处理模块用于:根据所述M-1组功率配置参数与天线端口集合的对应关系,确定所述M-1组功率配置参数分别对应的天线端口集合;或,根据所述M-1组功率配置参数与数据流数、天线端口及码字中的至少一项的对应关系,确定所述M-1组功率配置参数分别对应的天线端口集合。
- 如权利要求22或23所述的网络设备,其特征在于,所述网络设备还包括处理模块;所述接收模块用于:接收所述第一网络设备发送的第一信令和第二信令;其中,所述第一信令携带第一功率配置参数,所述第二信令携带M-1个转换关系信息;其中,所述第一功率配置参数为所述M组功率配置参数中的一组功率配置参数,每个转换关系信息包括所述M组功率配置参数中除所述第一功率配置参数之外的M-1组功率配置参数与所述第一功率配置参数之间的转换关系;所述处理模块用于:确定所述第一功率配置参数对应的天线端口集合,及,根据所述M-1个转换关系信息和所述第一功率配置参数获取所述M组功率配置参数中除所述第一功率配置参数外的M-1组功率配置参数;根据所述M-1个转换关系信息与天线端口集合的对应关系确定所述M-1组功率配置参数分别对应的天线端口集合;或,根据所述M-1个转换关系信息与数据流数、天线端口及码字中的至少一项的对应关系,确定所述M-1组功率配置参数分别对应的天线端口集合。
- 如权利要求27或29所述的网络设备,其特征在于,第二功率配置参数为所述M组功率配置参数中除所述第一功率配置参数之外的任意一组功率配置参数;所述M-1个转换关系信息中包括的所述第二功率配置参数与所述第一功率配置参数之间的转换关系信息包括:所述第二功率配置参数对应的天线端口集合的功率与所述第一功率配置参数对应的天线端口集合的功率的比值,和/或,所述第二功率配置参数中包括的各参数与所述第一功率配置参数包括的相应的参数之间的偏置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17778697.7A EP3429118B1 (en) | 2016-04-08 | 2017-04-07 | Power configuration method and device |
US16/150,013 US10588099B2 (en) | 2016-04-08 | 2018-10-02 | Power configuration method and device |
US16/794,073 US10932208B2 (en) | 2016-04-08 | 2020-02-18 | Power configuration method and device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610217293.8A CN107302421B (zh) | 2016-04-08 | 2016-04-08 | 一种功率配置方法及设备 |
CN201610217293.8 | 2016-04-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/150,013 Continuation US10588099B2 (en) | 2016-04-08 | 2018-10-02 | Power configuration method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017174034A1 true WO2017174034A1 (zh) | 2017-10-12 |
Family
ID=60000248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/079789 WO2017174034A1 (zh) | 2016-04-08 | 2017-04-07 | 一种功率配置方法及设备 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10588099B2 (zh) |
EP (1) | EP3429118B1 (zh) |
CN (1) | CN107302421B (zh) |
WO (1) | WO2017174034A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10863444B2 (en) | 2017-01-06 | 2020-12-08 | Huawei Technologies Co., Ltd. | Power configuration method and related device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107302421B (zh) * | 2016-04-08 | 2021-05-18 | 华为技术有限公司 | 一种功率配置方法及设备 |
CN109672989A (zh) * | 2018-12-26 | 2019-04-23 | 中国联合网络通信集团有限公司 | 室内分布系统 |
CN111726882A (zh) * | 2019-03-19 | 2020-09-29 | 华为技术有限公司 | 数据传输的方法及装置 |
CN116437391A (zh) * | 2021-12-31 | 2023-07-14 | 华为技术有限公司 | 一种通信方法及通信装置 |
CN117998371A (zh) * | 2022-11-02 | 2024-05-07 | 华为技术有限公司 | 数据传输的方法、通信装置以及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103650368A (zh) * | 2011-06-29 | 2014-03-19 | Lg电子株式会社 | 信道状态信息发射方法和用户设备以及信道状态信息接收方法和基站 |
CN103748938A (zh) * | 2011-08-12 | 2014-04-23 | 夏普株式会社 | 用信号传送用于上行链路协作多点(CoMP)的功率分配参数 |
CN104115433A (zh) * | 2012-02-17 | 2014-10-22 | Lg电子株式会社 | 在无线通信系统中发送和接收信号的方法和设备 |
CN104247359A (zh) * | 2012-04-04 | 2014-12-24 | 三星电子株式会社 | 用于支持无线通信系统的高阶多用户多入多出操作的装置及方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101299623B (zh) * | 2007-04-30 | 2013-01-02 | 华为技术有限公司 | 功率分配方法、系统及发送端 |
WO2010036603A1 (en) * | 2008-09-23 | 2010-04-01 | Interdigital Patent Holdings, Inc. | Method for signaling mu-mimo parameters |
CN101741442B (zh) * | 2008-11-20 | 2013-03-20 | 华为技术有限公司 | 协作多点传输中确定资源映射的方法、网络设备及系统 |
CN101777941B (zh) * | 2009-01-12 | 2014-10-08 | 华为技术有限公司 | 协作多点传输系统中的下行传输方法、网络设备和无线系统 |
KR20100088518A (ko) * | 2009-01-30 | 2010-08-09 | 엘지전자 주식회사 | 하향링크 mimo 시스템에 있어서, 참조 신호 전송 방법 |
JP5990815B2 (ja) * | 2011-11-07 | 2016-09-14 | シャープ株式会社 | 基地局、端末、通信システムおよび通信方法 |
CN102573030B (zh) * | 2011-12-08 | 2014-11-05 | 电信科学技术研究院 | 一种上行功率控制方法及装置 |
US9106386B2 (en) * | 2012-08-03 | 2015-08-11 | Intel Corporation | Reference signal configuration for coordinated multipoint |
CN103916945B (zh) * | 2013-01-04 | 2018-02-16 | 中兴通讯股份有限公司 | 一种下行功率参数的配置方法及装置 |
EP2942888B1 (en) * | 2013-01-07 | 2018-08-01 | LG Electronics Inc. | Method for receiving a downlink signal from a plurality of transmission points by a user equipment and corresponding user equipment |
CN107302421B (zh) * | 2016-04-08 | 2021-05-18 | 华为技术有限公司 | 一种功率配置方法及设备 |
CN107371255B (zh) * | 2016-05-12 | 2020-08-18 | 华硕电脑股份有限公司 | 改良缩短传输时间间隔中的上行链路授予的方法及装置 |
-
2016
- 2016-04-08 CN CN201610217293.8A patent/CN107302421B/zh active Active
-
2017
- 2017-04-07 EP EP17778697.7A patent/EP3429118B1/en active Active
- 2017-04-07 WO PCT/CN2017/079789 patent/WO2017174034A1/zh active Application Filing
-
2018
- 2018-10-02 US US16/150,013 patent/US10588099B2/en active Active
-
2020
- 2020-02-18 US US16/794,073 patent/US10932208B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103650368A (zh) * | 2011-06-29 | 2014-03-19 | Lg电子株式会社 | 信道状态信息发射方法和用户设备以及信道状态信息接收方法和基站 |
CN103748938A (zh) * | 2011-08-12 | 2014-04-23 | 夏普株式会社 | 用信号传送用于上行链路协作多点(CoMP)的功率分配参数 |
CN104115433A (zh) * | 2012-02-17 | 2014-10-22 | Lg电子株式会社 | 在无线通信系统中发送和接收信号的方法和设备 |
CN104247359A (zh) * | 2012-04-04 | 2014-12-24 | 三星电子株式会社 | 用于支持无线通信系统的高阶多用户多入多出操作的装置及方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10863444B2 (en) | 2017-01-06 | 2020-12-08 | Huawei Technologies Co., Ltd. | Power configuration method and related device |
Also Published As
Publication number | Publication date |
---|---|
CN107302421B (zh) | 2021-05-18 |
EP3429118A4 (en) | 2019-02-27 |
CN107302421A (zh) | 2017-10-27 |
US20200245267A1 (en) | 2020-07-30 |
EP3429118B1 (en) | 2021-06-09 |
EP3429118A1 (en) | 2019-01-16 |
US10932208B2 (en) | 2021-02-23 |
US10588099B2 (en) | 2020-03-10 |
US20190037505A1 (en) | 2019-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11025316B2 (en) | Method and apparatus used for data transmission | |
US10972171B2 (en) | Data transmission method and apparatus | |
US11784773B2 (en) | Data transmission method and apparatus | |
EP3295760B1 (en) | Measurement of d2d channels | |
US10863444B2 (en) | Power configuration method and related device | |
JP6553213B2 (ja) | ユニキャスト信号とマルチキャスト信号との間の非直交多元接続 | |
US10932208B2 (en) | Power configuration method and device | |
CA3042834A1 (en) | Communication method, communications apparatus, network device, and terminal | |
US10778287B2 (en) | Multipoint data transmission method and apparatus | |
JP2017537541A (ja) | Pucch上でのエレベーションpmi報告 | |
WO2020211767A1 (zh) | 用于数据传输的方法和装置 | |
CN107294574B (zh) | 多传输点数据传输的方法及装置 | |
EP3550895B1 (en) | Downlink transmission method, base station and terminal device | |
CN108282310B (zh) | 一种数据传输方法、网络侧设备及终端设备 | |
US11581993B2 (en) | Reception timing configuration method and communications device | |
WO2018126894A1 (zh) | 一种功率配置方法及相关设备 | |
CN116171588B (zh) | 用于基于组的l1-sinr测量和报告的方法 | |
CN117413603A (zh) | 用于无线通信的节点中的方法和装置 | |
CN117397275A (zh) | 用于无线通信的节点中的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017778697 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017778697 Country of ref document: EP Effective date: 20181011 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17778697 Country of ref document: EP Kind code of ref document: A1 |