WO2013062366A1 - 나노 액정층을 구비하는 횡전계 방식 액정표시소자 - Google Patents
나노 액정층을 구비하는 횡전계 방식 액정표시소자 Download PDFInfo
- Publication number
- WO2013062366A1 WO2013062366A1 PCT/KR2012/008880 KR2012008880W WO2013062366A1 WO 2013062366 A1 WO2013062366 A1 WO 2013062366A1 KR 2012008880 W KR2012008880 W KR 2012008880W WO 2013062366 A1 WO2013062366 A1 WO 2013062366A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- electric field
- crystal layer
- nano
- display device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1334—Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134363—Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
Definitions
- the present invention relates to a transverse electric field type liquid crystal display device, and more particularly, to a transverse electric field type liquid crystal display device configured using a nano liquid crystal layer made of a nano-sized liquid crystal domain.
- LCD liquid crystal display device
- a liquid crystal display device injects a liquid crystal between two substrates of upper and lower substrates, and adjusts the amount of light transmission by adjusting the intensity of an electric field applied thereto.
- the injected liquid crystal molecules have a thin structure and thus have orientation in the molecular arrangement. Due to these characteristics, the liquid crystal molecules have anisotropy.
- the liquid crystal molecules In the case of liquid crystals, it has two important properties, optical anisotropy and dielectric anisotropy.
- the liquid crystal molecules are controlled by controlling the intensity of the electric field artificially applied from the outside.
- the amount of light transmitted is controlled by controlling the arrangement direction.
- FIG. 1 is a cross-sectional view schematically showing a configuration of a conventional transverse electric field type liquid crystal display device disclosed in US Patent No. 7787090.
- a polarizer generally shown is not illustrated.
- a liquid crystal layer (A) is formed between an upper plate 1 having a color filter 2 and a lower plate 7 having a pixel electrode 6 formed thereon. 4) is injected, and in order to control the alignment state of the liquid crystal 4, the alignment films 3 and 5 are formed on the upper and lower plates, respectively.
- the liquid crystal layer maintains the initial horizontal alignment state by the alignment layer and passes as it is without affecting the light incident from the outside. Will be implemented.
- the conventional transverse electric field type liquid crystal display device is manufactured through a complicated liquid crystal process of injecting liquid crystal between two substrates after bonding two substrates by using substrates of upper and lower substrates. I have problems
- the present invention has been made to solve the above problems, an object of the present invention can greatly simplify the display panel manufacturing process through a completely new concept transverse electric field type liquid crystal display device based on the nano liquid crystal layer,
- the present invention provides a transverse electric field type liquid crystal display device having a nano liquid crystal layer having characteristics suitable for implementing a flexible display.
- a transverse electric field type liquid crystal display device comprising a nano liquid crystal layer according to the present invention for achieving the above object is a substrate; A transverse electric field electrode layer formed on the upper surface of the substrate; A nano liquid crystal layer formed on the electrode layer; A first polarizer disposed on a bottom surface of the substrate; And a second polarizing plate disposed on the nano liquid crystal layer, wherein the nano liquid crystal layer is characterized in that the nano liquid crystal domain having a diameter size smaller than the visible wavelength range is dispersed in the polymer matrix.
- the transverse electric field type liquid crystal display device having the nano liquid crystal layer according to the present invention since most of the processes and components required for manufacturing the conventional liquid crystal display device can be removed and omitted, the following excellent effects are obtained. .
- the alignment layer is unnecessary, and thus, the alignment layer printing and rubbing processes, which are necessary at the time of manufacturing the liquid crystal display, can be removed.
- the upper and lower substrates are used in manufacturing a conventional liquid crystal display device, a bonding process of precisely aligning and bonding them is required.
- a bonding process of precisely aligning and bonding them is required.
- only one backplane substrate having pixel electrodes is formed.
- the liquid crystal display device can be made, which greatly simplifies the process.
- the conventional liquid crystal display device must accurately maintain the gap between the upper and lower substrates after precisely bonding the upper and lower substrates and injecting the liquid crystal.
- the nano liquid crystal domain is formed on the backplane substrate. Since the coating makes a kind of film-like nano liquid crystal layer, there is no need to maintain a constant gap.
- the nano liquid crystal layer is present in the form of a film, there is no problem in that the gap is changed by external pressure or impact, and thus there is a very advantageous advantage in manufacturing a flexible display using a flexible plastic substrate that can be bent or folded.
- a large number of processes required for manufacturing a conventional liquid crystal display device such as alignment film printing, rubbing, spacer coating, upper and lower plate bonding, liquid crystal injection, and end seal, can be omitted. have.
- large-scale clean room facilities or process equipment investments are not required to proceed with the overall liquid crystal display device manufacturing process, thereby significantly reducing initial investment costs.
- FIG. 1 is a cross-sectional view schematically showing the configuration of a conventional transverse electric field type liquid crystal display device.
- FIG. 2 is a schematic diagram showing a cross-sectional structure of a transverse electric field type liquid crystal display device having a nano liquid crystal layer according to a first embodiment of the present invention.
- Figure 3 is a comparative experimental example of the nano emulsion and macro emulsion.
- FIG. 4 is an enlarged cross-sectional view of region 'A' of FIG. 2 and illustrates an operating principle in an on state in which an electric field is applied.
- FIG. 5 is a schematic view showing a cross-sectional structure of a transverse electric field type liquid crystal display device having a nano liquid crystal layer according to a second embodiment of the present invention.
- FIG. 6 is a schematic view showing a cross-sectional structure of a transverse electric field type liquid crystal display device having a nano liquid crystal layer according to a third embodiment of the present invention.
- FIG. 7 is an embodiment according to the present invention, a process diagram and a structure diagram for producing a lambda / 4 phase difference film or a patterned retarder film using a liquid crystal nanocapsule layer containing a photoreactive liquid crystal monomer.
- substrate 20 transverse electric field electrode layer
- first polarizing plate 50 second polarizing plate
- the present invention can greatly simplify the display panel manufacturing process through a novel concept of transverse electric field type liquid crystal display device based on a nano liquid crystal layer using optical characteristics of light according to particle size in a medium, and greatly reduce the initial investment cost. Disclosed are technical features that can be reduced.
- FIG. 2 is a schematic view showing a cross-sectional structure of a transverse electric field type liquid crystal display device having a nano liquid crystal layer according to a first embodiment of the present invention.
- a transverse electric field type liquid crystal display device having a nano liquid crystal layer may include a first polarizing plate 40, a substrate 10, a transverse electric field type electrode layer 20, and a nano liquid crystal.
- the layer 30 and the second polarizing plate 50 are sequentially laminated.
- the first polarizing plate 40 and the second polarizing plate 50 are respectively shown to be spaced apart from the substrate 10 and the nano liquid crystal layer 30, but are preferably provided to be in close contact with each other without being spaced apart.
- the polarizers are formed to be in close contact with each other.
- the substrate 10 is a thin plate made of a transparent material, and specifically, may be configured as a glass substrate made of glass material, as well as a thin plastic substrate having elastic flexibility.
- plastic substrate when employed, it should be composed of a substrate having excellent light transmittance and no birefringence effect.
- Plastic substrates meeting the above objectives include Tri Acetyl Cellulose (TAC), Polyimide (PI), Polyethersulfone (PES), Polyethylene Terephthalate (PET), and Polyethylene Naphthalate (PEN).
- TAC Tri Acetyl Cellulose
- PI Polyimide
- PES Polyethersulfone
- PET Polyethylene Terephthalate
- PEN Polyethylene Naphthalate
- PAR polyarylate
- the first polarizer 40 is a component for polarizing light incident to the nano liquid crystal layer 30 through a backlight (not shown) disposed under the substrate 10, and preferably, a lower surface of the substrate 10. Lamination is formed on.
- the second polarizing plate 50 is a component that serves to block the light incident on the nano liquid crystal layer 30 when it is transmitted as it is without being polarized by the birefringence effect of the nano liquid crystal layer 30, preferably nano The upper surface of the liquid crystal layer 30 is laminated.
- the first polarizing plate 40 is formed such that its polarization axis is orthogonal to the polarization axis of the second polarizing plate 50. Therefore, if the polarization axis of the first polarizing plate 40 is 0 ° (or 90 °), the second polarizing plate 50 is provided as a polarizing plate having a polarization axis of 90 ° (or 0 °).
- a method of imparting antistatic property to the second polarizing plate 50 a method of imparting antistatic property using an antistatic adhesive (Korean Patent Publication Nos. 2006-0018495, 2004-0030919, and Japanese Patent Publication 2006-111856 and 2006-104434), there are a method of adding a conductive material such as water-dispersible conductive metal powder or carbon particles to the coating liquid, and a method of adding a low molecular weight surfactant material to the pressure-sensitive adhesive,
- a method of forming an antistatic coating layer comprising carbon nanotubes in which carbon impurities have been purified by heat treatment on at least one side of the polarizing plate, and an antistatic coating layer and an antistatic adhesive layer laminated on at least one side of the polarizing plate in order Forming method Korea Patent Publication No. 2009-0027930
- the transverse electric field type electrode layer 20 refers to an electrode structure in which gray level is displayed by responding a liquid crystal by applying a transverse electric field.
- the pixel electrode pattern and the common electrode pattern are formed in the same layer on the same substrate 10 to form a transverse electric field, or the pixel electrode to form a transverse electric field.
- the pattern and the common electrode pattern are formed on the same substrate 10, but the pixel electrode 23 and the common electrode 21 are disposed on different layers, and the FFS (Fringe-Field Switching) having an insulating film 22 therebetween. ) Mode.
- the nano liquid crystal layer 30 is stacked on the electrode layer 20, and the display device displays gray scales by realizing the function of passing light incident through the first polarizing plate 40 as it is or changing polarization. Corresponds to the core components that make it possible.
- the nano liquid crystal layer 30 is formed by mixing the nano liquid crystal domain 32 with the binder 31 to prepare a coating solution, and then coating and curing the liquid crystal on the substrate 10 on which the pixel electrode is formed. Accordingly, the nano liquid crystal layer 30 has a structure in which the nano liquid crystal domain 32 is dispersed in the polymer matrix 31.
- the nano liquid crystal layer 30 can be provided in the form of a film bonded on the electrode layer 20, by this characteristic it is possible to manufacture a transverse electric field type liquid crystal display device using only one substrate (10). This is in contrast to the conventional transverse electric field type liquid crystal display device in which a pair of substrates opposed to each other is required.
- the nano liquid crystal layer 30 since the nano liquid crystal layer 30 does not have a problem of being spaced or changed due to external pressure or impact, the nano liquid crystal layer 30 is very advantageous in a flexible display to which a flexible plastic substrate is applied.
- the nano liquid crystal domain 32 is characterized by having a diameter size smaller than the visible light wavelength (380nm ⁇ 780nm) range, and thus the optical properties appear when the liquid crystal domain 32 is formed in a nano-size transverse electric field
- the type electrode it is possible to implement a completely new concept of the transverse electric field type liquid crystal display device.
- nano liquid crystal layer 30 including the nano liquid crystal domain 32 and the polymer matrix 31 will be described in detail.
- FIG. 3 is a comparative experimental example of nanoemulsion and macroemulsion, wherein the sample contained in the left vial bottle of FIG. 3 is a nanoemulsion in which the liquid crystal domain 32 is transformed into an average diameter size of 50 nm.
- the sample contained in the right vial bottle is a macro emulsion (Macro Emulsion) consisting of a liquid crystal having an average diameter size of 1.0 ⁇ m.
- the liquid crystal domain 32 when the liquid crystal domain 32 was formed to have a nano size smaller than the wavelength of visible light (preferably, a nano size smaller than 1/4 of the wavelength of visible light), it was found that a part of the visible light incident on the sample completely transmitted. More preferably, when the liquid crystal domain 32 was formed to a diameter size of 100 nm or less, scattering hardly occurred, and most of incident light was transmitted as it is.
- the transverse electric field type liquid crystal display device having the nano liquid crystal layer 30 according to the present invention utilizes the optical characteristics expressed when the liquid crystal domain 32 is formed to a diameter size smaller than 1/4 of the visible wavelength range. Corresponding to the novel concept of transverse electric field type liquid crystal display device.
- the nano liquid crystal layer 30 of the present invention is formed through the nano liquid crystal domain 32 manufacturing step and the nano liquid crystal layer coating step.
- the nano liquid crystal domain 32 is manufactured in the form of a capsule by transforming the liquid crystal into particles of nano size (ie, diameter size of 100 nm or less), and forming the outer wall 33 in the liquid crystal thus modified to nano size.
- the nano liquid crystal domain 32 may be manufactured using a complex phase separation method, a membrane emulsification method, an in-situ polymerization method, an interfacial polymerization method, or the like.
- the liquid crystal 34 used in the nano liquid crystal domain 32 is not particularly limited as long as it is a liquid crystal commonly used in liquid crystal display devices such as nematic, smectic, cholesteric, and chiral smectic.
- the domain 32 may further include a dichroic dye and a chiral dopant in addition to the liquid crystal described above.
- the nano liquid crystal domain 32 is an emulsification process for forming a droplet of a liquid crystal which is a core material, an encapsulation process by coservation, a gelation process of the capsule outer wall 33, and a hardening process of the capsule outer wall 33. And it is prepared through the aging process.
- the emulsification process is a process of forming a liquid droplet (Droplet) as a core material by using a high speed homogenizer and a microfluidizer emulsifier in an aqueous solution containing an emulsifier.
- Droplet liquid droplet
- natural emulsifiers to polyurethane such as chitosan, carrageenan, gelatin, guma, arabia gum, albumin, alginate, casein, etc.
- 5% (w / v) of the liquid gum 2000 aqueous solution while maintaining the temperature at about 50 °C 5% (w / v) of the liquid crystal is slowly dropped using a pipette (Pipette)
- a pipette Using a high speed homogenizer (Homogenizer, Ultra Turrax, IKA-T18 Basic, IKA), the liquid crystal is first emulsified about 2 minutes at a rotation speed of about 14,000rpm.
- the reason why the liquid crystal is slowly dropped by the pipette is to suppress the foaming caused by Rotor that rotates at high speed during initial emulsification using a high speed homogenizer.
- the first liquid crystal emulsion emulsified in this manner is secondly emulsified under a condition of about 5 times at a pressure of about 1,000 bar by using a high pressure disperser (Microfluidizer, M-110L, Microfluidics).
- a high pressure disperser Microfluidizer, M-110L, Microfluidics.
- the process proceeds to the encapsulation process by co-servation, which also forms the outer wall 33 twice in order to ensure the formation of the outer wall 33 of the nano liquid crystal domain 32.
- the first is using a high speed homogenizer and stirring at a speed of about 14,000rpm while slowly dropping about 0.2% (w / v) aqueous chitosan solution into the initial emulsion dispersion through a syringe (Syringe). After the chitosan aqueous solution is added, the pH is adjusted to 4-5 using glacial acetic acid.
- a gelation process is performed in which gelation of the capsule outer wall 33 is performed through temperature change.
- the temperature is lowered to room temperature so that the material of the outer wall 33 formed in the nano liquid crystal domain 32 is gelled.
- the curing process is a step of curing the capsule outer wall 33 by adding a curing agent, wherein the curing agent is crosslinked with the amino group of gelatin by using glutaraldehyde or formaldehyde to harden the capsule. After aging for a certain time, the nano liquid crystal domain 32 is finally obtained.
- the nano-liquid crystal domain 32 obtained through the above-described manufacturing process requires cleaning, and in the case of cleaning, pure water, isopropyl alcohol, ethylene glycol, and the like are performed. Then, it is necessary to separate the nano liquid crystal domain 32 from the aqueous solution or the cleaning liquid, which can be achieved by ultracentrifugation or freeze drying. Nano-sized particles are much smaller in size than conventional micro-sized particles, so separation does not occur with conventional centrifugation methods. Therefore, separation of nano-sized particles requires an ultracentrifugation method, which is called an ultracentrifuge.
- Nano Liquid Crystal Domain 32 The nano liquid crystal domain 32, which has been separated from the aqueous dispersion solution or the cleaning solution, should be fixed to the upper surface of the substrate 10, which is made through a binder. That is, a nano liquid crystal is prepared by preparing a solution in which the nano liquid crystal domain 32 is mixed in a predetermined ratio in a binder 31 having transparent physical properties, and then coating and curing the same on the upper surface of the substrate 10 on which the pixel electrode is formed. Layer 30 is finally formed.
- the coating method may be achieved by any one selected from gravure coating, knife coating, roll coating, slot die coating, and reverse coating.
- the nano liquid crystal domain 32 and the binder 31 are preferably configured to be mixed at a ratio of 5: 1 to 1: 1, and as the binder 31, polyvinyl alcohol, gelatin, formalin solcinone resin, polyurethane resin, Preference is given to using at least one transparent polymeric material selected from acrylic acid resins, melamines, methacrylic acid resins, formaldehyde resins, fluorine resins and polyvinylpyrrolidone.
- the nano liquid crystal layer 30 in which the plurality of nano liquid crystal domains 32 are dispersed in the polymer matrix is stacked on the electrode layer 20 in a film form.
- FIG. 4 is an enlarged cross-sectional view of region 'A' of FIG. 2, wherein the electrode layer 20 of the transverse electric field type liquid crystal display device of FIG. 4 has an electrode structure of a FFS (Fringe-Field Switching) type, and an electric field is applied thereto. The operating principle in the on state is shown.
- FFS Field-Field Switching
- the nano liquid crystal layer 30 when the electric field is not applied to the electrode layer 20, the nano liquid crystal layer 30 receives light incident through the first polarizing plate 40. By passing it through, it operates to indicate the black state.
- the nano liquid crystal layer 30 has no influence on incident light (for example, backlight light) due to the optical characteristics of the nano liquid crystal domain 32 described above. 1
- incident light for example, backlight light
- the polarizing plate 40 After passing through the polarizing plate 40 and selectively transmitted at a specific angle, the light incident on the nano liquid crystal layer 30 passes through the nano liquid crystal layer 30, and scattering is hardly generated. It passes through and reaches the second polarizing plate 50.
- the liquid crystal display device displays a black state.
- a conventional transverse electric field type liquid crystal display in which a liquid crystal is aligned to have a constant pitch and direction by interposing a pair of alignment layers between a pair of substrates facing each other and injecting liquid crystal therebetween.
- the transverse electric field type liquid crystal display device of the present invention can express the black state by using the inherent characteristics of the nano liquid crystal layer 30 itself, so that a separate liquid crystal alignment is not necessary.
- the transverse electric field type liquid crystal display device including the nano liquid crystal layer 30 of the present invention can eliminate the alignment film printing and rubbing processes, which are necessary for the transverse electric field type liquid crystal display device, and the substrate also has a pixel electrode formed thereon.
- the substrate also has a pixel electrode formed thereon.
- the nano liquid crystal layer 30 of the present invention when an electric field is applied to the electrode layer 20, the nano liquid crystal layer 30 has a polarization axis of light incident through the first polarizing plate 40. It operates to indicate the white state by being rotated by 90 °.
- the liquid crystal molecules 34 inside the nano liquid crystal domain 32 are arranged horizontally in parallel with the electric field direction by the transverse electric field.
- the birefringence effect by the orientation of is made.
- ⁇ n ⁇ * K * E 2
- ⁇ n the birefringence value induced by the electric field
- K the Kerr Constant, determined by the characteristics of the medium
- E It represents the intensity of the electric field applied
- ⁇ the wavelength of light incident on the medium.
- the nano-liquid crystal layer 30 of the present invention is characterized in that the birefringence degree ⁇ n ⁇ d according to the application of the electric field is satisfied to satisfy the ⁇ / 2 condition.
- ' ⁇ n' refers to the birefringence value of the liquid crystal induced by the electric field
- 'd' means the thickness of the nano liquid crystal layer
- ' ⁇ ' means the wavelength of the incident light.
- the polarized light of the light incident through the first polarizing plate 40 is changed by the birefringence effect of the nano liquid crystal layer 30, wherein the birefringence degree ⁇ n ⁇ d of the nano liquid crystal layer 30 is incident light.
- the polarization axis of the incident light is rotated by 90 °, thereby passing through the second polarizing plate 50 which is orthogonal to the first polarizing plate 40 and passing through the display to display a white state.
- FIG. 5 is a schematic view showing a cross-sectional structure of a transverse electric field type liquid crystal display device having a nano liquid crystal layer according to a second embodiment of the present invention.
- the transverse electric field liquid crystal display device including the nano liquid crystal layer according to the second embodiment of the present invention further includes a protective layer 60 in the transverse electric field liquid crystal display device of the first embodiment. It features.
- the protective layer 60 is made of a transparent resin coating layer having excellent light transmittance and is provided in a form disposed on the upper surface of the nano liquid crystal layer 30.
- the protective layer 60 is formed on the upper surface of the nano liquid crystal layer 30 without first attaching the second polarizing plate 50 to the nano liquid crystal layer 30 immediately after coating the nano liquid crystal layer 30. By attaching the 2 polarizing plate 50 serves to protect the nano liquid crystal layer 30.
- Suitable materials for the protective layer 60 include triacetyl cellulose (TAC), cyclo-Olefin polymer, polyethersulfone (PES), overcoat, characterized by no refractive index anisotropy. (Over Coat) and the like can be used.
- TAC triacetyl cellulose
- PES polyethersulfone
- Over Coat and the like can be used.
- the protective layer 60 is further provided, although the number of processes is added to increase the process cost, there is an advantage of minimizing damage of the nano liquid crystal layer 30 which may occur during the process of attaching the second polarizer. .
- FIG. 6 is a schematic view showing a cross-sectional structure of a transverse electric field type liquid crystal display device having a nano liquid crystal layer according to a third embodiment of the present invention.
- the transverse electric field liquid crystal display device including the nano liquid crystal layer according to the second embodiment of the present invention is further characterized by further comprising a top plate in the transverse electric field liquid crystal display device of the first embodiment.
- an upper plate is further disposed on the nano liquid crystal layer 30, and the upper plate is configured to include a color filter 70 and a transparent electrode 80 (ITO).
- ITO transparent electrode 80
- the color filter 70 is stacked on the nano liquid crystal layer 30 to express color.
- the color filter 70 may be attached to the upper surface of the nano liquid crystal layer 30 through the adhesive 90.
- an antistatic function transparent electrode 80 is further formed on the top surface of the color filter 70 to remove the influence of external static electricity.
- thermosetting adhesive is generally hardened at a high temperature of 100 ° C. or higher, so that alignment between the substrate and the top plate may occur during curing, which is disadvantageous in terms of yield compared to the photocurable adhesive.
- the polarization axis of the first polarizing plate and the polarization axis of the second polarizing plate are provided in a mutually orthogonal state, whereby an electric field is not applied to the electrode layer.
- the black state is displayed, and when the electric field is applied to the electrode layer, the white state is configured as a normally black mode (Normally-Black Mode).
- the light when a voltage is not applied, the light may be transmitted in a normally white mode having a maximum brightness.
- the normally white mode can be realized.
- the nano liquid crystal layer 30 passes the light incident through the first polarizing plate 40 as it is. Will be displayed.
- the nano liquid crystal layer 30 has no influence on incident light (for example, backlight light) due to the optical characteristics of the nano liquid crystal domain 32 described above. 1
- incident light for example, backlight light
- the polarizing plate 40 After passing through the polarizing plate 40 and selectively transmitted at a specific angle, the light incident on the nano liquid crystal layer 30 passes through the nano liquid crystal layer 30, and scattering is hardly generated. It passes through and reaches the second polarizing plate 50.
- the light transmitted through the first polarizing plate 40 is incident on the second polarizing plate 50 having the same polarization axis as the first polarizing plate 40, so that the incident light is not absorbed by the second polarizing plate 50 as it is. It passes through and displays the white state.
- the nano liquid crystal layer 30 rotates a polarization axis of light incident through the first polarizing plate 40 by 90 °. By doing so, the black state is displayed.
- the liquid crystal molecules 34 inside the nano liquid crystal domain 32 are arranged horizontally in parallel with the electric field direction by the transverse electric field. The birefringence effect due to the orientation of the molecules is created.
- the liquid crystal display device displays a black state.
- the liquid crystal display device including the nano liquid crystal layer according to the present invention has been described so far.
- the photoreactive liquid crystal monomers Reactive Mesogens
- they may also be used as AMOLED antireflection ⁇ / 4 retardation films or patterned retarder films (FPR).
- a lambda / 4 phase difference film and a patterned retarder film manufacturing method comprising a photoreactive liquid crystal monomer in the nano liquid crystal layer of the present invention will be described with reference to FIG.
- the nanocapsules are prepared by mixing photoreactive liquid crystal monomers (Reactive Mesogens) in the liquid crystal.
- photoreactive liquid crystal monomer may include RMS03-001, RMS03-011, RMS03-013, RMS03-015, RMM-28B, etc. of Merck, Germany.
- an insulating layer 22 is stacked on the transparent substrate 40, and a transverse field electrode layer IPS is formed by alternately forming a pixel electrode and a common electrode on the insulating layer 22.
- the liquid crystal nanocapsule layer in which the photoreactive liquid crystal monomer is mixed on the anticorrosive electrode layer) is coated using the same method as described above, and cured by irradiating UV light with voltage applied to the pixel electrode and the common electrode. Since the photoreactive liquid crystal monomer 41 is cured by UV curing, the nano liquid crystal contained in the nano liquid crystal domain 32 is photocured even when the voltage applied to the transverse electrode layer is removed, as shown in FIG. 7B. It will keep the array state. Therefore, a film in which the liquid crystal alignment is fixed is formed by the photoreactive liquid crystal monomer 41 shown in FIG. 7 (b), and this can be used as a ⁇ / 4 retardation film or a patterned retarder film.
- the photoreactive liquid crystal monomer and the nano size liquid crystal are mixed when the liquid crystal nanocapsules are manufactured.
- ⁇ / 4 It can be used as a retardation film or a patterned retarder film.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Dispersion Chemistry (AREA)
- Geometry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Liquid Crystal (AREA)
Abstract
본 발명은 나노 액정층을 구비하는 횡전계 방식 액정표시소자에 관한 것으로서, 본 발명의 목적은 나노 액정층을 기반으로 구성된 전혀 새로운 개념의 횡전계 방식 액정표시소자를 통해 디스플레이 패널 제조공정을 대폭 단순화시킬 수 있고, 화소전극이 형성되어 있는 백플레인 기판 하나로 액정표시소자를 만들 수 있으며, 특히 플렉서블 디스플레이를 구현함에 매우 적합한 특성을 갖는 나노 액정층을 구비하는 횡전계 방식 액정표시소자를 제공하는 것이다.본 발명에 따른 나노 액정층을 구비하는 횡전계 방식 액정표시소자는 기판과; 상기 기판의 상면 상에 형성된 횡전계 방식의 전극층과; 상기 전극층 상에 형성된 나노 액정층과; 상기 기판의 하면 상에 배치되는 제1 편광판; 및 상기 나노 액정층의 상부에 배치되는 제2 편광판을 포함하고, 상기 나노 액정층은 가시광선 파장 범위보다 작은 직경 사이즈로 이루어진 나노 액정 도메인이 고분자 메트릭스 내에 분산되어 있는 것을 특징으로 한다.
Description
본 발명은 횡전계 방식 액정표시소자에 관한 것으로서, 보다 상세하게는 나노 사이즈의 액정 도메인으로 이루어진 나노 액정층을 이용하여 구성된 횡전계 방식 액정표시소자에 관한 것이다.
다양한 산업분야에서 디스플레이 표시소자에 대한 요구는 꾸준히 증가되어 왔으며, 최근 들어 정보통신 기술의 급속한 발달에 따라 디스플레이 표시소자에 대한 다양한 요구에 부응하여 그 기술개발이 활발히 진행되고 있다.
특히, 최근에는 기존의 CRT를 대체하는 디스플레이로서 화질이 우수하면서도 경량, 박형 및 저소비전력 등의 다양한 장점을 갖는 액정표시소자(LCD)가 소형 화면의 휴대용 모바일 디스플레이부터, 중형 화면의 노트북 컴퓨터, 모니터, 및 대형 화면의 텔레비전에 이르기까지 다양한 응용 제품으로 제품화 되고 있다.
일반적으로 액정표시소자는 상·하판 두 장의 기판 사이에 액정을 주입하고, 여기에 가해지는 전기장의 세기를 조절하여 광 투과량을 조절하게 된다. 이때 주입되는 액정분자는 구조가 가늘고 길기 때문에 분자배열에 방향성을 가지게 되는데, 이러한 특징으로 인해 액정분자는 이방성(Anisotropy)의 성질을 가지게 된다. 액정의 경우 크게 광학적 이방성(Optical Anisotropy)과 유전율 이방성(Dielectric Anisotropy)의 두 가지 중요한 성질을 가지게 되는데, 이러한 액정분자의 독특한 성질을 활용하여 외부에서 인위적으로 가해주는 전기장의 세기를 조절함으로써 액정분자의 배열 방향을 제어하여 광 투과량을 조절하게 되는 것이다.
특히, 최근에는 액정 물질이 갖는 굴절률 이방성의 특징으로 인해 액정 패널을 보는 각도에 따라 색의 변화 및 대비비의 변화가 커져서, 시야각이 좁고 계조 반전이 일어나는 문제점을 해결하기 위하여, 광시야각을 갖는 액정표시장치의 개발이 요구되었으며, 이에 대한 대안으로 횡전계(IPS) 방식의 액정표시장치가 제안되었다.
도 1은 미국등록특허 제7787090호의 개시된 종래 횡전계 방식 액정표시소자의 구성을 개략적으로 나타낸 단면도이다. 참고로, 도 1에서는 일반적으로 도시하는 편광판은 도시되어 있지 않았다.
종래의 횡전계 방식 액정표시소자는 도 1에 도시된 바와 같이 컬러필터(2)가 형성된 상판(1)과, 화소전극(6;Pixel Array)이 형성되어 있는 하판(7) 사이에 액정층(4)이 주입되고, 상기 액정(4)의 배향상태를 조절하기 위해 상·하판에 각각 배향막(3,5)이 형성되어 있는 구조로 이루어져 있다.
이러한 종래 횡전계 방식 액정표시소자는 전극에 전압이 인가 되지 않은 경우, 액정층은 배향막에 의한 초기 수평배향 상태를 그대로 유지하며 외부로부터 입사하는 빛에 영향을 주지 않고 그대로 통과시킴으로 블랙(Black) 상태를 구현하게 된다.
반면에, 전극에 전압이 인가되면, 횡전계 방식의 액정표시소자에는 화소 전극과 평행한 방향으로 전기장이 형성되어 이로 인해 액정의 배열이 변하게 되어 빛을 투과시킴으로써 화이트(White) 상태를 구현하게 된다.
그런데, 종래 횡전계 방식 액정표시소자는 기본적으로 상·하판 각각의 기판을 사용하여 두 개의 기판을 합착한 후에, 두 기판 사이에 액정을 주입하는 복잡한 액정공정을 거쳐서 제작되기 때문에 다음과 같은 여러 가지 문제점들을 가지고 있다.
첫째는 상·하판 각각의 기판을 사용함으로 인해 공정이 복잡해지는 문제점이 있다. 이처럼, 상·하판 기판을 별도로 제작한 후에 나중에 두 기판을 합착할 경우에는 얼라인먼트(Alignment) 공정이 추가로 필요한 단점이 있었다.
둘째는 액정을 배향시키기 위해 배향막 인쇄 및 러빙 공정이 필요한데 이러한 액정배향 공정으로 인해 수율이 저하되는 문제점이 있었다.
셋째는 상·하판의 기판을 합착하여 액정을 주입한 후에 일정한 간격(Gap)을 항상 유지시켜 주어야 하는 문제점이 있다. 이로 인해, 외부의 압력이나 충격에 의해 상·하판의 간격이 달라지게 되면 디스플레이 화질이 변하게 되는 문제점이 있다. 특히 기판이 휘어지거나 접을 수 있는 유연한 재질의 플렉서블 디스플레이의 경우는 이러한 상·하판의 일정한 간격 유지문제가 더욱더 심각해지는 단점이 있었다.
넷째는 이와 같은 전반적인 액정공정을 진행하기 위해서는 클린룸 환경 및 대규모의 시설투자가 필요하기 때문에 초기 투자비용이 과다하게 들어가는 문제점이 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 나노 액정층을 기반으로 구성된 전혀 새로운 개념의 횡전계 방식 액정표시소자를 통해 디스플레이 패널 제조공정을 대폭 단순화시킬 수 있고, 화소전극이 형성되어 있는 백플레인 기판 하나로 액정표시소자를 만들 수 있으며, 특히 플렉서블 디스플레이를 구현함에 매우 적합한 특성을 갖는 나노 액정층을 구비하는 횡전계 방식 액정표시소자를 제공하는 것이다.
상기 목적을 달성하기 위한 본 발명에 따른 나노 액정층을 구비하는 횡전계 방식 액정표시소자는, 기판과; 상기 기판의 상면 상에 형성된 횡전계 방식의 전극층과; 상기 전극층 상에 형성된 나노 액정층과; 상기 기판의 하면 상에 배치되는 제1 편광판; 및 상기 나노 액정층의 상부에 배치되는 제2 편광판을 포함하고, 상기 나노 액정층은 가시광선 파장 범위보다 작은 직경 사이즈로 이루어진 나노 액정 도메인이 고분자 메트릭스 내에 분산되어 있는 것을 특징으로 한다.
본 발명에 따른 나노 액정층을 구비하는 횡전계 방식 액정표시소자에 의하면, 종래의 액정표시소자 제조에 필요하였던 대부분의 공정과 구성부를 제거 및 생략할 수 있기 때문에 다음과 같은 탁월한 효과를 발휘하게 된다.
첫째, 별도의 액정 배향이 필요없기 때문에 배향막이 불필요하고 이에 따라 종래 액정표시소자 제조 시에 반드시 필요하였던 배향막 인쇄 및 러빙 공정을 제거할 수 있다.
둘째, 종래의 액정표시소자 제조 시에는 상·하판 기판을 각각 사용하기 때문에 이를 정밀하게 얼라인(Align)하여 합착하는 합착 공정이 필요하지만, 본 발명에 의하면 화소전극이 형성되어 있는 백플레인 기판 하나만으로 액정표시소자를 만들 수 있어 공정을 대폭 단순화할 수 있다.
셋째, 종래 액정표시소자는 상·하판의 기판을 정밀하게 합착하여 액정을 주입한 후에 상·하판 기판의 간격(Gap)을 일정하게 유지시켜 주어야 하지만, 본 발명에 의하면 백플레인 기판 위에 나노 액정 도메인을 코팅하여 일종의 필름형태의 나노 액정층을 만들기 때문에 일정한 간격(Gap)을 유지할 필요가 없게 된다. 또한, 나노 액정층이 필름형태로 존재하는 바, 외부의 압력이나 충격에 의해 간격이 달라지는 문제도 없기 때문에 휘어지거나 접을 수 있는 유연한 재질의 플라스틱 기판을 적용한 플렉서블 디스플레이 제조에도 매우 유리한 장점이 있다.
넷째, 본 발명에 의하면 종래의 액정표시소자 제조에 필요한 대부분의 공정 즉, 배향막 인쇄, 러빙, 스페이서 도포, 상·하판 합착, 액정 주입, 엔드실(End Seal) 등 상당 수의 공정을 생략할 수 있다. 이에 따라 전반적인 액정표시소자 제조공정을 진행하기 위한 대규모의 클린룸 시설이나 공정 설비투자가 필요없기 때문에 초기 투자비용을 획기적으로 줄일 수 있다.
도 1은 종래 횡전계 방식 액정표시소자의 구성을 개략적으로 나타낸 단면도.
도 2는 본 발명의 제1 실시예에 따른 나노 액정층을 구비하는 횡전계 방식 액정표시소자의 단면 구조를 도시한 개략도.
도 3은 나노 이멀젼과 매크로 이멀젼의 비교 실험예.
도 4는 도 2의 'A' 영역의 확대 단면도로서 전계가 인가된 온(On) 상태에서의 동작 원리를 나타낸 도면.
도 5는 본 발명의 제2 실시예에 따른 나노 액정층을 구비하는 횡전계 방식 액정표시소자의 단면 구조를 도시한 개략도.
도 6은 본 발명의 제3 실시예에 따른 나노 액정층을 구비하는 횡전계 방식 액정표시소자의 단면 구조를 도시한 개략도.
도 7은 본 발명에 따른 실시예로서, 광반응성 액정 단량체를 포함한 액정 나노 캡슐층을 이용하는 λ/4 위상차 필름 또는 패턴드 리타더 필름을 제조하는 공정도 및 구조도.
[부호의 설명]
10: 기판 20: 횡전계 방식 전극층
21: 공통전극 22: 절연막
23: 화소전극 30: 나노 액정층
31: 고분자 메트릭스 32: 나노 액정 도메인
33: 외벽 34: 액정
40: 제1 편광판 50: 제2 편광판
60: 보호층 70: 컬러필터
80: 투명전극(ITO) 90: 접착제
본 발명은 매질 속의 입자 사이즈에 따른 빛의 광학특성을 이용한 나노 액정층을 기반으로 구성된 전혀 새로운 개념의 횡전계 방식 액정표시소자를 통해 디스플레이 패널 제조공정을 대폭 단순화시킬 수 있고, 초기투자비용을 획기적으로 절감할 수 있는 기술 특징을 개시한다.
이하에서, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예, 장점 및 특징에 대하여 상세히 설명하도록 한다.
도 2는 본 발명의 제1 실시예에 따른 나노 액정층을 구비하는 횡전계 방식 액정표시소자의 단면 구조를 도시한 개략도이다.
도 2를 참조하면, 본 발명의 제1 실시예에 따른 나노 액정층을 구비하는 횡전계 방식 액정표시소자는 제1 편광판(40), 기판(10), 횡전계 방식 전극층(20), 나노 액정층(30) 및 제2 편광판(50)이 차례로 적층 형성된 구조를 이루고 있다. 도면상에서는 제1 편광판(40)과 제2 편광판(50)이 각각 기판(10)과 나노 액정층(30)과 이격되어 설치되는 것으로 도시되어 있으나, 간격없이 상호 밀착되도록 구비되는 것이 바람직하다. 후술하는 도면에서도 유사하게 편광판은 밀착되도록 형성되는 것으로 이해되어져야 한다.
기판(10)은 투명한 재질로 이루어진 얇은 판체로서, 구체적으로 글래스(Glass) 소재의 유리기판은 물론, 탄성변형 가능한 유연성을 지닌 얇은 플라스틱 기판으로 구성할 수 있다.
한편, 플라스틱 기판을 채용할 경우 광투과도가 우수하고 복굴절 효과가 없는 기판으로 구성해야 한다. 상기 목적에 부합하는 플라스틱 기판의 소재로는 트리아세틸셀룰로우스(Tri Acetyl Cellulose, TAC), 폴리이미드(PI), 폴리에테르설폰(PES), 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌 나프탈레이트(PEN), 및 폴리아릴레이트(PAR) 중에서 선택된 적어도 어느 하나를 사용하는 것이 바람직하나, 반드시 이에 한정하지는 않는다.
제1 편광판(40)은 기판(10) 하부에 배치된 백라이트(미도시) 등을 통해 나노 액정층(30)으로 입사되는 광을 편광시키기 위한 구성부로서, 바람직하게는 기판(10)의 하면에 적층 형성된다.
제2 편광판(50)은 나노 액정층(30)에 입사된 광이 나노 액정층(30)의 복굴절 효과에 의한 편광됨 없이 그대로 투과할 경우 이를 차단하는 역할을 하는 구성부로서, 바람직하게는 나노 액정층(30)의 상면에 적층 형성된다.
제1 편광판(40)은 그 편광축이 제2 편광판(50)의 편광축과 직교상태를 이루도록 형성된다. 따라서, 제1 편광판(40)의 편광축이 0°(또는 90°) 라면, 제2 편광판(50)은 90°(또는 0°)의 편광축을 갖는 편광판으로 구비된다.
한편, 제2 편광판(50)은 대전방지성이 부여된 편광판으로 구성하는 것이 좋다. 이는, 외부 정전기에 의해 나노 액정층(30)이 영향을 받는 것을 최소화하기 위함이다.
제2 편광판(50)에 대전방지성을 부여하는 방법으로는, 대전방지성 점착제를 사용하여 대전방지성을 부여하는 방법(한국공개특허 제2006-0018495호, 제2004-0030919호, 일본공개특허 제2006-111856호, 제2006-104434호)으로, 코팅액에 수분산성인 도전성 금속 분말이나 탄소 입자와 같은 전도성 물질을 첨가하는 방법과, 점착제에 저분자량의 계면활성제 물질을 첨가하는 방법이 있으며, 그 외에 편광판의 적어도 한 면에 열처리에 의해 탄소 불순물이 정제된 탄소나노튜브를 포함하는 대전방지 코팅층을 형성하는 방법, 편광판의 하나 이상의 면에 순서대로 적층된 대전방지 코팅층과 대전방지성 점착제층을 형성하는 방법(한국공개특허 제2009-0027930호) 등을 이용할 수 있다.
횡전계 방식 전극층(20)은 횡전계를 인가하여 액정을 응답시켜 계조표시를 하는 전극 구조를 지칭한다.
바람직하게는 횡전계를 형성하기 위해 화소전극 패턴과 공통전극 패턴을 동일 기판(10) 상에 동일층으로 형성한 IPS(In-Plane Switching) 모드로 구성하거나, 또는 횡전계를 형성하기 위해 화소전극 패턴과 공통전극 패턴을 동일 기판(10) 상에 형성하되, 화소전극(23)과 공통전극(21)을 서로 다른 층에 배치하고 그 사이에 절연막(22)을 개재시킨 FFS(Fringe-Field Switching) 모드로 구성할 수 있다.
나노 액정층(30)은 전극층(20) 위에 적층된 형태로 구비되어, 제1 편광판(40)을 거쳐 입사된 광을 그대로 통과시키거나 또는 편광을 변화시키는 작용을 실현함으로써 표시소자가 계조표현을 할 수 있도록 하는 핵심 구성부에 해당한다.
이러한 나노 액정층(30)은 나노 액정 도메인(32)을 바인더(31)와 혼합하여 코팅용액을 제조한 후, 이를 화소전극이 형성되어 있는 기판(10) 상부에 코팅하고 경화시킴으로써 형성된다. 따라서, 나노 액정층(30)은 나노 액정 도메인(32)이 고분자 메트릭스(31) 내에 분산되어 있는 구조를 이루고 있다.
특히, 나노 액정층(30)은 전극층(20) 위에 접합된 일종의 필름 형태로 마련될 수 있게 되는데, 이러한 특성에 의해 한 개의 기판(10)만으로 횡전계 방식 액정표시소자를 제조할 수 있게 된다. 이는 상호 대향하는 한 쌍의 기판이 필요하였던 종래 횡전계 방식 액정표시소자와 대비되는 점이라 할 수 있다. 또한, 나노 액정층(30)은 상기 특성에 의해, 외부의 압력이나 충격에 의해 간격이 틀어지거나 변하는 문제도 없기 때문에 유연 재질의 플라스틱 기판을 적용한 플레서블 디스플레이에 매우 유리한 강점이 있다.
한편, 나노 액정 도메인(32)은 가시광선 파장(380nm ~ 780nm) 범위보다 작은 직경 사이즈로 이루어져 있는 것을 주요 특징으로 하며, 이처럼 액정 도메인(32)을 나노 사이즈로 형성하였을 때 나타나는 광학특성을 횡전계 방식 전극과 조합함으로써 전혀 새로운 개념의 횡전계 방식 액정표시소자를 구현할 수 있게 된다.
이하에서는 나노 액정 도메인(32)과 고분자 메트릭스(31)로 이루어진 나노 액정층(30)에 대하여 상세히 설명하도록 한다.
도 3은 나노 이멀젼과 매크로 이멀젼의 비교 실험예으로서, 도 3의 좌측 바이알 병에 담겨있는 시료는 액정 도메인(32)을 50㎚의 평균 직경 사이즈로 변형시킨 나노 이멀젼(Nano Emulsion)이고, 우측 바이알 병에 담겨있는 시료는 1.0㎛의 평균 직경 사이즈를 갖는 액정으로 이루어진 매크로 이멀젼(Macro Emulsion)이다.
도 3의 비교 실험예에 명확히 나타나듯이, 좌측의 나노 이멀젼 시료는 투명하게 보이는 반면, 우측의 매크로 이멀젼 시료는 백색으로 불투명하게 보이는 것을 알 수 있다.
출원인은 도 3과 같은 비교 실험을 통해, 어떤 매질 속에 포함되어 있는 입자의 크기에 따라 그 매질을 통과할 때 빛은 산란되기도 하고 또는 아무런 영향도 받지 않고 그대로 통과하기도 한다는 사실을 확인할 수 있었다.
특히, 액정 도메인(32)을 가시광선의 파장보다 작은 나노 사이즈(바람직하게는 가시광선의 파장보다 1/4 이하로 작은 나노 사이즈)로 형성하면 해당 시료로 입사되는 가시광선의 일부가 온전히 투과됨을 알 수 있었고, 보다 바람직하게는 액정 도메인(32)을 100nm 이하의 직경 사이즈로 형성하였을 때 산란이 거의 일어나지 않아, 대부분의 입사광이 그대로 투과됨을 알 수 있었다.
본 발명의 나노 액정층(30)을 구비하는 횡전계 방식 액정표시소자는 이처럼 액정 도메인(32)을 가시광선 파장 범위보다 1/4 이하로 작은 직경 사이즈로 형성하였을 때 발현되는 광학특성을 이용하여 구성된 전혀 새로운 개념의 횡전계 방식 액정표시소자에 해당한다.
본 발명의 나노 액정층(30)은 나노 액정 도메인(32) 제조단계와, 나노 액정층 코팅단계를 통해 형성된다.
나노 액정 도메인(32)은 액정을 나노 크기(즉, 100nm 이하의 직경 사이즈)의 입자로 변형시키고, 이렇게 나노 사이즈로 변형된 액정에 외벽(33)을 형성함으로써 캡슐 형태로 제조된다.
이러한 나노 액정 도메인(32)은 복합상분리법(Complex Coacervation), 멤브레인(Membrane) 유화법, 동시 중합법(In-situ Polymerization), 계면 중합법(Interfacial Polymerization) 등을 이용하여 제조 가능하다.
나노 액정 도메인(32)에 사용되는 액정(34)으로는 네마틱, 스멕틱, 콜레스터릭 및 카이랄스멕틱과 같이 액정표시소자에 통상적으로 사용되는 액정이면 특별히 한정하지 않으며, 제조되는 나노 액정 도메인(32)은 상술한 액정 이외에 이색성 염료(Dichroic dye) 및 카이랄 도펀트 (Chiral dopant)를 더 포함할 수 있다.
구체적으로, 나노 액정 도메인(32)은 코어물질인 액정의 드롭렛(Droplet)을 형성시키는 유화공정, 코아서베이션에 의한 캡슐화 공정, 캡슐 외벽(33)의 겔화공정, 캡슐외벽(33) 경화공정 및 숙성공정을 통해 제조된다.
유화공정은 유화제를 포함하는 수용액에 고속균질교반기(Homegenizer)와 고압분산기(Microfluidizer) 유화장치를 이용하여 코어물질인 액정 드롭렛(Droplet)을 형성시키는 공정으로서, 유화제로는 퓨러티 검 2000(Purity Gum 2000), 키토산(Chitosan), 카라지난(Carrageenan), 젤라틴(Gelatin), 아라비아검(Arabia Gum), 알부민(Albumin), 알기네이트(Alginate), 카제인(Casein) 등과 같은 천연 유화제 내지 폴리우레탄, 폴리아크릴산, 폴리에틸렌, 아민과 같은 합성 유화제 중에서 선택된 적어도 어느 하나 이상을 복합적으로 사용하는 것이 바람직하나, 반드시 이에 한정되는 것은 아니다.
이를 구체적으로 설명하면, 약 5%(w/v)의 퓨러티 검 2000 수용액을 약 50℃로 온도를 유지한 상태에서 5%(w/v)의 액정을 피펫(Pipette)을 이용하여 천천히 떨어뜨리며 고속균질기교반기(Homogenizer, Ultra Turrax, IKA-T18 Basic, IKA)를 이용하여 약 14,000rpm의 회전속도로 약 2분 정도 액정을 1차 유화시킨다. 이때, 액정을 피펫으로 천천히 떨어뜨리는 이유는 고속균질교반기를 이용하여 초기 유화시에 고속으로 회전하는 로토(Rotor)에 의한 거품발생(Foam)을 최대한 억제하기 위한 것이다.
그런 다음, 이렇게 1차로 유화된 액정 이멀젼을 고압분산기(Microfluidizer, M-110L, Microfluidics)를 이용하여 약 1,000 bar의 압력에서 5회(Pass) 정도의 조건으로 2차 유화시킨다. 이렇게 유화 공정을 1, 2차로 나누어서 진행하는 이유는 초기 유화공정에서 액정 드롭넷(Droplet)의 사이즈를 최대한으로 줄이기 위한 것이다.
유화공정이 완료되면, 코아서베이션에 의한 캡슐화 공정으로 넘어가는데 이 공정도 나노 액정 도메인(32)의 외벽(33) 형성을 확실하게 하기 위해 두 번에 걸쳐 외벽(33)을 형성하게 된다. 첫 번째는 고속균질교반기를 이용하여 약 14,000rpm의 속도로 교반하면서 약 0.2%(w/v)의 키토산(Chitosan) 수용액을 주사기(Syringe)을 통해 천천히 초기 이멀젼 분산액에 떨어뜨린다. 이렇게 키토산 수용액을 첨가한 후에 빙초산(Acetic Acid)를 이용하여 pH를 4~5로 조절한다. 이렇게 pH를 조절하게 되면 퓨러티 검 2000과 키토산이 코아서베이트(Coacervate)를 형성하여 나노 액정 도메인(32)에 1차 외벽(33)을 형성하게 된다. 그런 다음, 이렇게 1차 외벽이 형성된 이멀젼 분산액을 약 50℃에서 약 80℃로 온도를 상승시킨 상태에서 고속균질교반기(Homogenizer)의 교반속도를 약 18,000rpm 정도로 높여서 교반하면서 약 0.4%(w/v)의 카라지난(Carrageenan) 수용액을 시린지(Syringe)를 이용하여 천천히 떨어뜨린다. 이렇게 카라지난(Carrageenan) 수용액을 모두 첨가한 후에는 1차 외벽형성 경우와 마찬가지로 빙초산(Acetic Acid)을 이용하여 pH를 4~5로 조절한다. 이와같이 pH를 조절하게 되면, 카라지난 코아서베이트가 만들어지게 되고 이렇게 형성된 카라지난 코아서베이트가 나노 액정 도메인(32)에 2차 외벽(33)을 형성하게 된다.
캡슐화 공정이 완료되면, 온도변화를 통해 캡슐 외벽(33)의 겔화(Gelation)를 진행하는 겔화공정이 행해진다. 다시 말해, 약 80℃ 고온에서 2차 외벽형성이 완료되면 온도를 상온까지 하강시킴으로써 나노 액정 도메인(32)에 형성된 외벽(33) 물질이 겔화되도록 한다.
겔화공정이 완료되면, 캡슐 외벽 경화공정이 행해진다. 경화공정은 경화제를 첨가하여 캡슐 외벽(33)을 경화시키는 단계로서, 상기 경화제는 글루타르알데하이드(Glutaraldehyde) 또는 포름알데하이드(Formaldehyde)를 사용하여 젤라틴의 아미노기와 가교반응(Crosslink)시켜 캡슐을 경화시킨 후 일정 시간 숙성하면 나노 액정 도메인(32)이 최종 수득된다.
상술한 제조 공정을 통해 수득된 나노 액정 도메인(32)은 세정이 필요한데, 세정의 경우는 순수, 이소프로필알코올, 에틸렌 글리콜 등을 사용하여 수행한다. 그런 다음 나노 액정 도메인(32)을 수용액이나 세정액과 분리시키는 것이 필요한데, 이는 초원심분리(Ultracentrifugation)나 동결건조(Freeze Dry) 방법을 통해 달성 가능하다. 나노 사이즈의 입자는 일반적인 마이크로 사이즈 입자보다 크기가 훨씬 작기 때문에 보통의 원심분리 방법으로는 분리가 일어나지 않는다. 따라서, 나노 사이즈의 입자의 분리는 초원심분리 방법이 필요한데 이러한 설비를 초원심분리기(Ultracentrifuge)라고 한다.
나노 액정 도메인(32) 분산 수용액이나 세정액으로부터 분리를 완료한 나노 액정 도메인(32)은 기판(10)의 상면에 고정되어야 하는데, 이는 바인더(Binder)를 통해 이루어진다. 즉, 투명한 물성을 갖는 바인더(31)에 나노 액정 도메인(32)을 일정한 비율로 혼합한 용액을 제조한 후, 이를 화소전극이 형성되어 있는 기판(10)의 상면 상에 코팅하여 경화시킴으로써 나노 액정층(30)이 최종 형성된다.
코팅방법으로는 그라비아(Gravure) 코팅, 나이프(Knife) 코팅, 롤(Roll)코팅, 슬롯다이(Slot Die) 코팅, 리버스(Reverse) 코팅 중에서 선택된 어느 하나의 방법을 통해 달성 가능하다.
나노 액정 도메인(32)과 바인더(31)는 5:1 에서 1:1 비율로 혼합되도록 구성하는 것이 바람직하며, 바인더(31)로는 폴리비닐알코올, 젤라틴, 포르말린레졸시농 수지, 폴리우레탄 수지, 아크릴산 수지, 멜라민, 메타크릴산 수지, 포름알데히드 수지, 불소계 수지 및 폴리비닐피롤리돈에서 선택된 적어도 어느 하나의 투명한 고분자 물질을 사용하는 것이 바람직하다.
한편, 나노 액정 도메인(32)과 바인더(31)가 혼합된 용액을 기판(10)에 코팅하기 전에 상기 혼합과정에서 바인더(31)에 포함된 기포를 제거하는 탈포 과정을 먼저 실시하는 것이 바람직하다.
상술한 공정이 모두 완료되면, 고분자 매트릭스 내부에 다수의 나노 액정 도메인(32)이 분산되어 있는 나노 액정층(30)이 전극층(20) 위에 필름 형태로 적층 구비된다.
도 4는 도 2의 'A' 영역의 확대 단면도로서, 도 4의 실시예의 횡전계 방식 액정표시소자의 전극층(20)은 FFS(Fringe-Field Switching) 방식의 전극 구조로 구성하였고, 전계가 인가된 온(On) 상태에서의 동작 원리를 나타낸다.
도 4를 참조하여, 본 발명의 나노 액정층(30)에 의한 횡전계 방식 액정표시소자의 구동 원리를 설명하면 다음과 같다.
(1) 블랙(Black) 상태의 표현
본 발명의 나노 액정층(30)을 구비하는 횡전계 방식 액정표시소자는 전극층(20)에 전계가 인가되지 않은 경우, 나노 액정층(30)이 제1 편광판(40)을 통해 입사한 광을 그대로 통과시킴으로써 블랙 상태를 표시하도록 동작한다.
즉, 전계가 인가되지 않은 오프(Off) 상태에서는 전술한 나노 액정 도메인(32)의 광학특성에 의해 나노 액정층(30)은 입사광(예컨데, 백라이트 광)에 대해 전혀 영향을 주지 않는 바, 제1 편광판(40)을 거치면서 특정 각도로 선택적 투과된 후 나노 액정층(30)으로 입사된 광은 나노 액정층(30)을 통과하며 산란 현상이 거의 발생하지 않고 그대로 나노 액정층(30)을 통과하여 제2 편광판(50)에 도달하게 된다.
결국, 0°의 편광축을 갖는 제1 편광판(40)을 투과한 광은 그대로 90°의 편광축을 갖는 제2 편광판(50)에 입사되고, 이에 따라 해당 입사광은 편광축이 직교상태로 구비된 제2 편광판(50)에 의해 차단되어 액정표시소자는 블랙(Black) 상태를 표시하게 되는 것이다.
상기와 같은 바, 계조표현을 위해서는 반드시 상호 대향하는 한 쌍의 기판 사이에 한 쌍의 배향막을 개재하고 그 사이에 액정을 주입하여 일정한 피치와 방향을 갖도록 액정을 배향해야 했던 종래 횡전계 방식 액정표시소자와 달리, 본 발명의 횡전계 방식 액정표시소자는 나노 액정층(30) 자체의 고유 특성을 이용하여 블랙상태를 표현할 수 있으므로 별도의 액정 배향이 필요없게 된다.
이에 따라, 본 발명의 나노 액정층(30)을 구비하는 횡전계 방식 액정표시소자는 종래 횡전계 방식 액정표시소자에 반드시 필요하였던 배향막 인쇄 및 러빙 공정을 제거할 수 있고, 기판 역시 화소전극이 형성되어 있는 백플레인 기판 하나로 액정표시소자를 만들 수 있는 획기적인 장점이 있다.
(2) 화이트(White) 상태의 표현
본 발명의 나노 액정층(30)을 구비하는 횡전계 방식 액정표시소자는 전극층(20)에 전계가 인가된 경우, 나노 액정층(30)은 제1 편광판(40)을 통해 입사한 광의 편광축이 90°만큼 회전되게함으로써 화이트 상태를 표시하도록 동작한다.
도 4에 도시된 바와 같이, 온(0n) 상태에서는 화소전극(-)과 공통전극(+)의 구조로 인하여 프린지 필드(Fringe-Field)가 만들어져 나노 액정층(30)에 횡전계가 형성되게 된다.
이처럼 전계가 인가되는 온(On) 상태에서는 오프(Off) 상태와 달리, 횡전계에 의해 나노 액정 도메인(32) 내부에 있는 액정분자(34)들이 전계 방향과 평행하게 수평으로 배열하기 때문에 액정분자의 배향에 의한 복굴절 효과가 만들어지게 된다.
이와 같이 어떤 매질에 전기장을 가하여 굴절률 변화를 야기할 수 있다는 것을 처음으로 밝힌 John Kerr(1875, 스코틀랜드 물리학자)의 이름을 따라서 이러한 효과를 '커 효과'(Kerr Effect)라고 한다. 이를 수식으로 표현하면, Δn = λ*K*E2로 정의되는데 여기에서 Δn은 전기장에 의해 유도되는 복굴절값이고 K는 '커 상수'(Kerr Constant)로서 매질의 특성에 따라 결정되고, E는 인가해주는 전기장의 세기를 나타내며, λ는 매질에 입사되는 빛의 파장을 나타낸다. 본 발명의 나노 액정층(30)은 이처럼 전계 인가에 따른 복굴절 정도(Δn·d)가 λ/2 조건을 만족하도록 형성된 것을 특징으로 한다. 참고로, 'Δn'는 전기장에 의해 유도되는 액정의 복굴절값을 의미하고, 'd'는 나노 액정층의 두께를 의미하고, 'λ'는 입사광의 파장을 의미한다.
상기와 같이, 횡전계에 의해 나노 액정층(30)에 복굴절 효과가 발생되면 외부에서 입사하는 빛이 나노 액정층(30)을 통과할 때 영향을 받게 된다. 다시 말해, 제1 편광판(40)을 통해 입사한 빛이 나노 액정층(30)의 복굴절 효과에 의해 편광이 변하게 되는데, 이 때, 나노 액정층(30)의 복굴절 정도(Δn·d)가 입사광의 λ/2 조건을 만족하게 되면 입사광의 편광축이 90°만큼 회전하게 되어 제1 편광판(40)과 직교상태를 이루고 있는 제2 편광판(50)에 흡수되지 않고 그대로 통과하여 화이트 상태를 표시하게 된다.
도 5는 본 발명의 제2 실시예에 따른 나노 액정층을 구비하는 횡전계 방식 액정표시소자의 단면 구조를 도시한 개략도이다.
도 5를 참조하면, 본 발명의 제2 실시예에 따른 나노 액정층을 구비하는 횡전계 방식 액정표시소자는 제1 실시예의 횡전계 방식 액정표시소자에 있어서 보호층(60)을 더 구비하는 것을 특징으로 한다.
보호층(60)은 광투과율이 우수한 투명한 수지 소재의 코팅층으로 이루어져 나노 액정층(30)의 상면 상에 배치된 형태로 마련된다. 이러한 보호층(60)은 나노 액정층(30)을 코팅 형성한 후 바로 제2 편광판(50)을 부착하지 않고 보호층(60)을 먼저 나노 액정층(30) 상면에 형성한 후 그 위에 제2 편광판(50)을 부착함으로써 나노 액정층(30)을 보호해주는 역할을 한다.
보호층(60)으로 적합한 재료로는 굴절률 이방성 특성이 없는 것을 특징으로 하는 트리 아세틸 셀룰로우스(Tri Acetyl Cellulose, TAC), 사이클로 올레핀 폴리머(Cyclo-Olefin Polymer), 폴리에테르설폰(PES), 오버코트(Over Coat) 등이 사용될 수 있다.
보호층(60)을 더 구비할 경우 비록 공정수는 추가되어 공정비용은 증가하지만 제2 편광판 부착 공정시 야기될 수 있는 나노 액정층(30)의 손상(Damage)을 최소화할 수 있는 장점이 있다.
도 6은 본 발명의 제3 실시예에 따른 나노 액정층을 구비하는 횡전계 방식 액정표시소자의 단면 구조를 도시한 개략도이다.
본 발명의 제2 실시예에 따른 나노 액정층을 구비하는 횡전계 방식 액정표시소자는 제1 실시예의 횡전계 방식 액정표시소자에 있어서 상판을 더 포함하는 것을 특징으로 한다.
도 6에 도시된 바와 같이, 나노 액정층(30) 상부에는 상판이 더 배치되는데, 상판은 컬러필터(70)와 투명전극(80; ITO)을 포함하도록 구성된다.
즉, 나노 액정층(30) 상부에 컬러필터(70)를 적층하여 컬러를 표현할 수 있도록 한다. 컬러필터(70)는 접착제(90)를 통해 나노 액정층(30)의 상면에 부착할 수 있다. 또한, 컬러필터(70)의 상면에는 외부 정전기에 의한 영향을 제거하기 위해 대전방지 기능의 투명전극(80)이 더 형성된다.
한편, 나노 액정층(30)이 형성되어 있는 기판에 상판을 합착할 때, 바람직하게는 광경화성 접착제(90; Adhesive)로 합착하는 것이 좋다. 이는, 열경화성 접착제의 경우는 일반적으로 100℃ 이상의 고온에서 경화가 이루어지기 때문에 경화 시 기판과 상판의 얼라인먼트(Alignment)틀어지는 문제가 발생할 수 있어 광경화성 접착제에 비해서 수율 측면에서 불리하기 때문이다.
상기에서 설명 및 도시한 본 발명의 나노 액정층을 구비하는 횡전계 방식 액정표시소자는 제1 편광판의 편광축과 제2 편광판의 편광축이 상호 직교상태로 구비되고, 이에 따라 전극층에 전계가 인가되지 않은 경우 블랙 상태를 표시하고, 전극층에 전계가 인가된 경우 화이트 상태를 표시하는 노멀리 블랙 모드(Normally-Black Mode)로 구성하였다.
그러나, 상기와 같은 노멀리 블랙 모드 방식과 반대로 전압이 인가되지 않았을 경우 빛이 투과하여 최대 휘도를 가지는 노멀리 화이트 모드(Normally-White Mode)로도 구현할 수 있음은 물론이다.
즉, 본 발명의 횡전계 방식 액정표시소자의 제1 편광판과 제2 편광판의 편광축이 상호 일치하도록 구성함으로써 노멀리 화이트 모드를 구현할 수 있게 되는데 그 동작 원리를 설명하면 다음과 같다.
(1) 화이트(White) 상태의 표현
본 발명의 노멀리 화이트 모드 횡전계 방식 액정표시소자는 전극층(20)에 전계가 인가되지 않은 경우, 나노 액정층(30)이 제1 편광판(40)을 통해 입사한 광을 그대로 통과시킴으로써 화이트 상태를 표시하게 된다.
즉, 전계가 인가되지 않은 오프(Off) 상태에서는 전술한 나노 액정 도메인(32)의 광학특성에 의해 나노 액정층(30)은 입사광(예컨데, 백라이트 광)에 대해 전혀 영향을 주지 않는 바, 제1 편광판(40)을 거치면서 특정 각도로 선택적 투과된 후 나노 액정층(30)으로 입사된 광은 나노 액정층(30)을 통과하며 산란 현상이 거의 발생하지 않고 그대로 나노 액정층(30)을 통과하여 제2 편광판(50)에 도달하게 된다.
결국, 제1 편광판(40)을 투과한 광은 제1 편광판(40)과 편광축이 일치하는 제2 편광판(50)에 입사되고, 이에 따라 해당 입사광은 제2 편광판(50)에 흡수되지 않고 그대로 통과하여 화이트 상태를 표시하게 된다.
(2) 블랙(Black) 상태의 표현
본 발명의 노멀리 화이트 모드 횡전계 방식 액정표시소자는 전극층(20)에 전계가 인가된 경우, 나노 액정층(30)은 제1 편광판(40)을 통해 입사한 광의 편광축이 90°만큼 회전되게함으로써 블랙 상태를 표시하게 된다.
즉, 전계가 인가된 온(On) 상태에서는 오프(Off) 상태와 달리, 횡전계에 의해 나노 액정 도메인(32) 내부에 있는 액정분자(34)들이 전계 방향과 평행하게 수평으로 배열하기 때문에 액정분자의 배향에 의한 복굴절 효과가 만들어지게 된다.
상기와 같이, 횡전계에 의해 나노 액정층(30)에 복굴절 효과가 발생되면 외부에서 입사하는 빛이 나노 액정층(30)을 통과할 때 영향을 받게 된다. 다시 말해, 제1 편광판(40)을 통해 입사한 빛이 나노 액정층(30)의 복굴절 효과에 의해 편광이 변하게 되는데, 이 때, 나노 액정층(30)의 복굴절 정도(Δn·d)가 입사광의 λ/2 조건을 만족하게 되면 입사광의 편광축이 90°만큼 회전하게 되어 나노 액정층(30)을 통과한 빛은 제1 편광판(40)과 편광축이 일치하는 제2 편광판(50)에 의해 차단됨으로써 액정표시소자는 블랙(Black) 상태를 표시하게 된다.
지금까지 본 발명에 따른 나노 액정층을 포함하는 액정표시소자에 대해서 설명하였다. 본 발명에서 설명된 나노 액정층에 광반응성 액정단량체(Reactive Mesogens)를 혼합할 경우 AMOLED 반사 방지용 λ/4 위상차 필름 또는 패턴드 리타더 필름(FPR, Film Patterned Retarder)으로도 사용할 수 있다. 본 발명의 나노 액정층에 광반응성 액정 단량체를 포함하는 λ/4 위상차 필름 및 패턴드 리타더 필름 제조 방법에 대해 도 7을 이용하여 설명하기로 한다.
지금까지 설명한 액정 나노캡슐 제조시 액정에 광반응성 액정단량체(Reactive Mesogens)를 혼합하여 나노캡슐을 제조한다. 광반응성 액정단량체로는 독일 머크(Merk)사의 RMS03-001, RMS03-011, RMS03-013, RMS03-015, RMM-28B 등을 사용할 수 있다. 다음으로 도 7(a)에 도시된 바와 같이 투명기판(40) 상에 절연층(22)이 적층되고, 절연층(22) 상부에 화소 전극과 공통전극이 번갈아 가면서 형성되는 횡전계 전극층(IPS 방식 전극층) 상에 광반응성 액정단량체가 혼합된 액정 나노 캡슐층을 지금까지 설명한 방법과 동일한 방식을 이용하여 코팅하고, 화소전극과 공통전극에 전압을 인가한 상태에서 UV 광을 조사하여 경화시킨다. UV 경화에 의해 광반응성 액정 단량체(41)가 경화됨으로 인해 도 7(b)에 도시된 바와 같이 횡전계 전극층에 인가되는 전압을 제거하더라도 나노 액정 도메인(32)에 포함된 나노 액정을 광경화된 배열 상태를 그대로 유지하게 된다. 따라서 도 7(b)에 도시된 광반응성 액정 단량체(41)에 의해 액정 배향이 고정된 필름이 형성되며, 이를 λ/4 위상차 필름 또는 패턴드 리타더 필름으로 사용할 수 있게 되는 것이다.
나아가 도 7에서는 액정나노캡슐을 제조할 때 광반응성 액정단량체와 나노 사이즈 액정을 혼합하는 것으로 설명하였으나 나노 사이즈 액정을 사용하지 않고 광반응성 액정단량체만을 사용하여 액정나노 캡슐층을 형성하여도 λ/4 위상차 필름 또는 패턴드 리타더 필름으로 사용할 수 있다.
상기에서 본 발명의 바람직한 실시예가 특정 용어들을 사용하여 설명 및 도시되었지만 그러한 용어는 오로지 본 발명을 명확히 설명하기 위한 것일 뿐이며, 본 발명의 실시예 및 기술된 용어는 다음의 청구범위의 기술적 사상 및 범위로부터 이탈되지 않고서 여러가지 변경 및 변화가 가해질 수 있는 것은 자명한 일이다. 이와 같이 변형된 실시예들은 본 발명의 사상 및 범위로부터 개별적으로 이해되어져서는 안되며, 본 발명의 청구범위 안에 속한다고 해야 할 것이다.
Claims (13)
- 횡전계 방식의 액정표시소자로서,기판; 상기 기판의 상면 상에 형성된 횡전계 방식의 전극층; 상기 전극층 상에 형성된 나노 액정층; 상기 기판의 하면 상에 배치되는 제1 편광판; 및 상기 나노 액정층의 상부에 배치되는 제2 편광판을 포함하고,상기 나노 액정층은,가시광선 파장 범위보다 작은 직경 사이즈로 이루어진 나노 액정 도메인이 고분자 메트릭스 내에 분산되어 있는 것을 특징으로 하는 나노 액정층을 구비하는 횡전계 방식 액정표시소자.
- 제1 항에 있어서,상기 나노 액정층은, 바인더(binder)와 혼합된 상기 나노 액정 도메인이 상기 전극층 위에 코팅 경화되어 필름 형태로 구비된 것을 특징으로 하는 나노 액정층을 구비하는 횡전계 방식 액정표시소자.
- 제1 항에 있어서,상기 제2 편광판은 대전방지성이 부여된 편광판인 것을 특징으로 하는 나노 액정층을 구비하는 횡전계 방식 액정표시소자.
- 제1 항에 있어서,상기 나노 액정 도메인은 100㎚ 이하의 직경 사이즈로 이루어진 것을 특징으로 하는 나노 액정층을 구비하는 횡전계 방식 액정표시소자.
- 제1 항에 있어서,상기 제1 편광판의 편광축은 상기 제2 편광판의 편광축과 상호 직교상태에 있는 것을 특징으로 하는 나노 액정층을 구비하는 횡전계 방식 액정표시소자.
- 제5 항에 있어서,상기 나노 액정층은,상기 전극층에 전계가 인가되지 않은 경우, 상기 제1 편광판을 통해 입사한 광을 그대로 투과시킴으로써 블랙 상태를 표시하고,상기 전극층에 전계가 인가된 경우, 상기 제1 편광판을 통해 입사한 광의 편광축이 90°만큼 회전되도록 함으로써 화이트 상태를 표시하도록 구동하는 것을 특징으로 하는 나노 액정층을 구비하는 횡전계 방식 액정표시소자.
- 제6 항에 있어서,상기 나노 액정층은 전계 인가시 생성되는 나노 액정층의 복굴절 정도(Δn·d, Δn:전기장에 의해 유도되는 액정의 복굴절값, d: 나노 액정층의 두께)가 λ/2 (λ:입사광의 파장) 조건을 만족하도록 형성된 것을 특징으로 하는 나노 액정층을 구비하는 횡전계 방식 액정표시소자.
- 제1 항에 있어서,상기 횡전계 방식의 전극층은 IPS(In-Plane Switching) 구조 또는 FFS(Fringe-Field Switching) 구조로 구성된 것을 특징으로 하는 나노 액정층을 구비하는 횡전계 방식 액정표시소자.
- 제1 항에 있어서,상기 나노 액정층의 상면에는 투명한 재질로 이루어진 보호층이 부착되어 있는 것을 특징으로 하는 나노 액정층을 구비하는 횡전계 방식 액정표시소자.
- 제1 항에 있어서,상기 나노 액정층의 상면에 배치된 컬러필터; 및상기 컬러필터의 상면에 형성된 투명전극(ITO)을 더 포함하는 것을 특징으로 하는 나노 액정층을 구비하는 횡전계 방식 액정표시소자.
- 제10 항에 있어서,상기 컬러필터는 접착제를 통해 상기 나노 액정층에 합착된 것을 특징으로 하는 나노 액정층을 구비하는 횡전계 방식 액정표시소자.
- 제1 항에 있어서,상기 기판은 유리 기판이거나 또는 플라스틱 기판이고,상기 플라스틱 기판은 트리아세틸셀룰로우스(Tri Acetyl Cellulose, TAC), 폴리이미드(PI), 폴리에테르설폰(PES), 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌 나프탈레이트(PEN), 및 폴리아릴레이트(PAR) 중에서 선택된 적어도 어느 하나로 형성된 것을 특징으로 하는 나노 액정층을 구비하는 횡전계 방식 액정표시소자.
- 제1 항에 있어서,상기 제1 편광판과 상기 제2 편광판은 편광축이 상호 일치하게 구비되고,상기 나노 액정층은,상기 전극층에 전계가 인가되지 않은 경우, 상기 제1 편광판을 통해 입사한 광을 그대로 투과시킴으로써 화이트 상태를 표시하고,상기 전극층에 전계가 인가된 경우, 상기 제1 편광판을 통해 입사한 광의 편광축이 90°만큼 회전되도록 함으로써 블랙 상태를 표시하도록 구동하는 것을 특징으로 하는 나노 액정층을 구비하는 횡전계 방식 액정표시소자.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280027936.2A CN103597402B (zh) | 2011-10-28 | 2012-10-26 | 具有纳米液晶层的水平电场型液晶显示器件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0111214 | 2011-10-28 | ||
KR20110111214 | 2011-10-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013062366A1 true WO2013062366A1 (ko) | 2013-05-02 |
Family
ID=48168102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/008880 WO2013062366A1 (ko) | 2011-10-28 | 2012-10-26 | 나노 액정층을 구비하는 횡전계 방식 액정표시소자 |
Country Status (4)
Country | Link |
---|---|
KR (2) | KR101426357B1 (ko) |
CN (1) | CN103597402B (ko) |
TW (1) | TWI531838B (ko) |
WO (1) | WO2013062366A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109119441A (zh) * | 2018-07-27 | 2019-01-01 | 深圳市华星光电半导体显示技术有限公司 | 柔性显示装置及其制备方法 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102162886B1 (ko) * | 2014-09-01 | 2020-10-08 | 엘지디스플레이 주식회사 | 나노캡슐 액정층을 포함하는 액정표시장치 |
KR102207192B1 (ko) * | 2014-09-30 | 2021-01-25 | 엘지디스플레이 주식회사 | 편광 제어 필름 및 이를 이용한 입체 표시 장치 |
CN104280934B (zh) * | 2014-10-27 | 2017-06-27 | 深圳市华星光电技术有限公司 | 液晶面板及其制作方法 |
CN104460079A (zh) * | 2014-11-12 | 2015-03-25 | 深圳市华星光电技术有限公司 | 柔性液晶面板制作方法及柔性液晶面板 |
KR102394407B1 (ko) | 2014-12-23 | 2022-05-04 | 엘지디스플레이 주식회사 | 나노캡슐 액정층을 포함하는 액정표시장치 |
WO2016148430A1 (ko) * | 2015-03-16 | 2016-09-22 | 이미지랩(주) | 액정 캡슐 표시 필름 및 이를 구비하는 표시 장치 |
WO2016148431A1 (ko) * | 2015-03-16 | 2016-09-22 | 이미지랩(주) | 광투과 조절 기능을 구비하는 패널 구조체, 그리고 이를 이용한 스마트 윈도우 및 표시 장치 |
KR102362436B1 (ko) | 2015-09-22 | 2022-02-14 | 삼성디스플레이 주식회사 | 액정 표시 장치 |
KR101976582B1 (ko) | 2015-11-24 | 2019-05-09 | 주식회사 엘지화학 | 혐수성 액정 필름, 그 제조 방법, 이를 포함하는 액정패널 및 디스플레이 기기 |
KR102443844B1 (ko) * | 2015-11-30 | 2022-09-16 | 엘지디스플레이 주식회사 | 액정표시장치 |
CN109072081A (zh) * | 2016-04-13 | 2018-12-21 | 默克专利股份有限公司 | 包含液晶介质的用于纳米包封的组合物及纳米胶囊 |
CN106154617A (zh) * | 2016-08-30 | 2016-11-23 | 张家港康得新光电材料有限公司 | 一种聚合物分散液晶调光器件 |
KR102598480B1 (ko) * | 2016-10-27 | 2023-11-03 | 엘지디스플레이 주식회사 | 액정캡슐을 포함하는 액정표시장치 및 그 제조방법 |
KR102574612B1 (ko) * | 2016-10-31 | 2023-09-04 | 엘지디스플레이 주식회사 | 액정캡슐을 포함하는 액정표시장치 |
CN108267885A (zh) * | 2018-02-11 | 2018-07-10 | 京东方科技集团股份有限公司 | 显示面板及其制备方法和显示装置 |
JP2019185024A (ja) | 2018-04-09 | 2019-10-24 | Jnc株式会社 | 液晶カプセルを含有するコート液およびその機能性膜 |
KR20210076504A (ko) | 2019-12-16 | 2021-06-24 | 엘지디스플레이 주식회사 | 액정 캡슐 및 그 제조 방법 |
CN114879424B (zh) * | 2022-04-25 | 2023-07-04 | 长春理工大学 | 基于多层复合结构的电控液晶非线性光学器件及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100661070B1 (ko) * | 2003-03-31 | 2006-12-22 | 닛폰 이타가라스 가부시키가이샤 | 조광체 및 합판 유리 |
KR20070100037A (ko) * | 2006-04-06 | 2007-10-10 | 비오이 하이디스 테크놀로지 주식회사 | 반투과형 rgb-pdlc 표시장치 |
KR101001362B1 (ko) * | 2009-10-09 | 2010-12-14 | 이미지랩(주) | 제 1 기판 시트, 제 1 기판 시트를 구비한 액정 패널 및 그 제조 방법 |
KR20110095634A (ko) * | 2010-02-19 | 2011-08-25 | 엘지디스플레이 주식회사 | 나노캡슐 액정층을 포함하는 액정표시장치 및 이의 제조방법 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0833759A (ja) * | 1994-07-25 | 1996-02-06 | Nippon Sheet Glass Co Ltd | ゲーム機用カバーガラス |
JP3504159B2 (ja) * | 1997-10-16 | 2004-03-08 | 株式会社東芝 | 液晶光学スイッチ素子 |
KR20050103685A (ko) * | 2004-04-27 | 2005-11-01 | 삼성전자주식회사 | 액정 표시 장치용 휘도 강화 필름 및 그 제조 방법 |
KR100648220B1 (ko) * | 2004-05-14 | 2006-11-24 | 비오이 하이디스 테크놀로지 주식회사 | 액정표시장치용 도전성 편광판 |
US20100302487A1 (en) * | 2007-12-28 | 2010-12-02 | Storer Joey W | Phase compensation film |
-
2012
- 2012-10-26 WO PCT/KR2012/008880 patent/WO2013062366A1/ko active Application Filing
- 2012-10-26 CN CN201280027936.2A patent/CN103597402B/zh not_active Expired - Fee Related
- 2012-10-29 KR KR1020120120595A patent/KR101426357B1/ko active IP Right Grant
-
2013
- 2013-10-29 TW TW102139098A patent/TWI531838B/zh not_active IP Right Cessation
-
2014
- 2014-04-16 KR KR1020140045598A patent/KR101506328B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100661070B1 (ko) * | 2003-03-31 | 2006-12-22 | 닛폰 이타가라스 가부시키가이샤 | 조광체 및 합판 유리 |
KR20070100037A (ko) * | 2006-04-06 | 2007-10-10 | 비오이 하이디스 테크놀로지 주식회사 | 반투과형 rgb-pdlc 표시장치 |
KR101001362B1 (ko) * | 2009-10-09 | 2010-12-14 | 이미지랩(주) | 제 1 기판 시트, 제 1 기판 시트를 구비한 액정 패널 및 그 제조 방법 |
KR20110095634A (ko) * | 2010-02-19 | 2011-08-25 | 엘지디스플레이 주식회사 | 나노캡슐 액정층을 포함하는 액정표시장치 및 이의 제조방법 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109119441A (zh) * | 2018-07-27 | 2019-01-01 | 深圳市华星光电半导体显示技术有限公司 | 柔性显示装置及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20130047649A (ko) | 2013-05-08 |
KR101506328B1 (ko) | 2015-03-27 |
KR20140053077A (ko) | 2014-05-07 |
CN103597402B (zh) | 2017-02-15 |
TWI531838B (zh) | 2016-05-01 |
KR101426357B1 (ko) | 2014-08-05 |
TW201416762A (zh) | 2014-05-01 |
CN103597402A (zh) | 2014-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013062366A1 (ko) | 나노 액정층을 구비하는 횡전계 방식 액정표시소자 | |
JP4329983B2 (ja) | 液晶ディスプレイ | |
WO2016148430A1 (ko) | 액정 캡슐 표시 필름 및 이를 구비하는 표시 장치 | |
KR100631752B1 (ko) | 광학 필름 | |
WO2013189162A1 (zh) | 柔性透明液晶显示器及其制备方法 | |
KR101664981B1 (ko) | 나노 액정층을 구비하는 표시 소자 | |
US11899304B2 (en) | Liquid crystal display panel and driving methods therefor, and display apparatus | |
WO2018021837A1 (ko) | 투과도 가변 필름, 그 제조 방법 및 용도 | |
CN109143690A (zh) | 液晶显示面板及其制作方法 | |
KR101066821B1 (ko) | 고성능 박막형 편광판 | |
WO2019190190A1 (ko) | 편광판 및 디스플레이 장치 | |
WO2022005244A1 (ko) | 점착제 및 액정셀 | |
WO2016148431A1 (ko) | 광투과 조절 기능을 구비하는 패널 구조체, 그리고 이를 이용한 스마트 윈도우 및 표시 장치 | |
WO2015027642A1 (zh) | 液晶面板及其制作方法、显示器 | |
WO2013062364A1 (ko) | 액티브 리타드 패널 및 이를 구비하는 나노 액정층 기반의 입체영상 표시장치 | |
JP4031658B2 (ja) | 液晶表示装置 | |
JP2003255347A (ja) | 液晶表示装置およびその製造方法 | |
US7405795B2 (en) | In-plane-switching mode liquid crystal display device and method of fabricating the same with nematic liquid crystal molecule layer driven in-plane by molecules of sandwiching ferroelectric layers rotating along a virtual cone | |
WO2018080089A1 (ko) | 투과도 가변 필름 | |
JP2010175824A (ja) | 液晶表示素子、液晶表示装置およびそれらの製造方法 | |
JP2009210695A (ja) | 表示装置 | |
KR101818448B1 (ko) | 보상 필름을 가지는 수평 전계형 액정 표시 장치 | |
KR100631753B1 (ko) | 광학 필름 | |
JP3336099B2 (ja) | 視角補償板、楕円偏光板及び液晶表示装置 | |
JP3613807B2 (ja) | カラー偏光フィルタ及びこれを用いた液晶表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12842750 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12842750 Country of ref document: EP Kind code of ref document: A1 |