WO2013061978A2 - 潜熱蓄熱材及び蓄熱体 - Google Patents

潜熱蓄熱材及び蓄熱体 Download PDF

Info

Publication number
WO2013061978A2
WO2013061978A2 PCT/JP2012/077395 JP2012077395W WO2013061978A2 WO 2013061978 A2 WO2013061978 A2 WO 2013061978A2 JP 2012077395 W JP2012077395 W JP 2012077395W WO 2013061978 A2 WO2013061978 A2 WO 2013061978A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
latent heat
storage material
alloy
heat
Prior art date
Application number
PCT/JP2012/077395
Other languages
English (en)
French (fr)
Other versions
WO2013061978A3 (ja
Inventor
秋山 友宏
憲之 沖中
貴宏 能村
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2013540793A priority Critical patent/JP6057184B2/ja
Publication of WO2013061978A2 publication Critical patent/WO2013061978A2/ja
Publication of WO2013061978A3 publication Critical patent/WO2013061978A3/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Definitions

  • the present invention includes a metal element having a negative volume expansion coefficient, silicon Si and / or bismuth Bi, a latent heat storage material that stores heat as latent heat by solid-liquid phase transformation, and a configuration in which the latent heat storage material is stored in a container.
  • a metal element having a negative volume expansion coefficient, silicon Si and / or bismuth Bi a latent heat storage material that stores heat as latent heat by solid-liquid phase transformation
  • a configuration in which the latent heat storage material is stored in a container.
  • a sensible heat storage technique for storing heat in ceramic or brick has been put into practical use (for example, Patent Document 1).
  • the sensible heat storage technology is used for air conditioning and building materials, for example.
  • sensible heat storage technology using ceramics or bricks can store heat at a high temperature, there is a problem that the heat storage density is low because only sensible heat due to temperature change of the substance is used.
  • Patent Document 2 a latent heat storage technique for storing heat using latent heat at the time of melting of molten salt or the like has been proposed (for example, Patent Document 2).
  • Patent Document 2 According to the latent heat storage technology, heat can be stored at a higher density than the sensible heat storage technology using ceramic or brick.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a latent heat storage material having a low volume expansion coefficient at the time of melting compared to a molten salt and having a high thermal conductivity.
  • the latent heat storage material according to the present invention is selected from the group consisting of Si and / or Bi and Mg, Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, Ag, Au, and Pb.
  • An alloy containing one or more metal elements and when the metal absorbs heat from the surroundings, it transforms from the solid phase to the liquid phase, stores the heat as latent heat, and releases the heat to the surroundings. It is characterized by releasing latent heat by phase transformation from phase to solid phase.
  • Si and / or Bi having a negative volume expansion coefficient at the time of melting of -9.5% and -3.6% are used as other metal elements having a positive volume expansion coefficient at the time of melting.
  • metal elements having a positive volume expansion coefficient at the time of melting Selected from the group consisting of magnesium Mg, aluminum Al, titanium Ti, chromium Cr, manganese Mn, iron Fe, cobalt Co, nickel Ni, copper Cu, zinc Zn, lead Pd, silver Ag, gold Au and lead Pb.
  • the volume expansion coefficient at the time of melting refers to the volume expansion coefficient of the metal element when the metal element undergoes a phase transformation from the solid phase to the liquid phase.
  • the latent heat storage material in the present invention is an alloy, and the thermal conductivity of metals is generally higher than that of ceramics, bricks, and molten salts. It is.
  • the latent heat storage material is composed of a multi-component alloy, the melting point of the alloy can be adjusted to various temperature ranges by changing the composition ratio of each element constituting the alloy. Therefore, it can be applied to heat recovery in a wide temperature range.
  • the latent heat storage material according to the present invention is characterized in that the alloy is an Al—Si based alloy containing Al of approximately 25 wt% or less.
  • the volume expansion coefficient of the alloy when the phase is transformed from the solid phase to the liquid phase is approximately 0% or less.
  • the latent heat storage material according to the present invention is characterized in that the volume expansion coefficient of the alloy when it is transformed from a solid phase to a liquid phase is 3% or less.
  • the volume expansion coefficient of the alloy when the phase is transformed from the solid phase to the liquid phase is about 3% or less, the possibility of damaging the container housing the alloy is low.
  • a heat storage body includes any one of the above-described latent heat storage materials and a container that stores the alloy, and the volume expansion coefficient of the alloy when the phase is transformed from a solid phase to a liquid phase is It is characterized by being lower than the volume expansion coefficient of the container.
  • the container expands larger than the alloy. Therefore, the container is not damaged.
  • the volume expansion coefficient at the time of melting is lower than that of the molten salt, the structural design of the container or device filled with the latent heat storage material is facilitated, and the relative heat storage density of the latent heat storage material is also reduced. It is possible to prevent. Moreover, since the said heat storage material can be filled more densely, it is possible to prevent the fall of the relative heat storage density of a heat storage apparatus. Furthermore, since the latent heat storage material in the present invention is an alloy, and the thermal conductivity of metals is generally higher than that of ceramics, bricks and molten salts, the present invention enables rapid input and output of thermal energy. It is. Furthermore, by changing the composition ratio of each element constituting the alloy, the melting point of the alloy can be adjusted to various temperature ranges, which can be applied to heat recovery in a wide temperature range.
  • FIG. 1 is an exploded perspective view showing a configuration example of the heat storage body 1 according to the present embodiment
  • FIG. 2 is a cross-sectional view of the heat storage body 1.
  • a heat storage body 1 according to an embodiment of the present invention includes a latent heat storage material 2 and a housing 3 that houses the latent heat storage material 2.
  • the latent heat storage material 2 is, for example, an Al—Si based alloy containing 12 to 25 wt% of the metal element Si and the metal element Al.
  • Al-Si alloys undergo phase transformation from the solid phase to the liquid phase when absorbing heat from the surroundings and store the heat as latent heat, and phase transformation from the liquid phase to the solid phase when releasing heat to the surroundings. Functions as a heat storage material that releases latent heat.
  • the volume expansion coefficient at the time of melting of the Al—Si alloy becomes approximately 0%, which is lower than the volume expansion coefficient of the container 3.
  • the container 3 has a hollow substantially spherical shape whose inner diameter is substantially the same as or larger than the outer diameter of the latent heat storage material 2, and includes a first half 31 and a second half 32 made of ceramic.
  • the first half body 31 and the second half body 32 have a shape that is obtained by cutting the hollow housing 3 in half, and a male thread 31a and a female thread 32a are formed on the annular edge portions, respectively, and screwed together.
  • a gap is generated between the container 3 and the latent heat storage material 2. In order to prevent oxidation of the latent heat storage material 2. This gap is preferably evacuated.
  • FIG. 3 is a eutectic binary system phase diagram of the latent heat storage material 2.
  • the horizontal axis of the eutectic binary phase diagram shows the weight percent of silicon, and the vertical axis shows temperature.
  • L is a liquid phase in which Al and Si are melted
  • ⁇ + ⁇ is a solid phase in which a solid mixture of Al and Si exists
  • L + ⁇ is a phase in which an alloy liquid and solid Al coexist
  • L + ⁇ is an alloy liquid and solid.
  • the phase in which Si coexists is shown.
  • C E represents the composition ratio of Al and Si at the common point
  • C 0 represents the composition ratio of the latent heat storage material 2. As shown in FIG.
  • the latent heat storage material 2 transforms from the solid phase to the liquid phase when the heat is absorbed from around the eutectic temperature of 580 ° C., and converts the heat into latent heat.
  • the temperature indicated by the intersection of the C 0 line and the liquidus line that is, the temperature at which a part of solid Si starts to solidify when the liquid latent heat storage material 2 is cooled is about 770 ° C., and 580 ° C. Even in the temperature range of ⁇ 770 ° C., ambient heat can be stored as latent heat by the solid-liquid phase transformation of Si, and the heat stored as latent heat can be released.
  • FIG. 4 is a diagram showing a DSC (Differential scanning calorimetry) curve during heating
  • FIG. 5 is a diagram showing a DSC curve during cooling.
  • the horizontal axis represents temperature
  • the vertical axis represents heat flow.
  • FIG. 6 is a chart showing thermophysical values of LiCl as a molten salt-based latent heat storage material, Al and Si as alloy constituent materials, and Al-25 wt% Si as a latent heat storage material 2.
  • LiCl is a typical molten salt-based latent heat storage material, which has a high amount of latent heat, but has a very large volume expansion coefficient of 26% during melting and an extremely high thermal conductivity of 1.51 W / m ⁇ K. It was a problem to be low.
  • Al-25 wt% Si prepared by adding Si having a negative volume expansion coefficient of -9.5% to Al having a volume expansion coefficient of 6.5% upon melting is almost equivalent to LiCl. It has a melting point and latent heat amount, and its volume expansion coefficient when melted is approximately 0%, and its thermal conductivity is very high at 167 W / m ⁇ K, which is about 110 times that of LiCl. This is material 2.
  • the latent heat storage material 2 and the heat storage body 1 configured as described above, the structural design of the container 3 or the device that fills the latent heat storage material 2 becomes easy, and the relative relationship of the latent heat storage material 2 is increased. It is also possible to prevent a general decrease in heat storage density.
  • the latent heat storage material 2 in the present invention is an alloy, and the thermal conductivity of metal is generally higher than that of ceramics, bricks, and molten salt, so that quick input / output of thermal energy is possible. Furthermore, by changing the composition ratio of each element constituting the alloy, the melting point of the alloy can be adjusted to various temperature ranges, and can be applied to heat recovery in a wide temperature range.
  • the latent heat storage material 2 is made of an alloy, it has no anisotropy in thermal conductivity and can be easily applied to various devices.
  • the heat storage body 1 is spherical, it is highly versatile. For example, by weaving the minute heat storage body 1 into clothing, it is possible to configure clothing with high functionality such as high heat dissipation.
  • the heat storage body 1 or the latent heat storage material 2 according to the present embodiment to the air conditioning and building materials, the air conditioner and the building material having a higher heat storage density than the material that stores heat as sensible heat are configured. It is possible.
  • the latent heat storage material 2 according to the present embodiment has high thermal conductivity and high heat storage density, efficient heat transport, heat exchange, and the like are possible in solar heat and waste heat utilization systems. Furthermore, in a solar thermal power generation plant, it is possible to store solar heat in the daytime in the heat storage body 1 or the latent heat storage material 2, generate steam with the latent heat after sunset, and generate electric power.
  • an Al—Si alloy has been described as an example of the latent heat storage material 2, but bismuth Bi may be used instead of Si.
  • Bi like Si, has a negative volume expansion coefficient of -3.6% when melted. Therefore, Al-Bi alloys have the same effects as Al-Si alloys.
  • the latent heat storage material 2 may be configured by adding both metallic elements of Si and Bi to Al.
  • the latent heat storage material 2 may be configured by adding one or more metal elements selected from the group consisting of Si and Bi to one or more metal elements selected from the group consisting of.
  • a heat storage unit including a plurality of heat storage bodies 1 it is preferable to include a plurality of heat storage bodies 1 having different temperatures at which the alloy melts. Since each heat storage body 1 causes solid-liquid phase transformation in different temperature zones, heat storage is possible in a wider temperature range.
  • the heat storage elements 1 having different temperatures at which the alloy melts may be arranged at different parts depending on the application.
  • the shape of the latent heat storage material and the container is not limited to a spherical shape, and any shape can be adopted depending on the application device.
  • FIG. 7 is a perspective view showing a configuration example of the heat storage body 101 according to the modification.
  • the heat storage body 101 according to the modification is a heat transfer tube including a substantially cylindrical container 103.
  • the container 103 has an outer cylinder and a thin tube arranged coaxially along the center line of the outer cylinder.
  • a plurality of plate members are provided on the outer peripheral surface of the thin tube so as to extend radially outward, and are connected to the outer cylinder.
  • the plurality of plate members are equally distributed in the circumferential direction, and the axial cross section of the space surrounded by the thin tube, the outer cylinder, and the plate member has a substantially fan shape.
  • a latent heat storage material 102 having a cross-sectional fan shape and a long length is inserted.
  • the heat storage body 101 configured as described above can be applied to a power generation system using waste heat by bundling a plurality of heat storage bodies 101 as shown in FIG.
  • the power generation system is heated by waste heat, for example, a heat storage body 101, a waste heat supply section that supplies waste heat to the outer cylinder of the heat storage body 101, a medium supply section that supplies a heat medium from one end of the narrow tube, and And a power generation unit that generates power with the heat medium discharged from the other end side of the thin tube.
  • the waste heat supply unit supplies the waste heat recovered from the external device to the outer cylinder of the heat storage body 101.
  • the medium supply unit is, for example, a pump, and supplies a heat medium such as saturated water or high-temperature gas from one end of the narrow tube.
  • the latent heat storage material 102 has high thermal conductivity and high latent heat, the waste heat efficiently flows from the outer cylinder into the latent heat storage body 101 and is conducted to saturated water or high-temperature gas flowing through the narrow tube. Heated steam or high-temperature high-pressure gas heated by waste heat is discharged from the other end of the thin tube to the turbine of the power generation unit and used for power generation.
  • the heat storage body 101 according to the present invention to the power generation system, it is possible to generate power stably, constantly, and with high efficiency. Moreover, since heat can be stored at high density, a wide heat transfer surface can be secured.
  • waste water is supplied to the thin tube of the heat storage body 101, heat is stored in the latent heat storage material 102, and then saturated water or high temperature gas is heated in a procedure of supplying saturated water or high temperature gas to the piping of the heat storage body 101. You may do it. Saturated water or high-temperature gas is heated by the heat stored in the latent heat storage material 102 and becomes heated steam or high-temperature high-pressure gas. Thereafter, heat exchange can be performed by alternately and repeatedly performing a heat storage mode for storing waste heat and a heat release mode for releasing latent heat. In addition, in order to perform heat exchange of waste heat continuously, it is good to provide the some thermal storage body 101 which operate
  • the first heat storage body 101 operates in the heat storage mode and the second heat storage body 101 operates in the heat dissipation mode in a certain time zone, and the first heat storage body 101 releases heat in the other time zone after the mode is switched.
  • the mode and the second heat storage body 101 may be configured to operate in the heat storage mode.
  • a first latent heat storage material that melts at a first temperature and a second latent heat storage material that melts at a second temperature are arranged in parallel along the heat exchange flow path.
  • a first latent heat storage material that melts at a high temperature may be disposed on the upstream side of the flow path through which waste heat flows, and a second latent heat storage material that melts at a low temperature may be disposed on the downstream side.
  • the present invention can be used in the fields of energy, solar power generation, and waste heat utilization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Packages (AREA)
  • Building Environments (AREA)
  • Laminated Bodies (AREA)
  • Body Structure For Vehicles (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

 溶融塩等の潜熱蓄熱材が融解する時の体積膨張率が大きく、該当潜熱蓄熱材を充填する収容体又は装置の構造設計が困難であるという問題があった。 Si及び/又はBiと、Mg、Al、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Pd、Ag、Au及びPbからなる群から選択された1又は複数の金属元素とを含む合金を備え、該合金が周囲から熱を吸収した場合に固相から液相へ相変態して該熱を潜熱として蓄え、周囲へ熱を放出した場合に液相から固相へ相変態して潜熱を放出する潜熱蓄熱材とする。

Description

潜熱蓄熱材及び蓄熱体
 本発明は、体積膨張率が負の金属元素、シリコンSi及び/又はビスマスBiを含み、固液相変態によって熱を潜熱として蓄える潜熱蓄熱材、及び該潜熱蓄熱材を収容体に収容して構成される蓄熱体に関する。
 セラミック又は煉瓦等に熱を蓄える顕熱蓄熱技術が実用化されている(例えば、特許文献1)。顕熱蓄熱技術は、例えば、冷暖房、建築材料などに利用されている。ところが、セラミック又は煉瓦による顕熱蓄熱技術は高温での蓄熱が可能であるが、物質の温度変化による顕熱のみを利用するため、蓄熱密度が低いという問題があった。
 これを解決する方法として、溶融塩等の融解時の潜熱を利用して蓄熱する潜熱蓄熱技術が提案されている(例えば、特許文献2)。潜熱蓄熱技術によれば、セラミック又は煉瓦による顕熱蓄熱技術に比べて高密度に蓄熱が可能である。
特開平6-50681号公報 特開平10-238979号公報
 しかしながら、溶融塩等の潜熱蓄熱材が融解する時の体積膨張率は大きく、該潜熱蓄熱材を充填する収容体又は装置の構造設計が困難であるという問題があった。
 また、潜熱蓄熱材の膨張によって相対的に蓄熱密度が低下するという問題があった。
 更に、一般的に潜熱蓄熱材として使用される溶融塩等の熱伝導率は低いため、伝熱特性が悪く、熱エネルギーの入出力に多大な時間がかかるという問題があった。
 このような理由から、200℃を超える温度域での潜熱を利用した蓄熱に関しては、多数の研究が報告されているものの、実用化に至った例は圧倒的に少ない。
 本発明は斯かる事情に鑑みてなされたものであり、溶融塩に比べて融解時の体積膨張率が低く、高熱伝導率を有する潜熱蓄熱材を提供することを目的とする。
 本発明に係る潜熱蓄熱材は、Si及び/又はBiと、Mg、Al、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Pd、Ag、Au及びPbからなる群から選択された1又は複数の金属元素とを含む合金を備え、該金属が周囲から熱を吸収した場合に固相から液相へ相変態して該熱を潜熱として蓄え、周囲へ熱を放出した場合に液相から固相へ相変態して潜熱を放出することを特徴とする。
 本発明にあっては、融解時体積膨張率が-9.5%、-3.6%と負の値であるSi及び/又はBiを、正の融解時体積膨張率を有する他の金属元素、即ちマグネシウムMg、アルミニウムAl、チタンTi、クロムCr、マンガンMn、鉄Fe、コバルトCo、ニッケルNi、銅Cu、亜鉛Zn、鉛Pd、銀Ag、金Au及び鉛Pbからなる群から選択された1又は複数の元素に添加することで体積膨張率を低下させることが可能であり、ひいては融解時体積膨張率を0%に制御することも可能である。従って、潜熱蓄熱材を充填する装置の構造設計が容易になり、蓄熱装置の相対的な蓄熱密度の低下を防ぐことが可能である。なお、融解時体積膨張率は、金属元素が固相から液相へ相変態するときの該金属元素の体積膨張率を言う。
 また、本発明における潜熱蓄熱材は合金であり、金属の熱伝導率は一般的にセラミックス、煉瓦及び溶融塩の熱伝導率よりも高いため、本発明により、熱エネルギーの迅速な入出力が可能である。
 更に、潜熱蓄熱材は多元系の合金で構成されているため、該合金を構成する各元素の組成比を変更することによって、該合金の融点を種々の温度域に調整することができる。従って、幅広い温度帯の熱回収に適用可能である。
 本発明に係る潜熱蓄熱材は、前記合金が、略25wt%以下のAlを含むAl-Si系合金であることを特徴とする。
 本発明にあっては、固相から液相へ相変態するときの合金の体積膨張率が略0%以下である。
 本発明に係る潜熱蓄熱材は、固相から液相へ相変態するときの前記合金の体積膨張率が3%以下であることを特徴とする。
 本発明にあっては、固相から液相へ相変態するときの合金の体積膨張率が約3%以下であるため、合金を収容する収容体などが破損する虞は低い。
 本発明に係る蓄熱体は、上述のいずれか一つの潜熱蓄熱材と、前記合金を収容する収容体とを備え、固相から液相へ相変態するときの前記合金の体積膨張率は、前記収容体の体積膨張率よりも低いことを特徴とする。
 本発明にあっては、固相から液相へ相変態したときに合金が膨張したとしても、収容体は該合金よりも大きく膨張する。従って、収容体が破損することは無い。
 本発明によれば、溶融塩に比べて融解時の体積膨張率が低く、潜熱蓄熱材を充填する収容体又は装置の構造設計が容易になり、潜熱蓄熱材の相対的な蓄熱密度の低下も防ぐことが可能である。
 また、該当蓄熱材をより高密度に充填することができるため蓄熱装置の相対的な蓄熱密度の低下を防ぐことが可能である。
 更に、本発明における潜熱蓄熱材は合金であり、金属の熱伝導率は一般的にセラミックス、煉瓦及び溶融塩の熱伝導率よりも高いため、本発明により、熱エネルギーの迅速な入出力が可能である。
 更にまた、合金を構成する各元素の組成比を変更することによって、該合金の融点を種々の温度域に調整することができ、幅広い温度帯の熱回収に適用可能である。
本実施の形態に係る蓄熱体の一構成例を示した分解斜視図である。 蓄熱体の断面図である。 潜熱蓄熱材の共晶二元系状態図である。 加熱時のDSC(Differential scanning calorimetry)曲線を示した図である。 冷却時のDSC曲線を示した図である。 溶融塩系潜熱蓄熱材のLiCl、合金構成材料としてAl及びSi、潜熱蓄熱材であるAl-25wt%Siの熱物性値を示す図表である。 変形例に係る蓄熱体の一構成例を示した斜視図である。
 以下、本発明をその実施の形態を示す図面に基づいて詳述する。
 図1は、本実施の形態に係る蓄熱体1の一構成例を示した分解斜視図、図2は、蓄熱体1の断面図である。本発明の実施の形態に係る蓄熱体1は、潜熱蓄熱材2と、該潜熱蓄熱材2を収容する収容体3を備える。
 潜熱蓄熱材2は、例えば、12~25wt%の金属元素Siと、金属元素Alとを含むAl-Si系合金である。Al-Si系合金は、周囲から熱を吸収した場合に固相から液相へ相変態して該熱を潜熱として蓄え、周囲へ熱を放出した場合に液相から固相へ相変態して潜熱を放出する蓄熱材として機能する。略25wt%のSiをAlに添加することによって、Al-Si系合金の融解時体積膨張率は略0%となり、収容体3の体積膨張率よりも低くなる。
 収容体3は、内径が潜熱蓄熱材2の外径と略同一又は大寸法の中空略球形をなし、セラミック製の第1半体31及び第2半体32を備える。第1半体31及び第2半体32は、中空の収容体3を半分に切断したような形状であり、環状縁部にそれぞれ雄ねじ31a及び雌ねじ32aが形成され、互いに螺合している。なお、収容体3の内径を潜熱蓄熱材2よりも大寸法に形成する場合、収容体3と、潜熱蓄熱材2との間に空隙が生ずるが、潜熱蓄熱材2の酸化を防止するためにこの空隙は真空にすると良い。
 図3は、潜熱蓄熱材2の共晶二元系状態図である。共晶二元系状態図の横軸は、シリコンの重量%、縦軸は温度を示している。図中、LはAl及びSiが融解した液相、α+βはAl及びSiの固体混合物が存在する固相、L+αは合金の液体と固体のAlが共存する相、L+βは合金の液体と固体のSiが共存する相を示している。Cは共有点におけるAl及びSiの組成比、Cは潜熱蓄熱材2の組成比を示している。図3に示すように、本実施の形態に係る潜熱蓄熱材2は、580℃の共晶温度付近で周囲から熱を吸収した場合に固相から液相へ相変態して該熱を潜熱として蓄え、周囲へ熱を放出した場合に液相から固相へ相変態して潜熱を放出することができる。また、Cの線と、液相線との交点が示す温度、つまり液体の潜熱蓄熱材2を冷却したときに固体のSiの一部が凝固し始める温度は約770℃であり、580℃~770℃の温度範囲においても、Siの固液相変態によって周囲の熱を潜熱として蓄え、また潜熱として蓄えた熱を放出することができる。
 図4は、加熱時のDSC(Differential scanning calorimetry)曲線を示した図、図5は、冷却時のDSC曲線を示した図である。DSC曲線を示すグラフの横軸は温度、縦軸は熱流を示す。図4に示すように、潜熱蓄熱材2を加熱した場合、共晶温度580℃付近で融解し、大きな熱流入140(mW)が生ずる。潜熱は約504k/kgである。また、図5に示すように、潜熱蓄熱材2を冷却した場合、共晶温度580℃付近で融解し、大きな熱流出190(mW)が生ずる。
 図6は、溶融塩系潜熱蓄熱材のLiCl、合金構成材料としてAl及びSi、潜熱蓄熱材2であるAl-25wt%Siの熱物性値を示す図表である。LiClは代表的な溶融塩系潜熱蓄熱材であり、高い潜熱量を有するが、融解時の体積膨張率が26%と非常に大きいこと、及び熱伝導率が1.51W/m・Kと非常に低いことが問題であった。一方、融解時体積膨張率が6.5%のAlに融解時体積膨張率が-9.5%と負の値を持つSiを添加して作成したAl-25wt%SiはLiClとほぼ同等の融点、潜熱量を有し、かつ融解時体積膨張率が略0%、熱伝導率はLiClの約110倍である167W/m・Kと非常に高く、従来技術よりはるかに高性能の潜熱蓄熱材2である。
 このように構成された本実施の形態に係る潜熱蓄熱材2及び蓄熱体1によれば、潜熱蓄熱材2を充填する収容体3又は装置の構造設計が容易になり、潜熱蓄熱材2の相対的な蓄熱密度の低下も防ぐことが可能である。
 また、本発明における潜熱蓄熱材2は合金であり、金属の熱伝導率は一般的にセラミックス、煉瓦及び溶融塩の熱伝導率よりも高いため、熱エネルギーの迅速な入出力が可能である。
 更に、合金を構成する各元素の組成比を変更することによって、該合金の融点を種々の温度域に調整することができ、幅広い温度帯の熱回収に適用可能である。
 更にまた、潜熱蓄熱材2は合金で構成されているため、熱伝導率に異方性が無く、種々の装置に容易に適用可能である。
 更にまた、蓄熱体1は球形であるため、汎用性が高い。例えば、微小な蓄熱体1を衣類に織り込むことによって、放熱性に富む等、機能性が高い衣類を構成することができる。また、冷暖房、建築部材に本実施の形態に係る蓄熱体1又は潜熱蓄熱材2を適用することによって、顕熱として蓄熱を行う素材に比べて、蓄熱密度が高い冷暖房器具、建築部材を構成することが可能である。また、本実施の形態に係る潜熱蓄熱材2は、熱伝導率が高く、蓄熱密度も高いため、太陽熱、廃熱利用システムにおいて、効率的な熱輸送、熱交換等が可能である。更に、太陽熱発電プラントで、日中太陽熱を蓄熱体1又は潜熱蓄熱材2に蓄え、日没後その潜熱で水蒸気発生させ、発電することが可能である。
 なお、本実施の形態は潜熱蓄熱材2の一例としてAl-Si系合金を説明したが、Siに代えて、ビスマスBiを用いても良い。Biは、Siと同様、融解時体積膨張率が-3.6%と負であるため、Al-Bi系合金においても、Al-Si系合金と同様の作用効果を奏する。また、Si及びBiの両金属元素をAlに添加して潜熱蓄熱材2を構成しても良い。更に、Alに代えて、正の融解時体積膨張率を有する他の金属元素、例えば、Mg、Al、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Pd、Ag、Au及びPbからなる群から選択された1又は複数の金属元素に、Si及びBiからなる群から選択された1又は複数の金属元素を添加して潜熱蓄熱材2を構成しても良い。
 また、潜熱蓄熱材2を亜共晶又は過共晶組成に調整することで潜熱蓄放熱作動温度帯に幅を持たすことも可能である。
 更にまた、複数の蓄熱体1を備えた蓄熱体ユニットを構成する場合、合金の融解する温度が異なる複数の蓄熱体1を備えると良い。異なる温度帯で各蓄熱体1が固液相変態を生ずるため、より幅広い温度範囲で蓄熱が可能である。また、変形例で後述するように、用途によっては合金の融解する温度が異なる蓄熱体1それぞれを異なる部位に配しても良い。
(変形例)
 実施の形態では、略球形の蓄熱体を説明したが、潜熱蓄熱材及び収容体の形状は球形に限定されず、適用機器に応じて任意の形状を採用することができる。
 図7は、変形例に係る蓄熱体101の一構成例を示した斜視図である。変形例に係る蓄熱体101は略円筒状の収容体103を備えた伝熱管である。収容体103は、外筒と、該外筒の中心線に沿って同軸的に配された細管とを有する。細管の外周面には、径方向外側へ放射状に延びるように複数枚の板材が設けられ、外筒と接続されている。複数枚の板材は、周方向に等配されており、細管、外筒及び板材によって囲まれた空間の軸断面は略扇形をなしている。各空間には、断面扇形、長尺の潜熱蓄熱材102が挿嵌されている。
 このように構成された蓄熱体101は、例えば、図7に示すように複数本束ねて、廃熱を利用した発電システムに適用することができる。発電システムは、例えば、蓄熱体101と、該蓄熱体101の外筒に廃熱を供給する廃熱供給部と、細管の一端側から熱媒体を供給する媒体供給部と、廃熱によって加熱され、細管の他端側から放出された熱媒体によって発電する発電部とを備える。廃熱供給部は、外部装置から回収した廃熱を、蓄熱体101の外筒へ供給する。媒体供給部は例えばポンプであり、細管の一端側から飽和水又は高温ガス等の熱媒体を供給している。なお、熱媒体の通流方向と、廃熱の通流方向とを逆向きにすると良い。廃熱と、熱媒体とを向流させることによって、効率的に熱交換を行うことが可能になる。潜熱蓄熱材102は高熱伝導率、高潜熱を有するため、廃熱は効率的に外筒から潜熱蓄熱体101に流入し、細管を通流している飽和水又は高温ガスに伝導する。廃熱によって加熱された加熱水蒸気又は高温高圧ガスは細管の他端から発電部のタービンへ放出され、発電に利用される。
 このように、発電システムに本願発明に係る蓄熱体101を適用することによって、安定的、恒常的、かつ高効率に発電が可能である。また、高密度に蓄熱可能なため、伝熱面を広く確保できる。
 また、蓄熱体101の細管に廃熱を供給して、潜熱蓄熱材102に熱を蓄え、次いで、蓄熱体101の配管に飽和水又は高温ガスを供給する手順で、飽和水又は高温ガスを加熱しても良い。飽和水又は高温ガスは、潜熱蓄熱材102に蓄えられた熱で加熱され、加熱水蒸気又は高温高圧ガスとなる。以後、廃熱を蓄える蓄熱モードと、潜熱を放出する放熱モードとを交互に繰り返し行うことで、熱交換を行うことができる。なお、廃熱の熱交換を連続的に行うためには、同一時間帯において異なるモードで動作する複数の蓄熱体101を備えると良い。つまり、ある時間帯では第1の蓄熱体101は蓄熱モード、第2の蓄熱体101は放熱モードで動作し、モード切替が行われた後の他の時間帯では第1の蓄熱体101は放熱モード、第2の蓄熱体101は蓄熱モードで動作するように構成すると良い。
 更に、廃熱の熱交換を行う場合、熱交換流路に沿って、第1の温度で融解する第1潜熱蓄熱材と、第2の温度で融解する第2潜熱蓄熱材とを並設すると良い。例えば、廃熱が流入する流路の上流側には、高温で融解する第1潜熱蓄熱材を配し、下流側に低温で融解する第2潜熱蓄熱材を配すると良い。
 今回開示された実施の形態はすべての点で例示であって、制限的なものでは無いと考えられるべきである。本発明の範囲は、上記した意味では無く、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 本願発明は、エネルギー分野、太陽熱発電、及び廃熱利用の分野で利用可能である。
 1,101 蓄熱体
 2,102 潜熱蓄熱材
 3,103 収容体
 31 第1半体
 32 第2半体
 31a 雄ねじ
 32a 雌ねじ

Claims (4)

  1.  Si及び/又はBiと、Mg、Al、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Pd、Ag、Au及びPbからなる群から選択された1又は複数の金属元素とを含む合金を備え、
     該金属が周囲から熱を吸収した場合に固相から液相へ相変態して該熱を潜熱として蓄え、周囲へ熱を放出した場合に液相から固相へ相変態して潜熱を放出することを特徴とする潜熱蓄熱材。
  2.  前記合金は、略25wt%以下のAlを含むAl-Si系合金である
     ことを特徴とする請求項1に記載の潜熱蓄熱材。
  3.  固相から液相へ相変態するときの前記合金の体積膨張率が3%以下である
     ことを特徴とする請求項1又は請求項2に記載の潜熱蓄熱材。
  4.  請求項1乃至請求項3のいずれか一つに記載の潜熱蓄熱材と、
     前記合金を収容する収容体と
     を備え、
     固相から液相へ相変態するときの前記合金の体積膨張率は、前記収容体の体積膨張率よりも低い
     ことを特徴とする蓄熱体。
PCT/JP2012/077395 2011-10-24 2012-10-24 潜熱蓄熱材及び蓄熱体 WO2013061978A2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013540793A JP6057184B2 (ja) 2011-10-24 2012-10-24 蓄熱体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-232788 2011-10-24
JP2011232788 2011-10-24

Publications (2)

Publication Number Publication Date
WO2013061978A2 true WO2013061978A2 (ja) 2013-05-02
WO2013061978A3 WO2013061978A3 (ja) 2013-07-04

Family

ID=48168704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077395 WO2013061978A2 (ja) 2011-10-24 2012-10-24 潜熱蓄熱材及び蓄熱体

Country Status (2)

Country Link
JP (1) JP6057184B2 (ja)
WO (1) WO2013061978A2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162929A1 (ja) * 2014-04-24 2015-10-29 国立大学法人北海道大学 潜熱蓄熱体、潜熱蓄熱体の製造方法、および、熱交換材料
JP2017040461A (ja) * 2015-08-21 2017-02-23 Jfeスチール株式会社 蓄熱器及び蓄熱バーナー
CN107988506A (zh) * 2017-11-29 2018-05-04 武汉科技大学 一种复合材料相变蓄热球及其制备方法
JP2019137819A (ja) * 2018-02-15 2019-08-22 国立大学法人名古屋大学 複合構造体、複合構造体の製造方法、及び蓄熱方法
JP2021031507A (ja) * 2019-08-14 2021-03-01 国立大学法人東海国立大学機構 複合構造体、複合構造体の製造方法、及び蓄熱方法
JP2021138850A (ja) * 2020-03-05 2021-09-16 国立大学法人 新潟大学 蓄熱材料および蓄熱発電装置
EP4282930A1 (en) 2022-05-24 2023-11-29 Shinko Electric Industries Co., Ltd. Latent heat storage and method for manufacturing latent heat storage
EP4282931A1 (en) 2022-05-24 2023-11-29 Shinko Electric Industries Co., Ltd. Latent heat storage and method for manufacturing latent heat storage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657067A (en) * 1985-06-19 1987-04-14 Ohio State University Hypereutectic direct-contact thermal storage material and method of production thereof
JPH01113486A (ja) * 1987-07-06 1989-05-02 Lanxide Technol Co Lp 蓄熱媒体及びその製造方法
JP2001241701A (ja) * 2000-02-24 2001-09-07 Tomohiro Akiyama 潜熱蓄熱恒温装置
CN1504716A (zh) * 2002-12-02 2004-06-16 广东工业大学 金属与熔盐储能式供热装置
CN102191392A (zh) * 2010-03-16 2011-09-21 广东工业大学 太阳能热发电储热材料Al-12.07%Si合金的制备方法
CN102746831A (zh) * 2012-07-30 2012-10-24 哈尔滨工业大学 一种偶联剂改性含铝合金制备核壳结构复合相变材料的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134494A (ja) * 1983-01-20 1984-08-02 Agency Of Ind Science & Technol 蓄熱装置
US4969428A (en) * 1989-04-14 1990-11-13 Brunswick Corporation Hypereutectic aluminum silicon alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657067A (en) * 1985-06-19 1987-04-14 Ohio State University Hypereutectic direct-contact thermal storage material and method of production thereof
JPH01113486A (ja) * 1987-07-06 1989-05-02 Lanxide Technol Co Lp 蓄熱媒体及びその製造方法
JP2001241701A (ja) * 2000-02-24 2001-09-07 Tomohiro Akiyama 潜熱蓄熱恒温装置
CN1504716A (zh) * 2002-12-02 2004-06-16 广东工业大学 金属与熔盐储能式供热装置
CN102191392A (zh) * 2010-03-16 2011-09-21 广东工业大学 太阳能热发电储热材料Al-12.07%Si合金的制备方法
CN102746831A (zh) * 2012-07-30 2012-10-24 哈尔滨工业大学 一种偶联剂改性含铝合金制备核壳结构复合相变材料的方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173017A (ja) * 2014-04-24 2019-10-10 国立大学法人北海道大学 潜熱蓄熱体マイクロカプセル、潜熱蓄熱体の製造方法、熱交換材料、および触媒機能性潜熱蓄熱体
US10563108B2 (en) 2014-04-24 2020-02-18 National University Corporation Hokkaido University Latent heat storage body, method for producing latent heat storage body and heat exchange material
WO2015162929A1 (ja) * 2014-04-24 2015-10-29 国立大学法人北海道大学 潜熱蓄熱体、潜熱蓄熱体の製造方法、および、熱交換材料
JP2017040461A (ja) * 2015-08-21 2017-02-23 Jfeスチール株式会社 蓄熱器及び蓄熱バーナー
CN107988506A (zh) * 2017-11-29 2018-05-04 武汉科技大学 一种复合材料相变蓄热球及其制备方法
JP7016109B2 (ja) 2018-02-15 2022-02-04 国立大学法人東海国立大学機構 複合構造体、複合構造体の製造方法、及び蓄熱方法
JP2019137819A (ja) * 2018-02-15 2019-08-22 国立大学法人名古屋大学 複合構造体、複合構造体の製造方法、及び蓄熱方法
JP2021031507A (ja) * 2019-08-14 2021-03-01 国立大学法人東海国立大学機構 複合構造体、複合構造体の製造方法、及び蓄熱方法
JP7264374B2 (ja) 2019-08-14 2023-04-25 国立大学法人東海国立大学機構 複合構造体、複合構造体の製造方法、及び蓄熱方法
JP2021138850A (ja) * 2020-03-05 2021-09-16 国立大学法人 新潟大学 蓄熱材料および蓄熱発電装置
JP7408888B2 (ja) 2020-03-05 2024-01-09 国立大学法人 新潟大学 蓄熱材料および蓄熱発電装置
EP4282930A1 (en) 2022-05-24 2023-11-29 Shinko Electric Industries Co., Ltd. Latent heat storage and method for manufacturing latent heat storage
EP4282931A1 (en) 2022-05-24 2023-11-29 Shinko Electric Industries Co., Ltd. Latent heat storage and method for manufacturing latent heat storage

Also Published As

Publication number Publication date
WO2013061978A3 (ja) 2013-07-04
JPWO2013061978A1 (ja) 2015-04-02
JP6057184B2 (ja) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2013061978A2 (ja) 潜熱蓄熱材及び蓄熱体
JP6611142B2 (ja) 相変化材料とヒートパイプとの結合によるエネルギー貯蔵システム
Nomura et al. Al/Al2O3 core/shell microencapsulated phase change material for high-temperature applications
Khan et al. Progress in research and development of phase change materials for thermal energy storage in concentrated solar power
US20110100356A1 (en) Reversible hydride thermal energy storage cell optimized for solar applications
US20150241137A1 (en) Modular latent heat thermal energy storage systems
EP1873397A2 (en) High temperature molten salt solar receiver
US20140109895A1 (en) Metallic composite phase-change materials and methods of using the same
AU2013334479B2 (en) Alloys with inverse microstructures
Bashir et al. High-temperature phase change materials for short-term thermal energy storage in the solar receiver: Selection and analysis
Kuravi et al. Thermal energy storage for concentrating solar power plants
JP2005213368A (ja) 潜熱蓄熱材料、およびそれを用いた触媒型潜熱蓄熱材料、潜熱蓄熱複合材料、潜熱蓄熱システム
JP2023509299A (ja) 蓄熱の方法と装置
Wang et al. Microstructures and thermal properties of Sn–Bi–Pb–Zn alloys as heat storage and transfer materials
EP2446211A1 (en) Improved heat exchanger
NZ585425A (en) A solar energy collection and storage system using a hydrogen storage system
US20180266728A1 (en) Process and system for hot and/or cold energy transfer, transport and/or storage
Anderson et al. High temperature titanium/water and monel/water heat pipes
US20230235924A1 (en) Solar Collection Energy Storage and Energy Conversion or Chemical Conversion System
US11499785B2 (en) Combined thermal energy storage and heat exchanger unit
JP2023537889A (ja) 複合ウィック構造を含むヒートパイプ及び関連する製造方法
Bashir et al. Phase change materials (PCMs) applications in solar energy systems
Li et al. Metallic composites phase-change materials for high-temperature thermal energy storage
JP7408888B2 (ja) 蓄熱材料および蓄熱発電装置
WO2011105989A2 (en) Reversible hydride thermal energy storage cell optimize for solar applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842778

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase in:

Ref document number: 2013540793

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12842778

Country of ref document: EP

Kind code of ref document: A2