WO2013061909A1 - ビベンゾ[b]フラン化合物、光電変換材料及び光電変換素子 - Google Patents

ビベンゾ[b]フラン化合物、光電変換材料及び光電変換素子 Download PDF

Info

Publication number
WO2013061909A1
WO2013061909A1 PCT/JP2012/077208 JP2012077208W WO2013061909A1 WO 2013061909 A1 WO2013061909 A1 WO 2013061909A1 JP 2012077208 W JP2012077208 W JP 2012077208W WO 2013061909 A1 WO2013061909 A1 WO 2013061909A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
optionally substituted
photoelectric conversion
hydrocarbon group
Prior art date
Application number
PCT/JP2012/077208
Other languages
English (en)
French (fr)
Inventor
峰樹 長谷川
矢野 亨
亮 谷内
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to CN201280039290.XA priority Critical patent/CN103889990A/zh
Priority to US14/236,225 priority patent/US9450119B2/en
Priority to EP12842751.5A priority patent/EP2772494B1/en
Priority to KR1020147003440A priority patent/KR20140083969A/ko
Priority to JP2013540764A priority patent/JP6095229B2/ja
Publication of WO2013061909A1 publication Critical patent/WO2013061909A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/125Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one oxygen atom in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0075Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of an heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/109Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing other specific dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3242Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more oxygen atoms as the only heteroatom, e.g. benzofuran
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3327Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms alkene-based
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3328Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms alkyne-based
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/36Oligomers, i.e. comprising up to 10 repeat units
    • C08G2261/364Oligomers, i.e. comprising up to 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a novel p-type organic semiconductor material having a specific structure, a photoelectric conversion material and a photoelectric conversion element using the same.
  • solar cells solar power generation
  • Inorganic solar cells generally have high photoelectric conversion efficiency, but have a drawback of high manufacturing cost because high vacuum is required or high-temperature heat treatment is required.
  • the organic solar cell can be formed by a coating method, a printing method, or the like, the manufacturing cost is low and the film can be formed in a large area.
  • Another advantage of organic solar cells is that they can be lighter than inorganic solar cells.
  • an organic thin film type solar cell is said to be excellent in a printing method and easy to form a film or the like, so that it is easy to manufacture a flexible solar cell.
  • organic solar cells since many organic solar cells have low photoelectric conversion efficiency, increasing the photoelectric conversion efficiency is a problem.
  • P3HT poly (3-hexylthiophene)
  • PCBM [[6, 6] which is an n-type organic semiconductor material, as materials having high photoelectric conversion efficiency in organic thin film solar cells.
  • -Phenyl-C61-butyric acid methyl ester and a bulk heterojunction made of a mixed material (see Non-Patent Document 1, etc.).
  • a low molecular compound such as pentacene may be used as the p-type organic semiconductor material.
  • a high molecular weight material is more suitable for device manufacturing by coating, which can reduce cost and increase the screen size. It is considered easy.
  • a characteristic required for the p-type organic semiconductor material is that the material has a highly planar ⁇ -conjugated plane. This is because high ⁇ - ⁇ interaction and high carrier transport efficiency can be expected, and as a result, high photovoltaic power can be provided.
  • Patent Documents 1 to 3 disclose a polymer p-type organic semiconductor. However, further improvement in photoelectric conversion efficiency of organic solar cells is desired.
  • an object of the present invention is to provide a p-type organic semiconductor material that is easy to manufacture and has high planarity in a polymer skeleton. Moreover, the objective of this invention is providing the photoelectric conversion material which has the high photoelectric conversion efficiency using the said p-type organic-semiconductor material, a photoelectric conversion layer, a photoelectric conversion element, and an organic thin-film solar cell.
  • a bibenzo [b] furan compound having a specific structure is easy to manufacture, has a low manufacturing cost, and has excellent solubility, so that it is used as a p-type organic semiconductor material. Then, it discovered that a photoelectric converting layer can be manufactured easily. As a result of further investigation, it has been found that the photoelectric conversion element having the photoelectric conversion layer exhibits high carrier mobility and can solve the above-described problems.
  • first bibenzo [b] having at least one structural unit represented by the following formula (1) or (2): Also referred to as a furan compound.
  • R 13 and R 14 represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group.
  • the present invention also provides (A) a p-type organic semiconductor material containing at least one first bibenzo [b] furan compound, and (B) a photoelectric conversion material containing an n-type organic semiconductor material. It is.
  • the present invention also provides a photoelectric conversion layer obtained by forming the photoelectric conversion material into a film.
  • this invention provides the photoelectric conversion element which has the said photoelectric converting layer.
  • this invention provides the organic thin-film solar cell which has the said photoelectric conversion element.
  • the present invention also provides a novel bibenzo [b] furan compound represented by the following general formula (B1) or (B2) that is useful as an intermediate for the first bibenzo [b] furan compound.
  • [B] also referred to as a furan compound).
  • R 13 and R 14 represents a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group
  • R 21 , R 22 , R 23 and R 24 represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom
  • X represents a group in which 1 to 5 groups selected from the following group X are combined.
  • X 1 and X 4 represent S, O or NR 3
  • R 3 represents an optionally substituted hydrocarbon group
  • the hydrogen atom in the structural unit represented by group X is fluorine Substituted with an atom, chlorine atom, bromine atom, iodine atom, cyano group, nitro group, hydroxyl group, thiol group, —NR 4 R 5 group, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group
  • R 4 and R 5 each represents an optionally substituted hydrocarbon group, and k represents an integer of 1 to 4.
  • the present invention it is possible to provide a novel bibenzo [b] furan compound useful as an organic semiconductor material that can be produced at low cost and is excellent in solubility and coating property. If the photoelectric conversion material of the present invention containing the compound is used, the coating process in semiconductor production becomes easy due to excellent solubility, and high performance of the device can be realized due to high carrier mobility.
  • FIG. 1A is a cross-sectional view showing an example of the configuration of the photoelectric conversion element of the present invention.
  • FIG.1 (b) is sectional drawing which shows another example of a structure of the photoelectric conversion element of this invention.
  • FIG.1 (c) is sectional drawing which shows another example of a structure of the photoelectric conversion element of this invention.
  • the first bibenzo [b] furan compound is a compound having at least one structural unit represented by the above formula (1) or (2).
  • * in the above formula (1) or (2) means that the group represented by these formulas is bonded to an adjacent group at the * portion (the same applies hereinafter).
  • Examples of the optionally substituted hydrocarbon group represented by R 13 and R 14 in the above formula (2) include an aromatic hydrocarbon group, an aromatic hydrocarbon group substituted with an aliphatic hydrocarbon, and an aliphatic hydrocarbon group. Among them, those having 1 to 40 carbon atoms, particularly 4 to 22 carbon atoms are preferable.
  • Examples of the aromatic hydrocarbon group include phenyl, naphthyl, cyclohexylphenyl, biphenyl, terphenyl, fluoryl, thiophenylphenyl, furanylphenyl, 2′-phenyl-propylphenyl, benzyl, naphthylmethyl, and the like.
  • Examples of the aliphatic hydrocarbon group include methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, isobutyl, amyl, isoamyl, t-amyl, hexyl, heptyl, isoheptyl, t-heptyl, n -Linear, branched and cyclic alkyl groups such as octyl, isooctyl, t-octyl, nonyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, etc., and these aliphatic hydrocarbon groups Is interrupted by —O—, —COO—, —OCO—, —CO—, —S—, —SO—
  • R 15 is substituted.
  • the optionally substituted hydrocarbon group may include the same groups as the optionally substituted hydrocarbon group represented by R 13 and R 14 , among which perfluoroalkyl is preferable.
  • the aromatic hydrocarbon group substituted with the aliphatic hydrocarbon include phenyl, naphthyl, benzyl and the like substituted with the aliphatic hydrocarbon group.
  • Examples of the group that may substitute these hydrocarbon groups include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a hydroxyl group, a thiol group, and a —NR′R ′′ group.
  • 'And R ′′ represent an optionally substituted hydrocarbon group, and the optionally substituted hydrocarbon group is the same group as the optionally substituted hydrocarbon group represented by R 13 and R 14. Is mentioned.
  • Examples of the optionally substituted heterocyclic group represented by R 13 and R 14 in the above formula (2) include thiazolyl, imidazolyl, oxazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, thiophenyl, furanyl, bithiophenyl, and terthiophenyl. Heterocycles are mentioned, and those having 1 to 40, especially 4 to 22 carbon atoms are preferred.
  • first bibenzo [b] furan compounds those having 2 or more and 100 or less structural units represented by the above formula (1) or (2) are preferable because of excellent film forming properties.
  • the first bibenzo [b] furan compound may have a structural unit other than the structural unit represented by the above formula (1) or (2) (hereinafter also referred to as other structural unit).
  • the structural unit of the above formula (1) or (2) is preferably 5 to 100 mol%, and 10 to 90 mol%. More preferred is 20 to 80 mol%.
  • the other structural unit is not particularly limited as long as it is a ⁇ -conjugated group, but examples include structural units selected from the following group Y or group Z. From the viewpoint of durability and light resistance of the material, (Y— A structural unit selected from 2), (Y-3), (Y-4) or group Z is preferred.
  • the hydrogen atom in the structural unit is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a hydroxyl group, a thiol group, an —NR 4 R 5 group, an optionally substituted hydrocarbon group or a substituted group.
  • X 2 represents S or NR 6
  • X 3 represents S, NR 6 , CR 7 R 8 or SiR 7 R 8
  • X 5 represents S, O or NR 6
  • R 6 , R 7 and R 8 represent an optionally substituted hydrocarbon group
  • the hydrogen atom in the structural unit represented by group Z is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, It may be substituted with a hydroxyl group, a thiol group, a —NR 9 R 10 group, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, and R 9 and R 10 may be substituted. Represents a good hydrocarbon group.
  • a hydrocarbon group which may substitute a hydrogen atom in the structural unit represented by group Y or group Z, and NR 3 representing X 1 and X 4 in group Y, X 2 and X 5 in group Z; the NR 6, CR 7 R 8 SiR 7 R 3, R 6, R 7 and optionally substituted hydrocarbon group wherein R 8 represents a R 8 representing a NR 6, and X 3 representing the above formula (2 And a group similar to the optionally substituted hydrocarbon group represented by R 13 and R 14 .
  • the first bibenzo [b] furan compound contains the structural unit of the group Y or group Z
  • the first bibenzo [b] furan compound is represented by the following general formula (1 ′) or (2 ′)
  • the arrangement of o, p or q structural units in the general formula (1 ′) or (2 ′) is not particularly limited, and the effects of the present invention are achieved.
  • p or q which is a structural unit of the group Y or the group Z is 1 to 10 when o which is a structural unit of the formula (1) or (2) is 1. is there.
  • a more preferable value of p is 0 to 8, more preferably 1 to 5, from the viewpoint of high light absorption efficiency in the long wavelength region.
  • a more preferable value of q is 0 to 2, more preferably 1 or 2, particularly preferably 1, from the viewpoint of high light absorption efficiency in the long wavelength region.
  • R 13 and R 14 represent the same group as in the formula (2), Y represents a group selected from the group Y, Z represents a group selected from the group Z, and o is 1 or more. Represents an integer of 1000 or less, and p and q represent an integer of 0 or more and 1000 or less.
  • Preferable examples of the first bibenzo [b] furan compound include compounds represented by the following general formula (3) or (4).
  • R 1 and R 2 represent a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group
  • Y 1 And Y 2 is a single bond or a group connected by combining 1 to 5 groups selected from the following (Y-1) to (Y-8), and Z 1 and Z 2 are a single bond or the following (Z -1) to (Z-21) represents a group, and n represents an integer of 1 to 1,000.
  • R 11 , R 12 , R 13 or R 14 is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic ring.
  • Y 3 and Y 4 represent a single bond or a group connected by combining 1 to 5 groups selected from the following (Y-1) to (Y-8), and Z 3 and Z 4 are: Represents a single bond or a group selected from the following (Z-1) to (Z-21), and m represents an integer of 1 to 1,000.
  • R 3 represents an optionally substituted hydrocarbon group
  • (Y-1) to The hydrogen atoms in the groups (Y-4) and (Y-6) to (Y-8) are fluorine atom, chlorine atom, bromine atom, iodine atom, cyano group, nitro group, hydroxyl group, thiol group, —NR 4.
  • R 5 group, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group may be substituted, and R 4 and R 5 each represents an optionally substituted hydrocarbon group.
  • R 6 , R 7 and R 8 represent an optionally substituted hydrocarbon group
  • the hydrogen atoms in the groups (Z-1) to (Z-21) are a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, a hydroxyl group, a thiol group, -NR 9 R 10 groups, may be substituted at heterocyclic group is also substituted hydrocarbon group or a substituted substituted
  • R 9 And R 10 represents an optionally substituted hydrocarbon group.
  • R 11 and R 12 in the general formula (4) an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group Includes the same groups as R 13 and R 14 in the above formula (2).
  • R 1 , R 2 , R 11 and R 12 an aromatic hydrocarbon group and an aromatic heterocyclic group are preferable because the production of the compound is easy and the photoelectric conversion efficiency is high.
  • a compound in which at least one of Y 1 , Y 2 or Z 1 is not a single bond is preferable because it is easy to produce.
  • a compound in which at least one of Y 3 , Y 4 or Z 2 is not a single bond is preferable because it is easy to produce.
  • first bibenzo [b] furan compound examples include the following compound No. 1-No. 70, but is not limited to these compounds.
  • R 1 , R 2 and n are the same as in the above general formula (3)
  • R 11 , R 12 and m are the same as in the above general formula (4).
  • any of the first bibenzo [b] furan compounds can be obtained by a method utilizing a well-known general reaction without being limited to the production method.
  • An example of a method for producing the bibenzo [b] furan compound represented by the general formula (3) is given below.
  • R 1 , R 2 , Y 1 , Y 2 , Z 1 , Z 2 and n are the same as those in the general formula (3).
  • the functional groups to which the intermediates (A), (B) and (C) are bonded are not only bromine but also corresponding halogen compounds, triflate bodies, boron compounds, silicon compounds, Bibenzofuran derivatives converted into zinc compounds and tin compounds may be used.
  • R 1 -Br, R 2 -Br, Bpin-Z 1 -Bpin, and Bpin-Z 2 -Bpin are intermediates (A), (B) and (C) used.
  • R 1 , R 2 , Y 1 , Y 2 , Z 1 , Z 2 and n are the same as those in the general formula (3).
  • the bibenzo [b] furan compound of the present invention is suitable as an organic semiconductor material and can also be used for applications such as antioxidants.
  • the photoelectric conversion material of the present invention contains (A) a p-type organic semiconductor material containing at least one first bibenzo [b] furan compound, and (B) an n-type organic semiconductor material.
  • the p-type organic semiconductor material may contain at least one first bibenzo [b] furan compound, and other known materials can be used together.
  • phthalocyanine pigments for example, phthalocyanine pigments, indigo or thioindigo pigments, quinacridone pigments, triarylmethane derivatives, triarylamine derivatives, oxazole derivatives, hydrazone derivatives, stilbene derivatives, pyrazoline derivatives, polysilane derivatives, polyphenylene vinylene and derivatives thereof (for example, polyphenylene vinylene) [2-Methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene]: MEH-PPV, poly [2-methoxy-5- (3 ′, 7′-dimethyloctyloxy) -1,4 -Phenylene vinylene]), polythiophene and derivatives thereof (for example, poly (3-dodecylthiophene), poly (3-he
  • the content of the first bibenzo [b] furan compound is preferably 1 to 99% by mass in the (A) p-type organic semiconductor material, More preferably, it is 1 to 80% by mass.
  • n-type organic semiconductor material As an n-type organic semiconductor material, a perylene pigment, a perinone pigment, a polycyclic quinone pigment, an azo pigment, C60 fullerene, C70 fullerene, and a derivative thereof can be used.
  • n-type organic semiconductor materials C60 fullerene, C70 fullerene, and derivatives thereof are preferable because they have high carrier mobility as n-type materials and / or high charge separation efficiency.
  • the compound quoted as an example as an n-type organic-semiconductor material may be used independently, or may be used together.
  • Examples of the C60 fullerene, C70 fullerene, and derivatives thereof include the following C1 to C6 compounds.
  • C1 PCBM phenyl
  • -C61-butyric acid methyl ester is preferably used.
  • the weight ratio of the component (A) to the component (B) is 10:90 to 90:10, preferably 10:90 to 70:30, more preferably Is 20:80 to 50:50.
  • the photoelectric conversion material of the present invention may contain one or more solvents as necessary.
  • the solvent is not particularly limited as long as it can dissolve or disperse the component (A) and the component (B).
  • water, alcohol solvent, diol solvent, ketone solvent, ester solvent, ether examples thereof include an aliphatic solvent, an aliphatic or alicyclic hydrocarbon solvent, an aromatic hydrocarbon solvent, a hydrocarbon solvent having a cyano group, a halogenated hydrocarbon solvent, and other solvents.
  • a photoelectric conversion material using a solvent can be used as a coating solution.
  • Examples of the alcohol solvent include methanol, ethanol, propanol, isopropanol, 1-butanol, isobutanol, 2-butanol, tertiary butanol, pentanol, isopentanol, 2-pentanol, neopentanol, third Pentanol, hexanol, 2-hexanol, heptanol, 2-heptanol, octanol, 2-ethylhexanol, 2-octanol, cyclopentanol, cyclohexanol, cycloheptanol, methylcyclopentanol, methylcyclohexanol, methylcycloheptanol , Benzyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoether Ether, diethylene glycol monomethyl
  • diol solvent examples include ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, isoprene glycol ( 3-methyl-1,3-butanediol), 1,2-hexanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,2-octanediol, octanediol (2-ethyl) -1,3-hexanediol), 2-butyl-2-ethyl-1,3-propanediol, 2,5-dimethyl-2,5-hexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol 1,4-cyclohexanedimethanol and
  • ketone solvent examples include acetone, ethyl methyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl amyl ketone, methyl hexyl ketone, ethyl butyl ketone, diethyl ketone, dipropyl ketone, diisobutyl ketone, and methyl.
  • ester solvent examples include methyl formate, ethyl formate, methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, second butyl acetate, third butyl acetate, amyl acetate, isoamyl acetate, and third amyl acetate.
  • ether solvent examples include tetrahydrofuran, tetrahydropyran, morpholine, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether, diethyl ether, dioxane and the like.
  • Examples of the aliphatic or alicyclic hydrocarbon solvents include pentane, hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, heptane, octane, decalin, solvent naphtha, turpentine oil, D-limonene, pinene, and minerals.
  • Spirit, Swazol # 310 Cosmo Matsuyama Oil Co., Ltd., Solvesso # 100 (Exxon Chemical Co., Ltd.)
  • aromatic hydrocarbon solvent examples include benzene, toluene, ethylbenzene, xylene, mesitylene, diethylbenzene, cumene, isobutylbenzene, cymene, and tetralin.
  • hydrocarbon solvent having a cyano group examples include acetonitrile, 1-cyanopropane, 1-cyanobutane, 1-cyanohexane, cyanocyclohexane, cyanobenzene, 1,3-dicyanopropane, 1,4-dicyanobutane, , 6-dicyanohexane, 1,4-dicyanocyclohexane, 1,4-dicyanobenzene and the like.
  • halogenated hydrocarbon solvent examples include carbon tetrachloride, chloroform, dichloromethane, trichloroethylene, chlorobenzene, dichlorobenzene, and trichlorobenzene.
  • organic solvents examples include N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylformamide, aniline, triethylamine, pyridine and carbon disulfide.
  • preferable solvents include chloroform, dichloromethane, toluene, xylene, chlorobenzene, dichlorobenzene, trichlorobenzene and the like.
  • the content is not particularly limited as long as it does not hinder the formation of a photoelectric conversion layer using the photoelectric conversion material. It is preferable that the total amount of the component (A) and the component (B) is 0.1 to 20 parts by weight when it is 100 parts by weight, more preferably 1 to 10 parts by weight, and particularly preferably Is preferably selected from the range of 3 to 7 parts by weight.
  • the photoelectric conversion layer of the present invention is obtained by forming the photoelectric conversion material of the present invention into a film.
  • the film forming method is not particularly limited. For example, vapor deposition method, physical vapor deposition method (PVD), chemical vapor deposition method (CVD), atomic layer deposition method (ALD), atomic layer epitaxy method (ALE).
  • Dry processes such as molecular beam epitaxy (MBE), vapor phase epitaxy (VPE), sputtering, plasma polymerization, etc .; dip coating, casting, air knife coating, curtain coating, roller coating, wire Forming a coating on a support by wet processes such as bar coating, gravure coating, spin coating, LB, offset printing, screen printing, flexographic printing, dispenser printing, ink jet, and extrusion coating The method of doing is mentioned.
  • the film thickness of the photoelectric conversion layer is not particularly limited, but generally it is preferably set to about 5 nm to 5 ⁇ m, and heat treatment such as annealing may be performed.
  • the photoelectric conversion layer is used for an element in which p-type and n-type organic semiconductor materials are mixed.
  • organic bulk heterojunction element which is a preferred embodiment, a super hierarchical nanostructure junction element, a hybrid heterojunction type, pi Used for the i layer and the like in an n-junction element.
  • the photoelectric conversion element of this invention is comprised similarly to a conventionally well-known photoelectric conversion element except having at least one photoelectric conversion layer of this invention.
  • the support 1, the electrode 2, the charge transfer layer 3, the photoelectric conversion layer 4, and the electrode 5 are sequentially stacked.
  • a structure excluding the charge transfer layer 3 as shown in FIG. 1B or a structure further having a charge transfer layer 6 as shown in FIG. 1C may be used.
  • the photoelectric conversion element of the present invention light needs to reach the photoelectric conversion layer 4 from the support 1.
  • the electrode 2 and the charge transfer layer 3 are formed of a light transmissive material, and the light transmittance Is preferably set to be 70% or more.
  • the support 1 can stably hold the electrode 2 on the surface, the support 1 is not limited by the material and thickness, but needs to have transparency. Therefore, the shape of the support may be plate or film. Transparency refers to the property of transmitting light in a predetermined wavelength region used in a photoelectric conversion element, for example, visible light region at a high rate.
  • a photoelectric conversion element for example, visible light region at a high rate.
  • the support 1 for example, glass, transparent polymer film (polyethylene terephthalate (PET), tetraacetyl cellulose (TAC), polycarbonate, polyethylene naphthalate, polyphenylene sulfide, polyester sulfone, syndiotactic polystyrene) or the like can be used.
  • the photoelectric conversion element of the present invention is preferably formed on the surface of the support 1.
  • the work functions of a pair of electrodes (electrode 2 and electrode 5) arranged opposite to each other may be relatively large (that is, work functions are different from each other). Therefore, it is sufficient that the work function of the electrode 2 is relatively larger than that of the electrode 5.
  • the work function difference between the two electrodes is preferably 0.5 V or more.
  • a buffer layer is provided between each electrode and the semiconductor layer and the compound of the buffer layer on the electrode and the electrode are chemically bonded, these restrictions may be relaxed.
  • Examples of the electrodes 2 and 5 include noble metals such as gold, platinum, and silver, metals such as zinc oxide, indium oxide, tin oxide (NESA), tin-doped indium oxide (ITO), and fluorine-doped tin oxide (FTO).
  • noble metals such as gold, platinum, and silver
  • metals such as zinc oxide, indium oxide, tin oxide (NESA), tin-doped indium oxide (ITO), and fluorine-doped tin oxide (FTO).
  • organic conductive compounds such as PEDOT-PSS can be used as appropriate.
  • Electrode materials may be used alone or in combination. Since the electrode 2 needs to have transparency, a transparent material such as zinc oxide, NESA, ITO, FTO, and PEDOT-PSS is used.
  • the electrode 2 and the electrode 5 can be formed by using a dry process or a wet process using these electrode materials in the same manner as the photoelectric conversion layer 4. Further, it may be formed by firing by a sol-gel method or the like.
  • the thickness of the electrode is generally set to about 5 to 1000 nm, more preferably about 10 to 500 nm for both the electrode 2 and the electrode 5, although depending on the material of the electrode substance used.
  • the charge transfer layers 3 and 6 prevent the electrode material from entering and reacting with the photoelectric conversion layer, and prevent recombination of charges separated by the photoelectric conversion layer, thereby efficiently transferring the charge to the electrodes 2 and 5.
  • the material include charge transfer materials such as PEDOT: PSS, PEO, V 2 O 5 , zinc oxide, lithium fluoride, TiOx, and naphthalenetetracarboxylic acid anhydride.
  • the charge transfer layer 3 needs to have transparency.
  • the photoelectric conversion layer 4 is a P3HT: PCBM bulk hetero type
  • PEDOT: PSS is often used for the charge transfer layer 3
  • LiF is often used for the charge transfer layer 6.
  • the charge transfer layers 3 and 6 can be formed using these charge transfer materials by a dry process method or a wet process method in the same manner as the photoelectric conversion layer 4.
  • the thickness of the charge transfer layers 3 and 6 is generally set to about 0.01 to 100 nm, more preferably about 0.1 to 50 nm.
  • the photoelectric conversion element of the present invention can be used for a photodiode, a photodetector and the like in addition to the organic thin film solar cell of the present invention.
  • the second bibenzo [b] furan compound is represented by the general formula (B1) or (B2).
  • the description in a 1st bibenzo [b] furan compound is applied suitably.
  • the optionally substituted hydrocarbon group and optionally substituted heterocyclic group R 13 and R 14 in formula (B2) is represented similarly to R 13 and R 14 in formula (2) The group of is mentioned.
  • the optionally substituted hydrocarbon group represented by R 3 of NR 3 representing X 1 and X 4 in group X the optionally substituted carbon represented by R 13 and R 14 in the above formula (2) Examples thereof include the same groups as the hydrogen group.
  • any of the second bibenzo [b] furan compounds can be obtained by a method utilizing a known general reaction without being limited to the production method.
  • An example of a method for producing the bibenzo [b] furan compound represented by the general formula (B1) will be given below.
  • 3,4: 3′4′-bibenzo [b] furan is produced by the method described above.
  • the resulting 3,4: 3′4′-bibenzo [b] furan is brominated to give dibromobibenzo [b] furan (A).
  • a bibenzofuran derivative converted into a corresponding halogen compound, triflate, boron compound, silicon compound, zinc compound, or tin compound may be used.
  • dibromobibenzo [b] furan (A) with synthetic intermediates corresponding to R 21 —X— and R 22 —X—, the desired second bibenzo [b] furan A compound can be obtained.
  • R 21 -X- and R 22 -X- in structure, without bromination, 3,4: 3'4'- Bibenzo [b] to furan, direct, R 21 -X- and R A coupling reaction with a synthetic intermediate corresponding to 22 -X- can be carried out.
  • the second bibenzo [b] furan compound is suitable as an intermediate for the first bibenzo [b] furan compound and can also be used for applications such as antioxidants.
  • Intermediate Synthesis Example 1 shows the synthesis of an intermediate necessary for the synthesis of the second bibenzo [b] furan compound (the above-mentioned dibromobibenzo [b] furan (A)), and Intermediate Synthesis Examples 2 to 5 Examples 1-18, which show the synthesis of an intermediate necessary for the synthesis of the first bibenzo [b] furan compound (second bibenzo [b] furan compound), are the synthesis of the first bibenzo [b] furan compound. It is an example.
  • the photoelectric conversion material of the present invention was prepared using the first bibenzo [b] furan compound or the comparative compound obtained in Examples 1 to 18, A photoelectric conversion layer and a photoelectric conversion element were produced using the photoelectric conversion material, and the photoelectric conversion element was evaluated.
  • the purified product was dissolved in 9 ml of tetrahydrofuran (THF), and 1.3 ml of a THF solution of 355 mg (0.95 mmol) of trimethylphenylammonium bromide (PTMA-Br 3 ) was added dropwise, followed by stirring at room temperature for 30 minutes. A sodium thiosulfate aqueous solution and toluene were added to separate the oil and water, and the organic layer was washed with ultrapure water.
  • THF tetrahydrofuran
  • Example 1 Compound No. 1 Synthesis of 5 In a nitrogen atmosphere, a solution prepared by adding 180 mg (0.25 mmol) of BBF-3HTB synthesized in Intermediate Synthesis Example 3 and 10 ml of toluene was subjected to ultrasonic irradiation, and this solution was further subjected to 2,1,3-benzoate.
  • Example 2 Compound No. Synthesis of 6 To a solution charged with 300 mg (0.53 mmol) of BBF-3HT synthesized in Intermediate Synthesis Example 2 and 53 ml of chloroform under a nitrogen atmosphere, 580 mg (3.58 mmol) of iron (III) chloride was added at room temperature. For 40 hours. After adding hydrazine monohydrate and stirring for 4 hours, methanol was added for reprecipitation, and the resulting residue was washed with methanol and ultrapure water and refluxed in acetone. The obtained residue was dried, and compound No. 1 was obtained as a red-dark solid. 390 mg of 6 was obtained (yield 95%). The obtained Compound No. The number average molecular weight (Mn) of 6 was 6236, the weight average molecular weight (Mw) was 15437, and Mw / Mn was 2.47.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Example 3 Compound no. Synthesis of 7 In a nitrogen atmosphere, 200 mg (0.19 mmol) of BBF-3HT2B synthesized in Intermediate Synthesis Example 4 and 81 mg of 2,1,3-benzothiadiazole-4,7-bis (boronic acid pinacol ester) (0. 21 mmol), and a solution charged with 15 ml of toluene were subjected to ultrasonic irradiation. Further, 22 mg (0.019 mmol) of tetrakis (triphenylphosphine) palladium and 8.0 ml (2.0 M, 16.0 mmol) of an aqueous sodium carbonate solution were added to this solution. ) Was added and reacted at 90 ° C. for 12 hours.
  • the obtained Compound No. 7 had a number average molecular weight (Mn) of 2980, a weight average molecular weight (Mw) of 4073, and Mw / Mn of 1.37.
  • Example 19 A photoelectric conversion element having the layer structure shown in FIG. 1C was produced by the following procedure.
  • a glass substrate (support 1) having an ITO film of 150 nm formed as an electrode 2 was subjected to IPA boiling cleaning and UV-ozone cleaning, and then PEDOT: PSS (3,4-ethylenedioxythiophene: polystyrene sulfone) as a charge transfer layer 3 Acid) was formed into a film by 20 nm spin coating method, and dried under reduced pressure at 100 ° C. for 10 minutes.
  • PEDOT PSS (3,4-ethylenedioxythiophene: polystyrene sulfone) as a charge transfer layer 3 Acid
  • a photoelectric conversion material of Example 19 was prepared by dissolving 20 mg of the compound of Example 1 as (A) p-type organic semiconductor and 80 mg of PCBM as (B) n-type organic semiconductor in 2 mL of 1,2-dichlorobenzene. .
  • the prepared photoelectric conversion material was formed into a film by a spin coat method, and dried under reduced pressure at 100 ° C. for 30 minutes to obtain a photoelectric conversion layer 4.
  • LiF 0.5 nm (charge transfer layer 6) and aluminum 100 nm (electrode 5) were sequentially deposited by vacuum vapor deposition using a metal mask to obtain the photoelectric conversion element of Example 19.
  • the photoelectric conversion element thus obtained was irradiated with pseudo sunlight having an air mass of 1.5 G and 100 mW / cm 2 from the ITO electrode side, and the photoelectric conversion characteristics (efficiency (%)) were measured. The results are shown in [Table 2].
  • Examples 20 to 60 In the production of the photoelectric conversion device of Example 19, the example (A), the component (B), and the composition ratio thereof were changed as shown in [Table 2] as in Example 19, 20 to 60 photoelectric conversion elements were produced. Further, the photoelectric conversion characteristics (efficiency (%)) of the photoelectric conversion elements of Examples 20 to 60 were measured in the same manner as in Example 19. The results are shown in [Table 2].
  • Comparative Compound No. 1 1-manufactured by Material, number average molecular weight 55000 Comparative Compound No. 2: In-house synthesized product Comparative compound No. 3: Made by Aldrich, number average molecular weight> 20,000 Comparative Compound No. 4: Aldrich, number average molecular weight 10,000 to 20,000
  • the bibenzo [b] furan compound of the present invention exhibits high photoelectric conversion efficiency when used as a p-type organic semiconductor. Moreover, in Comparative Example 2, there was an odor during film formation, but in the examples, the odor was not confirmed, so the environmental load is considered to be low. Therefore, the photoelectric conversion material using the bibenzo [b] furan compound of the present invention is useful for a photoelectric conversion element and an organic thin film solar cell.

Abstract

 本発明は、製造が容易であり、高分子骨格内に高い平面性を有する、p型有機半導体材料を提供するものであり、該p型有機半導体材料を用いた高い光電変換効率を有する光電変換材料、光電変換層、光電変換素子及び有機薄膜太陽電池を提供するものである。具体的には、下記式(1)又は(2)で表される構成単位を少なくとも1つ有するビベンゾ[b]フラン化合物、並びに該化合物をp型有機半導体材料に用いた光電変換材料、光電変換層、光電変換素子及び有機薄膜太陽電池を提供するものである。 (式中、R13及びR14は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基、置換されていてもよい炭化水素オキシ基又は置換されていてもよい複素環基を表す。)

Description

ビベンゾ[b]フラン化合物、光電変換材料及び光電変換素子
 本発明は、特定の構造を有する新規なp型有機半導体材料並びにこれを用いた光電変換材料及び光電変換素子に関する。
 近年、持続的に利用でき、資源が枯渇せず、環境汚染が小さい太陽電池(太陽光発電)が盛んに検討されている。太陽電池は、Si系や非Si系の無機系太陽電池と、色素増感型や有機薄膜型の有機系太陽電池とに大別される。無機系太陽電池は、概して光電変換効率が高いが、高真空が必要であったり、高温熱処理が必要であったりするため製造コストが高くなるという欠点がある。一方、有機系太陽電池は、塗布法や印刷法等での製膜が可能であるため、製造コストは低く、大面積での製膜が可能である。また、有機系太陽電池は、無機系太陽電池に比べ素子を軽くできることも利点として挙げられる。特に、有機薄膜型の太陽電池は、印刷法に優れ、フィルム等への製膜も容易であるためフレキシブルな太陽電池の製造も容易であるとされている。
 しかし、有機系太陽電池の光電変換効率は低いものが多いため、高光電変換効率化が課題となっている。
 現在、有機薄膜型の太陽電池における高い光電変換効率が得られている材料として、p型有機半導体材料のP3HT〔ポリ(3-ヘキシルチオフェン)〕とn型有機半導体材料のPCBM〔[6,6]-フェニル-C61-ブチル酸メチルエステル〕との混合材料からなるバルクへテロ接合が挙げられる(非特許文献1等参照)。また、p型有機半導体材料として、ペンタセン等の低分子化合物を用いる場合もあるが、一般に高分子型の材料の方が塗布による素子製造に適しているとされ、低コスト化や大画面化が容易であると考えられている。
 p型有機半導体材料に求められる特徴として、材料中に平面性の高いπ共役平面を有していることが挙げられる。これは、高いπ-π相互作用や高いキャリア輸送効率が期待できるためであり、結果として高い光起電力を提供できる。
 特許文献1~3には、高分子型のp型有機半導体に関する開示がなされている。
 しかしながら、有機系太陽電池のより一層の光電変換効率向上が要望されている。
米国特許出願公開第2008/0083455号明細書 特開2009-158921号公報 特開2011-116962号公報
F. Padinger, et al., Adv. Funct. Mater., 13, 85 (2003)
 従って、本発明の目的は、製造が容易であり、高分子骨格内に高い平面性を有する、p型有機半導体材料を提供することにある。
 また本発明の目的は、上記p型有機半導体材料を用いた高い光電変換効率を有する光電変換材料、光電変換層、光電変換素子及び有機薄膜太陽電池を提供することにある。
 本発明者らは、鋭意検討を重ねた結果、特定の構造を有するビベンゾ[b]フラン化合物は、製造が容易で製造コストが小さく、しかも、溶解性に優れるため、p型有機半導体材料として使用すると、光電変換層を容易に製造できることを知見した。さらに検討を進めた結果、該光電変換層を有する光電変換素子は、高いキャリア移動度を示し、上記課題を解決し得ることを知見した。
 本発明は、上記知見に基づいてなされたもので、下記式(1)又は(2)で表される構成単位を少なくとも1つ有する新規ビベンゾ[b]フラン化合物(以下、第一のビベンゾ[b]フラン化合物ともいう)を提供するものである。
Figure JPOXMLDOC01-appb-C000010
(式中、R13及びR14は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基を表す。)
 また、本発明は、(A)第一のビベンゾ[b]フラン化合物を少なくとも一種含有するp型有機半導体材料、及び(B)n型有機半導体材料を含有してなる光電変換材料を提供するものである。
 また、本発明は、上記光電変換材料を製膜して得られる光電変換層を提供するものである。
 また、本発明は、上記光電変換層を有してなる光電変換素子を提供するものである。
 また、本発明は、上記光電変換素子を有してなる有機薄膜太陽電池を提供するものである。
 また、本発明は、第一のビベンゾ[b]フラン化合物の中間体として有用な、下記一般式(B1)又は(B2)で表される新規ビベンゾ[b]フラン化合物(以下、第二のビベンゾ[b]フラン化合物ともいう)を提供するものである。
Figure JPOXMLDOC01-appb-C000011
(式中、R13及びR14は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基を表し、R21、R22、R23及びR24は、水素原子、フッ素原子、塩素原子、臭素原子又はヨウ素原子を表し、Xは下記群Xから選ばれる基を1~5個組み合わせた基を表す。)
Figure JPOXMLDOC01-appb-C000012
(式中、X1及びX4はS、O又はNR3を表し、R3は、置換されていてもよい炭化水素基を表し、群Xで表される構成単位中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、-NR45基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R4及びR5は、置換されていてもよい炭化水素基を表し、kは1~4の整数を表す。)
 本発明によれば、低コストで製造可能で、しかも溶解性及び塗工性に優れる、有機半導体材料として有用な新規ビベンゾ[b]フラン化合物を提供することができる。該化合物を含有する本発明の光電変換材料を用いれば、優れた溶解性により、半導体製造における塗工プロセスが容易になり、且つ、高いキャリア移動度により、素子の高性能化を実現できる。
図1(a)は、本発明の光電変換素子の構成の一例を示す断面図である。 図1(b)は、本発明の光電変換素子の構成の別の一例を示す断面図である。 図1(c)は、本発明の光電変換素子の構成の別の一例を示す断面図である。
 以下、本発明の新規ビベンゾ[b]フラン化合物及びその中間体、並びに、該ビベンゾ[b]フラン化合物を用いた光電変換材料、光電変換層、光電変換層及び有機薄膜太陽電池について、好ましい実施形態に基づき詳細に説明する。
<第一のビベンゾ[b]フラン化合物>
 第一のビベンゾ[b]フラン化合物は、上記式(1)又は(2)で表される構成単位を少なくとも1つ有する化合物である。尚、上記式(1)又は(2)中の*は、これらの式で表される基が、*部分で、隣接する基と結合することを意味する(以下同様)。
 上記式(2)におけるR13及びR14が表す置換されていてもよい炭化水素基としては、芳香族炭化水素基、脂肪族炭化水素で置換された芳香族炭化水素基、脂肪族炭化水素基が挙げられ、炭素原子数1~40、特に4~22であるものが好ましい。
 上記芳香族炭化水素基としては、例えば、フェニル、ナフチル、シクロヘキシルフェニル、ビフェニル、ターフェニル、フルオレイル、チオフェニルフェニル、フラニルフェニル、2’-フェニル-プロピルフェニル、ベンジル、ナフチルメチル等が挙げられ、
 上記脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、s-ブチル、t-ブチル、イソブチル、アミル、イソアミル、t-アミル、ヘキシル、ヘプチル、イソヘプチル、t-ヘプチル、n-オクチル、イソオクチル、t-オクチル、ノニル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル等の直鎖、分岐及び環状のアルキル基が挙げられ、これら脂肪族炭化水素基は、-O-、-COO-、-OCO-、-CO-、-S-、-SO-、-SO2-、-NR15-、-HC=CH-又は-C≡C-で中断されていてもよく(尚、該中断は脂肪族炭化水素基の結合する部分を中断していてもよい)、R15は、置換されていてもよい炭化水素基を表し、置換されていてもよい炭化水素基としては、R13及びR14が表す置換されていてもよい炭化水素基と同様の基が挙げられ、中でもパーフルオロアルキルが好ましい。
 上記脂肪族炭化水素で置換された芳香族炭化水素基としては、上記脂肪族炭化水素基により置換されたフェニル、ナフチル、ベンジル等が挙げられる。
 これらの炭化水素基を置換してもよい基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、-NR’R”基等が挙げられ、R’及びR”は、置換されていてもよい炭化水素基を表し、置換されていてもよい炭化水素基としては、R13及びR14が表す置換されていてもよい炭化水素基と同様の基が挙げられる。
 上記式(2)におけるR13及びR14が表す置換されていてもよい複素環基としては、チアゾリル、イミダゾリル、オキサゾリル、ピリジル、ピラジニル、ピリミジニル、ピリダジニル、チオフェニル、フラニル、ビチオフェニル、ターチオフェニル等の複素環が挙げられ、炭素原子数1~40、特に4~22であるものが好ましい。
 第一のビベンゾ[b]フラン化合物の中でも、上記式(1)又は(2)で表される構成単位を2以上、100以下有するものは製膜性に優れるため好ましい。また、第一のビベンゾ[b]フラン化合物は、上記式(1)又は(2)で表される構成単位以外の構成単位(以下、その他の構成単位とも呼ぶ)を有していてもよい。第一のビベンゾ[b]フラン化合物が、その他の構成単位を含む場合、上記式(1)又は(2)の構成単位が5~100モル%であることが好ましく、10~90モル%であることが更に好ましく、20~80モル%であることが特に好ましい。
 その他の構成単位としては、π共役の基であれば特に限定されないが、例として下記群Y又は群Zから選ばれる構成単位が挙げられ、材料の耐久性、耐光性の点から、(Y-2)、(Y-3)、(Y-4)又は群Zから選ばれる構成単位が好ましい。
Figure JPOXMLDOC01-appb-C000013
(式中、X1及びX4はS、O又はNR3を表し、kは1~4の整数を表し、R3は置換されていてもよい炭化水素基を表し、群Yで表される構成単位中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、-NR45基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R4及びR5は、置換されていてもよい炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000014
(式中、X2はS又はNR6を表し、X3はS、NR6、CR78又はSiR78を表し、X5はS、O又はNR6を表し、R6、R7及びR8は、置換されていてもよい炭化水素基を表し、群Zで表される構成単位中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、-NR910基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R9及びR10は、置換されていてもよい炭化水素基を表す。)
 群Y又は群Zで表される構成単位中の水素原子を置換してもよい炭化水素基、並びに群Y中のX1及びX4を表すNR3、群Z中のX2及びX5を表すNR6、及びX3を表すNR6、CR78SiR78のR3、R6、R7及びR8が表す置換されていてもよい炭化水素基としては、上記式(2)におけるR13及びR14が表す置換されていてもよい炭化水素基と同様の基が挙げられる。
 第一のビベンゾ[b]フラン化合物が上記群Y又は群Zの構成単位を含む場合、第一のビベンゾ[b]フラン化合物は、下記一般式(1’)又は(2’)として表され、該一般式(1’)又は(2’)におけるo、p又はq個の各構成単位の並びは特に限定されず本発明の効果を奏する。また、各構成単位の好ましい比率としては、式(1)又は(2)の構成単位であるoを1としたときに、群Y又は群Zの構成単位であるp又はqは1~10である。より好ましいpの値は、長波長域の高い光吸収効率の点から、0~8であり、更に好ましくは1~5である。またより好ましいqの値は、長波長域の高い光吸収効率の点から、0~2であり、更に好ましくは1又は2であり、特に好ましくは1である。
Figure JPOXMLDOC01-appb-C000015
(式中、R13及びR14は上記式(2)と同様の基を表し、Yは上記群Yから選ばれる基を表し、Zは上記群Zから選ばれる基を表し、oは1以上1000以下の整数を表し、p及びqは、0以上1000以下の整数を表す。)
 第一のビベンゾ[b]フラン化合物の好ましい例として、下記一般式(3)又は(4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000016
(式中、R1及びR2は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基を表し、Y1及びY2は、単結合又は下記(Y-1)~(Y-8)から選ばれる基を1~5個組み合わせて連結した基であり、Z1及びZ2は、単結合又は下記(Z-1)~(Z-21)から選ばれる基を表し、nは1以上1000以下の整数を表す。)
Figure JPOXMLDOC01-appb-C000017
(式中、R11、R12、R13又はR14は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基を表し、Y3及びY4は、単結合又は下記(Y-1)~(Y-8)から選ばれる基を1~5個組み合わせて連結した基であり、Z3及びZ4は、単結合又は下記(Z-1)~(Z-21)から選ばれる基を表し、mは1以上1000以下の整数を表す。)
Figure JPOXMLDOC01-appb-C000018
(式中、X1及びX4はS、O又はNR3を表し、kは1~4の整数を表し、R3は置換されていてもよい炭化水素基を表し、(Y-1)~(Y-4)及び(Y-6)~(Y-8)基中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、-NR45基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R4及びR5は、置換されていてもよい炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000019
(式中、X2はS、NR6又はSiR78を表し、X3はS、NR6、CR78又はSiR78を表し、X5はS、O又はNR6を表し、R6、R7及びR8は、置換されていてもよい炭化水素基を表し、(Z-1)~(Z-21)基中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、-NR910基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R9及びR10は、置換されていてもよい炭化水素基を表す。)
 上記一般式(3)中のR1及びR2、上記一般式(4)中のR11及びR12が表す、置換されていてもよい炭化水素基又は置換されていてもよい複素環基としては、上記式(2)におけるR13及びR14と同様の基が挙げられる。R1、R2、R11及びR12が表す基の中でも、芳香族炭化水素基及び芳香族複素環基が、化合物の製造が容易であり、光電変換効率が高いため好ましい。
 上記一般式(3)で表される化合物の中でも、Y1、Y2又はZ1の少なくとも一つが単結合ではない化合物は、製造が容易であるため好ましい。
 また、上記一般式(4)で表される化合物の中でも、Y3、Y4又はZ2の少なくとも一つが単結合ではない化合物は、製造が容易であるため好ましい。
 第一のビベンゾ[b]フラン化合物の具体例としては、下記化合物No.1~No.70が挙げられるが、これらの化合物に制限されない。尚、下記各化合物におけるR1、R2及びnは上記一般式(3)と同様であり、R11、R12及びmは上記一般式(4)と同様である。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 第一のビベンゾ[b]フラン化合物は、何れも、その製造方法に制限されず、周知一般の反応を利用した方法で得ることができる。上記一般式(3)で表されるビベンゾ[b]フラン化合物の製造方法の一例を以下に挙げる。
 先ず、上記一般式(3)で表されるビベンゾ[b]フラン化合物における3,4:3’4’-ビベンゾ[b]フラン骨格(化合物No.1のn=1、R1及びR2が水素原子のもの)を、例えば下記反応ルートの如く、アントラルフィンからジエーテル化、加水分解、環化反応の3工程を経て製造する。
Figure JPOXMLDOC01-appb-C000034
 次に、得られた3,4:3'4'-ビベンゾ[b]フランをブロモ化してジブロモビベンゾ[b]フラン(A)とする。
 続いて、ジブロモビベンゾ[b]フラン(A)に、対応するY1-又はY2-を有するボロン酸ピナコールエステル誘導体をカップリングさせ中間体(B)とした後、トリメチルフェニルアンモニウムブロミドにて臭素化して中間体(C)とし、対応するZ1-又はZ2-を有するビスボロン酸ピナコールエステル誘導体にて高分子量化して中間体(D)とし、末端をキャッピングすることにより上記一般式(3)で表わされる化合物を得ることが出来る。尚、中間体(D)の生成後にクエンチした場合、R1及びR2は水素原子となる。
Figure JPOXMLDOC01-appb-C000035
(式中、R1、R2、Y1、Y2、Z1、Z2及びnは上記一般式(3)と同様である。)
 上記反応式において、中間体(C)とビスボロン酸ピナコールエステル誘導体との反応において、中間体(C)が過剰である場合には下記臭素置換体(D’)も生成すると考えられるが、そのままの臭素置換体(D’)であっても、更にボロン酸ピナコールエステル誘導体と反応させて下記化合物(3’)とした場合であっても、本発明において同様の効果を奏するため特に制限されない。
 上記反応式において、種々カップリング反応を行う際、中間体(A)、(B)及び(C)の結合する官能基は臭素以外に、対応するハロゲン化合物、トリフラート体、ホウ素化合物、ケイ素化合物、亜鉛化合物、スズ化合物へと変換したビベンゾフラン誘導体を使用しても良い。また上記中間体に対応して、R1-Br、R2-Br、Bpin-Z1-Bpin、Bpin-Z2-Bpinにおいては、使用する中間体(A)、(B)及び(C)に対応して、ハロゲン化合物、トリフラート体、ホウ素化合物、ケイ素化合物、亜鉛化合物、スズ化合物へと変換した各々中間体にて、目的ビベンゾフラン誘導体を合成した場合であっても本発明に対して同様の効果を奏するため、特に制限されるものではない。
Figure JPOXMLDOC01-appb-C000036
(式中、R1、R2、Y1、Y2、Z1、Z2及びnは上記一般式(3)と同様である。)
 本発明のビベンゾ[b]フラン化合物は、有機半導体材料として好適なほか、酸化防止剤等の用途にも使用することができる。
<光電変換材料>
 本発明の光電変換材料は、(A)第一のビベンゾ[b]フラン化合物を少なくとも一種含有するp型有機半導体材料、及び(B)n型有機半導体材料を含有するものである。
 (A)p型有機半導体材料としては、第一のビベンゾ[b]フラン化合物を少なくとも一種含んでいればよく、その他の公知材料を合わせて用いることが出来る。例えば、フタロシアニン系顔料、インジゴ又はチオインジゴ系顔料、キナクリドン系顔料、トリアリールメタン誘導体、トリアリールアミン誘導体、オキサゾール誘導体、ヒドラゾン誘導体、スチルベン誘導体、ピラゾリン誘導体、ポリシラン誘導体、ポリフェニレンビニレン及びその誘導体(例えば、ポリ[2-メトキシ-5-(2-エチルヘキシロキシ)-1,4-フェニレンビニレン]:MEH-PPV、ポリ[2-メトキシ-5-(3’,7’-ジメ
チルオクチロキシ)-1,4-フェニレンビニレン])、ポリチオフェン及びその誘導体(例えば、ポリ(3-ドデシルチオフェン)、ポリ(3-ヘキシルチオフェン):P3HT、ポリ(3-オクチルチオフェン))、ポリ-N-ビニルカルバゾール誘導体等が挙げられる。
 (A)p型有機半導体材料として、その他の公知材料を用いる場合、第一のビベンゾ[b]フラン化合物の含有量は、(A)p型有機半導体材料中、好ましくは1~99質量%、より好ましくは1~80質量%である。
 (B)n型有機半導体材料としては、ペリレン系顔料、ペリノン系顔料、多環キノン系顔料、アゾ系顔料、C60フラーレンやC70フラーレン及びその誘導体等を用いることができ、また、有機金属錯体〔例えば、トリス(8-キノリノラート)アルミニウム、ビス(10-ベンゾ[h]キノリノラート)ベリリウム、5-ヒドロキシフラボンのベリリウム塩、5-ヒドロキシフラボンのアルミニウム塩〕、オキサジアゾール誘導体〔例えば、1,3-ビス[5'-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2'-イル]ベンゼン〕、トリアゾール誘導体〔例えば、3-(4'-tert-ブチルフェニル)-4-フェニル-5-(4''-ビフェニル)-1,2,4-トリアゾール〕、フェナントロリン誘導体[例えば、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(バソクプロイン、BCP)]、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、ジフェニルキノン誘導体、ニトロ置換フルオレノン誘導体、チオピランジオキサイド誘導体等を用いることもできる。(B)n型有機半導体材料の中でも、n型材料として高いキャリヤ移動度を有し、及び/又は電荷分離効率が高い点から、C60フラーレンやC70フラーレン及びその誘導体が好ましい。尚、n型有機半導体材料として例に挙げた化合物は、単独で使用してもよく、あるいは複数併用してもよい。
 上記のC60フラーレンやC70フラーレン及びその誘導体としては、以下のC1~C6の化合物が例に挙げられ、中でも、電子準位の整合性に優れ、入手が容易である点から、C1のPCBM(フェニル-C61-ブチル酸メチルエステル)が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000037
 本発明の光電変換材料において、(A)成分と(B)成分の重量比率(前者:後者)は10:90~90:10であり、好ましくは10:90~70:30であり、さらに好ましくは20:80~50:50である。
 また、本発明の光電変換材料は、必要に応じて一種又は二種以上の溶媒を含有してもよい。
 上記溶媒としては、(A)成分及び(B)成分を溶解又は分散可能なものであれば特に制限されないが、例えば、水、アルコール系溶剤、ジオール系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤、脂肪族又は脂環族炭化水素系溶剤、芳香族炭化水素系溶剤、シアノ基を有する炭化水素溶剤、ハロゲン化炭化水素系溶剤、その他の溶剤等が挙げられる。溶媒を用いた光電変換材料は、塗布液として用いることができる。
 上記アルコール系溶剤としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、1-ブタノール、イソブタノール、2-ブタノール、第3ブタノール、ペンタノール、イソペンタノール、2-ペンタノール、ネオペンタノール、第3ペンタノール、ヘキサノール、2-ヘキサノール、ヘプタノール、2-ヘプタノール、オクタノール、2―エチルヘキサノール、2-オクタノール、シクロペンタノール、シクロヘキサノール、シクロヘプタノール、メチルシクロペンタノール、メチルシクロヘキサノール、メチルシクロヘプタノール、ベンジルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングルコールモノエチルエーテル、ジエチレングルコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、2-(N,N-ジメチルアミノ)エタノール、3(N,N-ジメチルアミノ)プロパノール等が挙げられる。
 上記ジオール系溶剤としては、例えば、エチレングリコール、プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、イソプレングリコール(3-メチル-1,3-ブタンジオール)、1,2-ヘキサンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,2-オクタンジオール、オクタンジオール(2-エチル-1,3-ヘキサンジオール)、2-ブチル-2-エチル-1,3-プロパンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等が挙げられる。
 上記ケトン系溶剤としては、例えば、アセトン、エチルメチルケトン、メチルイソプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、メチルアミルケトン、メチルヘキシルケトン、エチルブチルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、メチルシクロヘキサノン等が挙げられる。
 上記エステル系溶剤としては、例えば、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸第2ブチル、酢酸第3ブチル、酢酸アミル、酢酸イソアミル、酢酸第3アミル、酢酸フェニル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸イソプロピル、プロピオン酸ブチル、プロピオン酸イソブチル、プロピオン酸第2ブチル、プロピオン酸第3ブチル、プロピオン酸アミル、プロピオン酸イソアミル、プロピオン酸第3アミル、プロピオン酸フェニル、2-エチルヘキサン酸メチル、2-エチルヘキサン酸エチル、2-エチルヘキサン酸プロピル、2-エチルヘキサン酸イソプロピル、2-エチルヘキサン酸ブチル、乳酸メチル、乳酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸エチル、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノイソプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノ第2ブチルエーテルアセテート、エチレングリコールモノイソブチルエーテルアセテート、エチレングリコールモノ第3ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノイソプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、プロピレングリコールモノ第2ブチルエーテルアセテート、プロピレングリコールモノイソブチルエーテルアセテート、プロピレングリコールモノ第3ブチルエーテルアセテート、ブチレングリコールモノメチルエーテルアセテート、ブチレングリコールモノエチルエーテルアセテート、ブチレングリコールモノプロピルエーテルアセテート、ブチレングリコールモノイソプロピルエーテルアセテート、ブチレングリコールモノブチルエーテルアセテート、ブチレングリコールモノ第2ブチルエーテルアセテート、ブチレングリコールモノイソブチルエーテルアセテート、ブチレングリコールモノ第3ブチルエーテルアセテート、アセト酢酸メチル、アセト酢酸エチル、オキソブタン酸メチル、オキソブタン酸エチル、γ-ラクトン、マロン酸ジメチル、コハク酸ジメチル、プロピレングリコールジアセテート、δ-ラクトン等が挙げられる。
 上記エーテル系溶剤としては、例えば、テトラヒドロフラン、テトラヒドロピラン、モルホリン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジブチルエーテル、ジエチルエーテル、ジオキサン等が挙げられる。
 上記脂肪族又は脂環族炭化水素系溶剤としては、例えば、ペンタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン、デカリン、ソルベントナフサ、テレピン油、D-リモネン、ピネン、ミネラルスピリット、スワゾール#310(コスモ松山石油(株)、ソルベッソ#100(エクソン化学(株))等が挙げられる。
 上記芳香族炭化水素系溶剤としては、例えば、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、ジエチルベンゼン、クメン、イソブチルベンゼン、シメン、テトラリン等が挙げられる。
 上記シアノ基を有する炭化水素溶剤としては、例えば、アセトニトリル、1-シアノプロパン、1-シアノブタン、1-シアノヘキサン、シアノシクロヘキサン、シアノベンゼン、1,3-ジシアノプロパン、1,4-ジシアノブタン、1,6-ジシアノヘキサン、1,4-ジシアノシクロヘキサン、1,4-ジシアノベンゼン等が挙げられる。
 上記ハロゲン化炭化水素系溶媒としては、例えば、四塩化炭素、クロロホルム、ジクロロメタン、トリクロロエチレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等が挙げられる。
 上記その他の有機溶剤としては、例えば、N-メチル-2-ピロリドン、ジメチルスルホキシド、ジメチルホルムアミド、アニリン、トリエチルアミン、ピリジン、2硫化炭素等が挙げられる。
 これらの中でも、好ましい溶媒としては、クロロホルム、ジクロロメタン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等が挙げられる。
 本発明の光電変換材料に上記溶媒を含有させる場合、その含有量は、該光電変換材料を用いた光電変換層の形成に支障が生じない限り特に制限されるものではないが、例えば、溶媒を100重量部としたときに(A)成分及び(B)成分の総量が0.1~20重量部となる範囲から適宜選択することが好ましく、更に好ましくは1~10重量部であり、特に好ましくは3~7重量部の範囲から選択することが望ましい。
<光電変換層>
 次に、本発明の光電変換層について説明する。本発明の光電変換層は、本発明の光電変換材料を製膜して得られる。製膜方法に関しては特に限定するものではないが、例えば、蒸着法、物理気相成長法(PVD)、化学気相成長法(CVD)、原子層堆積法(ALD)、原子層エピタキシー法(ALE)、分子線エピタキシー法(MBE)、気相エピタキシー法(VPE)、スパッタ法、プラズマ重合法等のドライプロセス;ディップコート法、キャスト法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、スピンコート法、LB法、オフセット印刷法、スクリーン印刷法、フレキソ印刷法、ディスペンサ印刷法、インクジェット法、エクストルージョンコート法等のウェットプロセスによって支持体上に塗膜形成する方法が挙げられる。
 上記光電変換層の膜厚は、特に限定するものではないが、一般に、5nm~5μm程度に設定することが好ましく、アニーリング等の加熱処理をしてもよい。
 上記光電変換層は、p型とn型の有機半導体材料を混在させる素子に用いられ、好ましい実施形態である有機バルクヘテロ接合素子の他、超階層ナノ構造接合素子、ハイブリッドヘテロ接合型、p-i-n接合型素子におけるi層等に用いられる。
<光電変換素子及び有機薄膜太陽電池>
 本発明の光電変換素子は、本発明の光電変換層を少なくとも一つ有する以外は、従来公知の光電変換素子と同様に構成される。例えば、図1(a)を例にとって示すと、支持体1、電極2、電荷移動層3、光電変換層4、及び電極5が順次積層された構造を有する。また、図1(b)に示すように電荷移動層3を除いた構造であってもよく、図1(c)に示すように電荷移動層6を更に有する構造であってもよい。
 本発明の光電変換素子においては、支持体1から光電変換層4へ光が到達する必要がある。支持体1、電極2及び電荷移動層3から光電変換層4へ照射光を到達させるためには、支持体1、電極2及び電荷移動層3を光透過性の材料で形成し、光透過率が70%以上となるように設定することが好ましい。
 支持体1は電極2を表面に安定して保持することが可能であれば、材質や厚みには制限されないが透明性を有する必要が有る。そのため、支持体の形状は板状でもフィルム状でもよい。透明性とは、光電変換素子において使用される所定波長領域、例えば可視光領域の光を高率で透過する性質をいう。支持体1には、例えば、ガラス、透明ポリマーフィルム(ポリエチレンテレフタレート(PET)、テトラアセチルセルロース(TAC)、ポリカーボネート、ポリエチレンナフタレート、ポリフェニレンスルフィド、ポリエステルスルフォン、シンジオタクチックポリスチレン)等が使用できる。尚、本発明の光電変換素子は、支持体1の表面に形成されることが好ましいが、電極2自体にある程度の硬度があり、自立性を有する場合は、電極2が支持体1を兼ねる構造としてもよく、この場合、支持体1は省略されてもよい。
 本発明において、対向配置される一対の電極(電極2及び電極5)の仕事関数は、相互に相対的に大小関係を有する(即ち互いに仕事関数の異なる)ものとすればよい。従って、電極2の仕事関数が電極5よりも相対的に大きければよい。この場合、両電極間の仕事関数の差は0.5V以上であることが好ましい。尚、各電極と半導体層の間にバッファー層を設置し、電極上のバッファー層の化合物と電極とが化学結合している場合は、これらの制約が緩和されることがある。
 電極2及び電極5としては、例えば、金、白金、銀等の貴金属類、酸化亜鉛、酸化インジウム、酸化錫(NESA)、錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化錫(FTO)等の金属酸化物、リチウム、リチウム-インジウム合金、ナトリウム、ナトリウム-カリウム合金、カルシウム、マグネシウム、マグネシウム-銀合金、マグネシウム-インジウム合金、インジウム、ルテニウム、チタニウム、マンガン、イットリウム、アルミニウム、アルミニウム-リチウム合金、アルミニウム-カルシウム合金、アルミニウム-マグネシウム合金、クロミウム、グラファイト薄膜の他PEDOT-PSS等の有機導電性化合物等を適宜用いることができる。これらの電極物質は、単独で使用してもよく、或いは複数併用してもよい。電極2は、透明性を有する必要が有るため、酸化亜鉛、NESA、ITO、FTO及びPEDOT-PSS等の透明性を有する材料が用いられる。電極2及び電極5は、これらの電極物質を用いて、上記光電変換層4同様にドライプロセス又はウェットプロセスの方法により形成することができる。また、ゾルゲル法等により焼成して形成してもよい。また、電極の厚みは、使用する電極物質の材料にもよるが、電極2及び電極5とも、一般的に5~1000nm程度、更に好ましくは10~500nm程度に設定する。
 電荷移動層3及び6は、電極材料が光電変換層へ侵入・反応するのを防止したり、光電変換層で分離された電荷の再結合を防止し効率的に電極2及び5へ電荷を移動させる等の役割がある。材料としては、PEDOT:PSS、PEO、V25、酸化亜鉛、フッ化リチウム、TiOx、ナフタレンテトラカルボン酸無水物等の電荷移動物質が挙げられる。電荷移動層3は、透明性を有する必要が有る。光電変換層4がP3HT:PCBMのバルクヘテロ型である場合、電荷移動層3はPEDOT:PSSがよく用いられ、電荷移動層6はLiFがよく用いられる。電荷移動層3及び6は、これらの電荷移動物質を用いて、上記光電変換層4同様にドライプロセス又はウェットプロセスの方法により形成することができる。また、電荷移動層3及び6の厚みは、一般的に0.01~100nm、更に好ましくは0.1~50nm程度に設定する。
 本発明の光電変換素子は、本発明の有機薄膜太陽電池の他、フォトダイオード、光検出器等に用いることができる。
<第二のビベンゾ[b]フラン化合物>
 第二のビベンゾ[b]フラン化合物は、上記一般式(B1)又は(B2)で表される。
 尚、特に説明しない部分については、第一のビベンゾ[b]フラン化合物における説明が適宜適用される。
 上記一般式(B2)におけるR13及びR14が表す置換されていてもよい炭化水素基及び置換されていてもよい複素環基としては、上記一般式(2)におけるR13及びR14と同様の基が挙げられる。
 群X中のX1及びX4を表すNR3のR3が表す置換されていてもよい炭化水素基としては、上記式(2)におけるR13及びR14が表す置換されていてもよい炭化水素基と同様の基が挙げられる。
 第二のビベンゾ[b]フラン化合物は、何れも、その製造方法に制限されず、周知一般の反応を利用した方法で得ることができる。上記一般式(B1)で表されるビベンゾ[b]フラン化合物の製造方法の一例を以下に挙げる。
 先ず、上述した方法により3,4:3'4'-ビベンゾ[b]フランを製造する。次に、得られた3,4:3'4'-ビベンゾ[b]フランをブロモ化してジブロモビベンゾ[b]フラン(A)とする。或いは、対応するハロゲン化合物、トリフラート体、ホウ素化合物、ケイ素化合物、亜鉛化合物、スズ化合物へと変換したビベンゾフラン誘導体を使用しても良い。
 続いて、ジブロモビベンゾ[b]フラン(A)と、R21-X-及びR22-X-に対応する合成中間体とのカップリング反応を経て、目的の第二のビベンゾ[b]フラン化合物を得ることができる。
 また、R21-X-及びR22-X-の構造によっては、ブロモ化せずに、3,4:3'4'-ビベンゾ[b]フランに対し、直接、R21-X-及びR22-X-に対応する合成中間体とのカップリング反応を行うことができる。
 第二のビベンゾ[b]フラン化合物は、第一のビベンゾ[b]フラン化合物の中間体として好適なほか、酸化防止剤等の用途にも使用することができる。
 以下、中間体合成例、実施例及び比較例をもって本発明を更に詳細に説明する。しかしながら、本発明は以下の実施例等によって何ら制限を受けるものではない。
 中間体合成例1は、第二のビベンゾ[b]フラン化合物の合成に必要な中間体(上記ジブロモビベンゾ[b]フラン(A))の合成を示し、中間体合成例2~5は、第一のビベンゾ[b]フラン化合物の合成に必要な中間体(第二のビベンゾ[b]フラン化合物)の合成を示す、実施例1~18は、第一のビベンゾ[b]フラン化合物の合成例である。実施例19~60及び比較例1~10においては、実施例1~18で得られた第一のビベンゾ[b]フラン化合物又は比較化合物等を用いて本発明の光電変換材料を調製し、該光電変換材料を用いて光電変換層及び光電変換素子を作製し、光電変換素子の評価を行った。
〔中間体合成例1〕BBF-Br2:ジブロモビベンゾ[b]フラン(A)の合成
<ステップ1>下記〔化13〕に示すジカルボン酸体の合成
 アントラルフィン25.0g(0.10mol)、2-ブタノン470ml、炭酸カリウム54.7g(0.40mol)、及びブロモ酢酸エチル60.8g(0.36mol)を仕込んだ溶液を、90℃まで昇温し、6時間反応させた後、室温まで冷却し塩酸を加え、ろ過した。残渣を塩酸、超純水、メタノールにて洗浄した後、減圧にて乾燥させ、茶色結晶42.1gを得た(収率98%)。
 引き続き、上記茶色結晶36.0g(0.09mol)、水酸化ナトリウム12.1g(0.30mol)、超純水32.0g、エタノール65g、及び2-ブタノン600mlを仕込んだ溶液を90℃まで昇温し、6時間反応させた後、室温付近まで冷却し塩酸を加え、残渣をろ過した。この残渣を塩酸、超純水、トルエンにて洗浄した後、減圧にて乾燥させ、黄緑色結晶のジカルボン酸体30.8gを得た(収率99%)。得られた黄緑色結晶が目的物のジカルボン酸体であることは1H-NMRで確認した。分析結果を次に示す。
 1H-NMR(DMSO-D6)δ:13.09(2H、s)、7.80-7.71(4H、m)、7.37(2H、d、J=7.3Hz)、4.91(4H、s)
Figure JPOXMLDOC01-appb-C000038
<ステップ2>BBF:ビベンゾ[b]フランの合成
 ステップ1で得られたジカルボン酸体200mg(0.56mmol)、4-ピコリン3.6g、及び無水酢酸3.3gを仕込んだ溶液を175℃まで昇温した後、2時間反応させた。5℃まで冷却し、塩酸及びクロロホルムを加え、油水分離し、有機層を塩酸、飽和炭酸水素ナトリウム水溶液、超純水にて洗浄した。有機層に硫酸マグネシウムを加えて乾燥させ、ろ過、減圧濃縮した後、薄層クロマトクロマトグラフィー(ヘキサン-クロロホルム)にてBBFの生成を確認した。得られた化合物が目的物のBBFであることは1H-NMR及び13C-NMRで確認した。また質量分析も行った。分析結果を次に示す。
 1H-NMR(CDCl3)δ:7.89(2H、s)、7.42(2H、dd、J=5.8、2.1Hz)、7.32(4H、t、J=3.0Hz)
 13C-NMR(CDCl3)δ:154.13、137.91、128.74、126.39、123.63、117.90、117.17、110.23
 MS(TOF-MS、Dith):m/z 232.2(100%)、464.3(8%)
 MS(TOF-MS、DHB):m/z 232.2(100%)、464.3(14%)
<ステップ3>BBF-Br2の合成
 窒素雰囲気下、ステップ2で得られたBBFの1.0g(4.3mmol)、及びジメチルホルムアミド(DMF)22mlを仕込んだ溶液を0℃まで冷却した後、N-ブロモこはく酸イミド(NBS)1.8g(10.3mmol)のDMF溶液15mlを滴下し、20分間撹拌した。室温まで昇温し2時間反応させ、超純水及びトルエンを加え油水分離し、有機層を超純水で洗浄した。有機層を硫酸マグネシウムで乾燥させた後、ろ過、減圧濃縮、シリカゲルカラムクロマトグラフィーにて精製し(展開溶媒:ヘキサン-トルエン)、茶色結晶を171mg得た(収率10%)。得られた茶色結晶が目的物のBBF-Br2であることは1H-NMRで確認した。分析結果を次に示す。
1H-NMR(CDCl3)δ:7.75(2H、d、J=7.3Hz)、7.39-7.31(4H、m)
〔中間体合成例2〕下記〔化14〕に示すBBF-3HTの合成
 窒素雰囲気下、中間体合成例1で得られたBBF-Br2を1.0g(2.56mmol)、及びトルエン130mlを仕込んだ溶液を超音波照射し、更にこの溶液に3-ヘキシル-2-チオフェンボロン酸ピナコールエステル2.1g(7.17mmol)、テトラキス(トリフェニルホスフィン)パラジウム300mg(0.26 mmol)、及び炭酸ナトリウム水溶液6.4ml(2.0M、12.8mmol)を加え、110℃で7時間反応させた。更に、3-ヘキシル-2-チオフェンボロン酸ピナコールエステル1.4g(4.76mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム250mg(0.22 mmol)を加え、110℃で5時間反応させた。塩酸及びトルエンを加え油水分離し、有機層を超純水にて2回洗浄した。有機層を硫酸マグネシウムで乾燥させた後、ろ過、減圧濃縮、シリカゲルカラムクロマトグラフィーにて精製し(展開溶媒:ヘキサン-トルエン)、黄色油状物を1.45g得た(収率99%)。得られた黄色油状物が目的物のBBF-3HTであることは1H-NMRで確認した。分析結果を次に示す。
 1H-NMR(CDCl3)δ:7.50(2H、d、J=26.2Hz)、7.37(2H、d、J=18.3Hz)、7.33-7.27(4H、m)、7.11(2H、d、J=18.9Hz)、2.72(4H、t、J=48.2Hz)、1.67-1.55(4H、m)、1.31-1.08(12H、m)、0.76(6H、t、J=46.3Hz)
Figure JPOXMLDOC01-appb-C000039
〔中間体合成例3〕下記〔化15〕に示すBBF-3HTBの合成
 中間体合成例2で得られたBBF-3HTを100mg(0.24mmol)、及びテトラヒドロフラン(THF)6.5mlを仕込んだ溶液に、トリメチルフェニルアンモニウムブロミド(PTMA-Br3)266 mg(0.71 mmol)のTHF溶液1.0mlを滴下し、室温で30分間撹拌した。チオ硫酸ナトリウム水溶液、及びトルエンを加え油水分離し、有機層を超純水で洗浄した。有機層を硫酸マグネシウムで乾燥させた後、ろ過、減圧濃縮、シリカゲルカラムクロマトグラフィーにて精製し(展開溶媒:ヘキサン-トルエン)、黄色結晶を142mg得た(収率99%)。得られた黄色結晶が目的物のBBF-3HTBであることは1H-NMRで確認した。分析結果を次に示す。
 1H-NMR(CDCl3)δ:7.40-7.34(2H、m)、7.34-7.29(4H、m)、7.07(2H、s)、2.64(4H、t、J=48.8Hz)、1.64-1.50(4H、m)、1.28-1.06(12H、m)、0.76(6H、t、J=44.5Hz)
Figure JPOXMLDOC01-appb-C000040
〔中間体合成例4〕下記〔化16〕に示すBBF-3HT2Bの合成
 中間体合成例3で合成したBBF-3HTBを0.19g(0.33mmol)、及びトルエン20mlを仕込んだ溶液を超音波照射し、更にこの溶液に3-ヘキシル-2-チオフェンボロン酸ピナコールエステル0.26g(0.92mmol)、テトラキス(トリフェニルホスフィン)パラジウム38mg(0.033mmol)、及び炭酸ナトリウム水溶液0.83ml(2M、1.65mmol)を加え、110℃で8時間反応させた。更に、3-ヘキシル-2-チオフェンボロン酸ピナコールエステル0.17g(0.61mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム32mg(0.027mmol)を加え、110℃で5時間反応させた。塩酸及びトルエンを加え油水分離し、有機層を超純水にて2回洗浄した。有機層を硫酸マグネシウムで乾燥させた後、ろ過、減圧濃縮、シリカゲルカラムクロマトグラフィーにて精製した。精製物をテトラヒドロフラン(THF)9mlに溶解し、トリメチルフェニルアンモニウムブロミド(PTMA-Br3)355mg(0.95mmol)のTHF溶液1.3mlを滴下し、室温で30分間攪拌した。チオ硫酸ナトリウム水溶液、及びトルエンを加え油水分離し、有機層を超純水で洗浄した。有機層を硫酸マグネシウムで乾燥させた後、ろ過、減圧濃縮、シリカゲルカラムクロマトグラフィーにて精製し(展開溶媒:ヘキサン-トルエン)、橙色結晶のBBF-3HT2Bを0.24g得た(収率93%)。同定は1H-NMRにて行った。分析結果を次に示す。
 1H-NMR(CDCl3)δ:7.54-7.44(2H、m)、7.37-7.27(4H、m)、7.05(2H、s)、6.94(2H、s)、2.78(4H、t、J=27.4Hz)、2.71(4H、t、J=26.8Hz)、1.71-1.58(8H、m)、1.45-1.12(24H、m)、0.88(6H、t、J=37.2Hz)、0.77(6H、t、J=26.2Hz)
Figure JPOXMLDOC01-appb-C000041
〔中間体合成例5〕下記〔化17〕に示すBBF-4HTBの合成
 中間体合成例2で用いた3-ヘキシル-2-チオフェンボロン酸ピナコールエステルを4-ヘキシル-2-チオフェンボロン酸ピナコールエステルに変更した以外は中間体合成例2と同様の手順で反応させ、BBF-4HTとし、更に、中間体合成例3と同様の手順で臭素化し、黄色結晶のBBF-4HTBを141mg得た(収率99%)。同定は、1H-NMRにて行った。分析結果を次に示す。
 1H-NMR(CDCl3)δ:7.91(2H、d、J=30.5Hz)、7.48(2H、s)、7.34(4H、q、J=50.0Hz)、2.68(4H、t、J=59.1Hz)、1.78-1.63(4H、m)、1.49-1.29(12H、m)、0.92(6H、t、J=78.7Hz)
Figure JPOXMLDOC01-appb-C000042
〔実施例1〕化合物No.5の合成
 窒素雰囲気下、中間体合成例3で合成したBBF-3HTBを180mg(0.25mmol)、及びトルエン10mlを仕込んだ溶液を超音波照射し、更にこの溶液に2,1,3-ベンゾチアジアゾール-4,7-ビス(ボロン酸ピナコールエステル)97mg(0.21mmol)、トリス(ジベンジリデンアセトン)ジパラジウム11mg(0.013 mmol)、トリ(o-トリル)ホスフィン23mg(0.075mmol)、及び炭酸ナトリウム水溶液1.7ml(2.0M、3.4mmol)を加え、120℃で6時間反応させた。更に、トリス(ジベンジリデンアセトン)ジパラジウム11mg(0.013 mmol)、及びトリ(o-トリル)ホスフィン23mg(0.075mmol)を加え、120℃で6時間反応させた。メタノールを加え再沈殿させ、得られた残渣をメタノール、超純水にて洗浄し、アセトン中で還流した。溶液をろ過後、アセトンで洗浄し、乾燥させ、黒紫色結晶の化合物No.5を126mg得た(収率99%)。得られた化合物No.5の数平均分子量(Mn)は3638であり、重量平均分子量(Mw)は5800であり、Mw/Mnは1.59であった。
〔実施例2〕化合物No.6の合成
 窒素雰囲気下、中間体合成例2で合成したBBF-3HTを300mg(0.53mmol)、及びクロロホルム53mlを仕込んだ溶液に、塩化鉄(III)580mg(3.58mmol)を加え、室温で40時間反応させた。ヒドラジン一水和物を加え4時間撹拌した後、メタノールを加え再沈殿させ、得られた残渣をメタノール、超純水にて洗浄し、アセトン中で還流した。得られた残渣を乾燥させ、赤暗色固体の化合物No.6を390mg得た(収率95%)。得られた化合物No.6の数平均分子量(Mn)は、6236であり、重量平均分子量(Mw)は15437であり、Mw/Mnは2.47であった。
〔実施例3〕化合物No.7の合成
 窒素雰囲気下、中間体合成例4で合成したBBF-3HT2Bを200mg(0.19mmol)、2,1,3-ベンゾチアジアゾール-4,7-ビス(ボロン酸ピナコールエステル)81mg(0.21mmol)、及びトルエン15mlを仕込んだ溶液を超音波照射し、更にこの溶液に、テトラキス(トリフェニルホスフィン)パラジウム22mg(0.019mmol)、及び炭酸ナトリウム水溶液8.0ml(2.0M、16.0mmol)を加え、90℃で12時間反応させた。フェニルボロン酸232mg(1.9mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム11mg(0.001mmol)、を加え、90℃で4時間反応させた後、更にファニルブロミド298mg(1.9mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム11mg(0.001mmol)を加え90℃で4時間反応させた。室温まで冷却し、メタノールを加え再沈殿させ、得られた残渣をメタノール、超純水にて洗浄した。更にこの残渣をソックスレー抽出器を用いてアセトンで9時間洗浄した後、乾燥させ、黒紫色結晶の化合物No.7を143mg得た(収率72%)。得られた化合物No.7の数平均分子量(Mn)は、2980であり、重量平均分子量(Mw)は4073であり、Mw/Mnは1.37であった。
〔実施例4~18〕化合物No.8~11、13、14、29及び71~78の合成
 実施例3で用いた手法と同様の手法により、化合物No.8~11、化合物No.13、化合物No.14、化合物No.29及び化合物No.71~78を合成した。収率及び分子量を〔表1〕に示す。
Figure JPOXMLDOC01-appb-T000043
〔実施例19〕
 図1(c)に示す層構成を有する光電変換素子を、以下の手順で作製した。電極2としてITOが150nm成膜してあるガラス基板(支持体1)をIPA煮沸洗浄及びUV-オゾン洗浄した後、電荷移動層3としてPEDOT:PSS(3,4-エチレンジオキシチオフェン:ポリスチレンスルホン酸)を20nmスピンコート法により成膜し、100℃、10分の条件で減圧乾燥した。1,2-ジクロロベンゼン2mLに(A)p型有機半導体として実施例1の化合物を20mg、及び(B)n型有機半導体としてPCBMを80mg溶解させて、実施例19の光電変換材料を調製した。調製した光電変換材料を、スピンコート法により成膜し、100℃、30分の条件で減圧乾燥して光電変換層4とした。こうして得られた有機薄膜層の上に、メタルマスクを用いてLiF0.5nm(電荷移動層6)、及びアルミニウム100nm(電極5)を逐次真空蒸着成膜して、実施例19の光電変換素子を作製した。
 こうして得られた光電変換素子に対し、エアマス1.5G、100mW/cm2の擬似太陽光をITO電極側から照射して光電変換特性(効率(%))を測定した。結果を[表2]に示す。
〔実施例20~60〕
 上記実施例19の光電変換素子の作製において、(A)成分、(B)成分及びそれらの組成比を〔表2〕に示すように変更する以外は、実施例19と同様にして、実施例20~60の光電変換素子を作製した。また、実施例19と同様の操作で、実施例20~60の光電変換素子の光電変換特性(効率(%))を測定した。結果を〔表2〕に示す。
〔比較例1~10〕
 上記実施例19の光電変換素子の作製において、(A)成分として、本発明の化合物の代わりに、下記〔化18〕に示す比較化合物No.1~4を用い、〔表3〕に記載の配合量に従い実施例19と同様の操作で、比較例1~10の光電変換素子を作製し、実施例19と同様の操作で、比較例1~10の光電変換素子の光電変換特性(効率(%))を測定した。結果を〔表3〕に示す。
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-C000046
 比較化合物No.1:1-Material社製、数平均分子量55000
 比較化合物No.2:自社合成品
 比較化合物No.3:Aldrich社製、数平均分子量>20000
 比較化合物No.4:Aldrich社製、数平均分子量10000~20000
 上記結果より、本発明のビベンゾ[b]フラン化合物はp型有機半導体として用いた場合、高い光電変換効率を示すことが確認できた。また、比較例2においては、製膜時に臭気があったが、実施例においては臭気は確認できなかったため、環境負荷も低いと考えられる。
 従って、本発明のビベンゾ[b]フラン化合物を用いた光電変換材料は、光電変換素子及び有機薄膜太陽電池に有用である。

Claims (8)

  1.  下記式(1)又は(2)で表される構成単位を少なくとも1つ有するビベンゾ[b]フラン化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R13及びR14は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基を表す。)
  2.  上記式(1)又は(2)で表される構成単位を少なくとも1つと、下記群Y又は群Zから選ばれる構成単位を少なくとも1つと、を有する請求項1に記載のビベンゾ[b]フラン化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、X1及びX4はS、O又はNR3を表し、kは1~4の整数を表し、R3は置換されていてもよい炭化水素基を表し、群Yで表される構成単位中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、-NR45基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R4及びR5は、置換されていてもよい炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、X2はS又はNR6を表し、X3はS、NR6、CR78又はSiR78を表し、X5はS、O又はNR6を表し、R6、R7及びR8は、置換されていてもよい炭化水素基を表し、群Zで表される構成単位中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、-NR910基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R9及びR10は、置換されていてもよい炭化水素基を表す。)
  3.  下記一般式(3)又は(4)で表される請求項1に記載のビベンゾ[b]フラン化合物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1及びR2は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基を表し、Y1及びY2は、単結合又は下記(Y-1)~(Y-8)から選ばれる基を1~5個組み合わせて連結した基であり、Z1及びZ2は、単結合又は下記(Z-1)~(Z-21)から選ばれる基を表し、nは1以上1000以下の整数を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R11、R12、R13又はR14は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基を表し、Y3及びY4は、単結合又は下記(Y-1)~(Y-8)から選ばれる基を1~5個組み合わせて連結した基であり、Z3及びZ4は、単結合又は下記(Z-1)~(Z-21)から選ばれる基を表し、mは1以上1000以下の整数を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、X1及びX4はS、O又はNR3を表し、kは1~4の整数を表し、R3は置換されていてもよい炭化水素基を表し、(Y-1)~(Y-4)及び(Y-6)~(Y-8)基中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、-NR45基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R4及びR5は、置換されていてもよい炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000007
    (式中、X2はS、NR6又はSiR78を表し、X3はS、NR6、CR78又はSiR78を表し、X5はS、O又はNR6を表し、R6、R7及びR8は、置換されていてもよい炭化水素基を表し、(Z-1)~(Z-21)基中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、-NR910基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R9及びR10は、置換されていてもよい炭化水素基を表す。)
  4.  (A)請求項1~3の何れか1項に記載のビベンゾ[b]フラン化合物を少なくとも一種を含有するp型有機半導体材料、及び(B)n型有機半導体材料を含有してなる光電変換材料。
  5.  請求項4に記載の光電変換材料を製膜して得られる光電変換層。
  6.  請求項5に記載の光電変換層を有してなる光電変換素子。
  7.  請求項6に記載の光電変換素子を有してなる有機薄膜太陽電池。
  8.  下記一般式(B1)又は(B2)で表されるビベンゾ[b]フラン化合物。
    Figure JPOXMLDOC01-appb-C000008
    (式中、R13及びR14は、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、置換されていてもよい炭化水素基又は置換されていてもよい複素環基を表し、R21、R22、R23及びR24は、水素原子、フッ素原子、塩素原子、臭素原子又はヨウ素原子を表し、Xは下記群Xから選ばれる基を1~5個組み合わせた基を表す。)
    Figure JPOXMLDOC01-appb-C000009
    (式中、X1及びX4はS、O又はNR3を表し、R3は、置換されていてもよい炭化水素基を表し、群Xで表される構成単位中の水素原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、水酸基、チオール基、-NR45基、置換されていてもよい炭化水素基又は置換されていてもよい複素環基で置換されていてもよく、R4及びR5は、置換されていてもよい炭化水素基を表し、kは1~4の整数を表す。)
PCT/JP2012/077208 2011-10-24 2012-10-22 ビベンゾ[b]フラン化合物、光電変換材料及び光電変換素子 WO2013061909A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280039290.XA CN103889990A (zh) 2011-10-24 2012-10-22 二苯并[b]呋喃化合物、光电转换材料和光电转换元件
US14/236,225 US9450119B2 (en) 2011-10-24 2012-10-22 Bibenzo[B]furan compound, photoelectric conversion material, and photoelectric conversion element
EP12842751.5A EP2772494B1 (en) 2011-10-24 2012-10-22 Bibenzo[b]furan compound, photoelectric conversion material, and photoelectric conversion element
KR1020147003440A KR20140083969A (ko) 2011-10-24 2012-10-22 비벤조〔b〕푸란 화합물, 광전 변환 재료 및 광전 변환 소자
JP2013540764A JP6095229B2 (ja) 2011-10-24 2012-10-22 ビベンゾ[b]フラン化合物、光電変換材料及び光電変換素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011232808 2011-10-24
JP2011-232808 2011-10-24

Publications (1)

Publication Number Publication Date
WO2013061909A1 true WO2013061909A1 (ja) 2013-05-02

Family

ID=48167741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077208 WO2013061909A1 (ja) 2011-10-24 2012-10-22 ビベンゾ[b]フラン化合物、光電変換材料及び光電変換素子

Country Status (7)

Country Link
US (1) US9450119B2 (ja)
EP (1) EP2772494B1 (ja)
JP (1) JP6095229B2 (ja)
KR (1) KR20140083969A (ja)
CN (2) CN108250208A (ja)
TW (1) TWI582082B (ja)
WO (1) WO2013061909A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240483A (ja) * 2013-05-13 2014-12-25 株式会社Adeka ピセン誘導体、光電変換材料及び光電変換素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3749632A4 (en) 2018-02-09 2022-02-23 President and Fellows of Harvard College HIGH CAPACITY RETENTION QUINONES FOR USE AS ELECTROLYTES IN AQUEOUS REDOX FLOW BATTERIES
EP3861586A4 (en) 2018-10-01 2022-11-23 President and Fellows of Harvard College EXTENDING THE LIFE OF ORGANIC CIRCULATING BATTERIES THROUGH OXIDE-REDUCTION STATE MANAGEMENT

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177634A (ja) * 2009-02-02 2010-08-12 Mitsui Chemicals Inc 有機トランジスタ
JP2011195566A (ja) * 2010-02-25 2011-10-06 Adeka Corp 新規ビベンゾ[b]フラン化合物、並びに該化合物を含有してなる有機半導体材料及び有機半導体素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997821A4 (en) * 2006-02-22 2010-09-29 Univ Osaka FLUOROUS COMPOUND AND METHOD FOR THE PRODUCTION THEREOF, FLUOROUS POLYMER, ORGANIC THIN FILM AND APPARATUS WITH ORGANIC THIN FILM
JP4771888B2 (ja) 2006-08-10 2011-09-14 三洋電機株式会社 有機薄膜光電変換素子及びその製造方法
JP2008140989A (ja) 2006-12-01 2008-06-19 Mitsui Chemicals Inc 有機トランジスタ
JP5359173B2 (ja) 2007-12-05 2013-12-04 東レ株式会社 光起電力素子用電子供与性有機材料、光起電力素子用材料および光起電力素子
US7964741B2 (en) * 2008-05-20 2011-06-21 The United States Of America As Represented By The Secretary Of The Army Bibenzothiophene derivatives
JP2010018529A (ja) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd ベンゾジフラン化合物及び有機半導体デバイス
JP2011116962A (ja) 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd 組成物及び電子素子
CN103415527B (zh) * 2011-04-05 2016-06-29 株式会社艾迪科 化合物以及光电转换元件
JP5874140B2 (ja) * 2011-12-28 2016-03-02 株式会社Adeka 色素増感太陽電池
EP3036305B1 (en) * 2013-08-23 2019-04-17 Basf Se Compounds with terminal heteroarylcyanovinylene groups and their use in organic solar cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177634A (ja) * 2009-02-02 2010-08-12 Mitsui Chemicals Inc 有機トランジスタ
JP2011195566A (ja) * 2010-02-25 2011-10-06 Adeka Corp 新規ビベンゾ[b]フラン化合物、並びに該化合物を含有してなる有機半導体材料及び有機半導体素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUI-MING GE ET AL.: "Antioxidant Oligostilbenoids from the Stem Wood of Hopea hainanensis", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 57, no. 13, 2009, pages 5756 - 5761, XP055142471 *
See also references of EP2772494A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240483A (ja) * 2013-05-13 2014-12-25 株式会社Adeka ピセン誘導体、光電変換材料及び光電変換素子

Also Published As

Publication number Publication date
JPWO2013061909A1 (ja) 2015-04-02
CN108250208A (zh) 2018-07-06
TW201326146A (zh) 2013-07-01
KR20140083969A (ko) 2014-07-04
EP2772494B1 (en) 2016-09-21
TWI582082B (zh) 2017-05-11
EP2772494A4 (en) 2015-08-26
EP2772494A1 (en) 2014-09-03
CN103889990A (zh) 2014-06-25
US9450119B2 (en) 2016-09-20
US20140252278A1 (en) 2014-09-11
JP6095229B2 (ja) 2017-03-15

Similar Documents

Publication Publication Date Title
JP5805438B2 (ja) 新規化合物、光電変換材料及び光電変換素子
JP2019536744A (ja) 有機半導体化合物
JP5417039B2 (ja) インドール誘導体及びそれを用いた有機薄膜太陽電池
JP6297891B2 (ja) 有機材料及び光電変換素子
Liang et al. Donor–acceptor conjugates-functionalized zinc phthalocyanine: Towards broad absorption and application in organic solar cells
WO2014185535A1 (ja) フラーレン誘導体、及びn型半導体材料
JP5791995B2 (ja) 新規化合物、光電変換材料及び光電変換素子
JP6095229B2 (ja) ビベンゾ[b]フラン化合物、光電変換材料及び光電変換素子
JP6625546B2 (ja) ピセン誘導体、光電変換材料及び光電変換素子
KR20190064410A (ko) 신규한 화합물 및 이를 이용하는 유기 전자 소자
JP6284822B2 (ja) ピセン誘導体、光電変換材料及び光電変換素子
JP2020506897A (ja) ヘテロ環化合物およびこれを含む有機電子素子
JP6371051B2 (ja) アントラキノン誘導体、光電変換材料及び光電変換素子
JP6051102B2 (ja) 有機光電変換素子および有機薄膜太陽電池
JP5503184B2 (ja) フラーレン誘導体、組成物及び有機光電変換素子
JP2015183127A (ja) ベンゾジチオフェン骨格を有するポリマー及びそれを用いた有機薄膜太陽電池材料
JP2015015462A (ja) 光電変換素子及びこれを用いてなる有機薄膜型太陽電池
JP2015015461A (ja) 光電変換素子及びこれを用いてなる有機薄膜型太陽電池
WO2014098094A1 (ja) 有機光電変換素子、有機薄膜太陽電池、これらに用いる組成物、塗布膜、ポリマーおよび化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842751

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013540764

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14236225

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012842751

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012842751

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147003440

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE