WO2013061821A1 - Resin composition for reflective plate and reflective plate - Google Patents
Resin composition for reflective plate and reflective plate Download PDFInfo
- Publication number
- WO2013061821A1 WO2013061821A1 PCT/JP2012/076666 JP2012076666W WO2013061821A1 WO 2013061821 A1 WO2013061821 A1 WO 2013061821A1 JP 2012076666 W JP2012076666 W JP 2012076666W WO 2013061821 A1 WO2013061821 A1 WO 2013061821A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- resin composition
- polyamide resin
- reflector
- resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/265—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/06—Polyamides derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/10—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
- C08L83/06—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
- C08L83/08—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2237—Oxides; Hydroxides of metals of titanium
- C08K2003/2241—Titanium dioxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
Definitions
- the present invention relates to a reflecting plate for a light emitting device such as a light emitting diode element (hereinafter referred to as “LED”) and a resin composition for a reflecting plate that can be suitably used as the reflecting plate.
- a light emitting device such as a light emitting diode element (hereinafter referred to as “LED”)
- resin composition for a reflecting plate that can be suitably used as the reflecting plate.
- the LED light-emitting device is small and lightweight, easy to incorporate into various devices, strong against vibrations and repeated ON / OFF, has a very long life, has a vivid color, and has excellent visibility, plus power consumption comparison It has various desirable characteristics such as low and high. Above all, with the practical use of white LED light emitting devices that combine blue LEDs and phosphors, they can be used as backlights for liquid crystal display screens of mobile phones, computers, televisions, etc., as light sources for automobile headlights, instrument panels, lighting equipment, etc. Has attracted a lot of attention.
- the LED light emitting device is mainly composed of an LED as a light emitting part, a reflector (reflector) also serving as a housing, a transparent sealing material for sealing and protecting the LED, and a lead wire.
- a silicone resin is usually used because of its high light resistance and heat resistance. In order to increase the reliability of the apparatus, high adhesion between the silicone resin constituting the sealing material and the reflector is required.
- thermoplastic resin is used for the reflective plate from the viewpoint of mass productivity.
- the thermoplastic resin changes color due to heat in the manufacturing process such as injection molding and soldering, heat and light during use, and the like. It is a problem that the degree decreases.
- the polyamide resin that is widely used as a heat resistant resin has a problem that it is easily discolored by heat and light.
- the reflector of the LED light emitting device is required to have whiteness and discoloration resistance as well as high adhesion to the silicone resin.
- Patent Document 1 proposes an LED light emitting device comprising a package containing potassium titanate fibers and / or wollastonite, titanium oxide, and semi-aromatic polyamide. Since this package uses potassium titanate fiber and / or wollastonite instead of the conventional glass fiber, smoothness of the package surface is ensured, and adhesion between the silicone resin as a sealing material and the package (It corresponds to the comparative example 1 of this specification). However, the adhesion of this package is not always satisfactory. Further, this package tends to discolor due to continuous exposure to heat and light, and the whiteness tends to be greatly reduced.
- substrate is plasma-processed and then it uses a primer composition (silane coupling agent etc.). It has been proposed that after the primer treatment, the LED is sealed with a sealing material, thereby improving the adhesion between the substrate and the sealing material and improving the reliability of the device.
- the plasma treatment has a problem that the resin composition constituting the substrate may be deteriorated, and the production cost increases due to an increase in the number of steps.
- An object of the present invention is to provide a light-emitting device reflector (hereinafter referred to as “a light-emitting device”) having high whiteness, excellent discoloration resistance to heat and light, and high adhesion (adhesion) with a silicone resin. And a resin composition for a reflecting plate which is a raw material of the reflecting plate.
- the present inventors have found that a reflector obtained by molding a resin composition containing a polyamide resin, titanium oxide, inorganic fibers, and a silanol condensate has high whiteness.
- the present inventors have found that excellent discoloration resistance to heat and light and high adhesion with a silicone resin can be exhibited. Based on this knowledge, the present invention was completed by further research.
- the present invention provides the following resin composition for a reflector and a reflector obtained by molding the resin composition.
- a resin composition for a reflector comprising a polyamide resin, titanium oxide, inorganic fibers, and a silanol condensate.
- Item 2 The resin composition for a reflector according to Item 1, wherein the silanol condensate is a hydrolysis condensate of a silane coupling agent and / or a silicone compound.
- the resin composition for a reflector according to Item 2 obtained by mixing and heating a mixture containing the polyamide resin, titanium oxide, inorganic fibers, and a silane coupling agent and / or a silicone compound.
- Item 4 0.1 to 10 wt% of the silane coupling agent and / or silicone compound in 100 wt% of the mixture containing the polyamide resin, titanium oxide, inorganic fibers, and the silane coupling agent and / or silicone compound Item 4.
- the silanol condensate is represented by the general formula (1) R 1 n Si (OR 2 ) 4-n (1)
- n represents an arbitrary integer selected from 1 to 3
- R 1 represents an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, or an aryl group, and these groups have a substituent.
- R 2 represents an alkyl group having 1 to 4 carbon atoms, and when a plurality of R 2 are present May be the same or different from each other.
- Item 3 The resin composition for a reflector according to Item 1 or 2, which is a hydrolysis-condensation product of the compound represented by:
- Item 6 The resin composition for a reflector according to any one of Items 1 to 5, wherein the polyamide resin has a melting point of 280 ° C or higher.
- Item 7 The resin composition for a reflector according to any one of Items 1 to 6, wherein the polyamide resin is a semi-aromatic polyamide resin in which the ratio of aromatic monomers in all monomer components is 20 mol% or more. .
- Item 8 The reflector resin composition according to any one of Items 1 to 7, wherein the polyamide resin is a semi-aromatic polyamide resin containing an aromatic dicarboxylic acid and an aliphatic alkylenediamine as monomer components.
- Item 9 A reflector obtained by molding the resin composition according to any one of Items 1 to 8.
- Item 10 The reflector according to Item 9, wherein the reflector is for LED.
- a reflector (reflector) obtained from the resin composition for a reflector of the present invention has a high whiteness, excellent discoloration resistance to heat and light, and a silicone resin constituting a sealing material. High adhesion (adhesion). It also has excellent mechanical strength as a reflector. Therefore, it can be suitably used as a reflector for light emitting devices (particularly for LEDs).
- the resin composition for a reflector of the present invention is characterized by containing a polyamide resin, titanium oxide, inorganic fibers, and a silanol condensate.
- the silanol condensate is dispersed in a polyamide resin which is a matrix of the reflector resin composition.
- the silanol condensate comprises a hydrolysis condensate of a silane coupling agent and / or a silicone compound, and when these compounds have a reactive functional group capable of reacting with a polyamide resin, the resin composition for a reflector
- the product includes those in which the silanol condensate and polyamide resin or the like are partially reacted to form a covalent bond.
- polyamide resin As the polyamide resin used in the present invention, various aliphatic monomers and aromatic monomers can be used as the monomer component, and any polyamide resin can be used without any particular limitation.
- the polyamide resin used in the present invention preferably has a melting point of 280 ° C. or higher in order to suppress deformation, discoloration, etc. of the reflector during reflow soldering.
- the melting point is preferably 350 ° C. or lower, and more preferably 330 ° C. or lower.
- the melting point can be measured according to JIS-K7121.
- the polyamide resin used in the present invention is preferably a semi-aromatic polyamide resin in order to suppress deformation and deterioration of physical properties due to moisture absorption.
- the semi-aromatic polyamide resin means a polyamide resin containing an aromatic monomer as a monomer component of the polyamide resin.
- the aromatic monomer in the monomer component constituting the polyamide resin is usually 20 mol% or more, preferably 25 mol% or more, more preferably 25 to 60 mol%.
- the molar fraction of the aromatic monomer in the semi-aromatic polyamide resin means the molar fraction of the aromatic monomer in all the monomers used for the polymerization raw material.
- aromatic monomer examples include aromatic diamine, aromatic dicarboxylic acid, aromatic aminocarboxylic acid and the like.
- aromatic diamines include p-phenylenediamine, o-phenylenediamine, m-phenylenediamine, paraxylenediamine, and metaxylenediamine.
- aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, and phthalic acid. 2-methyl terephthalic acid, naphthalene dicarboxylic acid and the like, and examples of the aromatic amino carboxylic acid include p-aminobenzoic acid and the like. Of these, aromatic dicarboxylic acids are preferred.
- Aromatic monomers can be used alone or in combination of two or more.
- monomer components other than aromatic monomers include aliphatic dicarboxylic acids, aliphatic alkylene diamines, alicyclic alkylene diamines, and aliphatic amino carboxylic acids.
- aliphatic dicarboxylic acid examples include adipic acid, sebacic acid, azelaic acid, dodecanedioic acid and the like. Among these, adipic acid is preferable. Aliphatic dicarboxylic acid can be used individually by 1 type, or can use 2 or more types together.
- the aliphatic alkylene diamine may be linear or branched. Specifically, ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, Examples thereof include 2-methylpentamethylenediamine and 2-ethyltetramethylenediamine. Of these, hexamethylenediamine, 2-methylpentamethylenediamine and the like are preferable.
- An aliphatic alkylenediamine can be used individually by 1 type, or can use 2 or more types together.
- Examples of the alicyclic alkylenediamine include 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 1,3-bis (aminomethyl) cyclohexane, bis (aminomethyl) cyclohexane, and bis (4-aminocyclohexyl) methane. 4,4′-diamino-3,3′-dimethyldicyclohexylmethane, isophoronediamine, piperazine and the like.
- An alicyclic alkylenediamine can be used individually by 1 type, or can use 2 or more types together.
- aliphatic aminocarboxylic acids examples include 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminodokecanic acid, and the like, and corresponding lactams may be used.
- Aliphatic aminocarboxylic acids can be used alone or in combination of two or more.
- aliphatic dicarboxylic acid aliphatic alkylene diamine and the like are preferable.
- These monomer components can be used alone or in combination of two or more.
- dicarboxylic acid is preferably terephthalic acid, a mixture of terephthalic acid and adipic acid, a mixture of terephthalic acid and isophthalic acid, or a mixture of terephthalic acid, isophthalic acid and adipic acid.
- those having a terephthalic acid ratio of 25 mol% or more are particularly preferable.
- semiaromatic polyamide resins those in which the aliphatic alkylenediamine is hexamethylenediamine or a mixture of hexamethylenediamine and 2-methylpentamethylenediamine are particularly preferable.
- the semi-aromatic polyamide resins particularly preferable examples include terephthalic acid 25 to 30 mol% (especially about 27.5 mol%), adipic acid 20 to 25 mol% (particularly about 22.5 mol%). And hexamethylenediamine 45-55 mol% (especially about 50 mol%), terephthalic acid 30-35 mol% (especially about 32 mol%), adipic acid 15-20 mol% (especially about 18 mol%) and 45 to 55 mol% (especially about 50 mol%) of hexamethylene diamine, 45 to 55 mol% (especially about 50 mol%) terephthalic acid, 20 to 30 mol of hexamethylene diamine % (Particularly about 25 mol%) and 2-methylpentamethylenediamine 20 to 30 mol% (particularly about 25 mol%).
- the melting point and the like can be appropriately adjusted by appropriately selecting the composition ratio and type of the aromatic monomer and other monomer components constituting the semi-aromatic polyamide resin.
- Titanium oxide used in the present invention can be used without particular limitation as long as it is a titanium oxide capable of improving the whiteness as a reflector. If necessary, it may be treated with a known surface treating agent such as alumina, silica, silane coupling agent, titanium coupling agent and the like.
- titanium oxide used in the present invention various crystal forms such as anatase type, rutile type, monoclinic type and the like can be used, but a rutile type having a high refractive index and good light stability is preferable.
- powders of various shapes such as particles, fibers, and plates (including flakes, scales, mica, etc.) can be used, and preferably particles are used. Is good.
- the size of the titanium oxide used in the present invention is not particularly limited, but from the viewpoint of increasing whiteness, the average particle size is preferably 0.05 to 0.5 ⁇ m, more preferably 0.1 to 0.00. 3 ⁇ m.
- the average particle diameter of titanium oxide can be measured by a laser diffraction method.
- titanium oxide used in the present invention one or more of the above-mentioned titanium oxides can be used.
- inorganic fibers used in the present invention include glass fiber, glass milled fiber, zinc oxide fiber, sodium titanate fiber, potassium titanate fiber, aluminum borate fiber, magnesium borate fiber, magnesium oxide fiber, and silicic acid.
- Aluminum fiber, silicon nitride fiber, wollastonite, etc. are mentioned. 1 type (s) or 2 or more types selected from the group which consists of the above-mentioned inorganic fiber can be used, and the mechanical strength, dimensional stability, and heat resistance of the resin composition obtained can be improved.
- the inorganic fiber used in the present invention uses one or more selected from the group consisting of wollastonite and potassium titanate fibers from the viewpoint of increasing the hiding power, and from the viewpoint of planar smoothness and microreinforcing properties. It is preferable to do this.
- Wollastonite is an inorganic fiber made of calcium metasilicate.
- the dimensions of wollastonite are not particularly limited, but usually the average fiber diameter is 0.1 to 15 ⁇ m, preferably 2.0 to 7.0 ⁇ m, the average fiber length is 3 to 180 ⁇ m, preferably 20 to 100 ⁇ m, and the average aspect The ratio is 3 or more, preferably 3 to 50, more preferably 5 to 30. Commercially available products can also be used in the present invention.
- Vistal W (trade name: manufactured by Otsuka Chemical Co., Ltd., average fiber length: 25 ⁇ m, average fiber diameter: 3 ⁇ m), Nyglos I-10013 (trade name: manufactured by Nyco, average fiber length) : 65 ⁇ m, average fiber diameter: 5 ⁇ m) and the like can be used.
- the potassium titanate fiber is not particularly limited and conventionally known ones can be widely used.
- potassium titanate fiber, potassium titanate fiber, potassium potassium titanate fiber, and the like can be used.
- the dimensions of the potassium titanate fiber are not particularly limited, but usually the average fiber diameter is 0.01 to 1 ⁇ m, preferably 0.1 to 0.5 ⁇ m, the average fiber length is 1 to 50 ⁇ m, preferably 3 to 30 ⁇ m, and the average The aspect ratio is 10 or more, preferably 15 to 35.
- commercially available products can also be used.
- TISMO D102 (trade name: manufactured by Otsuka Chemical Co., Ltd., average fiber length: 15 ⁇ m, average fiber diameter: 0.5 ⁇ m) can be used.
- the average fiber length and average fiber diameter of the wollastonite and potassium titanate fibers can be measured by observation with an optical microscope or a scanning electron microscope.
- the inorganic fiber used in the present invention may be subjected to a surface treatment.
- the surface treatment may be performed using a silane coupling agent, a titanium coupling agent or the like according to a known method.
- a silane coupling agent is preferable and aminosilane is particularly preferable.
- silanol condensate used in the present invention is an oligomer or polymer having a siloxane bond as a main skeleton and an organic group.
- the silanol condensate is preferably a hydrolysis condensate of a silane coupling agent or a silicone compound.
- a resin composition for a reflector is obtained by mixing and heating (particularly, melt-kneading) a silane coupling agent and / or a silicone compound together with a polyamide resin, titanium oxide, and inorganic fibers.
- a silane coupling agent when used, it reacts (hydrolyzes) with water molecules present in the polyamide resin and moisture in the air during mixing to form silanol, which is condensed by heat treatment to form a silanol condensate. give.
- a silicone type compound itself can become a silanol condensate.
- Examples of the silanol condensate used in the present invention include, for example, the general formula (1) R 1 n Si (OR 2 ) 4-n (1) (In the formula, n represents an arbitrary integer selected from 1 to 3, R 1 represents an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, or an aryl group, and these groups have a substituent.
- R 1 s when there are a plurality of R 1 s , they may be the same or different from each other, R 2 represents an alkyl group having 1 to 4 carbon atoms, and when a plurality of R 2 are present May be the same or different from each other.
- the hydrolysis-condensation product of the compound (silane coupling agent) represented by these is mentioned.
- the silanol condensate may be produced from one or a mixture of two or more compounds represented by the general formula (1) through hydrolysis and condensation.
- Examples of the alkyl group represented by R 1 include a linear or branched alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms. Specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group , Nonyl group, decyl group and the like.
- An alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 2 to 4 carbon atoms is more preferable.
- the alkyl group may have 1 to 4 substituents (preferably 1 to 3, more preferably 1) described later at any position.
- Examples of the cycloalkyl group represented by R 1 usually include a cycloalkyl group having 3 to 10 carbon atoms. Specific examples include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group. A cycloalkyl group having 5 to 8 carbon atoms is preferred. The cycloalkyl group may have 1 to 4 substituents (preferably 1 to 3, more preferably 1) described later at any position.
- Examples of the alkenyl group represented by R 1 include linear or branched alkenyl groups having 2 to 20 carbon atoms, preferably alkenyl groups having 2 to 10 carbon atoms. Specific examples include a vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-butenyl, 2-butenyl group, pentenyl group, hexenyl, heptenyl group and the like. An alkenyl group having 2 to 4 carbon atoms is preferred.
- the alkenyl group may have 1 to 4 substituents (preferably 1 to 3, more preferably 1) described later at any position.
- Examples of the cycloalkenyl group represented by R 1 usually include a cycloalkenyl group having 3 to 10 carbon atoms. Specific examples include a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, and the like. A cycloalkyl group having 5 to 8 carbon atoms is preferred.
- the cycloalkenyl group may have 1 to 4 substituents (preferably 1 to 3, more preferably 1) described later at any position.
- the aryl group represented by R 1 usually includes an aryl group having 6 to 20 carbon atoms, preferably an aryl group having 6 to 12 carbon atoms. Specifically, a phenyl group, a tolyl group, a xylyl group, a mesityl group, a naphthyl group etc. are mentioned, for example. An aryl group having 6 to 9 carbon atoms is preferred.
- the aryl group may have 1 to 4 substituents (preferably 1 to 3, more preferably 1) described later at any position.
- Each of the groups represented by R 1 may have a substituent.
- substituents include an amino group and an epoxy group which may be substituted with an aryl group (for example, a phenyl group) or an amino lower (for example, having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms) alkyl group.
- a reactive functional group capable of reacting with the amide group, amino group or carboxyl group of the polyamide resin is preferable from the viewpoint of affinity with the polyamide resin which is the matrix of the resin composition.
- an amino lower group for example, 3 to 6 carbon atoms, preferably 2 to 4 carbon atoms
- an alkyl group for example, an epoxy group, a glycidoxy group, a carboxyl group, an epoxycycloalkyl group (for example, 3, 4-epoxycyclohexyl group, etc.), hydroxyl group, isocyanate group and the like are preferable.
- an amino group, an epoxy group, a glycidoxy group, a carboxyl group, a hydroxyl group, an isocyanate group, and an epoxy cyclohexyl which may be substituted with a phenyl group or an alkyl group having 2 to 4 amino carbon atoms, are preferable.
- an amino group, an epoxy group, a glycidoxy group, a carboxyl group, an isocyanate group, and an epoxycyclohexyl group that may be substituted with a phenyl group or an alkyl group having 2 to 4 amino carbon atoms are more preferable.
- R 1 particularly preferably, an alkyl substituted with one group selected from the group consisting of an amino group, a phenylamino group, an aminoethylamino group, an epoxy group, a glycidoxy group, and an epoxycyclohexyl group Groups.
- R 1 Preferable specific examples of the group represented by R 1 include groups represented by the following general formulas (1a) to (1g).
- a to g may be the same or different and each represents an integer of 2 to 6) a to g are preferably 2 or 3, more preferably a is 2 and b to g are 3.
- Examples of the alkyl group having 1 to 4 carbon atoms represented by R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group. Preferred are a methyl group, an ethyl group, and an isopropyl group, and more preferred is a methyl group or an ethyl group.
- the compound represented by the general formula (1) include, for example, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3 -Glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl)- 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltri Methoxysilane, 3-iso
- the compound represented by the general formula (1) used in the present invention (that is, the silane coupling agent) is mixed and heated with the polyamide resin, so that a part or all of the alkoxy group (—OR 2 ) is a polyamide resin. It reacts with moisture contained in it or moisture in the air to produce silanol groups (hydrolysis), and it becomes a silanol condensate by condensation reaction between silanol groups.
- the silanol condensate is generated by the heat of melt kneading, and the silanol condensate can be dispersed in the polyamide resin by the shearing force of melt kneading. Furthermore, when the silanol condensate has a reactive functional group, it is considered that it forms a bond by reacting with the polyamide resin, so that the dispersion state of the silanol condensate in the polyamide resin can be maintained (held), As a result, bleeding out of the silanol condensate can be suppressed.
- the compound represented by the general formula (1) is added to the polyamide resin and mixed (for example, while stirring the polyamide resin, the general formula (1) By dropping, spraying, or the like.
- a mixer such as a super mixer or a Henschel mixer can be used.
- the compound represented by the general formula (1) may be used as it is, or may be used as a solution by dissolving in a solvent that promotes hydrolysis (for example, water, alcohol, or a mixed solvent thereof).
- the compound represented by the general formula (1) and the polyamide resin are melt-kneaded, whereby the produced silanol condensate is present or dispersed in the matrix polyamide resin. It is characterized by being.
- the resin composition for a reflector according to the present invention is greatly improved in adhesion, whiteness and discoloration resistance with a silicone resin (encapsulant) because a silanol condensate having a siloxane bond as a main skeleton in a polyamide resin. It is thought that is formed. In this respect, the same effect is exhibited when a resin composition is prepared using a silicone compound having a polysiloxane bond as a main skeleton described below (typically, a compound represented by the general formula (2)). Can be easily understood.
- the resulting resin composition has a resistance to discoloration, particularly discoloration due to light. An excellent effect that can be further suppressed.
- the mechanism of action is unknown, it is assumed that a part or all of the reactive functional group forms a chemical bond such as a covalent bond or a hydrogen bond with the amide group, amino group or carboxyl of the polyamide resin.
- a silanol condensate obtained by condensing the compound represented by the general formula (1) in advance can also be used as a raw material.
- the said silicone type compound is a silanol condensate obtained by hydrolyzing and condensing 1 type, or 2 or more types of the compound shown by General formula (1).
- silicone compound examples include, for example, dimethyl silicone oil, methylphenyl silicone oil, amino modified silicone oil, epoxy modified silicone oil, carbinol modified silicone oil, phenol modified silicone oil, carboxyl modified silicone oil, methyl hydrogen silicone oil.
- Silicone oils such as mercapto modified silicone oil, methacrylic modified silicone oil, polyether modified silicone oil, aralkyl modified silicone oil, fluoroalkyl modified silicone oil, long chain alkyl modified silicone oil, higher fatty acid ester modified silicone oil, phenyl modified silicone oil ; Silicone rubber with a structure in which linear dimethylpolysiloxane is crosslinked; Siloxane bond (CH 3 SiO 3/2) polymethylsilsesquioxane having a crosslinked structure in a three-dimensional network, represented by n oxane; 3 silicone resin or the like of a three-dimensional network structure mainly composed of functional siloxane units can be mentioned .
- These silicone-based compounds include both known compounds that are commercially available and compounds that can be
- R 3 represents an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, or an aryl group, and these groups may have a substituent, and R 3 may be the same as each other. And may be different, l and m represent any integer of 1 or more, and the order of bonding of each repeating unit structure in parentheses is not particularly limited.) The compound represented by these is mentioned.
- an amino group, an epoxy group, a glycidoxy group, a carboxyl group, a hydroxyl group, an isocyanate group, and an epoxy cyclohexyl which may be substituted with a phenyl group or an alkyl group having 2 to 4 amino carbon atoms are preferable.
- an amino group, an epoxy group, a glycidoxy group, a carboxyl group, an isocyanate group, and an epoxycyclohexyl group that may be substituted with a phenyl group or an alkyl group having 2 to 4 amino carbon atoms are more preferable.
- an alkyl substituted with one group selected from the group consisting of an amino group, a phenylamino group, an aminoethylamino group, an epoxy group, a glycidoxy group, and an epoxycyclohexyl group is particularly preferable.
- R 3 Preferable specific examples of the group represented by R 3 include groups represented by the above general formulas (1a) to (1g).
- L is preferably an integer of 1 to 20,000, more preferably an integer of 1 to 10,000
- m is preferably an integer of 1 to 20,000, more preferably an integer of 1 to 10,000.
- a preferable one is the general formula (3).
- R 3A is selected from the group consisting of an amino group, an epoxy group, a glycidoxy group, a carboxyl group, a hydroxyl group, an isocyanate group, and an epoxycyclohexyl group, which may be substituted with a phenyl group or an alkyl group having 2 to 4 amino carbon atoms.
- R 3A is selected from the group consisting of an amino group, an epoxy group, a glycidoxy group, a carboxyl group, a hydroxyl group, an isocyanate group, and an epoxycyclohexyl group, which may be substituted with a phenyl group or an alkyl group having 2 to 4 amino carbon atoms.
- It is an alkyl group substituted with 1 to 3 groups selected, and l and m are the same as above, and the order of bonding of each repeating unit structure in parentheses is not particularly limited.
- the compound represented by these is mentioned.
- R 3A is preferably a group preferably exemplified as the above R 3 , particularly a group represented by the general formulas (1a) to (1g), more preferably the general formulas (1b), (1c ) And (1d).
- R 3B is selected from the group consisting of an amino group, an epoxy group, a glycidoxy group, a carboxyl group, a hydroxyl group, an isocyanate group, and an epoxycyclohexyl group, which may be substituted with a phenyl group or an alkyl group having 2 to 4 amino carbon atoms.
- R 3B is selected from the group consisting of an amino group, an epoxy group, a glycidoxy group, a carboxyl group, a hydroxyl group, an isocyanate group, and an epoxycyclohexyl group, which may be substituted with a phenyl group or an alkyl group having 2 to 4 amino carbon atoms.
- It is an alkyl group substituted with 1 to 3 groups selected, and l and m are the same as above, and the order of bonding of each repeating unit structure in parentheses is not particularly limited.
- the compound represented by these is mentioned.
- R 3B is preferably a group preferably exemplified as the above R 3 , particularly a group represented by the general formulas (1a) to (1g), more preferably the general formulas (1b), (1c ) And (1d).
- the viscosity (25 ° C.) is usually 10 to 2,000 mm 2 / s, preferably 10 to 1,000 mm 2 / s. s. When the viscosity is within this range, the difference in viscosity from the polyamide resin can be reduced during melt mixing, so that uniform dispersion is facilitated. The viscosity can be measured with a kinematic viscosity measuring device.
- the silicone compound represented by the general formula (2) is solid (for example, silicone rubber, polymethylsilsesquioxane, silicone resin, etc.), the powder form is preferable, and the average particle size is usually 0.1. It is ⁇ 20 ⁇ m, preferably 0.5 to 10 ⁇ m. When the average particle size is in this range, it becomes easier to disperse in the resin composition during melt mixing.
- the average particle diameter can be measured by a laser diffraction method.
- the polyamide resin composition of the present invention contains a silanol condensate having a siloxane bond as the main skeleton in the polyamide resin, thereby improving adhesion with the silicone resin, whiteness, and discoloration resistance. Further, when the silanol condensate has a reactive functional group capable of reacting with an amide group, amino group or carboxyl group in the molecule, an excellent effect can be obtained in that discoloration due to light can be further suppressed. Although the detailed mechanism of action is unknown, it is because part or all of the reactive functional group forms a chemical bond such as a covalent bond or a hydrogen bond with the amide group, amino group or carboxyl of the polyamide resin. Guessed.
- an inorganic filler an antioxidant, a heat stabilizer, a flame retardant, a plasticizer, a nucleating agent, a dye, a pigment, as long as the preferable physical properties are not impaired.
- examples of the inorganic filler include talc, silica, zinc oxide (including tetrapots).
- antioxidants include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like.
- phenolic antioxidants include triethylene glycol bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol bis [3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionate], pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5 -Di-tert-butyl-4-hydroxyphenyl) propionate, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate-diethylester, N, N'-hexamethylenebis (3,5-di- tert-butyl-4-hydroxy-hydrocinnamamide), 1,3,5-trimethyl 2,4,6-tris (3
- pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylenebis (3,5-di-tert-butyl-4- Hydroxy-hydrocinnamamide) is preferred.
- phosphorus antioxidants include, for example, tris (2,4-di-tert-butylphenyl) phosphite, 2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) Dibenzo [d, f] [1.3.2] dioxaphosphin-6-yl] oxy] -N, N-bis [2-[[2,4,8,10-tetrakis (1,1dimethyl) Ethyl) dibenzo [d, f] [1.3.2] dioxaphosphobin-6-yl] oxy] -ethyl] ethanamine, bis (2,6-di-tert-butyl-4-methylphenyl) penta Examples include erythritol diphosphite.
- sulfur-based antioxidant examples include, for example, 2,2-thio-diethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], tetrakis [methylene-3- ( Dodecylthio) propionate] methane and the like.
- the resin composition of the present invention comprises a polyamide resin, inorganic fibers, titanium oxide, a silane coupling agent and / or a silicone compound in various blending ratios, and further if necessary.
- a mixture containing other additives can be produced by mixing and heating (particularly melt-kneading).
- melt kneading for example, a known melt kneading apparatus such as a twin screw extruder can be used.
- the polyamide resin used in the present invention is preferably blended so as to be 30 to 80% by weight in 100% by weight of the total amount of the above mixture.
- the upper limit value of the polyamide resin used in the present invention is preferably 70% by weight, and more preferably 65% by weight.
- the lower limit of the polyamide resin used in the present invention is preferably 40% by weight, more preferably 45% by weight.
- the titanium oxide used in the present invention is preferably blended so as to be 5 to 50% by weight in the total amount of 100% by weight of the above mixture.
- the upper limit of titanium oxide used in the present invention is preferably 40% by weight, more preferably 30% by weight.
- the lower limit of titanium oxide used in the present invention is preferably 10% by weight, more preferably 15% by weight.
- the inorganic fibers used in the present invention are preferably blended so that the proportion is 5 to 60% by weight in the total amount of 100% by weight of the above mixture.
- the upper limit value of the inorganic fibers used in the present invention is preferably 40% by weight, more preferably 30% by weight.
- the lower limit of the inorganic fibers used in the present invention is preferably 10% by weight, more preferably 15% by weight.
- the silane coupling agent and / or silicone compound used in the present invention is preferably blended so as to be a ratio of 0.1 to 10% by weight in the total amount of 100% by weight of the above mixture.
- the upper limit of the silanol condensate used in the present invention is preferably 7% by weight, more preferably 5% by weight.
- the lower limit of the silane coupling agent and / or silicone compound used in the present invention is preferably 0.3% by weight, and more preferably 0.5% by weight.
- the amount of additives other than the essential components that may be used in the present invention is not particularly limited as long as the preferable physical properties of the resin composition of the present invention are not impaired. Usually, it is 9.9% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less in the total amount of 100% by weight of the above mixture.
- the heating temperature in the melt kneading is not particularly limited as long as the polyamide resin can be melted, and is usually higher than the melting point of the polyamide resin and lower than the decomposition start temperature. Usually, the temperature in the cylinder of the melt kneader used for melt kneading is adjusted to this temperature range.
- silanol condensate and / or silicone compound obtained from the compound represented by the general formula (1) is mixed and dispersed in the polyamide resin by melt kneading treatment.
- silane coupling agent silane coupling agent
- a reactive functional group is present in the molecule of the silanol condensate and / or silicone compound, a part or all of the functional group reacts with the amide group, amino group or carboxyl group of the polyamide resin. To do.
- the resin composition of the present invention is a known resin molding method such as injection molding, insert molding, compression molding, extrusion molding, blow molding, inflation molding, etc., depending on the type, application, shape, etc. of the target molded product.
- Various molded products can be obtained.
- a molding method combining the above molding methods can also be employed.
- the reflecting plate obtained by molding the resin composition of the present invention can be suitably used as an LED reflecting plate because of its excellent adhesion with a silicone resin as a sealing material, and also has whiteness and discoloration resistance. Since the properties are also excellent, it can be used as an LED reflector without plating the light reflecting surface.
- the reflector of the present invention means a reflector for a light emitting device (reflector) as described above.
- the shape will not be specifically limited, It is not limited to a planar shape of a "plate” shape. For example, three-dimensional shapes such as a box shape, a conical shape, and a parabona shape are also included.
- the reflector of the present invention can be applied not only to LED light emitting devices but also to other uses that reflect light.
- various electrical and electronic parts automotive keyless entry systems, refrigerator interior lighting, liquid crystal display backlights, automotive front panel lighting devices, lighting stands, bed lights, household appliance indicators, optical communications equipment such as infrared communications And reflectors such as ceiling lighting devices.
- the polyamide resin, titanium oxide, inorganic fiber, silane coupling agent, and silanol condensate used in the examples and comparative examples are specifically as follows.
- the melting point of the polyamide resin is the endothermic peak obtained by heating at 25 ° C. to 10 ° C./min under a nitrogen stream using a differential scanning calorimeter (trade name: DSC6200, manufactured by Seiko Instruments Inc.). did.
- ⁇ Polyamide resin> A semi-aromatic polyamide resin obtained by polymerizing hexamethylenediamine, terephthalic acid, and adipic acid at a ratio of 50 mol%, 27.5 mol%, and 22.5 mol%, respectively (trade name: Zytel HTN502HF, manufactured by DuPont, melting point 310 ° C)
- Examples 1 to 17 and Comparative Examples 1 to 3 At the blending ratio shown in Table 1, the polyamide resin and the silanol condensate or the silane coupling agent are melted and kneaded from the main hopper of the twin screw extruder, and the inorganic fibers and titanium oxide are added from the side feeder. Manufactured. The cylinder temperature of the twin screw extruder was 320 ° C.
- the obtained pellets were molded into a JIS test piece and a flat plate having a length of 30 mm ⁇ width of 30 mm ⁇ thickness of 3 mm using an injection molding machine, and used as an evaluation sample.
- the cylinder temperature of the injection molding machine was 330 ° C.
- the mold temperature was 130 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The present invention provides a reflective plate for a light-emitting device that has a high degree of white, excellent fading resistance in the presence of heat and light, and high adhesiveness (adhesive power) with a silicone resin. Also provided is a resin composition for a reflective plate that is the starting material for the reflective plate. The present invention relates to a resin composition for a reflective plate, characterized in comprising a polyamide resin, titanium oxide, inorganic fibers, and silanol condensate, and a reflective plate for a light-emitting device that is obtained using the composition.
Description
本発明は、発光ダイオード素子(Light Emission Diode、以下「LED」という)等の発光装置用反射板及び該反射板として好適に使用できる反射板用樹脂組成物に関する。
The present invention relates to a reflecting plate for a light emitting device such as a light emitting diode element (hereinafter referred to as “LED”) and a resin composition for a reflecting plate that can be suitably used as the reflecting plate.
LED発光装置は、小型かつ軽量で各種機器類へ組み込み易く、振動やON/OFFの繰り返しに強いため寿命が非常に長く、発色が鮮やかで優れた視認性を示し、加えて電力消費量が比較的少ないといった種々の好ましい特性を有する。中でも、青色LEDと蛍光体を組み合わせた白色LED発光装置の実用化により、携帯電話、コンピュータ、テレビ等の液晶表示画面のバックライト、自動車のヘッドライトやインスツルメントパネル、照明器具等の光源として大きな注目を集めている。
The LED light-emitting device is small and lightweight, easy to incorporate into various devices, strong against vibrations and repeated ON / OFF, has a very long life, has a vivid color, and has excellent visibility, plus power consumption comparison It has various desirable characteristics such as low and high. Above all, with the practical use of white LED light emitting devices that combine blue LEDs and phosphors, they can be used as backlights for liquid crystal display screens of mobile phones, computers, televisions, etc., as light sources for automobile headlights, instrument panels, lighting equipment, etc. Has attracted a lot of attention.
LED発光装置は、主に発光部であるLED、ハウジングを兼ねた反射板(リフレクタ)、LEDを封止及び保護する透明な封止材、及びリード線から構成されている。
The LED light emitting device is mainly composed of an LED as a light emitting part, a reflector (reflector) also serving as a housing, a transparent sealing material for sealing and protecting the LED, and a lead wire.
その封止材には、耐光性や耐熱性の高さから、通常、シリコーン樹脂が用いられている。装置の信頼性を高めるためには、封止材を構成するシリコーン樹脂と反射板との高い密着性が求められる。
As the sealing material, a silicone resin is usually used because of its high light resistance and heat resistance. In order to increase the reliability of the apparatus, high adhesion between the silicone resin constituting the sealing material and the reflector is required.
また、反射板には、量産性の観点から熱可塑性樹脂が用いられているが、熱可塑性樹脂では、射出成形や半田付け等の製造工程における熱、使用時の熱や光により変色し、白色度が低下することが問題となっている。中でも、耐熱性樹脂として汎用されているポリアミド樹脂は、熱や光により変色しやすいという問題がある。
In addition, a thermoplastic resin is used for the reflective plate from the viewpoint of mass productivity. However, the thermoplastic resin changes color due to heat in the manufacturing process such as injection molding and soldering, heat and light during use, and the like. It is a problem that the degree decreases. Among them, the polyamide resin that is widely used as a heat resistant resin has a problem that it is easily discolored by heat and light.
そのため、LED発光装置の反射板は、シリコーン樹脂との高い密着性とともに、白色度や耐変色性を有していることが求められている。
Therefore, the reflector of the LED light emitting device is required to have whiteness and discoloration resistance as well as high adhesion to the silicone resin.
また、近年の高輝度やハイパワーを特長とする用途においては、反射板には更なる白色度や耐変色性の改善が求められている。
In addition, in applications characterized by high brightness and high power in recent years, further improvement in whiteness and discoloration resistance is required for the reflector.
例えば、特許文献1では、チタン酸カリウム繊維及び/又はワラストナイトと、酸化チタンと、半芳香族ポリアミドとが含有されたパッケージからなるLED発光装置が提案されている。このパッケージは、従来のガラス繊維に代えてチタン酸カリウム繊維及び/又はワラストナイトを用いるため、パッケージ表面の平滑性が確保されることから、封止材であるシリコーン樹脂とパッケージとの密着性を高めることができると記載されている(本明細書の比較例1に相当する)。しかし、このパッケージの密着性は必ずしも満足できる性能ではない。また、このパッケージでは、継続的な熱や光に晒されることにより変色し白度が大きく低下する傾向にある。
For example, Patent Document 1 proposes an LED light emitting device comprising a package containing potassium titanate fibers and / or wollastonite, titanium oxide, and semi-aromatic polyamide. Since this package uses potassium titanate fiber and / or wollastonite instead of the conventional glass fiber, smoothness of the package surface is ensured, and adhesion between the silicone resin as a sealing material and the package (It corresponds to the comparative example 1 of this specification). However, the adhesion of this package is not always satisfactory. Further, this package tends to discolor due to continuous exposure to heat and light, and the whiteness tends to be greatly reduced.
また、特許文献2では、LEDを搭載した基板を有するLED発光装置において、LEDを封止材により封止する前工程として、基板をプラズマ処理し、次いでプライマー組成物(シランカップリング剤等)によりプライマー処理を行った後、LEDを封止材にて封止することで、基板と封止材との接着性を高め、装置の信頼性を向上することが提案されている。しかし、プラズマ処理は、基板を構成する樹脂組成物を劣化させる虞があり、また工程数増加による生産コストが増加するという問題がある。
Moreover, in patent document 2, in the LED light-emitting device which has the board | substrate which mounts LED, as a pre-process which seals LED with a sealing material, a board | substrate is plasma-processed and then it uses a primer composition (silane coupling agent etc.). It has been proposed that after the primer treatment, the LED is sealed with a sealing material, thereby improving the adhesion between the substrate and the sealing material and improving the reliability of the device. However, the plasma treatment has a problem that the resin composition constituting the substrate may be deteriorated, and the production cost increases due to an increase in the number of steps.
本発明の目的は、高い白色度を有し、熱や光に対し優れた耐変色性を有し、さらにシリコーン樹脂との高い密着性(密着力)を有する発光装置用反射板(以下、「反射板」と表記する)、及びその反射板の原料である反射板用樹脂組成物を提供することにある。
An object of the present invention is to provide a light-emitting device reflector (hereinafter referred to as “a light-emitting device”) having high whiteness, excellent discoloration resistance to heat and light, and high adhesion (adhesion) with a silicone resin. And a resin composition for a reflecting plate which is a raw material of the reflecting plate.
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、ポリアミド樹脂、酸化チタン、無機繊維、及びシラノール縮合物を含む樹脂組成物を成形して得られる反射板が、高い白色度、熱及び光に対する優れた耐変色性、並びにシリコーン樹脂との高い密着力を発揮できることを見出した。かかる知見に基づき、さらに研究を重ねることにより本発明を完成するに至った。
As a result of intensive studies to solve the above problems, the present inventors have found that a reflector obtained by molding a resin composition containing a polyamide resin, titanium oxide, inorganic fibers, and a silanol condensate has high whiteness. The present inventors have found that excellent discoloration resistance to heat and light and high adhesion with a silicone resin can be exhibited. Based on this knowledge, the present invention was completed by further research.
即ち、本発明は、以下の反射板用樹脂組成物および該樹脂組成物を成形して得られる反射板を提供する。
That is, the present invention provides the following resin composition for a reflector and a reflector obtained by molding the resin composition.
項1 ポリアミド樹脂、酸化チタン、無機繊維、及びシラノール縮合物を含むことを特徴とする反射板用樹脂組成物。
Item 1. A resin composition for a reflector, comprising a polyamide resin, titanium oxide, inorganic fibers, and a silanol condensate.
項2 該シラノール縮合物が、シランカップリング剤の加水分解縮合物及び/又はシリコーン系化合物である、項1に記載の反射板用樹脂組成物。
Item 2 The resin composition for a reflector according to Item 1, wherein the silanol condensate is a hydrolysis condensate of a silane coupling agent and / or a silicone compound.
項3 該ポリアミド樹脂、酸化チタン、無機繊維、並びにシランカップリング剤及び/又はシリコーン系化合物を含む混合物を混合及び加熱して得られる、項2に記載の反射板用樹脂組成物。
Item 3. The resin composition for a reflector according to Item 2, obtained by mixing and heating a mixture containing the polyamide resin, titanium oxide, inorganic fibers, and a silane coupling agent and / or a silicone compound.
項4 該ポリアミド樹脂、酸化チタン、無機繊維、並びにシランカップリング剤及び/又はシリコーン系化合物を含む混合物100重量%中に、該シランカップリング剤及び/又はシリコーン系化合物を0.1~10重量%の割合で配合している、項3に記載の反射板用樹脂組成物。
Item 4: 0.1 to 10 wt% of the silane coupling agent and / or silicone compound in 100 wt% of the mixture containing the polyamide resin, titanium oxide, inorganic fibers, and the silane coupling agent and / or silicone compound Item 4. The resin composition for a reflector according to Item 3, which is blended at a ratio of%.
項5 該シラノール縮合物が、一般式(1)
R1 nSi(OR2)4-n (1)
(式中、nは1~3から選択される任意の整数を示し、R1はアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、又はアリール基を示し、それらの基は置換基を有していてもよく、R1が複数存在する場合には、互いに同一であっても異なっていてもよく、R2は炭素数1~4のアルキル基を示し、R2が複数存在する場合には、互いに同一であっても異なっていてもよい。)
で表される化合物の加水分解縮合物である、項1又は2に記載の反射板用樹脂組成物。 Item 5 The silanol condensate is represented by the general formula (1)
R 1 n Si (OR 2 ) 4-n (1)
(In the formula, n represents an arbitrary integer selected from 1 to 3, R 1 represents an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, or an aryl group, and these groups have a substituent. And when there are a plurality of R 1 s , they may be the same or different from each other, R 2 represents an alkyl group having 1 to 4 carbon atoms, and when a plurality of R 2 are present May be the same or different from each other.)
Item 3. The resin composition for a reflector according to Item 1 or 2, which is a hydrolysis-condensation product of the compound represented by:
R1 nSi(OR2)4-n (1)
(式中、nは1~3から選択される任意の整数を示し、R1はアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、又はアリール基を示し、それらの基は置換基を有していてもよく、R1が複数存在する場合には、互いに同一であっても異なっていてもよく、R2は炭素数1~4のアルキル基を示し、R2が複数存在する場合には、互いに同一であっても異なっていてもよい。)
で表される化合物の加水分解縮合物である、項1又は2に記載の反射板用樹脂組成物。 Item 5 The silanol condensate is represented by the general formula (1)
R 1 n Si (OR 2 ) 4-n (1)
(In the formula, n represents an arbitrary integer selected from 1 to 3, R 1 represents an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, or an aryl group, and these groups have a substituent. And when there are a plurality of R 1 s , they may be the same or different from each other, R 2 represents an alkyl group having 1 to 4 carbon atoms, and when a plurality of R 2 are present May be the same or different from each other.)
Item 3. The resin composition for a reflector according to Item 1 or 2, which is a hydrolysis-condensation product of the compound represented by:
項6 該ポリアミド樹脂の融点が、280℃以上である、項1~5のいずれか1項に記載の反射板用樹脂組成物。
Item 6. The resin composition for a reflector according to any one of Items 1 to 5, wherein the polyamide resin has a melting point of 280 ° C or higher.
項7 該ポリアミド樹脂が、全モノマー成分中の芳香族モノマーの割合が20モル%以上である半芳香族ポリアミド樹脂である、項1~6のいずれか1項に記載の反射板用樹脂組成物。
Item 7 The resin composition for a reflector according to any one of Items 1 to 6, wherein the polyamide resin is a semi-aromatic polyamide resin in which the ratio of aromatic monomers in all monomer components is 20 mol% or more. .
項8 該ポリアミド樹脂が、モノマー成分として芳香族ジカルボン酸及び脂肪族アルキレンジアミンを含む半芳香族ポリアミド樹脂である、項1~7のいずれか1項に記載の反射板用樹脂組成物。
Item 8. The reflector resin composition according to any one of Items 1 to 7, wherein the polyamide resin is a semi-aromatic polyamide resin containing an aromatic dicarboxylic acid and an aliphatic alkylenediamine as monomer components.
項9 項1~8のいずれか1項に記載の樹脂組成物を成形して得られる反射板。
Item 9 A reflector obtained by molding the resin composition according to any one of Items 1 to 8.
項10 該反射板がLED用である項9に記載の反射板。
Item 10. The reflector according to Item 9, wherein the reflector is for LED.
本発明の反射板用樹脂組成物から得られる反射板(リフレクタ)は、高い白色度を有し、熱及び光に対し優れた耐変色性を有し、さらに封止材を構成するシリコーン樹脂との高い密着性(密着力)を有している。また、反射板として優れた機械的強度も有している。そのため、発光装置用(特に、LED用)の反射板として好適に用いることができる。
A reflector (reflector) obtained from the resin composition for a reflector of the present invention has a high whiteness, excellent discoloration resistance to heat and light, and a silicone resin constituting a sealing material. High adhesion (adhesion). It also has excellent mechanical strength as a reflector. Therefore, it can be suitably used as a reflector for light emitting devices (particularly for LEDs).
本発明の反射板用樹脂組成物は、ポリアミド樹脂、酸化チタン、無機繊維、及びシラノール縮合物を含むことを特徴とする。該シラノール縮合物は、該反射板用樹脂組成物のマトリックスであるポリアミド樹脂中に分散している。該シラノール縮合物は、シランカップリング剤の加水分解縮合物及び/又はシリコーン系化合物からなり、これらの化合物がポリアミド樹脂と反応し得る反応性官能基を有する場合には、該反射板用樹脂組成物は、該シラノール縮合物とポリアミド樹脂等とが部分的に反応し共有結合を形成しているものも包含する。
The resin composition for a reflector of the present invention is characterized by containing a polyamide resin, titanium oxide, inorganic fibers, and a silanol condensate. The silanol condensate is dispersed in a polyamide resin which is a matrix of the reflector resin composition. The silanol condensate comprises a hydrolysis condensate of a silane coupling agent and / or a silicone compound, and when these compounds have a reactive functional group capable of reacting with a polyamide resin, the resin composition for a reflector The product includes those in which the silanol condensate and polyamide resin or the like are partially reacted to form a covalent bond.
以下、本発明の反射板用樹脂組成物及び反射板について詳細に説明する。
1.ポリアミド樹脂
本発明で使用するポリアミド樹脂としては、モノマー成分として各種脂肪族モノマーや芳香族モノマーを使用することができ、ポリアミド樹脂であれば特に制限されず使用することができる。本発明で使用するポリアミド樹脂は、リフロー半田時の反射板の変形、変色等を抑制するため、融点が280℃以上であることが好ましい。また、押出、成形などの溶融加工でのポリアミド樹脂の熱分解を抑制するため、融点が350℃以下、さらには330℃以下であることが好ましい。融点は、JIS-K7121に準じて測定することができる。 Hereinafter, the resin composition for a reflector and the reflector of the present invention will be described in detail.
1. Polyamide resin As the polyamide resin used in the present invention, various aliphatic monomers and aromatic monomers can be used as the monomer component, and any polyamide resin can be used without any particular limitation. The polyamide resin used in the present invention preferably has a melting point of 280 ° C. or higher in order to suppress deformation, discoloration, etc. of the reflector during reflow soldering. Moreover, in order to suppress the thermal decomposition of the polyamide resin during melt processing such as extrusion and molding, the melting point is preferably 350 ° C. or lower, and more preferably 330 ° C. or lower. The melting point can be measured according to JIS-K7121.
1.ポリアミド樹脂
本発明で使用するポリアミド樹脂としては、モノマー成分として各種脂肪族モノマーや芳香族モノマーを使用することができ、ポリアミド樹脂であれば特に制限されず使用することができる。本発明で使用するポリアミド樹脂は、リフロー半田時の反射板の変形、変色等を抑制するため、融点が280℃以上であることが好ましい。また、押出、成形などの溶融加工でのポリアミド樹脂の熱分解を抑制するため、融点が350℃以下、さらには330℃以下であることが好ましい。融点は、JIS-K7121に準じて測定することができる。 Hereinafter, the resin composition for a reflector and the reflector of the present invention will be described in detail.
1. Polyamide resin As the polyamide resin used in the present invention, various aliphatic monomers and aromatic monomers can be used as the monomer component, and any polyamide resin can be used without any particular limitation. The polyamide resin used in the present invention preferably has a melting point of 280 ° C. or higher in order to suppress deformation, discoloration, etc. of the reflector during reflow soldering. Moreover, in order to suppress the thermal decomposition of the polyamide resin during melt processing such as extrusion and molding, the melting point is preferably 350 ° C. or lower, and more preferably 330 ° C. or lower. The melting point can be measured according to JIS-K7121.
本発明で使用するポリアミド樹脂は、吸湿による変形や物性低下を抑制するため、半芳香族ポリアミド樹脂であることが好ましい。半芳香族ポリアミド樹脂とは、ポリアミド樹脂のモノマー成分として、芳香族モノマーを含有するポリアミド樹脂を意味するものである。本発明で使用する半芳香族ポリアミド樹脂は、ポリアミド樹脂を構成するモノマー成分中の芳香族モノマーが、通常20モル%以上、好ましくは25モル%以上、より好ましくは25~60モル%である。ここで、半芳香族ポリアミド樹脂における芳香族モノマーのモル分率は、重合原料に用いる全モノマー中における芳香族モノマーのモル分率を意味する。
The polyamide resin used in the present invention is preferably a semi-aromatic polyamide resin in order to suppress deformation and deterioration of physical properties due to moisture absorption. The semi-aromatic polyamide resin means a polyamide resin containing an aromatic monomer as a monomer component of the polyamide resin. In the semiaromatic polyamide resin used in the present invention, the aromatic monomer in the monomer component constituting the polyamide resin is usually 20 mol% or more, preferably 25 mol% or more, more preferably 25 to 60 mol%. Here, the molar fraction of the aromatic monomer in the semi-aromatic polyamide resin means the molar fraction of the aromatic monomer in all the monomers used for the polymerization raw material.
芳香族モノマーとしては、例えば、芳香族ジアミン、芳香族ジカルボン酸、芳香族アミノカルボン酸等が挙げられる。芳香族ジアミンとしては、例えば、p-フェニレンジアミン、o-フェニレンジアミン、m-フェニレンジアミン、パラキシレンジアミン、メタキシレンジアミン等が、芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、フタル酸、2-メチルテレフタル酸、ナフタレンジカルボン酸等が、また芳香族アミノカルボン酸としては、例えば、p-アミノ安息香酸等が挙げられる。これらの中でも、芳香族ジカルボン酸が好ましい。
Examples of the aromatic monomer include aromatic diamine, aromatic dicarboxylic acid, aromatic aminocarboxylic acid and the like. Examples of aromatic diamines include p-phenylenediamine, o-phenylenediamine, m-phenylenediamine, paraxylenediamine, and metaxylenediamine. Examples of aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, and phthalic acid. 2-methyl terephthalic acid, naphthalene dicarboxylic acid and the like, and examples of the aromatic amino carboxylic acid include p-aminobenzoic acid and the like. Of these, aromatic dicarboxylic acids are preferred.
芳香族モノマーは1種を単独で使用でき又は2種以上を併用できる。芳香族モノマー以外のモノマー成分としては、脂肪族ジカルボン酸、脂肪族アルキレンジアミン、脂環式アルキレンジアミン、脂肪族アミノカルボン酸等が挙げられる。
Aromatic monomers can be used alone or in combination of two or more. Examples of monomer components other than aromatic monomers include aliphatic dicarboxylic acids, aliphatic alkylene diamines, alicyclic alkylene diamines, and aliphatic amino carboxylic acids.
脂肪族ジカルボン酸としては、アジピン酸、セバシン酸、アゼライン酸、ドデカン二酸等を挙げられる。これらの中でも、アジピン酸が好ましい。脂肪族ジカルボン酸は1種を単独で使用でき又は2種以上を併用できる。
Examples of the aliphatic dicarboxylic acid include adipic acid, sebacic acid, azelaic acid, dodecanedioic acid and the like. Among these, adipic acid is preferable. Aliphatic dicarboxylic acid can be used individually by 1 type, or can use 2 or more types together.
脂肪族アルキレンジアミンは、直鎖状であっても分岐鎖状であってもよい。具体的には、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、2-メチルペンタメチレンジアミン、2-エチルテトラメチレンジアミン等が挙げられる。これらの中でも、ヘキサメチレンジアミン、2-メチルペンタメチレンジアミン等が好ましい。脂肪族アルキレンジアミンは、1種を単独で使用でき又は2種以上を併用できる。
The aliphatic alkylene diamine may be linear or branched. Specifically, ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, Examples thereof include 2-methylpentamethylenediamine and 2-ethyltetramethylenediamine. Of these, hexamethylenediamine, 2-methylpentamethylenediamine and the like are preferable. An aliphatic alkylenediamine can be used individually by 1 type, or can use 2 or more types together.
脂環式アルキレンジアミンとしては、例えば、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、ビス(アミノメチル)シクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルメタン、イソフォロンジアミン、ピペラジン等が挙げられる。脂環式アルキレンジアミンは1種を単独で使用でき又は2種以上を併用できる。
Examples of the alicyclic alkylenediamine include 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 1,3-bis (aminomethyl) cyclohexane, bis (aminomethyl) cyclohexane, and bis (4-aminocyclohexyl) methane. 4,4′-diamino-3,3′-dimethyldicyclohexylmethane, isophoronediamine, piperazine and the like. An alicyclic alkylenediamine can be used individually by 1 type, or can use 2 or more types together.
脂肪族アミノカルボン酸としては、例えば、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドケカン酸等を挙げることができ、これらに対応する環状のラクタムを用いてもよい。脂肪族アミノカルボン酸は1種を単独で使用でき又は2種以上を併用できる。
Examples of the aliphatic aminocarboxylic acid include 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminodokecanic acid, and the like, and corresponding lactams may be used. Aliphatic aminocarboxylic acids can be used alone or in combination of two or more.
これらのモノマー成分の中でも、脂肪族ジカルボン酸、脂肪族アルキレンジアミン等が好ましい。これらのモノマー成分は1種を単独で使用でき又は2種以上を併用できる。
Among these monomer components, aliphatic dicarboxylic acid, aliphatic alkylene diamine and the like are preferable. These monomer components can be used alone or in combination of two or more.
上記の半芳香族ポリアミド樹脂の中でも、芳香族ジカルボン酸と脂肪族アルキレンジアミンとを含むもの、芳香族ジカルボン酸と脂肪族ジカルボン酸と脂肪族アルキレンジアミンとを含むものが好ましい。これらの半芳香族ポリアミド樹脂の中でも、ジカルボン酸がテレフタル酸、テレフタル酸とアジピン酸との混合物、テレフタル酸とイソフタル酸との混合物、又は、テレフタル酸とイソフタル酸とアジピン酸との混合物が好ましい。前記3種の混合物においては、テレフタル酸の割合が25モル%以上のものが特に好ましい。更に、これらの半芳香族ポリアミド樹脂の中でも、脂肪族アルキレンジアミンが、ヘキサメチレンジアミン又はヘキサメチレンジアミンと2-メチルペンタメチレンジアミンとの混合物であるものが特に好ましい。
Among the above semi-aromatic polyamide resins, those containing aromatic dicarboxylic acid and aliphatic alkylene diamine, and those containing aromatic dicarboxylic acid, aliphatic dicarboxylic acid and aliphatic alkylene diamine are preferable. Among these semi-aromatic polyamide resins, dicarboxylic acid is preferably terephthalic acid, a mixture of terephthalic acid and adipic acid, a mixture of terephthalic acid and isophthalic acid, or a mixture of terephthalic acid, isophthalic acid and adipic acid. In the three kinds of mixtures, those having a terephthalic acid ratio of 25 mol% or more are particularly preferable. Further, among these semiaromatic polyamide resins, those in which the aliphatic alkylenediamine is hexamethylenediamine or a mixture of hexamethylenediamine and 2-methylpentamethylenediamine are particularly preferable.
半芳香族ポリアミド樹脂の中で、特に好ましいものの一例として、テレフタル酸25~30モル%(特に、約27.5モル%)、アジピン酸20~25モル%(特に、約22.5モル%)及びヘキサメチレンジアミン45~55モル%(特に、約50モル%)を共重合したもの、テレフタル酸30~35モル%(特に、約32モル%)、アジピン酸15~20モル%(特に、約18モル%)及びヘキサメチレンジアミン45~55モル%(特に、約50モル%)を共重合したもの、テレフタル酸45~55モル%(特に、約50モル%)、ヘキサメチレンジアミン20~30モル%(特に、約25モル%)及び2-メチルペンタメチレンジアミン20~30モル%(特に、約25モル%)を共重合したものを挙げることができる。半芳香族ポリアミド樹脂を構成する芳香族モノマーや他のモノマー成分の構成比や種類を適宜選択することにより、融点等を適宜調整することができる。
Among the semi-aromatic polyamide resins, particularly preferable examples include terephthalic acid 25 to 30 mol% (especially about 27.5 mol%), adipic acid 20 to 25 mol% (particularly about 22.5 mol%). And hexamethylenediamine 45-55 mol% (especially about 50 mol%), terephthalic acid 30-35 mol% (especially about 32 mol%), adipic acid 15-20 mol% (especially about 18 mol%) and 45 to 55 mol% (especially about 50 mol%) of hexamethylene diamine, 45 to 55 mol% (especially about 50 mol%) terephthalic acid, 20 to 30 mol of hexamethylene diamine % (Particularly about 25 mol%) and 2-methylpentamethylenediamine 20 to 30 mol% (particularly about 25 mol%). The melting point and the like can be appropriately adjusted by appropriately selecting the composition ratio and type of the aromatic monomer and other monomer components constituting the semi-aromatic polyamide resin.
2.酸化チタン
本発明で使用する酸化チタンとしては、反射板としての白色度を向上できる酸化チタンであれば特に制限なく使用できる。必要に応じ、アルミナ、シリカ、シランカップリング剤、チタンカップリング剤等の公知の表面処理剤で処理したものでもよい。 2. Titanium oxide The titanium oxide used in the present invention can be used without particular limitation as long as it is a titanium oxide capable of improving the whiteness as a reflector. If necessary, it may be treated with a known surface treating agent such as alumina, silica, silane coupling agent, titanium coupling agent and the like.
本発明で使用する酸化チタンとしては、反射板としての白色度を向上できる酸化チタンであれば特に制限なく使用できる。必要に応じ、アルミナ、シリカ、シランカップリング剤、チタンカップリング剤等の公知の表面処理剤で処理したものでもよい。 2. Titanium oxide The titanium oxide used in the present invention can be used without particular limitation as long as it is a titanium oxide capable of improving the whiteness as a reflector. If necessary, it may be treated with a known surface treating agent such as alumina, silica, silane coupling agent, titanium coupling agent and the like.
本発明で使用する酸化チタンは、アナターゼ型、ルチル型、単斜晶型等の各種結晶形態のものを使用できるが、屈折率が高く光安定性の良いルチル型が好ましい。
As the titanium oxide used in the present invention, various crystal forms such as anatase type, rutile type, monoclinic type and the like can be used, but a rutile type having a high refractive index and good light stability is preferable.
本発明で使用する酸化チタンは、粒子状、繊維状、板状(薄片状、鱗片状、雲母状等を含む)等の各種形状の粉末を使用でき、好ましくは粒子状のものを使用するのがよい。
As the titanium oxide used in the present invention, powders of various shapes such as particles, fibers, and plates (including flakes, scales, mica, etc.) can be used, and preferably particles are used. Is good.
本発明で使用する酸化チタンの寸法は特に制限されないが、白色度を高くする観点から、その平均粒子径は、好ましくは0.05~0.5μmがよく、さらに好ましくは0.1~0.3μmである。酸化チタンの平均粒子径はレーザー回折法により測定することができる。
The size of the titanium oxide used in the present invention is not particularly limited, but from the viewpoint of increasing whiteness, the average particle size is preferably 0.05 to 0.5 μm, more preferably 0.1 to 0.00. 3 μm. The average particle diameter of titanium oxide can be measured by a laser diffraction method.
本発明で使用する酸化チタンとしては、上述の酸化チタンを1種又は2種以上使用することができる。
As the titanium oxide used in the present invention, one or more of the above-mentioned titanium oxides can be used.
3.無機繊維
本発明で使用する無機繊維としては、例えば、ガラス繊維、ガラスミルド繊維、酸化亜鉛繊維、チタン酸ナトリウム繊維、チタン酸カリウム繊維、ホウ酸アルミニウム繊維、ホウ酸マグネシウム繊維、酸化マグネシウム繊維、珪酸アルミニウム繊維、窒化珪素繊維、ワラストナイト等が挙げられる。上述の無機繊維からなる群より選ばれる1種又は2種以上を使用することができ、得られる樹脂組成物の機械強度、寸法安定性、耐熱性を向上することができる。 3. Inorganic fiber Examples of the inorganic fiber used in the present invention include glass fiber, glass milled fiber, zinc oxide fiber, sodium titanate fiber, potassium titanate fiber, aluminum borate fiber, magnesium borate fiber, magnesium oxide fiber, and silicic acid. Aluminum fiber, silicon nitride fiber, wollastonite, etc. are mentioned. 1 type (s) or 2 or more types selected from the group which consists of the above-mentioned inorganic fiber can be used, and the mechanical strength, dimensional stability, and heat resistance of the resin composition obtained can be improved.
本発明で使用する無機繊維としては、例えば、ガラス繊維、ガラスミルド繊維、酸化亜鉛繊維、チタン酸ナトリウム繊維、チタン酸カリウム繊維、ホウ酸アルミニウム繊維、ホウ酸マグネシウム繊維、酸化マグネシウム繊維、珪酸アルミニウム繊維、窒化珪素繊維、ワラストナイト等が挙げられる。上述の無機繊維からなる群より選ばれる1種又は2種以上を使用することができ、得られる樹脂組成物の機械強度、寸法安定性、耐熱性を向上することができる。 3. Inorganic fiber Examples of the inorganic fiber used in the present invention include glass fiber, glass milled fiber, zinc oxide fiber, sodium titanate fiber, potassium titanate fiber, aluminum borate fiber, magnesium borate fiber, magnesium oxide fiber, and silicic acid. Aluminum fiber, silicon nitride fiber, wollastonite, etc. are mentioned. 1 type (s) or 2 or more types selected from the group which consists of the above-mentioned inorganic fiber can be used, and the mechanical strength, dimensional stability, and heat resistance of the resin composition obtained can be improved.
本発明で使用する無機繊維は、隠蔽力を高くする観点や、平面平滑性やミクロ補強性の観点から、ワラストナイト、チタン酸カリウム繊維からなる群より選ばれる1種又は2種以上を使用するのが好ましい。
The inorganic fiber used in the present invention uses one or more selected from the group consisting of wollastonite and potassium titanate fibers from the viewpoint of increasing the hiding power, and from the viewpoint of planar smoothness and microreinforcing properties. It is preferable to do this.
ワラストナイトは、メタケイ酸カルシウムからなる無機繊維である。ワラストナイトの寸法は特に制限はないが、通常、平均繊維径が0.1~15μm、好ましくは2.0~7.0μm、平均繊維長が3~180μm、好ましくは20~100μm、平均アスペクト比が3以上、好ましくは3~50、より好ましくは5~30である。本発明では市販品も使用でき、例えば、バイスタルW(商品名:大塚化学株式会社製、平均繊維長:25μm、平均繊維径:3μm)、NyglosI-10013(商品名:Nyco社製、平均繊維長:65μm、平均繊維径:5μm)等を使用することができる。
Wollastonite is an inorganic fiber made of calcium metasilicate. The dimensions of wollastonite are not particularly limited, but usually the average fiber diameter is 0.1 to 15 μm, preferably 2.0 to 7.0 μm, the average fiber length is 3 to 180 μm, preferably 20 to 100 μm, and the average aspect The ratio is 3 or more, preferably 3 to 50, more preferably 5 to 30. Commercially available products can also be used in the present invention. For example, Vistal W (trade name: manufactured by Otsuka Chemical Co., Ltd., average fiber length: 25 μm, average fiber diameter: 3 μm), Nyglos I-10013 (trade name: manufactured by Nyco, average fiber length) : 65 μm, average fiber diameter: 5 μm) and the like can be used.
チタン酸カリウム繊維としては、特に制限はなく従来公知のものを広く使用でき、例えば、4チタン酸カリウム繊維、6チタン酸カリウム繊維、8チタン酸カリウム繊維等を使用することができる。チタン酸カリウム繊維の寸法は特に制限はないが、通常、平均繊維径が0.01~1μm、好ましくは0.1~0.5μm、平均繊維長が1~50μm、好ましくは3~30μm、平均アスペクト比が10以上、好ましくは15~35である。本発明では市販品も使用でき、例えば、TISMO D102(商品名:大塚化学株式会社製、平均繊維長:15μm、平均繊維径:0.5μm)等を使用することができる。
The potassium titanate fiber is not particularly limited and conventionally known ones can be widely used. For example, potassium titanate fiber, potassium titanate fiber, potassium potassium titanate fiber, and the like can be used. The dimensions of the potassium titanate fiber are not particularly limited, but usually the average fiber diameter is 0.01 to 1 μm, preferably 0.1 to 0.5 μm, the average fiber length is 1 to 50 μm, preferably 3 to 30 μm, and the average The aspect ratio is 10 or more, preferably 15 to 35. In the present invention, commercially available products can also be used. For example, TISMO D102 (trade name: manufactured by Otsuka Chemical Co., Ltd., average fiber length: 15 μm, average fiber diameter: 0.5 μm) can be used.
該ワラストナイト及びチタン酸カリウム繊維の平均繊維長及び平均繊維径は、光学顕微鏡や走査型電子顕微鏡の観察により測定することができる。
The average fiber length and average fiber diameter of the wollastonite and potassium titanate fibers can be measured by observation with an optical microscope or a scanning electron microscope.
本発明においては、得られる樹脂組成物の機械強度等の物性をより一層向上させるために、本発明で使用する無機繊維に表面処理を施してもよい。表面処理は公知の方法に従い、シランカップリング剤、チタンカップリング剤等を用いて行えばよい。これらの中でも、シランカップリング剤が好ましく、アミノシランが特に好ましい。
In the present invention, in order to further improve the physical properties such as mechanical strength of the obtained resin composition, the inorganic fiber used in the present invention may be subjected to a surface treatment. The surface treatment may be performed using a silane coupling agent, a titanium coupling agent or the like according to a known method. Among these, a silane coupling agent is preferable and aminosilane is particularly preferable.
4.シラノール縮合物
本発明で使用するシラノール縮合物は、シロキサン結合を主骨格とし有機基を有するオリゴマー又はポリマーである。該シラノール縮合物は、好適には、シランカップリング剤の加水分解縮合物又はシリコーン系化合物である。 4). Silanol condensate The silanol condensate used in the present invention is an oligomer or polymer having a siloxane bond as a main skeleton and an organic group. The silanol condensate is preferably a hydrolysis condensate of a silane coupling agent or a silicone compound.
本発明で使用するシラノール縮合物は、シロキサン結合を主骨格とし有機基を有するオリゴマー又はポリマーである。該シラノール縮合物は、好適には、シランカップリング剤の加水分解縮合物又はシリコーン系化合物である。 4). Silanol condensate The silanol condensate used in the present invention is an oligomer or polymer having a siloxane bond as a main skeleton and an organic group. The silanol condensate is preferably a hydrolysis condensate of a silane coupling agent or a silicone compound.
後述するように、例えば、シランカップリング剤及び/又はシリコーン系化合物を、ポリアミド樹脂、酸化チタン、及び無機繊維とともに混合及び加熱(特に、溶融混練)することにより、反射板用樹脂組成物を得ることができる。ここで、シランカップリング剤を用いた場合は、混合時にポリアミド樹脂中に存在する水分子や空気中の水分と反応(加水分解)してシラノールとなり、これが加熱処理により縮合してシラノール縮合物を与える。また、シリコーン系化合物を用いた場合は、それ自身がシラノール縮合物となり得る。
As described later, for example, a resin composition for a reflector is obtained by mixing and heating (particularly, melt-kneading) a silane coupling agent and / or a silicone compound together with a polyamide resin, titanium oxide, and inorganic fibers. be able to. Here, when a silane coupling agent is used, it reacts (hydrolyzes) with water molecules present in the polyamide resin and moisture in the air during mixing to form silanol, which is condensed by heat treatment to form a silanol condensate. give. Moreover, when a silicone type compound is used, itself can become a silanol condensate.
本発明で使用するシラノール縮合物としては、例えば、一般式(1)
R1 nSi(OR2)4-n (1)
(式中、nは1~3から選択される任意の整数を示し、R1はアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、又はアリール基を示し、それらの基は置換基を有していてもよく、R1が複数存在する場合には、互いに同一であっても異なっていてもよく、R2は炭素数1~4のアルキル基を示し、R2が複数存在する場合には、互いに同一であっても異なっていてもよい。)
で表される化合物(シランカップリング剤)の加水分解縮合物が挙げられる。 Examples of the silanol condensate used in the present invention include, for example, the general formula (1)
R 1 n Si (OR 2 ) 4-n (1)
(In the formula, n represents an arbitrary integer selected from 1 to 3, R 1 represents an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, or an aryl group, and these groups have a substituent. And when there are a plurality of R 1 s , they may be the same or different from each other, R 2 represents an alkyl group having 1 to 4 carbon atoms, and when a plurality of R 2 are present May be the same or different from each other.)
The hydrolysis-condensation product of the compound (silane coupling agent) represented by these is mentioned.
R1 nSi(OR2)4-n (1)
(式中、nは1~3から選択される任意の整数を示し、R1はアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、又はアリール基を示し、それらの基は置換基を有していてもよく、R1が複数存在する場合には、互いに同一であっても異なっていてもよく、R2は炭素数1~4のアルキル基を示し、R2が複数存在する場合には、互いに同一であっても異なっていてもよい。)
で表される化合物(シランカップリング剤)の加水分解縮合物が挙げられる。 Examples of the silanol condensate used in the present invention include, for example, the general formula (1)
R 1 n Si (OR 2 ) 4-n (1)
(In the formula, n represents an arbitrary integer selected from 1 to 3, R 1 represents an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, or an aryl group, and these groups have a substituent. And when there are a plurality of R 1 s , they may be the same or different from each other, R 2 represents an alkyl group having 1 to 4 carbon atoms, and when a plurality of R 2 are present May be the same or different from each other.)
The hydrolysis-condensation product of the compound (silane coupling agent) represented by these is mentioned.
シラノール縮合物は、一般式(1)で示される化合物の1種又は2種以上の混合物から加水分解及び縮合を経て製造されたものでもよい。
The silanol condensate may be produced from one or a mixture of two or more compounds represented by the general formula (1) through hydrolysis and condensation.
R1で示されるアルキル基としては、通常、直鎖又は分岐状の、炭素数1~20のアルキル基、好ましくは炭素数1~10のアルキル基が挙げられる。具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。好ましくは炭素数1~6のアルキル基、より好ましくは炭素数2~4のアルキル基である。該アルキル基は任意の位置に、後述する置換基を1~4個(好ましくは1~3個、より好ましくは1個)有していてもよい。
Examples of the alkyl group represented by R 1 include a linear or branched alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms. Specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group , Nonyl group, decyl group and the like. An alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 2 to 4 carbon atoms is more preferable. The alkyl group may have 1 to 4 substituents (preferably 1 to 3, more preferably 1) described later at any position.
R1で示されるシクロアルキル基としては、通常、炭素数3~10のシクロアルキル基が挙げられる。具体的には、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。好ましくは炭素数5~8のシクロアルキル基である。該シクロアルキル基は任意の位置に、後述する置換基を1~4個(好ましくは1~3個、より好ましくは1個)有していてもよい。
Examples of the cycloalkyl group represented by R 1 usually include a cycloalkyl group having 3 to 10 carbon atoms. Specific examples include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group. A cycloalkyl group having 5 to 8 carbon atoms is preferred. The cycloalkyl group may have 1 to 4 substituents (preferably 1 to 3, more preferably 1) described later at any position.
R1で示されるアルケニル基としては、通常、直鎖又は分岐状の、炭素数2~20のアルケニル基、好ましくは炭素数2~10のアルケニル基が挙げられる。具体的には、例えば、ビニル基、1-プロぺニル基、2-プロぺニル基、イソプロペニル基、1-ブテニル、2-ブテニル基、ペンテニル基、ヘキセニル、ヘプテニル基等が挙げられる。好ましくは炭素数2~4のアルケニル基である。該アルケニル基は任意の位置に、後述する置換基を1~4個(好ましくは1~3個、より好ましくは1個)有していてもよい。
Examples of the alkenyl group represented by R 1 include linear or branched alkenyl groups having 2 to 20 carbon atoms, preferably alkenyl groups having 2 to 10 carbon atoms. Specific examples include a vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-butenyl, 2-butenyl group, pentenyl group, hexenyl, heptenyl group and the like. An alkenyl group having 2 to 4 carbon atoms is preferred. The alkenyl group may have 1 to 4 substituents (preferably 1 to 3, more preferably 1) described later at any position.
R1で示されるシクロアルケニル基としては、通常、炭素数3~10のシクロアルケニル基が挙げられる。具体的には、例えば、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等が挙げられる。好ましくは炭素数5~8のシクロアルキル基である。該シクロアルケニル基は任意の位置に、後述する置換基を1~4個(好ましくは1~3個、より好ましくは1個)有していてもよい。
Examples of the cycloalkenyl group represented by R 1 usually include a cycloalkenyl group having 3 to 10 carbon atoms. Specific examples include a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, and the like. A cycloalkyl group having 5 to 8 carbon atoms is preferred. The cycloalkenyl group may have 1 to 4 substituents (preferably 1 to 3, more preferably 1) described later at any position.
R1で示されるアリール基としては、通常、炭素数6~20のアリール基、好ましくは炭素数6~12のアリール基が挙げられる。具体的には、例えば、フェニル基、トリル基、キシリル基、メシチル基、ナフチル基等が挙げられる。好ましくは炭素数6~9のアリール基である。該アリール基は任意の位置に、後述する置換基を1~4個(好ましくは1~3個、より好ましくは1個)有していてもよい。
The aryl group represented by R 1 usually includes an aryl group having 6 to 20 carbon atoms, preferably an aryl group having 6 to 12 carbon atoms. Specifically, a phenyl group, a tolyl group, a xylyl group, a mesityl group, a naphthyl group etc. are mentioned, for example. An aryl group having 6 to 9 carbon atoms is preferred. The aryl group may have 1 to 4 substituents (preferably 1 to 3, more preferably 1) described later at any position.
上記のR1で示される基はそれぞれ置換基を有していてもよい。当該置換基として、例えば、アリール基(例えば、フェニル基等)又はアミノ低級(例えば、炭素数2~6、好ましくは炭素数2~4)アルキル基で置換されていてもよいアミノ基、エポキシ基、グリシドキシ基、メルカプト基、カルボキシル基、エーテル基、エポキシシクロアルキル基(例えば、3,4-エポキシシクロヘキシル基等)、水酸基、イソシアネート基、エステル基(例えば、炭素数1~20アルコキシカルボニル基等)、(メタ)アクリロイルオキシ基、ウレイド基(-NHCONH2)、カルバモイル基(-CONH2)、アルカノイルアミノ基(例えば、炭素数1~20のアルカノイルアミノ基等)、アルカノイルオキシ基(例えば、炭素数1~20のアルカノイルオキシ基等)、シクロアルキル基(例えば、シクロペンチル基、シクロへキシル基等)、シクロアルケニル基(例えば、シクロペンテニル基、シクロヘキセニル基等)、アリール基(例えば、フェニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)等が挙げられる。
Each of the groups represented by R 1 may have a substituent. Examples of the substituent include an amino group and an epoxy group which may be substituted with an aryl group (for example, a phenyl group) or an amino lower (for example, having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms) alkyl group. Glycidoxy group, mercapto group, carboxyl group, ether group, epoxycycloalkyl group (eg, 3,4-epoxycyclohexyl group, etc.), hydroxyl group, isocyanate group, ester group (eg, alkoxy group having 1 to 20 carbon atoms) , (Meth) acryloyloxy group, ureido group (—NHCONH 2 ), carbamoyl group (—CONH 2 ), alkanoylamino group (eg, alkanoylamino group having 1 to 20 carbon atoms), alkanoyloxy group (eg, carbon number) 1-20 alkanoyloxy groups, etc.), cycloalkyl groups (eg cyclo Pentyl group, cyclohexyl group, etc.), cycloalkenyl group (eg, cyclopentenyl group, cyclohexenyl group, etc.), aryl group (eg, phenyl group, etc.), halogen atom (eg, fluorine atom, chlorine atom, bromine atom, etc.) ) And the like.
これらの置換基のうち、樹脂組成物のマトリックスであるポリアミド樹脂との親和性の観点から、ポリアミド樹脂のアミド基、アミノ基又はカルボキシル基と反応し得る反応性官能基が好ましく、例えば、フェニル基又はアミノ低級(例えば、炭素数2~6、好ましくは炭素数2~4)アルキル基で置換されていてもよいアミノ基、エポキシ基、グリシドキシ基、カルボキシル基、エポキシシクロアルキル基(例えば、3,4-エポキシシクロヘキシル基等)、水酸基、イソシアネート基等が好適なものとして挙げられる。
Of these substituents, a reactive functional group capable of reacting with the amide group, amino group or carboxyl group of the polyamide resin is preferable from the viewpoint of affinity with the polyamide resin which is the matrix of the resin composition. Or an amino lower group (for example, 3 to 6 carbon atoms, preferably 2 to 4 carbon atoms) optionally substituted with an alkyl group, an epoxy group, a glycidoxy group, a carboxyl group, an epoxycycloalkyl group (for example, 3, 4-epoxycyclohexyl group, etc.), hydroxyl group, isocyanate group and the like are preferable.
R1で示される基のうち、好ましくは、フェニル基又はアミノ炭素数2~4アルキル基で置換されていてもよいアミノ基、エポキシ基、グリシドキシ基、カルボキシル基、水酸基、イソシアネート基、及びエポキシシクロヘキシル基からなる群より選ばれる1~3個の基で置換されたアルキル基が挙げられる。
Among the groups represented by R 1 , an amino group, an epoxy group, a glycidoxy group, a carboxyl group, a hydroxyl group, an isocyanate group, and an epoxy cyclohexyl, which may be substituted with a phenyl group or an alkyl group having 2 to 4 amino carbon atoms, are preferable. And an alkyl group substituted with 1 to 3 groups selected from the group consisting of groups.
R1で示される基のうち、より好ましくは、フェニル基又はアミノ炭素数2~4アルキル基で置換されていてもよいアミノ基、エポキシ基、グリシドキシ基、カルボキシル基、イソシアネート基、及びエポキシシクロヘキシル基からなる群より選ばれる1又は2個(特に1個)の基で置換されたアルキル基が挙げられる。
Of the groups represented by R 1 , an amino group, an epoxy group, a glycidoxy group, a carboxyl group, an isocyanate group, and an epoxycyclohexyl group that may be substituted with a phenyl group or an alkyl group having 2 to 4 amino carbon atoms are more preferable. And an alkyl group substituted with 1 or 2 (particularly 1) group selected from the group consisting of:
R1で示される基のうち、特に好ましくは、アミノ基、フェニルアミノ基、アミノエチルアミノ基、エポキシ基、グリシドキシ基、及びエポキシシクロヘキシル基からなる群より選ばれる1個の基で置換されたアルキル基が挙げられる。
Among the groups represented by R 1 , particularly preferably, an alkyl substituted with one group selected from the group consisting of an amino group, a phenylamino group, an aminoethylamino group, an epoxy group, a glycidoxy group, and an epoxycyclohexyl group Groups.
R1で示される基の好適な具体例としては、例えば、以下の一般式(1a)~(1g)で表される基が挙げられる。
Preferable specific examples of the group represented by R 1 include groups represented by the following general formulas (1a) to (1g).
(式中、a~gは、同一であっても異なっていてもよく、2~6の整数を示す。)
a~gは、好ましくは2又は3を示し、より好ましくは、aは2であり、b~gは3である。 (Wherein, a to g may be the same or different and each represents an integer of 2 to 6)
a to g are preferably 2 or 3, more preferably a is 2 and b to g are 3.
a~gは、好ましくは2又は3を示し、より好ましくは、aは2であり、b~gは3である。 (Wherein, a to g may be the same or different and each represents an integer of 2 to 6)
a to g are preferably 2 or 3, more preferably a is 2 and b to g are 3.
R2で示される炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基等が挙げられる。好ましくは、メチル基、エチル基、イソプロピル基であり、より好ましくはメチル基又はエチル基である。
Examples of the alkyl group having 1 to 4 carbon atoms represented by R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group. Preferred are a methyl group, an ethyl group, and an isopropyl group, and more preferred is a methyl group or an ethyl group.
一般式(1)で示される化合物の好ましい具体例としては、例えば、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-イソシアネートプロピルエトキシシラン等が挙げられる。
Preferable specific examples of the compound represented by the general formula (1) include, for example, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3 -Glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl)- 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltri Methoxysilane, 3-isocyanatopropyl eth Shishiran, and the like.
本発明で使用する一般式(1)で示される化合物(即ち、シランカップリング剤)は、ポリアミド樹脂と混合及び加熱することで、アルコキシ基(-OR2)の一部又は全部が、ポリアミド樹脂中に含まれる水分や空気中の水分と反応してシラノール基を生成し(加水分解)、シラノール基同士の縮合反応によりシラノール縮合物となる。
The compound represented by the general formula (1) used in the present invention (that is, the silane coupling agent) is mixed and heated with the polyamide resin, so that a part or all of the alkoxy group (—OR 2 ) is a polyamide resin. It reacts with moisture contained in it or moisture in the air to produce silanol groups (hydrolysis), and it becomes a silanol condensate by condensation reaction between silanol groups.
前記処理は、溶融混練法を用いるのが好ましい。溶融混練の熱によりシラノール縮合物が生成し、溶融混練のせん断力によりシラノール縮合物をポリアミド樹脂中に分散させることができる。さらに、シラノール縮合物が反応性官能基を有する場合には、ポリアミド樹脂と反応して結合を形成すると考えられるため、ポリアミド樹脂中のシラノール縮合物の分散状態を維持(保持)することができ、結果としてシラノール縮合物のブリードアウトを抑制することができる。
It is preferable to use a melt-kneading method for the treatment. The silanol condensate is generated by the heat of melt kneading, and the silanol condensate can be dispersed in the polyamide resin by the shearing force of melt kneading. Furthermore, when the silanol condensate has a reactive functional group, it is considered that it forms a bond by reacting with the polyamide resin, so that the dispersion state of the silanol condensate in the polyamide resin can be maintained (held), As a result, bleeding out of the silanol condensate can be suppressed.
また、前記処理は、例えば、溶融混練の前工程として、ポリアミド樹脂に一般式(1)で示される化合物を添加して混合する(例えば、ポリアミド樹脂を撹拌しながら、これに一般式(1)で示される化合物を滴下、噴霧等する)ことにより実施することできる。この混合には、スーパーミキサー、ヘンシェルミキサー等のミキサーを用いることができる。一般式(1)で示される化合物は、そのままで用いてもよく、又は加水分解を促進する溶媒(例えば、水、アルコール又はこれらの混合溶媒)に溶解して溶液として用いてもよい。
In addition, in the treatment, for example, as a pre-process of melt-kneading, the compound represented by the general formula (1) is added to the polyamide resin and mixed (for example, while stirring the polyamide resin, the general formula (1) By dropping, spraying, or the like. For this mixing, a mixer such as a super mixer or a Henschel mixer can be used. The compound represented by the general formula (1) may be used as it is, or may be used as a solution by dissolving in a solvent that promotes hydrolysis (for example, water, alcohol, or a mixed solvent thereof).
本発明の反射板用樹脂組成物では、一般式(1)で示される化合物とポリアミド樹脂とが溶融混練されることにより、生成したシラノール縮合物がマトリックスであるポリアミド樹脂中に存在又は分散していることを特徴とする。
In the resin composition for a reflector of the present invention, the compound represented by the general formula (1) and the polyamide resin are melt-kneaded, whereby the produced silanol condensate is present or dispersed in the matrix polyamide resin. It is characterized by being.
本発明の反射板用樹脂組成物が、シリコーン樹脂(封止剤)との密着力、白色度及び耐変色性が大きく向上するのは、ポリアミド樹脂中にシロキサン結合を主骨格とするシラノール縮合物が形成されるためと考えられる。この点は、後述するポリシロキサン結合を主骨格とするシリコーン系化合物(典型例として、一般式(2)で表される化合物)を用いて樹脂組成物を調製した場合に同様の効果が発揮されることからも、容易に理解できる。
The resin composition for a reflector according to the present invention is greatly improved in adhesion, whiteness and discoloration resistance with a silicone resin (encapsulant) because a silanol condensate having a siloxane bond as a main skeleton in a polyamide resin. It is thought that is formed. In this respect, the same effect is exhibited when a resin composition is prepared using a silicone compound having a polysiloxane bond as a main skeleton described below (typically, a compound represented by the general formula (2)). Can be easily understood.
また、アミド基、アミノ基又はカルボキシル基と反応し得る反応性官能基を有する一般式(1)で示される化合物を用いた場合には、得られる樹脂組成物は耐変色性、特に光による変色を更に抑制できるという優れた効果を奏する。作用機構は不明であるが、該反応性官能基の一部又は全部が、ポリアミド樹脂のアミド基、アミノ基又はカルボキシルと、共有結合、水素結合等の化学結合を形成するためであると推測される。
Further, when the compound represented by the general formula (1) having a reactive functional group capable of reacting with an amide group, amino group or carboxyl group is used, the resulting resin composition has a resistance to discoloration, particularly discoloration due to light. An excellent effect that can be further suppressed. Although the mechanism of action is unknown, it is assumed that a part or all of the reactive functional group forms a chemical bond such as a covalent bond or a hydrogen bond with the amide group, amino group or carboxyl of the polyamide resin. The
なお、シランカップリング剤で表面処理された無機繊維及び/又は酸化チタンをポリアミド樹脂中に分散させただけの樹脂組成物では、上記の本発明の効果(優れた密着力、白色度及び耐変色性)は得られない。その理由は、この樹脂組成物では、無機繊維/又は酸化チタンの表面にのみシランカップリング剤の加水分解反応物が局在しており、ポリアミド樹脂全体にシロキサン結合を主骨格とするシラノール縮合物が分散していないためであり、及び反応性官能基が無機繊維/又は酸化チタンの表面にのみ局在しているためポリアミド樹脂との化学結合の形成が不十分なためである、と考えられる。
In addition, in a resin composition in which inorganic fibers and / or titanium oxide surface-treated with a silane coupling agent are simply dispersed in a polyamide resin, the effects of the present invention described above (excellent adhesion, whiteness and discoloration resistance) Sex) is not obtained. The reason is that in this resin composition, the hydrolysis reaction product of the silane coupling agent is localized only on the surface of the inorganic fiber / titanium oxide, and the silanol condensate having a siloxane bond as the main skeleton in the entire polyamide resin. This is because the chemical functional group is not dispersed, and because the reactive functional group is localized only on the surface of the inorganic fiber / titanium oxide, the chemical bond with the polyamide resin is insufficiently formed. .
また、本発明では、一般式(1)で示される化合物を予め縮合させたシラノール縮合物(即ち、シリコーン系化合物)を原料に用いることもできる。当該シリコーン系化合物は、一般式(1)で示される化合物の1種、又は2種以上を加水分解及び縮合して得られるシラノール縮合物である。このシリコーン系化合物を原料に用いると、反射板の耐変色性をさらに向上させることができる。
In the present invention, a silanol condensate obtained by condensing the compound represented by the general formula (1) in advance (that is, a silicone compound) can also be used as a raw material. The said silicone type compound is a silanol condensate obtained by hydrolyzing and condensing 1 type, or 2 or more types of the compound shown by General formula (1). When this silicone compound is used as a raw material, the discoloration resistance of the reflector can be further improved.
シリコーン系化合物の具体例として、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルビノール変性シリコーンオイル、フェノール変性シリコーンオイル、カルボキシル変性シリコーンオイル、メチルハイドロジェンシリコーンオイル、メルカプト変性シリコーンオイル、メタクリル変性シリコーンオイル、ポリエーテル変性シリコーンオイル、アラルキル変性シリコーンオイル、フロロアルキル変性シリコーンオイル、長鎖アルキル変性シリコーンオイル、高級脂肪酸エステル変性シリコーンオイル、フェニル変性シリコーンオイル等のシリコーンオイル;直鎖状のジメチルポリシロキサンを架橋した構造をもつシリコーンゴム;シロキサン結合が(CH3SiO3/2)nで表される三次元網目状に架橋した構造をもつポリメチルシルセスキオキサン;3官能シロキサン単位を主成分とした3次元網目構造のシリコーンレジン等が挙げられる。これらのシリコーン系化合物は、商業的に入手可能な公知の化合物、及び当業者が公知の方法を用いて製造できる化合物のいずれをも包含する。
Specific examples of the silicone compound include, for example, dimethyl silicone oil, methylphenyl silicone oil, amino modified silicone oil, epoxy modified silicone oil, carbinol modified silicone oil, phenol modified silicone oil, carboxyl modified silicone oil, methyl hydrogen silicone oil. , Silicone oils such as mercapto modified silicone oil, methacrylic modified silicone oil, polyether modified silicone oil, aralkyl modified silicone oil, fluoroalkyl modified silicone oil, long chain alkyl modified silicone oil, higher fatty acid ester modified silicone oil, phenyl modified silicone oil ; Silicone rubber with a structure in which linear dimethylpolysiloxane is crosslinked; Siloxane bond (CH 3 SiO 3/2) polymethylsilsesquioxane having a crosslinked structure in a three-dimensional network, represented by n oxane; 3 silicone resin or the like of a three-dimensional network structure mainly composed of functional siloxane units can be mentioned . These silicone-based compounds include both known compounds that are commercially available and compounds that can be produced by those skilled in the art using known methods.
これらのシリコーン系化合物の典型例として、一般式(2)
As a typical example of these silicone compounds, the general formula (2)
(式中、R3はアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、又はアリール基を示し、それらの基は置換基を有していてもよく、R3は互いに同一であっても異なっていてもよく、l及びmは1以上の任意の整数を示し、括弧内の各繰り返し単位構造の結合の順番は特に限定はない。)
で表される化合物が挙げられる。 (In the formula, R 3 represents an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, or an aryl group, and these groups may have a substituent, and R 3 may be the same as each other. And may be different, l and m represent any integer of 1 or more, and the order of bonding of each repeating unit structure in parentheses is not particularly limited.)
The compound represented by these is mentioned.
で表される化合物が挙げられる。 (In the formula, R 3 represents an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, or an aryl group, and these groups may have a substituent, and R 3 may be the same as each other. And may be different, l and m represent any integer of 1 or more, and the order of bonding of each repeating unit structure in parentheses is not particularly limited.)
The compound represented by these is mentioned.
ここで、R3で示される基は、前記一般式(1)におけるR1として列挙された基を採用することができる。
Here, as the group represented by R 3 , the groups listed as R 1 in the general formula (1) can be adopted.
R3で示される基のうち、好ましくは、フェニル基又はアミノ炭素数2~4アルキル基で置換されていてもよいアミノ基、エポキシ基、グリシドキシ基、カルボキシル基、水酸基、イソシアネート基、及びエポキシシクロヘキシル基からなる群より選ばれる1~3個の基で置換されたアルキル基が挙げられる。
Of the groups represented by R 3 , an amino group, an epoxy group, a glycidoxy group, a carboxyl group, a hydroxyl group, an isocyanate group, and an epoxy cyclohexyl which may be substituted with a phenyl group or an alkyl group having 2 to 4 amino carbon atoms are preferable. And an alkyl group substituted with 1 to 3 groups selected from the group consisting of groups.
R3で示される基のうち、より好ましくは、フェニル基又はアミノ炭素数2~4アルキル基で置換されていてもよいアミノ基、エポキシ基、グリシドキシ基、カルボキシル基、イソシアネート基、及びエポキシシクロヘキシル基からなる群より選ばれる1又は2個(特に1個)の基で置換されたアルキル基が挙げられる。
Of the groups represented by R 3 , an amino group, an epoxy group, a glycidoxy group, a carboxyl group, an isocyanate group, and an epoxycyclohexyl group that may be substituted with a phenyl group or an alkyl group having 2 to 4 amino carbon atoms are more preferable. And an alkyl group substituted with 1 or 2 (particularly 1) group selected from the group consisting of:
R3で示される基のうち、特に好ましくは、アミノ基、フェニルアミノ基、アミノエチルアミノ基、エポキシ基、グリシドキシ基、及びエポキシシクロヘキシル基からなる群より選ばれる1個の基で置換されたアルキル基が挙げられる。
Of the groups represented by R 3 , an alkyl substituted with one group selected from the group consisting of an amino group, a phenylamino group, an aminoethylamino group, an epoxy group, a glycidoxy group, and an epoxycyclohexyl group is particularly preferable. Groups.
R3で示される基の好適な具体例としては、例えば、上記一般式(1a)~(1g)で表される基が挙げられる。
Preferable specific examples of the group represented by R 3 include groups represented by the above general formulas (1a) to (1g).
lは好ましくは1~20,000の整数、より好ましくは1~10,000の整数であり、mは好ましくは1~20,000の整数、より好ましくは1~10,000の整数である。
L is preferably an integer of 1 to 20,000, more preferably an integer of 1 to 10,000, and m is preferably an integer of 1 to 20,000, more preferably an integer of 1 to 10,000.
上記一般式(2)で表されるシリコーン系化合物のうち、好ましいものとして、一般式(3)
Among the silicone-based compounds represented by the general formula (2), a preferable one is the general formula (3).
(式中、R3Aはフェニル基又はアミノ炭素数2~4アルキル基で置換されていてもよいアミノ基、エポキシ基、グリシドキシ基、カルボキシル基、水酸基、イソシアネート基、及びエポキシシクロヘキシル基からなる群より選ばれる1~3個の基で置換されたアルキル基であり、l及びmは前記に同じであり、括弧内の各繰り返し単位構造の結合の順番は特に限定はない。)
で表される化合物が挙げられる。 (Wherein R 3A is selected from the group consisting of an amino group, an epoxy group, a glycidoxy group, a carboxyl group, a hydroxyl group, an isocyanate group, and an epoxycyclohexyl group, which may be substituted with a phenyl group or an alkyl group having 2 to 4 amino carbon atoms. (It is an alkyl group substituted with 1 to 3 groups selected, and l and m are the same as above, and the order of bonding of each repeating unit structure in parentheses is not particularly limited.)
The compound represented by these is mentioned.
で表される化合物が挙げられる。 (Wherein R 3A is selected from the group consisting of an amino group, an epoxy group, a glycidoxy group, a carboxyl group, a hydroxyl group, an isocyanate group, and an epoxycyclohexyl group, which may be substituted with a phenyl group or an alkyl group having 2 to 4 amino carbon atoms. (It is an alkyl group substituted with 1 to 3 groups selected, and l and m are the same as above, and the order of bonding of each repeating unit structure in parentheses is not particularly limited.)
The compound represented by these is mentioned.
R3Aとして好ましくは、上記のR3として好ましく例示された基が挙げられ、特に一般式(1a)~(1g)で表される基であり、より好ましくは、一般式(1b)、(1c)及び(1d)で表される基である。
R 3A is preferably a group preferably exemplified as the above R 3 , particularly a group represented by the general formulas (1a) to (1g), more preferably the general formulas (1b), (1c ) And (1d).
上記一般式(2)で表されるシリコーン系化合物のうち、他の好ましいものとして、一般式(4)
Among the silicone compounds represented by the above general formula (2), other preferable examples include the general formula (4).
(式中、R3Bはフェニル基又はアミノ炭素数2~4アルキル基で置換されていてもよいアミノ基、エポキシ基、グリシドキシ基、カルボキシル基、水酸基、イソシアネート基、及びエポキシシクロヘキシル基からなる群より選ばれる1~3個の基で置換されたアルキル基であり、l及びmは前記に同じであり、括弧内の各繰り返し単位構造の結合の順番は特に限定はない。)
で表される化合物が挙げられる。 (Wherein R 3B is selected from the group consisting of an amino group, an epoxy group, a glycidoxy group, a carboxyl group, a hydroxyl group, an isocyanate group, and an epoxycyclohexyl group, which may be substituted with a phenyl group or an alkyl group having 2 to 4 amino carbon atoms. (It is an alkyl group substituted with 1 to 3 groups selected, and l and m are the same as above, and the order of bonding of each repeating unit structure in parentheses is not particularly limited.)
The compound represented by these is mentioned.
で表される化合物が挙げられる。 (Wherein R 3B is selected from the group consisting of an amino group, an epoxy group, a glycidoxy group, a carboxyl group, a hydroxyl group, an isocyanate group, and an epoxycyclohexyl group, which may be substituted with a phenyl group or an alkyl group having 2 to 4 amino carbon atoms. (It is an alkyl group substituted with 1 to 3 groups selected, and l and m are the same as above, and the order of bonding of each repeating unit structure in parentheses is not particularly limited.)
The compound represented by these is mentioned.
R3Bとして好ましくは、上記のR3として好ましく例示された基が挙げられ、特に一般式(1a)~(1g)で表される基であり、より好ましくは、一般式(1b)、(1c)及び(1d)で表される基である。
R 3B is preferably a group preferably exemplified as the above R 3 , particularly a group represented by the general formulas (1a) to (1g), more preferably the general formulas (1b), (1c ) And (1d).
一般式(2)で示されるシリコーン系化合物が液状物の場合(例えば、シリコーンオイル等)は、粘度(25℃)は通常10~2,000mm2/s、好ましくは10~1,000mm2/sである。粘度がこの範囲にあると、溶融混合時にポリアミド樹脂との粘度差を小さくできるため均一分散しやすくなる。粘度は、動粘度測定装置で測定することができる。
When the silicone compound represented by the general formula (2) is a liquid (eg, silicone oil), the viscosity (25 ° C.) is usually 10 to 2,000 mm 2 / s, preferably 10 to 1,000 mm 2 / s. s. When the viscosity is within this range, the difference in viscosity from the polyamide resin can be reduced during melt mixing, so that uniform dispersion is facilitated. The viscosity can be measured with a kinematic viscosity measuring device.
一般式(2)で示されるシリコーン系化合物が固体の場合(例えば、シリコーンゴム、ポリメチルシルセスキオキサン、シリコーンレジン等)は、粉末状が好ましく、その平均粒子径は、通常、0.1~20μm、好ましくは0.5~10μmである。平均粒子径がこの範囲にあると、溶融混合時により樹脂組成物中に分散しやすくなる。平均粒子径は、レーザー回折法で測定することができる。
When the silicone compound represented by the general formula (2) is solid (for example, silicone rubber, polymethylsilsesquioxane, silicone resin, etc.), the powder form is preferable, and the average particle size is usually 0.1. It is ˜20 μm, preferably 0.5 to 10 μm. When the average particle size is in this range, it becomes easier to disperse in the resin composition during melt mixing. The average particle diameter can be measured by a laser diffraction method.
本発明のポリアミド樹脂組成物は、ポリアミド樹脂中にシロキサン結合を主骨格とするシラノール縮合物を含有することにより、シリコーン樹脂との密着力、白色度及び耐変色性が向上する。また、シラノール縮合物の分子中にアミド基、アミノ基又はカルボキシル基と反応し得る反応性官能基を有する場合には、光による変色を更に抑制できるという優れた効果を奏する。詳細の作用機構は不明であるが、該反応性官能基の一部又は全部が、ポリアミド樹脂のアミド基、アミノ基又はカルボキシルと、共有結合、水素結合等の化学結合を形成するためであると推測される。
The polyamide resin composition of the present invention contains a silanol condensate having a siloxane bond as the main skeleton in the polyamide resin, thereby improving adhesion with the silicone resin, whiteness, and discoloration resistance. Further, when the silanol condensate has a reactive functional group capable of reacting with an amide group, amino group or carboxyl group in the molecule, an excellent effect can be obtained in that discoloration due to light can be further suppressed. Although the detailed mechanism of action is unknown, it is because part or all of the reactive functional group forms a chemical bond such as a covalent bond or a hydrogen bond with the amide group, amino group or carboxyl of the polyamide resin. Guessed.
5.その他の添加剤
本発明の反射板用樹脂組成物には、その好ましい物性を損なわない範囲で、無機充填材、酸化防止剤、熱安定剤、難燃剤、可塑剤、核剤、染料、顔料、離型剤、紫外線吸収剤等の添加剤を1種又は2種以上配合してもよい。 5). Other additives In the resin composition for a reflector of the present invention, an inorganic filler, an antioxidant, a heat stabilizer, a flame retardant, a plasticizer, a nucleating agent, a dye, a pigment, as long as the preferable physical properties are not impaired. You may mix | blend 1 type (s) or 2 or more types of additives, such as a mold release agent and a ultraviolet absorber.
本発明の反射板用樹脂組成物には、その好ましい物性を損なわない範囲で、無機充填材、酸化防止剤、熱安定剤、難燃剤、可塑剤、核剤、染料、顔料、離型剤、紫外線吸収剤等の添加剤を1種又は2種以上配合してもよい。 5). Other additives In the resin composition for a reflector of the present invention, an inorganic filler, an antioxidant, a heat stabilizer, a flame retardant, a plasticizer, a nucleating agent, a dye, a pigment, as long as the preferable physical properties are not impaired. You may mix | blend 1 type (s) or 2 or more types of additives, such as a mold release agent and a ultraviolet absorber.
無機充填材としては、例えば、タルク、シリカ、酸化亜鉛(テトラポット形状のものを含む)等が挙げられる。
Examples of the inorganic filler include talc, silica, zinc oxide (including tetrapots).
酸化防止剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等が挙げられる。フェノール系酸化防止剤としては、例えば、トリエチレングリコール・ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール・ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、3,5-ジ-tert-ブチル-4-ヒドキシベンジルフォスフォネート-ジエチレステル、N,N’-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、3,9-ビス[2-{3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等が挙げられる。これらの中でも、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマミド)が好ましい。
Examples of antioxidants include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like. Examples of phenolic antioxidants include triethylene glycol bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol bis [3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionate], pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5 -Di-tert-butyl-4-hydroxyphenyl) propionate, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate-diethylester, N, N'-hexamethylenebis (3,5-di- tert-butyl-4-hydroxy-hydrocinnamamide), 1,3,5-trimethyl 2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 3,9-bis [2- {3- (3-tert-butyl-4-hydroxy-5-methyl) Phenyl) propionyloxy} -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane and the like. Among these, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylenebis (3,5-di-tert-butyl-4- Hydroxy-hydrocinnamamide) is preferred.
リン系酸化防止剤の具体例としては、例えば、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、2-[[2,4,8,10-テトラキス(1,1-ジメチルエチル)ジベンゾ[d,f][1.3.2]ジオキサフォスフェビン-6-イル]オキシ]-N,N-ビス[2-[[2,4,8,10-テトラキス(1,1ジメチルエチル)ジベンゾ[d,f][1.3.2]ジオキサフォスフェビン-6-イル]オキシ]-エチル]エタナミン、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト等が挙げられる。これらの中でも、2-[[2,4,8,10-テトラキス(1,1-ジメチルエチル)ジベンゾ[d,f][1.3.2]ジオキサフォスフェビン-6-イル]オキシ]-N,N-ビス[2-[[2,4,8,10-テトラキス(1,1-ジメチルエチル)ジベンゾ[d,f][1.3.2]ジオキサフォスフェビン-6-イル]オキシ]エチル]エタナミンが好ましい。
Specific examples of phosphorus antioxidants include, for example, tris (2,4-di-tert-butylphenyl) phosphite, 2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) Dibenzo [d, f] [1.3.2] dioxaphosphin-6-yl] oxy] -N, N-bis [2-[[2,4,8,10-tetrakis (1,1dimethyl) Ethyl) dibenzo [d, f] [1.3.2] dioxaphosphobin-6-yl] oxy] -ethyl] ethanamine, bis (2,6-di-tert-butyl-4-methylphenyl) penta Examples include erythritol diphosphite. Among these, 2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) dibenzo [d, f] [1.3.2] dioxaphosphin-6-yl] oxy] -N, N-bis [2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) dibenzo [d, f] [1.3.2] dioxaphosphin-6-yl ] Oxy] ethyl] ethanamine is preferred.
イオウ系酸化防止剤の具体例としては、例えば、2,2-チオ-ジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、テトラキス[メチレン-3-(ドデシルチオ)プロピオネート]メタン等が挙げられる。
Specific examples of the sulfur-based antioxidant include, for example, 2,2-thio-diethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], tetrakis [methylene-3- ( Dodecylthio) propionate] methane and the like.
6.反射板用樹脂組成物及び反射板の製法
本発明の樹脂組成物は、各種配合割合にてポリアミド樹脂、無機繊維、酸化チタン、並びにシランカップリング剤及び/又はシリコーン系化合物と、更に必要に応じて、その他の添加剤とを含む混合物を、混合及び加熱(特に、溶融混練)することによって製造できる。溶融混練には、例えば、二軸押出機等の公知の溶融混練装置を使用できる。 6). Reflective plate resin composition and reflective plate production method The resin composition of the present invention comprises a polyamide resin, inorganic fibers, titanium oxide, a silane coupling agent and / or a silicone compound in various blending ratios, and further if necessary. Thus, a mixture containing other additives can be produced by mixing and heating (particularly melt-kneading). For melt kneading, for example, a known melt kneading apparatus such as a twin screw extruder can be used.
本発明の樹脂組成物は、各種配合割合にてポリアミド樹脂、無機繊維、酸化チタン、並びにシランカップリング剤及び/又はシリコーン系化合物と、更に必要に応じて、その他の添加剤とを含む混合物を、混合及び加熱(特に、溶融混練)することによって製造できる。溶融混練には、例えば、二軸押出機等の公知の溶融混練装置を使用できる。 6). Reflective plate resin composition and reflective plate production method The resin composition of the present invention comprises a polyamide resin, inorganic fibers, titanium oxide, a silane coupling agent and / or a silicone compound in various blending ratios, and further if necessary. Thus, a mixture containing other additives can be produced by mixing and heating (particularly melt-kneading). For melt kneading, for example, a known melt kneading apparatus such as a twin screw extruder can be used.
本発明で使用するポリアミド樹脂は、上記混合物の合計量100重量%中に30~80重量%の割合となるように配合するのがよい。本発明で使用するポリアミド樹脂の上限値は70重量%が好ましく、65重量%がさらには好ましい。本発明で使用するポリアミド樹脂の下限値は40重量%が好ましく、45重量%がさらには好ましい。ポリアミド樹脂が30~80重量%であると、成形性を損なうことなく、耐熱性が優れた樹脂組成物を得ることができる。
The polyamide resin used in the present invention is preferably blended so as to be 30 to 80% by weight in 100% by weight of the total amount of the above mixture. The upper limit value of the polyamide resin used in the present invention is preferably 70% by weight, and more preferably 65% by weight. The lower limit of the polyamide resin used in the present invention is preferably 40% by weight, more preferably 45% by weight. When the polyamide resin is 30 to 80% by weight, a resin composition having excellent heat resistance can be obtained without impairing moldability.
本発明で使用する酸化チタンは、上記混合物の合計量100重量%中に5~50重量%の割合となるように配合するのがよい。本発明で使用する酸化チタンの上限値は40重量%が好ましく、30重量%がさらには好ましい。本発明で使用する酸化チタンの下限値は10重量%が好ましく、15重量%がさらには好ましい。酸化チタンが5~50重量%であると、成形性や外観が良好で、満足できる白色度を有する製品を得ることができる。
The titanium oxide used in the present invention is preferably blended so as to be 5 to 50% by weight in the total amount of 100% by weight of the above mixture. The upper limit of titanium oxide used in the present invention is preferably 40% by weight, more preferably 30% by weight. The lower limit of titanium oxide used in the present invention is preferably 10% by weight, more preferably 15% by weight. When titanium oxide is 5 to 50% by weight, a product having satisfactory moldability and appearance and satisfactory whiteness can be obtained.
本発明で使用する無機繊維は、上記混合物の合計量100重量%中に5~60重量%の割合となるように配合するのがよい。本発明で使用する無機繊維の上限値は40重量%が好ましく、30重量%がさらには好ましい。本発明で使用する無機繊維の下限値は10重量%が好ましく、15重量%がさらには好ましい。無機繊維が5~60重量%であると、成形性や外観が良好で、満足できる機械強度、寸法安定性、耐熱性を有する製品を得ることができる。
The inorganic fibers used in the present invention are preferably blended so that the proportion is 5 to 60% by weight in the total amount of 100% by weight of the above mixture. The upper limit value of the inorganic fibers used in the present invention is preferably 40% by weight, more preferably 30% by weight. The lower limit of the inorganic fibers used in the present invention is preferably 10% by weight, more preferably 15% by weight. When the inorganic fiber content is 5 to 60% by weight, it is possible to obtain a product having satisfactory moldability and appearance and satisfactory mechanical strength, dimensional stability and heat resistance.
本発明で使用するシランカップリング剤及び/又はシリコーン系化合物は、上記混合物の合計量100重量%中に0.1~10重量%の割合となるように配合するのがよい。本発明で使用するシラノール縮合物の上限値は7重量%が好ましく、5重量%がさらには好ましい。本発明で使用するシランカップリング剤及び/又はシリコーン系化合物の下限値は0.3重量%が好ましく、0.5重量%がさらには好ましい。シランカップリング剤及び/又はシリコーン系化合物が0.1~10重量%であると、ブリードアウトすることがなく、満足できる耐変色性、シリコーン樹脂との密着力を有する製品を得ることができる。
The silane coupling agent and / or silicone compound used in the present invention is preferably blended so as to be a ratio of 0.1 to 10% by weight in the total amount of 100% by weight of the above mixture. The upper limit of the silanol condensate used in the present invention is preferably 7% by weight, more preferably 5% by weight. The lower limit of the silane coupling agent and / or silicone compound used in the present invention is preferably 0.3% by weight, and more preferably 0.5% by weight. When the silane coupling agent and / or the silicone compound is 0.1 to 10% by weight, a product having satisfactory discoloration resistance and adhesion to the silicone resin can be obtained without bleeding out.
本発明で使用してもよい上記必須成分以外の添加剤の量は、本発明の樹脂組成物の好ましい物性を損なわない範囲であれば特に制限はない。通常は、上記混合物の合計量100重量%中に、9.9重量%以下、好ましくは7重量%以下、より好ましくは5重量%以下である。
The amount of additives other than the essential components that may be used in the present invention is not particularly limited as long as the preferable physical properties of the resin composition of the present invention are not impaired. Usually, it is 9.9% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less in the total amount of 100% by weight of the above mixture.
溶融混練における、加熱温度は、ポリアミド樹脂が溶融し得る温度であれば特に限定はなく、通常、ポリアミド樹脂の融点以上で分解開始温度未満である。通常、溶融混練に用いる溶融混練装置のシリンダー内温度をこの温度範囲に調整する。
The heating temperature in the melt kneading is not particularly limited as long as the polyamide resin can be melted, and is usually higher than the melting point of the polyamide resin and lower than the decomposition start temperature. Usually, the temperature in the cylinder of the melt kneader used for melt kneading is adjusted to this temperature range.
溶融混練処理により、一般式(1)で示される化合物(シランカップリング剤)から得られるシラノール縮合物及び/又はシリコーン系化合物は、ポリアミド樹脂中に混合及び分散される。加えて、該シラノール縮合物及び/又はシリコーン系化合物の分子中に反応性官能基が存在する場合は、該官能基の一部又は全部が、ポリアミド樹脂のアミド基、アミノ基又はカルボキシル基と反応する。
The silanol condensate and / or silicone compound obtained from the compound represented by the general formula (1) (silane coupling agent) is mixed and dispersed in the polyamide resin by melt kneading treatment. In addition, when a reactive functional group is present in the molecule of the silanol condensate and / or silicone compound, a part or all of the functional group reacts with the amide group, amino group or carboxyl group of the polyamide resin. To do.
かくして、所望の効果を発揮する本発明の樹脂組成物が製造される。
Thus, the resin composition of the present invention that exhibits the desired effect is produced.
本発明の樹脂組成物は、目的とする成形品の種類、用途、形状などに応じて、射出成形、インサート成形、圧縮成形、押出成形、ブロー成形、インフレーション成形等の公知の樹脂成形方法より、各種成形品とすることできる。また上記の成形方法を組み合わせた成形方法を採用することもできる。
The resin composition of the present invention is a known resin molding method such as injection molding, insert molding, compression molding, extrusion molding, blow molding, inflation molding, etc., depending on the type, application, shape, etc. of the target molded product. Various molded products can be obtained. A molding method combining the above molding methods can also be employed.
本発明の樹脂組成物を成形することで得られる反射板は、封止材であるシリコーン樹脂との密着力が優れていることからLED反射板として好適に使用でき、しかも、白色度や耐変色性も優れていることから、光反射面にメッキ処理を施すことなくLED反射板として使用することができる。
The reflecting plate obtained by molding the resin composition of the present invention can be suitably used as an LED reflecting plate because of its excellent adhesion with a silicone resin as a sealing material, and also has whiteness and discoloration resistance. Since the properties are also excellent, it can be used as an LED reflector without plating the light reflecting surface.
本発明の反射板は、上述したように発光装置用反射板(リフレクタ)を意味する。なお、反射「板」と表記しているが、光を反射する性能を有するものであれば、その形状は特に限定されず、「板」状の平面形状に限定されるものではない。例えば、箱状、円錐状、パラボナ状等の立体形状をも包含するものである。
The reflector of the present invention means a reflector for a light emitting device (reflector) as described above. In addition, although it describes with the reflection "plate", if it has the capability to reflect light, the shape will not be specifically limited, It is not limited to a planar shape of a "plate" shape. For example, three-dimensional shapes such as a box shape, a conical shape, and a parabona shape are also included.
本発明の反射板はLED発光装置のみならず光を反射する他の用途にも適応することができる。例えば、各種の電機電子部品、自動車のキーレスエントリーシステム、冷蔵庫庫内照明、液晶表示装置のバックライト、自動車フロントパネル照明装置、照明スタンド、ベッドライト、家電製品インジゲーター類、赤外線通信等の光通信機器類、天井照明装置等の反射板が挙げられる。
The reflector of the present invention can be applied not only to LED light emitting devices but also to other uses that reflect light. For example, various electrical and electronic parts, automotive keyless entry systems, refrigerator interior lighting, liquid crystal display backlights, automotive front panel lighting devices, lighting stands, bed lights, household appliance indicators, optical communications equipment such as infrared communications And reflectors such as ceiling lighting devices.
以下に実施例及び比較例に基づいて具体的に説明するが、本発明は何らこれらに限定されるものではない。なお、本実施例および比較例で使用したポリアミド樹脂、酸化チタン、無機繊維、シランカップリング剤及びシラノール縮合物は具体的には次の通りである。また、ポリアミド樹脂の融点は、示差走査型熱量計(商品名:DSC6200、セイコーインスツルメンツ社製)を用いて、窒素気流下25℃から10℃/分で昇温することにより得られた吸熱ピークとした。
<ポリアミド樹脂>
ヘキサメチレンジアミン、テレフタル酸、アジピン酸をそれぞれ50モル%、27.5モル%、22.5モル%の割合で重合させてなる半芳香族ポリアミド樹脂(商品名:ザイテルHTN502HF、デュポン社製、融点310℃)
<酸化チタン>
粉末状酸化チタン(商品名:JR-405、テイカ株式会社製、平均粒子径0.21μm)
<無機繊維>
ワラストナイト(商品名:バイスタルW、大塚化学株式会社製、平均繊維長25μm、平均繊維径3μm)
チタン酸カリウム繊維(商品名:TISMO D102、大塚化学株式会社製、平均繊維長15μm、平均繊維径0.5μm)
ガラス繊維(商品名:ECS 03T-289H/PL、日本電気硝子株式会社製、平均繊維長3mm、平均繊維径11μm)
<シラノール縮合物又はシランカップリング剤>
シラノール縮合物1:両末端型エポキシ変性シリコーンオイル(商品名:KF-105、信越化学工業株式会社製、粘度(25℃)15mm2/s)
シラノール縮合物2:側鎖型アミノ変性シリコーンオイル(商品名:BY16-213、東レ・ダウコーニング株式会社製、粘度(25℃)55mm2/s)
シラノール縮合物3:側鎖型エポキシ変性シリコーンオイル(商品名:X22-2000、信越化学工業株式会社製、粘度(25℃)190mm2/s)
シラノール縮合物4:側鎖型高級脂肪酸アミド含有シリコーンオイル(商品名:KF-3935、信越化学工業株式会社製、融点49℃)
シラノール縮合物5:シリコーンレジンパウダー(商品名:KMP590、信越化学工業株式会社製、平均粒子径2μm)
シラノール縮合物6:シリコーンゴムパウダー(商品名:KMP597、信越化学工業株式会社製、平均粒子径5μm)
シランカップリング剤7:N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン(商品名:KBE-603、信越化学工業株式会社製)
シランカップリング剤8:3-グリシドキシプロピルエトキシラン(商品名:KBE-403、信越化学工業株式会社製) Although it demonstrates concretely based on an Example and a comparative example below, this invention is not limited to these at all. In addition, the polyamide resin, titanium oxide, inorganic fiber, silane coupling agent, and silanol condensate used in the examples and comparative examples are specifically as follows. The melting point of the polyamide resin is the endothermic peak obtained by heating at 25 ° C. to 10 ° C./min under a nitrogen stream using a differential scanning calorimeter (trade name: DSC6200, manufactured by Seiko Instruments Inc.). did.
<Polyamide resin>
A semi-aromatic polyamide resin obtained by polymerizing hexamethylenediamine, terephthalic acid, and adipic acid at a ratio of 50 mol%, 27.5 mol%, and 22.5 mol%, respectively (trade name: Zytel HTN502HF, manufactured by DuPont, melting point 310 ° C)
<Titanium oxide>
Powdered titanium oxide (trade name: JR-405, manufactured by Teika Co., Ltd., average particle size 0.21 μm)
<Inorganic fiber>
Wollastonite (trade name: Vistal W, manufactured by Otsuka Chemical Co., Ltd., average fiber length 25 μm, average fiber diameter 3 μm)
Potassium titanate fiber (trade name: TISMO D102, manufactured by Otsuka Chemical Co., Ltd., average fiber length 15 μm, average fiber diameter 0.5 μm)
Glass fiber (trade name: ECS 03T-289H / PL, manufactured by Nippon Electric Glass Co., Ltd., average fiber length 3 mm, average fiber diameter 11 μm)
<Silanol condensate or silane coupling agent>
Silanol condensate 1: both-ends type epoxy-modified silicone oil (trade name: KF-105, manufactured by Shin-Etsu Chemical Co., Ltd., viscosity (25 ° C.) 15 mm 2 / s)
Silanol condensate 2: side chain type amino-modified silicone oil (trade name: BY16-213, manufactured by Toray Dow Corning Co., Ltd., viscosity (25 ° C.) 55 mm 2 / s)
Silanol condensate 3: side chain type epoxy-modified silicone oil (trade name: X22-2000, manufactured by Shin-Etsu Chemical Co., Ltd., viscosity (25 ° C.) 190 mm 2 / s)
Silanol condensate 4: Side chain type higher fatty acid amide-containing silicone oil (trade name: KF-3935, manufactured by Shin-Etsu Chemical Co., Ltd., melting point 49 ° C.)
Silanol condensate 5: silicone resin powder (trade name: KMP590, manufactured by Shin-Etsu Chemical Co., Ltd., average particle size 2 μm)
Silanol condensate 6: silicone rubber powder (trade name: KMP597, manufactured by Shin-Etsu Chemical Co., Ltd., average particle size 5 μm)
Silane coupling agent 7: N-2- (aminoethyl) -3-aminopropyltriethoxysilane (trade name: KBE-603, manufactured by Shin-Etsu Chemical Co., Ltd.)
Silane coupling agent 8: 3-glycidoxypropyl ethoxylane (trade name: KBE-403, manufactured by Shin-Etsu Chemical Co., Ltd.)
<ポリアミド樹脂>
ヘキサメチレンジアミン、テレフタル酸、アジピン酸をそれぞれ50モル%、27.5モル%、22.5モル%の割合で重合させてなる半芳香族ポリアミド樹脂(商品名:ザイテルHTN502HF、デュポン社製、融点310℃)
<酸化チタン>
粉末状酸化チタン(商品名:JR-405、テイカ株式会社製、平均粒子径0.21μm)
<無機繊維>
ワラストナイト(商品名:バイスタルW、大塚化学株式会社製、平均繊維長25μm、平均繊維径3μm)
チタン酸カリウム繊維(商品名:TISMO D102、大塚化学株式会社製、平均繊維長15μm、平均繊維径0.5μm)
ガラス繊維(商品名:ECS 03T-289H/PL、日本電気硝子株式会社製、平均繊維長3mm、平均繊維径11μm)
<シラノール縮合物又はシランカップリング剤>
シラノール縮合物1:両末端型エポキシ変性シリコーンオイル(商品名:KF-105、信越化学工業株式会社製、粘度(25℃)15mm2/s)
シラノール縮合物2:側鎖型アミノ変性シリコーンオイル(商品名:BY16-213、東レ・ダウコーニング株式会社製、粘度(25℃)55mm2/s)
シラノール縮合物3:側鎖型エポキシ変性シリコーンオイル(商品名:X22-2000、信越化学工業株式会社製、粘度(25℃)190mm2/s)
シラノール縮合物4:側鎖型高級脂肪酸アミド含有シリコーンオイル(商品名:KF-3935、信越化学工業株式会社製、融点49℃)
シラノール縮合物5:シリコーンレジンパウダー(商品名:KMP590、信越化学工業株式会社製、平均粒子径2μm)
シラノール縮合物6:シリコーンゴムパウダー(商品名:KMP597、信越化学工業株式会社製、平均粒子径5μm)
シランカップリング剤7:N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン(商品名:KBE-603、信越化学工業株式会社製)
シランカップリング剤8:3-グリシドキシプロピルエトキシラン(商品名:KBE-403、信越化学工業株式会社製) Although it demonstrates concretely based on an Example and a comparative example below, this invention is not limited to these at all. In addition, the polyamide resin, titanium oxide, inorganic fiber, silane coupling agent, and silanol condensate used in the examples and comparative examples are specifically as follows. The melting point of the polyamide resin is the endothermic peak obtained by heating at 25 ° C. to 10 ° C./min under a nitrogen stream using a differential scanning calorimeter (trade name: DSC6200, manufactured by Seiko Instruments Inc.). did.
<Polyamide resin>
A semi-aromatic polyamide resin obtained by polymerizing hexamethylenediamine, terephthalic acid, and adipic acid at a ratio of 50 mol%, 27.5 mol%, and 22.5 mol%, respectively (trade name: Zytel HTN502HF, manufactured by DuPont, melting point 310 ° C)
<Titanium oxide>
Powdered titanium oxide (trade name: JR-405, manufactured by Teika Co., Ltd., average particle size 0.21 μm)
<Inorganic fiber>
Wollastonite (trade name: Vistal W, manufactured by Otsuka Chemical Co., Ltd., average fiber length 25 μm, average fiber diameter 3 μm)
Potassium titanate fiber (trade name: TISMO D102, manufactured by Otsuka Chemical Co., Ltd., average fiber length 15 μm, average fiber diameter 0.5 μm)
Glass fiber (trade name: ECS 03T-289H / PL, manufactured by Nippon Electric Glass Co., Ltd., average fiber length 3 mm, average fiber diameter 11 μm)
<Silanol condensate or silane coupling agent>
Silanol condensate 1: both-ends type epoxy-modified silicone oil (trade name: KF-105, manufactured by Shin-Etsu Chemical Co., Ltd., viscosity (25 ° C.) 15 mm 2 / s)
Silanol condensate 2: side chain type amino-modified silicone oil (trade name: BY16-213, manufactured by Toray Dow Corning Co., Ltd., viscosity (25 ° C.) 55 mm 2 / s)
Silanol condensate 3: side chain type epoxy-modified silicone oil (trade name: X22-2000, manufactured by Shin-Etsu Chemical Co., Ltd., viscosity (25 ° C.) 190 mm 2 / s)
Silanol condensate 4: Side chain type higher fatty acid amide-containing silicone oil (trade name: KF-3935, manufactured by Shin-Etsu Chemical Co., Ltd., melting point 49 ° C.)
Silanol condensate 5: silicone resin powder (trade name: KMP590, manufactured by Shin-Etsu Chemical Co., Ltd., average particle size 2 μm)
Silanol condensate 6: silicone rubber powder (trade name: KMP597, manufactured by Shin-Etsu Chemical Co., Ltd., average particle size 5 μm)
Silane coupling agent 7: N-2- (aminoethyl) -3-aminopropyltriethoxysilane (trade name: KBE-603, manufactured by Shin-Etsu Chemical Co., Ltd.)
Silane coupling agent 8: 3-glycidoxypropyl ethoxylane (trade name: KBE-403, manufactured by Shin-Etsu Chemical Co., Ltd.)
実施例1~17、比較例1~3
表1に示す配合割合で、二軸押出機のメインホッパーからポリアミド樹脂とシラノール縮合物又はシランカップリング剤とを、サイドフィーダーから無機繊維と酸化チタンとを加えることで溶融混練し、それぞれペレットを製造した。なお二軸押出機のシリンダー温度は320℃であった。 Examples 1 to 17 and Comparative Examples 1 to 3
At the blending ratio shown in Table 1, the polyamide resin and the silanol condensate or the silane coupling agent are melted and kneaded from the main hopper of the twin screw extruder, and the inorganic fibers and titanium oxide are added from the side feeder. Manufactured. The cylinder temperature of the twin screw extruder was 320 ° C.
表1に示す配合割合で、二軸押出機のメインホッパーからポリアミド樹脂とシラノール縮合物又はシランカップリング剤とを、サイドフィーダーから無機繊維と酸化チタンとを加えることで溶融混練し、それぞれペレットを製造した。なお二軸押出機のシリンダー温度は320℃であった。 Examples 1 to 17 and Comparative Examples 1 to 3
At the blending ratio shown in Table 1, the polyamide resin and the silanol condensate or the silane coupling agent are melted and kneaded from the main hopper of the twin screw extruder, and the inorganic fibers and titanium oxide are added from the side feeder. Manufactured. The cylinder temperature of the twin screw extruder was 320 ° C.
得られたペレットを射出成形機にてJIS試験片及び縦30mm×横30mm×厚さ3mmの平板を成形し、評価サンプルとした。なお射出成形機のシリンダー温度は330℃、金型温度は130℃であった。
The obtained pellets were molded into a JIS test piece and a flat plate having a length of 30 mm × width of 30 mm × thickness of 3 mm using an injection molding machine, and used as an evaluation sample. The cylinder temperature of the injection molding machine was 330 ° C., and the mold temperature was 130 ° C.
評価方法
(1)引張強さ及び引張破断伸び
JIS K7113に準じて測定し、結果を表1に示した。
(2)曲げ強さ及び曲げ弾性率
JIS K7271に準じて測定し、結果を表1に示した。
(3)ノッチ付きアイゾット(IZOD)衝撃値
JIS K7110に準じ、1号試験片で測定し、結果を表1に示した。
(4)ハンター白色度
色差計(商品名:ZE6000、日本電色株式会社製)を用いて、得られた平板のハンター白色度を測定し、成形直後のハンター白色度(W1)を測定し、結果を表1に示した。
(5)耐熱変色試験によるハンター白色度保持率
得られた平板を180℃×2時間空気中オーブンで加熱した。加熱後の平板のハンター白色度を(4)と同様に測定し、成形直後のハンター白色度に対する加熱後の値の比率を、以下の式に基づいて算出し、結果を表1に示した。 Evaluation method (1) Tensile strength and tensile elongation at break Measured according to JIS K7113, and the results are shown in Table 1.
(2) Flexural strength and flexural modulus Measured according to JIS K7271, and the results are shown in Table 1.
(3) Izod impact value with notch (IZOD) Impact value was measured with a No. 1 test piece in accordance with JIS K7110, and the results are shown in Table 1.
(4) Hunter Whiteness Using a color difference meter (trade name: ZE6000, manufactured by Nippon Denshoku Co., Ltd.), the Hunter whiteness of the obtained flat plate is measured, and the Hunter whiteness (W1) immediately after molding is measured. The results are shown in Table 1.
(5) Hunter whiteness retention by heat-resistant discoloration test The obtained flat plate was heated in an oven in air at 180 ° C. for 2 hours. The hunter whiteness of the flat plate after heating was measured in the same manner as in (4), the ratio of the value after heating to the hunter whiteness immediately after molding was calculated based on the following formula, and the results are shown in Table 1.
(1)引張強さ及び引張破断伸び
JIS K7113に準じて測定し、結果を表1に示した。
(2)曲げ強さ及び曲げ弾性率
JIS K7271に準じて測定し、結果を表1に示した。
(3)ノッチ付きアイゾット(IZOD)衝撃値
JIS K7110に準じ、1号試験片で測定し、結果を表1に示した。
(4)ハンター白色度
色差計(商品名:ZE6000、日本電色株式会社製)を用いて、得られた平板のハンター白色度を測定し、成形直後のハンター白色度(W1)を測定し、結果を表1に示した。
(5)耐熱変色試験によるハンター白色度保持率
得られた平板を180℃×2時間空気中オーブンで加熱した。加熱後の平板のハンター白色度を(4)と同様に測定し、成形直後のハンター白色度に対する加熱後の値の比率を、以下の式に基づいて算出し、結果を表1に示した。 Evaluation method (1) Tensile strength and tensile elongation at break Measured according to JIS K7113, and the results are shown in Table 1.
(2) Flexural strength and flexural modulus Measured according to JIS K7271, and the results are shown in Table 1.
(3) Izod impact value with notch (IZOD) Impact value was measured with a No. 1 test piece in accordance with JIS K7110, and the results are shown in Table 1.
(4) Hunter Whiteness Using a color difference meter (trade name: ZE6000, manufactured by Nippon Denshoku Co., Ltd.), the Hunter whiteness of the obtained flat plate is measured, and the Hunter whiteness (W1) immediately after molding is measured. The results are shown in Table 1.
(5) Hunter whiteness retention by heat-resistant discoloration test The obtained flat plate was heated in an oven in air at 180 ° C. for 2 hours. The hunter whiteness of the flat plate after heating was measured in the same manner as in (4), the ratio of the value after heating to the hunter whiteness immediately after molding was calculated based on the following formula, and the results are shown in Table 1.
ハンター白色度度保持率(%)=W2/W1×100
W1:成形直後(加熱前)のハンター白色度
W2:加熱後のハンター白色度度
(6)耐光変色試験によるハンター白色度保持率
得られた平板を、メタルハライドランプにて16mW/cm2で、120℃×500時間、光を照射した。光照射後の平板のハンター白色度を(4)と同様に測定し、成形直後のハンター白色度に対する光照射後の値の比率を、以下の式に基づいて算出し、結果を表1に示した。 Hunter whiteness retention (%) = W2 / W1 × 100
W1: Hunter whiteness immediately after molding (before heating) W2: Hunter whiteness after heating (6) Hunter whiteness retention by light discoloration resistance test The obtained flat plate was 120 mW / cm 2 with a metal halide lamp at 120 Irradiated with light at 500 ° C. for 500 hours. The hunter whiteness of the flat plate after light irradiation was measured in the same manner as in (4), and the ratio of the value after light irradiation to the hunter whiteness immediately after molding was calculated based on the following formula, and the results are shown in Table 1. It was.
W1:成形直後(加熱前)のハンター白色度
W2:加熱後のハンター白色度度
(6)耐光変色試験によるハンター白色度保持率
得られた平板を、メタルハライドランプにて16mW/cm2で、120℃×500時間、光を照射した。光照射後の平板のハンター白色度を(4)と同様に測定し、成形直後のハンター白色度に対する光照射後の値の比率を、以下の式に基づいて算出し、結果を表1に示した。 Hunter whiteness retention (%) = W2 / W1 × 100
W1: Hunter whiteness immediately after molding (before heating) W2: Hunter whiteness after heating (6) Hunter whiteness retention by light discoloration resistance test The obtained flat plate was 120 mW / cm 2 with a metal halide lamp at 120 Irradiated with light at 500 ° C. for 500 hours. The hunter whiteness of the flat plate after light irradiation was measured in the same manner as in (4), and the ratio of the value after light irradiation to the hunter whiteness immediately after molding was calculated based on the following formula, and the results are shown in Table 1. It was.
ハンター白色度保持率(%)=W3/W1×100
W1:成形直後(メタルハライドランプによる光照射前)のハンター白色度
W3:メタルハライドランプによる光照射後のハンター白色度
(7)密着力
得られた平板の表面上にてシリコーン封止材(商品名:OE-6636、東レ・ダウコーニング株式会社製)を150℃×1時間で硬化させ、4mm×4mm×高さ1mm突起物を作製した。得られた突起物を平板から剥がす力を測定し、結果を表1に示した。 Hunter whiteness retention (%) = W3 / W1 × 100
W1: Hunter whiteness immediately after molding (before light irradiation with a metal halide lamp) W3: Hunter whiteness after light irradiation with a metal halide lamp (7) Adhesive force Silicone sealing material (trade name: Product name: OE-6636 (manufactured by Toray Dow Corning Co., Ltd.) was cured at 150 ° C. for 1 hour to produce a 4 mm × 4 mm × 1 mm high protrusion. The force to peel the obtained protrusions from the flat plate was measured, and the results are shown in Table 1.
W1:成形直後(メタルハライドランプによる光照射前)のハンター白色度
W3:メタルハライドランプによる光照射後のハンター白色度
(7)密着力
得られた平板の表面上にてシリコーン封止材(商品名:OE-6636、東レ・ダウコーニング株式会社製)を150℃×1時間で硬化させ、4mm×4mm×高さ1mm突起物を作製した。得られた突起物を平板から剥がす力を測定し、結果を表1に示した。 Hunter whiteness retention (%) = W3 / W1 × 100
W1: Hunter whiteness immediately after molding (before light irradiation with a metal halide lamp) W3: Hunter whiteness after light irradiation with a metal halide lamp (7) Adhesive force Silicone sealing material (trade name: Product name: OE-6636 (manufactured by Toray Dow Corning Co., Ltd.) was cured at 150 ° C. for 1 hour to produce a 4 mm × 4 mm × 1 mm high protrusion. The force to peel the obtained protrusions from the flat plate was measured, and the results are shown in Table 1.
Claims (10)
- ポリアミド樹脂、酸化チタン、無機繊維、及びシラノール縮合物を含むことを特徴とする反射板用樹脂組成物。 A resin composition for a reflector, comprising a polyamide resin, titanium oxide, inorganic fibers, and a silanol condensate.
- 該シラノール縮合物が、シランカップリング剤の加水分解縮合物及び/又はシリコーン系化合物である、請求項1に記載の反射板用樹脂組成物。 The resin composition for reflectors according to claim 1, wherein the silanol condensate is a hydrolysis condensate of a silane coupling agent and / or a silicone compound.
- 該ポリアミド樹脂、酸化チタン、無機繊維、並びにシランカップリング剤及び/又はシリコーン系化合物を含む混合物を混合及び加熱して得られる、請求項2に記載の反射板用樹
脂組成物。 The resin composition for reflectors according to claim 2, obtained by mixing and heating a mixture containing the polyamide resin, titanium oxide, inorganic fibers, and a silane coupling agent and / or a silicone compound. - 該ポリアミド樹脂、酸化チタン、無機繊維、並びにシランカップリング剤及び/又はシリコーン系化合物を含む混合物の合計量100重量%中に、該シランカップリング剤及び/又はシリコーン系化合物を0.1~10重量%の割合で配合している、請求項3に記載の反射板用樹脂組成物。 In a total amount of 100% by weight of the mixture containing the polyamide resin, titanium oxide, inorganic fibers, and the silane coupling agent and / or silicone compound, 0.1 to 10 of the silane coupling agent and / or silicone compound is contained. The resin composition for reflectors according to claim 3, which is blended in a proportion by weight.
- 該シラノール縮合物が、一般式(1)
R1 nSi(OR2)4-n (1)
(式中、nは1~3から選択される任意の整数を示し、R1はアルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、又はアリール基を示し、それらの基は置換基を有していてもよく、R1が複数存在する場合には、互いに同一であっても異なっていてもよく、R2は炭素数1~4のアルキル基を示し、R2が複数存在する場合には、互いに同一であっても異なっていてもよい。)
で表される化合物の加水分解縮合物である、請求項1又は2に記載の反射板用樹脂組成物。 The silanol condensate is represented by the general formula (1)
R 1 n Si (OR 2 ) 4-n (1)
(In the formula, n represents an arbitrary integer selected from 1 to 3, R 1 represents an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, or an aryl group, and these groups have a substituent. And when there are a plurality of R 1 s , they may be the same or different from each other, R 2 represents an alkyl group having 1 to 4 carbon atoms, and when a plurality of R 2 are present May be the same or different from each other.)
The resin composition for reflectors of Claim 1 or 2 which is a hydrolysis-condensation product of the compound represented by these. - 該ポリアミド樹脂の融点が、280℃以上である、請求項1~5のいずれか1項に記載の反射板用樹脂組成物。 The resin composition for a reflecting plate according to any one of claims 1 to 5, wherein the polyamide resin has a melting point of 280 ° C or higher.
- 該ポリアミド樹脂が、全モノマー成分中の芳香族モノマーの割合が20モル%以上である半芳香族ポリアミド樹脂である、請求項1~6のいずれか1項に記載の反射板用樹脂組成物。 The resin composition for a reflector according to any one of claims 1 to 6, wherein the polyamide resin is a semi-aromatic polyamide resin in which the ratio of aromatic monomers in all monomer components is 20 mol% or more.
- 該ポリアミド樹脂が、モノマー成分として芳香族ジカルボン酸及び脂肪族アルキレンジアミンを含む半芳香族ポリアミド樹脂である、請求項1~7のいずれか1項に記載の反射板用樹脂組成物。 The resin composition for a reflector according to any one of claims 1 to 7, wherein the polyamide resin is a semi-aromatic polyamide resin containing an aromatic dicarboxylic acid and an aliphatic alkylenediamine as monomer components.
- 請求項1~8のいずれか1項に記載の樹脂組成物を成形して得られる反射板。 A reflector obtained by molding the resin composition according to any one of claims 1 to 8.
- 該反射板がLED用である請求項9に記載の反射板。
The reflector according to claim 9, wherein the reflector is for LED.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280047110.2A CN103827209B (en) | 2011-10-26 | 2012-10-16 | Resin composition for reflecting plate and reflecting plate |
KR1020147013601A KR101933749B1 (en) | 2011-10-26 | 2012-10-16 | Resin composition for reflective plate and reflective plate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011235393A JP5979846B2 (en) | 2011-10-26 | 2011-10-26 | RESIN COMPOSITION FOR REFLECTOR AND REFLECTOR |
JP2011-235393 | 2011-10-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013061821A1 true WO2013061821A1 (en) | 2013-05-02 |
Family
ID=48167654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/076666 WO2013061821A1 (en) | 2011-10-26 | 2012-10-16 | Resin composition for reflective plate and reflective plate |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5979846B2 (en) |
KR (1) | KR101933749B1 (en) |
CN (1) | CN103827209B (en) |
TW (1) | TW201326306A (en) |
WO (1) | WO2013061821A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170015826A1 (en) * | 2014-03-31 | 2017-01-19 | Evonik Degussa Gmbh | Polymer composition, fibre-composite semi-finished product and method for the production thereof |
JP2018013748A (en) * | 2016-07-08 | 2018-01-25 | 大塚化学株式会社 | Light reflection body material, light reflection body production method, light reflection body, and lighting fixture |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6383604B2 (en) * | 2013-08-16 | 2018-08-29 | 旭化成株式会社 | Polyamide resin composition for reflector and reflector |
JP2016117864A (en) * | 2014-12-24 | 2016-06-30 | 東洋インキScホールディングス株式会社 | Resin composition for light reflection and light reflection sheet |
CN104610739B (en) * | 2015-01-21 | 2017-09-15 | 金发科技股份有限公司 | A kind of reflecting plate daiamid composition |
JP7227004B2 (en) * | 2015-12-15 | 2023-02-21 | マテリオン コーポレイション | Improved wavelength conversion device |
CN112533993A (en) * | 2018-08-03 | 2021-03-19 | 帝斯曼知识产权资产管理有限公司 | Fiber-reinforced polyamide composition and molded article made therefrom |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05325612A (en) * | 1992-05-26 | 1993-12-10 | Dainippon Ink & Chem Inc | Lamp reflector |
JP2002138195A (en) * | 2000-11-02 | 2002-05-14 | Toray Ind Inc | Electroconductive polyamide resin composition and molding |
JP2006253398A (en) * | 2005-03-10 | 2006-09-21 | Shin Etsu Chem Co Ltd | Manufacturing method of semiconductor device |
JP2006257314A (en) * | 2005-03-18 | 2006-09-28 | Kuraray Co Ltd | Polyamide resin composition for molding led reflector and led reflector |
WO2007037355A1 (en) * | 2005-09-30 | 2007-04-05 | Nichia Corporation | Light emitting device and backlight unit using the same |
JP2007199672A (en) * | 2005-12-27 | 2007-08-09 | Mitsubishi Plastics Ind Ltd | Aliphatic polyester resin reflection film and reflection plate equipped with the same |
JP2008233290A (en) * | 2007-03-19 | 2008-10-02 | Mitsubishi Plastics Ind Ltd | Reflecting film and reflecting plate |
JP2010100682A (en) * | 2008-10-21 | 2010-05-06 | Techno Polymer Co Ltd | Heat-dissipating resin composition, substrate for led mounting, and reflector |
WO2011027562A1 (en) * | 2009-09-07 | 2011-03-10 | 株式会社クラレ | Reflector for led and light-emitting device equipped with same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2762610B1 (en) | 1997-04-25 | 1999-07-02 | Nyltech Italia | POLYAMIDE COMPOSITION FOR A PROCESS FOR MANUFACTURING ARTICLES BY EXTRUSION BLOWING AND OBTAINED ARTICLES |
JP3290127B2 (en) * | 1998-01-27 | 2002-06-10 | 松下電工株式会社 | Heat conductive silicone rubber composition and heat dissipation sheet comprising the heat conductive silicone rubber composition |
JPWO2007138924A1 (en) * | 2006-05-26 | 2009-10-01 | コニカミノルタオプト株式会社 | Optical pickup device |
CN101200588A (en) * | 2006-12-15 | 2008-06-18 | 上海杰事杰新材料股份有限公司 | Polyamide composition and method of making the same |
JP5428286B2 (en) * | 2008-10-21 | 2014-02-26 | 日本ゼオン株式会社 | Thermally conductive filler-containing polymerizable composition, prepreg, and laminate |
JP2011128200A (en) * | 2009-12-15 | 2011-06-30 | Konica Minolta Holdings Inc | Display element |
-
2011
- 2011-10-26 JP JP2011235393A patent/JP5979846B2/en active Active
-
2012
- 2012-10-16 CN CN201280047110.2A patent/CN103827209B/en active Active
- 2012-10-16 KR KR1020147013601A patent/KR101933749B1/en active IP Right Grant
- 2012-10-16 WO PCT/JP2012/076666 patent/WO2013061821A1/en active Application Filing
- 2012-10-24 TW TW101139284A patent/TW201326306A/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05325612A (en) * | 1992-05-26 | 1993-12-10 | Dainippon Ink & Chem Inc | Lamp reflector |
JP2002138195A (en) * | 2000-11-02 | 2002-05-14 | Toray Ind Inc | Electroconductive polyamide resin composition and molding |
JP2006253398A (en) * | 2005-03-10 | 2006-09-21 | Shin Etsu Chem Co Ltd | Manufacturing method of semiconductor device |
JP2006257314A (en) * | 2005-03-18 | 2006-09-28 | Kuraray Co Ltd | Polyamide resin composition for molding led reflector and led reflector |
WO2007037355A1 (en) * | 2005-09-30 | 2007-04-05 | Nichia Corporation | Light emitting device and backlight unit using the same |
JP2007199672A (en) * | 2005-12-27 | 2007-08-09 | Mitsubishi Plastics Ind Ltd | Aliphatic polyester resin reflection film and reflection plate equipped with the same |
JP2008233290A (en) * | 2007-03-19 | 2008-10-02 | Mitsubishi Plastics Ind Ltd | Reflecting film and reflecting plate |
JP2010100682A (en) * | 2008-10-21 | 2010-05-06 | Techno Polymer Co Ltd | Heat-dissipating resin composition, substrate for led mounting, and reflector |
WO2011027562A1 (en) * | 2009-09-07 | 2011-03-10 | 株式会社クラレ | Reflector for led and light-emitting device equipped with same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170015826A1 (en) * | 2014-03-31 | 2017-01-19 | Evonik Degussa Gmbh | Polymer composition, fibre-composite semi-finished product and method for the production thereof |
US10882993B2 (en) * | 2014-03-31 | 2021-01-05 | Volkswagen Aktiengesellschaft | Polymer composition, fibre-composite semi-finished product and method for the production thereof |
JP2018013748A (en) * | 2016-07-08 | 2018-01-25 | 大塚化学株式会社 | Light reflection body material, light reflection body production method, light reflection body, and lighting fixture |
Also Published As
Publication number | Publication date |
---|---|
JP2013091737A (en) | 2013-05-16 |
KR101933749B1 (en) | 2018-12-28 |
JP5979846B2 (en) | 2016-08-31 |
TW201326306A (en) | 2013-07-01 |
CN103827209A (en) | 2014-05-28 |
KR20140095504A (en) | 2014-08-01 |
CN103827209B (en) | 2017-03-15 |
TWI561579B (en) | 2016-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5979846B2 (en) | RESIN COMPOSITION FOR REFLECTOR AND REFLECTOR | |
ES2409034T3 (en) | Resin composition for reflector plates | |
JP4892140B2 (en) | Resin composition for LED reflector | |
CN103270099B (en) | Molded thermoplastic articles comprising thermally conductive polymers | |
TWI498355B (en) | A polysiloxane-based composition, a hardened product, and an optical device | |
JP2014521822A (en) | Improved polyamide composition for LED applications | |
US10703903B2 (en) | Polyamide composition for LED reflection plate, LED reflection plate, and light-emitting device including reflection plate | |
JP2008182172A (en) | Resin composition for led reflector | |
TWI746444B (en) | Polyamide composition for LED reflector, LED reflector, and light-emitting device provided with the reflector | |
JP2016084399A (en) | Resin composition for reflective plate and reflective plate | |
JP2019127545A (en) | Polyester resin composition for reflection material and reflection material | |
JP2014065842A (en) | Polyphenylene sulfide resin composition and molded article | |
JP2013076001A (en) | Polyamide resin composition | |
WO2024004933A1 (en) | Polyamide resin composition for reflective plate, and reflective plate | |
JP6837915B2 (en) | Polyamide resin composition and its use | |
CN105462179A (en) | Thermoplastic Resin Composition and Molded Article Using the Same | |
JP5919361B2 (en) | Organopolysiloxane composition and cured product | |
JP5923331B2 (en) | Polysiloxane-based composition, sealing agent using the composition, and optical device | |
JP5695372B2 (en) | Organopolysiloxane composition and cured product | |
JP2020158628A (en) | Resin composition | |
JP2021172783A (en) | Molding method and reflective material | |
JP2013174675A (en) | Light reflector | |
JP2015079829A (en) | Optical semiconductor device arranged by using polysiloxane-based composition as sealant | |
JP2013201175A (en) | Light reflector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12844415 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147013601 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12844415 Country of ref document: EP Kind code of ref document: A1 |