WO2013058504A2 - 편석 현상을 최소화한 상온 성형성이 우수한 비열처리형 마그네슘 합금 판재 - Google Patents

편석 현상을 최소화한 상온 성형성이 우수한 비열처리형 마그네슘 합금 판재 Download PDF

Info

Publication number
WO2013058504A2
WO2013058504A2 PCT/KR2012/008357 KR2012008357W WO2013058504A2 WO 2013058504 A2 WO2013058504 A2 WO 2013058504A2 KR 2012008357 W KR2012008357 W KR 2012008357W WO 2013058504 A2 WO2013058504 A2 WO 2013058504A2
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
alloy sheet
segregation
heat treatment
magnesium
Prior art date
Application number
PCT/KR2012/008357
Other languages
English (en)
French (fr)
Other versions
WO2013058504A3 (ko
Inventor
김낙준
심명식
서병찬
배준호
김동욱
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to JP2014536978A priority Critical patent/JP6099656B2/ja
Priority to US14/237,892 priority patent/US20140205489A1/en
Priority to EP12841026.3A priority patent/EP2770072A4/en
Priority to CN201280040577.4A priority patent/CN103781928B/zh
Publication of WO2013058504A2 publication Critical patent/WO2013058504A2/ko
Publication of WO2013058504A3 publication Critical patent/WO2013058504A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present invention relates to a thin plate-cast magnesium alloy sheet, more specifically, through the adjustment of the alloy components, not only can significantly reduce casting defects such as central segregation or reverse segregation, but also subsequent heat treatment through the precipitated phase formed during the rolling process.
  • the present invention relates to a non-heat treated magnesium alloy sheet material having improved room temperature formability by suppressing grain growth in a process.
  • Magnesium alloy is an alloy for structural materials with low specific gravity, excellent specific strength and rigidity. Recently, the demand for light electronic devices such as mobile phones and laptops is increasing, and automotive materials for fuel efficiency are also increasing. have. However, research on magnesium alloys has been mainly limited to casting parts, and in particular, attention has been focused on improving high-temperature properties for application to automotive engines and gear parts, while processing magnesium alloys that can be applied to various fields such as sheet materials. The study was insufficient.
  • magnesium plate produced by the thin plate casting method has been much researched and commercialized as it has a large utilization among the processing alloys.
  • AZ31 alloy is the only processing magnesium sheet manufactured by sheet casting, which has mechanical properties that can be most commonly used in the industrial market.
  • the present invention has been researched and developed for the purpose of improving and solving the defect of the cast structure and low mechanical strength and room temperature formability of the conventional thin magnesium casting alloy, the casting defect such as segregation through the adjustment of the magnesium alloy composition It is an object of the present invention to provide a non-heat-treated magnesium alloy plate material which can obtain good room temperature formability with considerable mechanical strength without reducing expensive rare earth elements by controlling the microstructure.
  • the present invention comprises Al: 1 to 3% by weight, Sn: 0.5 to 3% by weight and consists of the remaining magnesium, the average value of Vickers hardness (Hv) due to central segregation and reverse segregation It provides a non-heat treatment magnesium alloy sheet, characterized in that the deviation is up to 10 Hv or less.
  • the magnesium alloy sheet according to the present invention is a thin cast
  • the microstructure may include a Mg 2 Sn secondary phase.
  • the Mg 2 Sn secondary phase volume fraction is 5% or less.
  • the magnesium alloy sheet according to the present invention is characterized in that the yield strength is 200MPa or more, the limit dome height (LDH) is 5mm or more, more preferably 6mm or more.
  • the magnesium alloy sheet according to the present invention is characterized in that the fraction of the tension twin, which is tilted at 85 to 90 ° in the parents grain after molding, is 5% or more.
  • Magnesium alloy sheet according to the present invention greatly improved the defects of reverse segregation and central segregation generated in the alloy produced by the sheet casting process due to the change in the solidification section according to the additive alloy element, and undergoes a heat treatment process for high forming Afterwards, it is possible to provide a magnesium alloy sheet having a mechanical strength superior to that of a conventional non-heat treatment thin cast magnesium alloy.
  • the magnesium alloy sheet provided in the present invention exhibits excellent moldability without adding expensive rare earth elements added for existing high forming properties and high strength properties, thereby increasing market competitiveness for other lightweight structural materials.
  • FIG. 1 is a schematic view of a sheet casting apparatus for producing a magnesium alloy sheet used in an embodiment of the present invention.
  • Figure 2 is a diagram showing the distribution of hardness values in the thickness direction, respectively, by dividing the alloy plate randomly taken from the magnesium alloy plate and commercial AZ31 alloy according to the present invention into five equal parts.
  • Figure 3 shows the composition distribution of the cross section of the cast structure in the magnesium alloy sheet and commercial AZ31 alloy according to the present invention through EPMA.
  • FIG. 5 is a schematic view showing a method for evaluating the limit dome height of the magnesium alloy sheet according to the present invention.
  • Figure 6 shows the shape after the room temperature limit dome height (LDH) experiment of the magnesium alloy sheet (a) and commercial AZ31 alloy (b) according to the present invention.
  • Figure 7 shows a cutting plane for analyzing the specimens subjected to the limit dome height experiment.
  • FIG. 8 is a graph showing grain changes of the magnesium alloy (a) and the commercial AZ31 alloy (b) according to the present invention in the portion shown in FIG. 7.
  • Magnesium alloy sheet according to the present invention Al: 1 to 3% by weight, Sn: 0.5 to 3% by weight, consisting of the remaining magnesium, the deviation of the Vickers hardness (Hv) average value due to central segregation and reverse segregation It is a maximum of 10 Hv or less, It is characterized by the non-heat treatment type.
  • the solidification section of the material has a great influence on the segregation and the degree of casting.
  • the liquid-liquid region of solid coexistence inside the sheet is squeezed from the center to the surface due to the compression by the two rolls.
  • the segregation zone with high compositional density is formed, which is called reverse segregation.
  • Such reverse segregation develops more seriously in alloys with a long solidification section.
  • Aluminum alloys with relatively narrow solidification sections tend to have less tendency of reverse segregation than magnesium alloys with long solidification sections, and even magnesium alloys have a different degree of segregation when the solidification section differs depending on the alloying elements.
  • This reverse segregation not only makes it difficult to control the microstructure of the cast material, but also has to be homogenized at a high temperature for a long time, and adversely affects mechanical properties as well as surface treatment.
  • the present inventors in order to solve the problems of the reverse segregation as described above, adjusted the solidification section of the magnesium alloy used for sheet casting within a range that does not inhibit the mechanical properties, as in the magnesium alloy according to the present invention, 1 ⁇ 1
  • the alloy provided in the present invention may form a solidification section of 50 K or less, similar to that of the aluminum alloy, to greatly reduce reverse segregation.
  • the tendency of the reverse segregation can be confirmed by the alloy composition distribution.
  • the alloy composition distribution in the casting structure is high in the center and the plate edge.
  • the variation in composition in the thickness direction is not large.
  • Magnesium alloy sheet according to the present invention has a composition deviation of 10% or less, whereas the variation of the overall composition distribution in the sheet thickness direction has 30 to 50% on average in the case of commercial AZ31 sheet cast material.
  • the difference in the composition distribution in the casting material shows a partial hardness difference.
  • the tendency of the segregation zone can be quantified by using the hardness difference, and the magnesium alloy sheet according to the present invention is characterized in that the variation of the Vickers hardness (Hv) mean value in the sheet thickness direction is at most 10 Hv or less.
  • the magnesium alloy sheet according to the present invention exhibits excellent mechanical properties compared to conventional commercial AZ31 due to the formation of the Mg 2 Sn secondary phase.
  • Non-heat treatment alloys do not use a heat treatment process to control the microstructure, so there are limited reinforcement mechanisms that can be used to increase mechanical strength.
  • the volume fraction of the Mg 2 Sn secondary phase is 5% or less.
  • the main reinforcing mechanism is the subsequent work heat treatment such as rolling, and the mechanical strength increases as the annealing time passes due to the annealing of the strain along with grain growth after annealing. A sharp drop is observed, which becomes more pronounced as the annealing temperature increases.
  • the volume fraction of the secondary phase in the homogenization treatment after casting is greatly reduced, but after the dynamic precipitation during the rolling process, the magnesium alloy is finely distributed inside the tissue again and the distribution of the secondary phase is crystallized in the annealing process. It is possible to prevent a significant drop in mechanical strength even after long-term heat treatment by inhibiting growth.
  • the reason for limiting the composition of the magnesium alloy as described above is that when the Al content is less than 1% by weight, the effect of improving the fluidity and strength during casting is insufficient. This is because the segregation control effect is not sufficient.
  • the volume fraction of the Mg 2 Sn secondary phase is small, which contributes to the improvement of mechanical properties, and when added at 3% by weight or more, the homogenization treatment temperature and time are lengthened.
  • the secondary phase formed in the process is locally distributed in large quantities, which adversely affects the molding and the elongation.
  • magnesium is poor in formability due to the absence of a slip system at room temperature, but twin behavior is known to be important as a deformation factor to replace the slip system.
  • Magnesium alloy sheet according to the present invention is an alloy having excellent room temperature formability different from the existing AZ31 alloy due to the development of the tension twin of the parent particles (parents grain) of the twin twine forming an angle of 85 ⁇ 90 ° To provide.
  • the raw materials of pure Mg (99.9%), pure Al (99.9%), and pure Sn (99.9%) were mixed with CO 2 and SF 6 through the melting furnace 10 of the twin roll sheet casting process equipment shown in FIG.
  • the molten metal was injected between two cooling rolls 30 using a nozzle 20 to prepare a plate.
  • the gap between the two cooling rolls was maintained at about 2mm and the rotational speed of the cooling roll was maintained at about 4m / min during the injection of the molten metal.
  • the casting speed of the molten metal was cast to be 200 ⁇ 300K / s under these conditions.
  • a magnesium alloy sheet having a length of about 5 m, a width of about 70 mm, and a thickness of about 2 mm was obtained.
  • FIG. 2 shows the thickness direction of an arbitrary portion of a 10 cm length specimen by dividing the AZ31 (comparative example) sheet manufactured by POSCO and the AT33 (Example 2) magnesium alloy sheet arbitrarily selected in 50 cm length into 5 equal parts. It is shown by measuring the hardness to. At this time, the Vickers hardness was measured conditions of 100gf load, holding time 5 seconds.
  • the hardness of the AZ31 is locally high at the central portion and the surface portion, and the overall variation is not uniform.
  • AT33 Example 2
  • the hardness difference due to segregation is partially shown, but the deviation value is within 10 Hv on average, whereas in the case of AZ31 alloy, the deviation is more than 10 to 20 Hv on average. Compared to the overall uniform value is shown.
  • the plate material cast as mentioned above was subjected to the following processing heat treatment as follows. First, the cast plate was subjected to solution treatment at 400 ° C. for 3 hours. Next, the solution-treated plate
  • Hot rolling was carried out at 50% of the final reduction rate in 5 passes while giving a reduction ratio of 10% per pass to obtain a sheet having a final thickness of about 1 to 0.7 mm.
  • the thin plate casting and the heat treated plate material were annealed as shown in Table 1 below, and mechanical properties and formability were evaluated.
  • tensile specimens having a gauge length of 12.6 mm, a gauge width of 5 mm, and a thickness of 1 mm were prepared and subjected to a tensile test at a strain rate of 6.4 ⁇ 10 ⁇ 4 s ⁇ 1 .
  • FIG. 2 is a schematic diagram showing a method for evaluating the limit dome height (LDH) of the magnesium alloy sheet according to an embodiment of the present invention.
  • LH limit dome height
  • a disk-shaped test piece having a diameter of 50 mm and a thickness of 0.7 mm was prepared, and then, the test piece was inserted between the upper die and the lower die, and the specimen was fixed with a force of 5 kN.
  • Lubricant oil was used as a known press oil.
  • the alloy which is provided as a non-heat treatment alloy, tends to decrease mechanical strength with annealing time and with increasing annealing temperature, as is the typical non-heat treatment alloy AZ31. That is, the LDH value tends to increase.
  • Figure 3 shows the state of the specimen after the LDH evaluation of the commercial AZ31 and AT alloy
  • Figure 4 shows the tissue change of the top portion and the most undeformed edge in the cross section of the specimen shown in Figure 3 as shown in FIG.
  • the angle between the normal direction of the plate and the direction of the (0002) basal plane of the magnesium hexagonal crystal is shown graphically. This means that the higher the fraction at the bottom angle, the more the texture of the (0002) face is developed, and the more the fraction is dispersed, the more random the tissue is.
  • a higher fraction (fraction) is shown in the elevation after deformation than the commercial AZ31, which is due to the tension twin formed during the deformation process. These tensile twins contribute greatly to the improvement of formability in the magnesium lacking slip system.
  • the present invention not only makes uniform casting structure and greatly improves defects due to segregation through the control of alloy elements with a narrow solidification section, but also has excellent mechanical strength and formability without using expensive rare earth elements.
  • the magnesium alloy sheet according to the present invention is a non-heat treatment type alloy can be used for various applications because the yield strength and LDH value shows a linear change with the annealing time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Abstract

본 발명은 합금성분의 제어를 통해, 중심편석이나 역편석과 같은 주조결함을 현저히 줄일 수 있을 뿐 아니라 성형성도 종래의 상용 마그네슘 합금 판재에 비해 우수한 비열처리형 마그네슘 합금 판재에 관한 것이다. 본 발명에 따른 마그네슘 합금 판재는, Al: 1 ~ 3중량%, Sn: 0.5 ~ 3중량%를 함유하고 나머지 마그네슘으로 이루어지며, 중심편석 및 역편석으로 인한 비커스 경도(Hv) 평균값의 편차가 최대 10Hv 이하인 것을 특징으로 한다.

Description

편석 현상을 최소화한 상온 성형성이 우수한 비열처리형 마그네슘 합금 판재
본 발명은 박판주조한 마그네슘 합금 판재에 관한 것으로, 보다 구체적으로는 합금 성분의 조절을 통해, 중심편석이나 역편석과 같은 주조결함을 현저히 줄일 수 있을 뿐 아니라 압연과정에서 형성되는 석출상을 통해 후속 열처리 과정에서 결정립 성장을 억제함으로서 상온 성형성을 향상시킨 비열처리형 마그네슘 합금 판재에 관한 것이다.
마그네슘 합금은 낮은 비중, 우수한 비강도 및 강성을 갖는 구조 재료용 합금으로, 최근 휴대전화, 노트북과 같은 경량화가 요구되는 휴대 전자 기기용 소재로, 또한 연비 향상을 위한 자동차용 소재로서 수요가 증대되고 있다. 그런데 마그네슘 합금의 연구는 주로 주조용 부품에 한정되어 왔으며, 특히 자동차 엔진이나 기어 부품에 적용을 위한 고온 물성 향상에 관심이 집중되어온 반면, 판재와 같이 보다 다양한 분야에 적용될 수 있는 가공용 마그네슘 합금에 대한 연구는 부족한 실정이었다.
최근 마그네슘 합금의 보다 다양한 적용을 위해 가공용 마그네슘 제품에 대한 요구가 높아지고 있고, 이를 위해 많은 연구 기관에서 가공용 마그네슘 합금에 대한 연구가 이루어지고 있다. 특히 박판주조법으로 제조되는 마그네슘 판재는 가공용 합금 중에서 활용도가 큰 만큼 많은 연구가 이루어져 왔고 상용화되기에 이르렀다.
하지만 최근 마그네슘 합금 개발 동향은 고강도 고성형성 합금 개발을 목표로 많은 합금 원소를 첨가하거나 고가의 희토류 원소를 이용하기 때문에 가격 경쟁력이 떨어지는 실정이다. 이에 따라 현재까지는 박판주조로 제조되는 가공용 마그네슘 판재는 AZ31 합금이 유일하며, 이 합금은 산업 시장에서 가장 보편적으로 사용될 수 있는 기계적 특성을 가지고 있다.
한편, 판재형태의 알루미늄 합금 역시 기계적 강도가 200MPa 이하의 항복강도를 가진 제품이 자동차 산업이나 기타 외장재 산업에 다양하게 사용되고 있다는 점을 고려하면, 마그네슘 합금 판재의 빠른 상용화 및 가격경쟁력 확보를 위해서는 박판주조용 비열처리형 합금의 개발이 시급하다고 할 수 있다.
본 발명은 종래의 박판주조용 마그네슘 합금이 가지는 주조조직의 결함과 낮은 기계적 강도와 상온 성형성을 개선 및 해결하고자 하는 과제를 위해 연구개발된 것으로서, 마그네슘 합금 조성의 조절을 통해 편석과 같은 주조결함을 줄이고, 미세조직의 제어를 통해 고가의 희토류 원소를 포함하지 않고도 상당한 기계적 강도와 함께 양호한 상온 성형성을 얻을 수 있는 비열처리형 마그네슘 합금판재를 제공하는 것을 해결하고자 하는 과제로 한다.
상기 과제를 해결하기 위한 수단으로서 본 발명은, Al: 1 ~ 3중량%, Sn: 0.5 ~ 3중량%를 함유하고 나머지 마그네슘으로 이루어지며, 중심편석 및 역편석으로 인한 비커스 경도(Hv) 평균값의 편차가 최대 10Hv 이하인 것을 특징으로 하는 비열처리형 마그네슘 합금 판재를 제공한다.
또한, 본 발명에 따른 마그네슘 합금 판재는 박판주조된 것으로서, 그 미세조직은 Mg2Sn 2차상을 포함할 수 있다.
또한, 본 발명에 따른 마그네슘 합금 판재에 있어서, 상기 Mg2Sn 2차상의 부피분율은 5% 이하인 것을 특징으로 한다.
또한, 본 발명에 따른 마그네슘 합금 판재는, 항복강도가 200MPa 이상이고, 한계돔높이(LDH)가 5mm 이상, 보다 바람직하게는 6mm 이상인 것을 특징으로 한다.
또한, 본 발명에 따른 마그네슘 합금 판재는, 성형 후 모입자(parents grain)에 85 ~ 90°기울어진 인장쌍정(tension twin)의 분율이 5% 이상인 것을 특징으로 한다.
본 발명에 따른 마그네슘 합금 판재는, 첨가 합금원소에 따른 응고구간의 변화로 인해 박판주조 공정으로 제조된 합금에서 발생하는 역편석 및 중심편석의 결함을 크게 개선하고, 고성형성을 위한 열처리 공정을 거친 후에도 기계적 강도가 기존의 비열처리형 박판주조 마그네슘 합금에 비해 우수한 마그네슘 합금 판재를 제공할 수 있다.
또한, 본 발명에서 제공하는 마그네슘 합금 판재는 기존의 고성형성 및 고강도 특성을 위해 첨가되는 고가의 희토류 원소를 첨가하지 않고도 우수한 성형성을 나타내고 있어 다른 경량 구조재료에 대한 시장 경쟁력을 높일 수 있다.
도 1은 본 발명의 실시예에서 사용한 마그네슘 합금 판재를 제조하기 위한 박판주조장치의 개략도이다.
도 2는 본 발명에 따른 마그네슘 합금 판재와 상용 AZ31 합금에서 임의로 채취한 합금 판재를 5등분하여 각각 두께방향으로 경도값의 분포를 나타낸 그림이다.
도 3은 본 발명에 따른 마그네슘 합금 판재와 상용 AZ31 합금에서 주조조직 단면의 조성 분포를 EPMA를 통해 나타낸 것이다.
도 4는 본 발명에 따른 마그네슘 합금 판재의 X-선 회절 시험 결과이다.
도 5는 본 발명에 따른 마그네슘 합금 판재의 한계돔높이 평가방법을 나타낸 개략도이다.
도 6은 본 발명에 따른 마그네슘 합금 판재(a)와 상용 AZ31 합금(b)의 상온 한계돔높이(LDH) 실험을 한 후의 형상을 나타낸 것이다.
도 7은 한계돔높이 실험을 한 시편을 분석하기 위한 절단면을 나타낸 것이다.
도 8은 도 7에 도시한 부분에서 본 발명에 따른 마그네슘 합금(a)과 상용 AZ31 합금(b)의 결정립 변화를 그래프로 나타낸 것이다.
본 발명의 실시예들을 설명하기 위해 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함하는 의미이다. 그리고 '포함한다'의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분을 구체화하며 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외하는 것은 아니다.
다르게 정의하지는 않았지만 여기에 사용되는 기술용어 및 과학 용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미이다. 또한, 보통 사용되는 사전에 정의된 용어들은 관련 기술 문헌과 현재 개시된 내용에 부합되는 사전에 정의된 용어들은 관련 기술 문헌과 현재 개시된 내용에 부합하는 의미를 갖는 것으로 추가 해석되고 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
이하 첨부된 도면들을 참조하여 마그네슘 합금 판재의 제조방법 및 이를 이용하여 제조된 마그네슘 합금 판재에 대한 실시예들을 상세하게 설명하겠지만 본 발명이 하기의 실시예들에 제한되는 것은 아니다. 따라서 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명을 다양하게 변경할 수 있음은 자명하다.
본 발명에 따른 마그네슘 합금 판재는, Al: 1 ~ 3중량%, Sn: 0.5 ~ 3중량%를 함유하고, 나머지 마그네슘으로 이루어지며, 중심편석 및 역편석으로 인한 비커스 경도(Hv) 평균값의 편차가 최대 10Hv 이하이며, 비열처리형인 것을 특징으로 한다.
박판주조 공정에서 재료의 응고구간이 주조재의 편석 및 그 정도에 큰 영향을 미친다. 박판주조 중 용탕이 롤의 셋백거리(set back distance) 구간을 지나는 과정에서 응고가 일어날 때 판재 내부의 고액 공존의 액상 영역은 두 롤에 의한 압착으로 인해 중심부에서 표면부로 스퀴징되어 결과적으로 표면부에서 조성 밀도가 높은 편석대가 형성되는 데 이를 역편석이라 하여, 이와 같은 역편석은 특히 응고구간이 긴 합금일수록 심각하게 발달하게 된다. 응고구간이 상대적으로 좁은 알루미늄 합금의 경우 응고구간이 긴 마그네슘 합금에 비해 역편석의 경향이 적은 편이며, 마그네슘 합금에서도 합금 원소에 따라 응고구간의 차이가 날 경우 편석되는 정도의 차이가 난다. 이러한 역편석은 주조재의 미세조직 제어를 어렵게 할 뿐만 아니라, 고온에서 장시간 균질화처리를 해야하고, 기계적 물성은 물론 표면 처리에도 악영향을 준다.
본 발명자들은 상기와 같은 역편석의 문제점을 해결하기 위하여, 기계적 물성을 저해하지 않는 범위 내에서 박판 주조에 사용되는 마그네슘 합금의 응고구간을 조절하였는데, 본 발명에 따른 마그네슘 합금과 같이, 마그네슘에 1 ~ 3중량%의 Al과, 0.5 ~ 3중량%의 Sn을 첨가한 합금계의 경우, Factsage V6.2로 계산된 평형 상태도에서 30 ~ 50K의 응고구간을 가지게 되며, 이는 종래의 박판주조용 합금계인 AZ31이 약 80 ~ 90K의 응고구간을 가지는 것에 비해 절반 정도에 해당한다. 이에 따라 본 발명에서 제공하는 합금은 응고구간이 알루미늄 합금과 유사한 50K 이하의 응고구간을 형성하여 역편석을 크게 줄일 수 있다.
이러한 역편석의 경향성은 합금 조성 분포로 확인할 수 있는데, 응고구간이 긴 합금의 경우 중심 편석 및 역편석이 발달하기 때문에 주조조직에서 합금 조성 분포가 중심과 판재 가장자리가 높게 나타나는데, 본 발명에 따른 마그네슘 합금은 두께 방향으로의 조성 편차가 크지 않게 된다. 판재 두께 방향으로 전체 조성 분포의 편차가 상용 AZ31 박판 주조재의 경우, 평균적으로 30 ~ 50%를 가지는 것에 비해, 본 발명에 따른 마그네슘 합금 판재는 조성 편차가 10% 이하이다.
한편, 일반적으로 주조재에서 조성 분포의 차이가 클 경우 부분적인 경도의 차이를 보이게 된다. 이는 역편석이나 중심편석과 같은 고농도의 편석대나 공정상(eutectic phase)으로 구성된 2차상들이 밀집해 있는 경우 주위에 비해 높은 경도값을 보이게 된다. 이러한 경도차를 이용해서 편석대의 경향성을 수치화할 수 있으며, 본 발명에 따른 마그네슘 합금 판재는 판재 두께 방향으로의 비커스 경도(Hv) 평균값의 편차가 최대 10Hv 이하인 것을 특징으로 한다.
또한, 본 발명에 따른 마그네슘 합금 판재는 Mg2Sn 2차 상의 형성으로 인해 기존의 상용 AZ31에 비해 우수한 기계적 물성을 나타낸다. 비열처리형 합금의 경우 미세조직 제어를 위한 열처리 공정을 사용하지 않기 때문에 기계적 강도를 높이기 위해 사용할 수 있는 강화 메커니즘이 제한적이다. 본 발명에 따른 마그네슘 합금 판재는 이미지 프로 플러스 6.0 프로그램을 이용하여 광학 이미지를 측정하였을 때, Mg2Sn 2차상의 부피분율은 5% 이하이다.
특히 AZ31과 같이 합금 원소함량이 적은 경우 주요 강화 메커니즘은 압연과 같은 후속 가공 열처리일 수밖에 없는데, 압연 후 어닐링에 따른 결정립성장과 함께 내부 변형(strain)의 풀림으로 인해 어닐링 시간이 지날수록 기계적 강도가 급격이 떨어지는 현상을 보이고 이는 어닐링 온도가 올라갈수록 더욱 두드러지게 된다.
본 발명에 따른 마그네슘 합금은 주조 후 균질화 처리 과정에서 2차상의 부피분율이 크게 줄어들지만 압연 과정에서 동적 석출과정을 거치면서 다시 조직 내부에 미세하게 분포하게 되고 이러한 2차상의 분포는 어닐링 과정에서 결정립성장을 억제해 장시간 열처리를 하여도 기계적 강도가 큰 폭으로 하락하는 것을 막을 수 있다.
상기 마그네슘 합금의 조성을 상기와 같이 한정한 이유는, Al의 함량을 1중량% 미만으로 하는 경우 주조시 유동성 개선 효과 및 강도 향상의 효과가 불충분 하게 되고 3중량% 이상 첨가될 경우 응고구간이 넓어져 편석 제어 효과가 충분하지 못하기 때문이다.
또한, Sn의 함량을 0.5중량% 미만으로 하는 경우 Mg2Sn 2차상의 부피분율이 적어 기계적 물성 향상에 기여하는 정도가 미약하고 3중량% 이상으로 첨가되는 경우 균질화 처리 온도 및 시간이 길어지며 압연과정에서 형성되는 2차 상이 국부적으로 다량 분포하게 되어 성형 및 연신율 향상에 악영향을 미친다.
일반적인 마그네슘은 상온에서 슬립계(slip system)의 부재로 인해 성형성이 좋지 못하지만 이러한 슬립계를 대체하는 변형 인자로 쌍정(twin) 거동이 중요하다고 알려져 있다.
본 발명에 따른 마그네슘 합금 판재는 이러한 쌍정 중 모입자(parents grain)와 85 ~ 90°의 각을 이루는 인장쌍정(tension twin)의 발달로 인해 기존의 AZ31 합금과는 다른 우수한 상온 성형성을 가진 합금을 제공한다.
이하에서는 본 발명의 바람직한 실시예를 기초로 본 발명을 보다 상세하게 설명한다.
마그네슘 합금 판재의 제조
먼저, 순 Mg (99.9%)과 순 Al (99.9%), 및 순 Sn (99.9%)의 원료를 도 1에 도시된 쌍롤식 박판주조 공정 장비의 용해로(10)를 통해 CO2와 SF6 혼합가스 분위기 하에서 용해한 후, 용탕을 노즐(20)을 이용하여 두 개의 냉각롤(30) 사이로 주입시켜 판재를 제조하였다. 이때 두 냉각롤 사이의 간격은 약 2mm로 유지되도록 하였고 용탕 주입시 냉각롤의 회전속도를 약 4m/min으로 유지하였는데, 이러한 조건하에서 용탕의 냉각 속도는 200 ~ 300K/s가 되도록 주조하였으며, 이와 같은 주조방법을 통해 길이 약 5m, 폭 약 70mm, 및 두께 약 2mm인 마그네슘 합금 판재를 얻었다.
먼저 응고구간에 의한 편석의 경향성을 확인하기 위해 EPMA 분석과 함께 부위별 경도 측정을 수행하였다.
도 2는 POSCO사에서 박판주조로 제조한 AZ31(비교예) 판재와 AT33(실시예 2) 마그네슘 합금 판재에서 50cm 길이로 임의로 선정한 시편을 5등분 하여 10cm 길이의 시편에서 임의의 부분에 대한 두께방향으로의 경도를 측정하여 나타낸 것이다. 이때 비커스 경도는 100gf 하중, 유지시간 5초의 조건을 측정하였다.
도 2에서 보여지는 바와 같이, AZ31의 경우 중심부와 표면부에서 국부적으로 높은 경도값을 보이고 있고 전체적으로 불균일한 경향성을 보이고 있다. 이에 비해, AT33(실시예 2)의 경우 부분적으로 편석에 의한 경도차를 어느 정도 보이고 있지만 평균적으로 편차값이 10Hv 이내인 반면에, AZ31 합금의 경우 평균적으로 10 ~ 20Hv 이상의 편차를 보이고 있어 AZ31에 비해 전체적으로 균일한 값을 보이고 있다.
도 3의 EPMA 분석을 통해 확인된 결과에서도 AT31 합금(실시예 1)의 경우 중심편석과 역편석의 경향성이 AZ31에 비해 상당히 줄어든 것을 확인할 수가 있고, 맵핑 결과에서 조성 분포도를 확인해 보면 AZ31의 경우 중심부와 표면부로 갈수록 조성분포가 증가하는 것을 확인할 수 있지만, AT31의 경우 판재 두께별 조성 분포의 차이가 거의 나지 않는 것을 확인할 수 있다. 이는 상대적으로 응고구간이 좁은 합금으로 박판주조를 했을 때, 역편석 및 중심편석의 경향성이 크게 줄어든다는 것을 보여주고 있다.
가공 열처리
이상과 같이 주조된 판재를 다음과 같은 후속 가공열처리를 행하였다. 먼저, 주조된 판재를 400℃에서 3시간 용체화처리를 하였다. 다음으로 용체화처리된 판재를 200℃로 예열하여 200℃로 가열된 압연 롤로 열간압연을 실시하였다.
열간압연 시 패스당 10%씩의 압하율을 주면서 5 패스로 최종 압하율 50%로 압연을 하여, 최종 두께 약 1~ 0.7mm의 판재를 얻었다.
기계적 특성 평가
이상과 같이 박판 주조 및 가공 열처리된 판재를 하기 표 1에 나타낸 바와 같이 어닐링 처리를 한 후 기계적 물성 및 성형성을 평가하였다.
마그네슘 합금 판재의 인장 특성을 평가하기 위해 게이지 길이 12.6mm, 게이지 너비 5mm, 두께 1mm를 갖는 인장 시편을 제작하여, 6.4 × 10-4s-1의 변형률 속도로 인장 시험하였다.
또한, 제조된 마그네슘 합금 판재의 프레스 성형성을 평가하기 위하여, 한계돔높이(LDH) 시험을 행하였다. 도 2는 본 발명의 실시예에 따른 마그네슘 합금 판재의 한계돔높이(LDH)를 평가한 방법을 나타내는 개략도이다. 한계돔높이 시험은 직경 50mm, 두께 0.7mm의 디스크형 시험편을 제작한 후, 상부 다이와 하부 다이 사이에 시험편을 삽입한 후 5kN의 힘으로 시편을 고정하였으며, 윤활유는 공지의 프레스유를 사용하였다. 그리고 27.5mm의 직경을 갖는 구형 펀치를 사용하여 0.1mm/sec의 속도로 변형을 가하여, 디스크형 시편의 파단 시까지 펀치를 삽입한 후 파단 시의 변형 높이를 측정하는 방식으로 수행하였다.
표 1
합금 공정 조건 YS (MPa) UTS(MPa) El.(%) LDH(mm)
AZ31 (비교예) As received (POSCO) 200 281 25 2.9
AT31(실시예1) 50% 압연 249 280 13.5
50% 압연 + 150/1h 216 270 12 5.2
50% 압연 + 150/5h 213 268 12.5
50% 압연 + 200/1h 165 248 20
50% 압연 + 200/3h 168 245 19 6.6
50% 압연 + 200/5h 170 248 20.2 7.3
50% 압연 + 250/1h 146 233 15 6.8
AT33(실시예2) 50% 압연 275 316 3.5
50% 압연 + 150/1h 255 299 6.5 4.3
50% 압연 + 150/3h 233 278 15.3 4.7
50% 압연 + 200/1h 219 283 21 5.2
50% 압연 + 200/3h 210 273 19 6.2
비열처리형 합금으로 제공되는 상기 합금은 대표적인 비열처리형 합금인 AZ31과 마찬가지로 어닐링 시간이 지남에 따라, 그리고 어닐링 온도가 높아짐에 따라 기계적 강도가 감소하는 경향을 보이고 이와 동시에 연신율이 증가하며 또한 성형성, 즉 LDH 값이 증가하는 경향을 보이고 있다.
일반적으로 인장 연신율을 성형성과 대체 항목으로 사용하고 있지만 상기 표에서 알 수 있듯이 연신율과 성형성을 나타내는 LDH 값이 절대적으로 비례하지는 않는다. 따라서 성형성을 나타내는 지표로서 일축 인장의 연신율 보다는 실제 성형 과정을 동반하는 테스트를 수행하는 것이 더 바람직하다고 할 수 있다.
AZ31과 비교했을 때 유사한 항복강도 값을 가지는 조건에서 성형성은 AT 합금이 더 우수하다는 것을 알 수 있고, 또 유사한 LDH 값을 가지는 AT 합금 중 Sn이 더 첨가된 AT33 합금의 항복강도 값이 더 높다는 것을 알 수 있다. 전체적으로 항복강도와 LDH 값이 반비례관계를 보이고 있지만 전체적인 기계적 특성의 성향은 기존의 상용 AZ31 합금에 비해 우수한 기계적 물성과 LDH 값을 가진다.
도 3은 상용 AZ31과 AT 합금의 LDH 평가 후 시편의 모습을 나타내고, 도 4는 도 3에서 보여주는 시편에서 단면부에서 가장 변형이 심한 top 부분과 변형을 받지 않은 가장자리의 조직 변화를 도 4와 같이 판재의 normal 방향과 이에 대해 마그네슘 육방정의 (0002) basal 면의 방향과의 각도를 그래프로 나타내었다. 이는 저각에서 분율(fraction)이 높을수록 (0002) 면의 집합조직(texture)이 발달하는 것을 나타내고 전체적으로 분율(fraction)이 분산될수록 랜덤 조직을 가지는 것을 의미한다. 상기 발명 합금의 경우 상용 AZ31에 비해 변형 후 고각에서 많은 분율(fraction)을 보이고 있는데 이는 변형과정에서 형성되는 인장쌍정(tension twin)으로 인한 것이다. 이러한 인장쌍정은 슬립계가 부족한 마그네슘에서 성형성을 향상시키는데 크게 기여한다.
본 발명은 응고구간이 좁은 합금 원소의 제어를 통해 주조 조직을 균일하게 하고 편석에 의한 결함을 크게 개선할 뿐 아니라, 가격이 높은 희토류 원소를 사용하지 않고도 우수한 기계적 강도와 성형성을 갖는 마그네슘 합금 판재를 제공한다. 또한, 본 발명에 따른 마그네슘 합금 판재는 비열처리형 합금으로 어닐링 시간에 따라 항복강도와 LDH 값이 선형적인 변화를 보이기 때문에 다양한 적용 분야에 맞게 사용할 수 있다.

Claims (6)

  1. Al: 1 ~ 3중량%, Sn: 0.5 ~ 3중량%를 함유하고, 나머지 마그네슘으로 이루어지며, 중심편석 및 역편석으로 인한 비커스 경도(Hv) 평균값의 편차가 최대 10Hv 이하인 것을 특징으로 하는 비열처리형 마그네슘 합금 판재.
  2. 제 1 항에 있어서,
    상기 마그네슘 합금 판재는 박판주조된 것으로서, 그 미세조직은 Mg2Sn 2차 상을 포함하는 것을 특징으로 하는 비열처리형 마그네슘 합금 판재.
  3. 제 2 항에 있어서,
    상기 Mg2Sn 2차상의 부피분율은 5% 이하인 것을 특징으로 하는 비열처리형 마그네슘 합금 판재.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 마그네슘 합금 판재는, 항복강도가 200MPa 이상이고, 한계돔 높이(LDH)가 5mm 이상인 것을 특징으로 하는 비열처리형 마그네슘 합금 판재.
  5. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 마그네슘 합금 판재는, 항복강도가 200MPa 이상이고, 한계돔 높이(LDH) 6mm 이상인 것을 특징으로 하는 비열처리형 마그네슘 합금 판재.
  6. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 마그네슘 합금 판재는, 성형 후 모입자(parents grain)와 85 ~ 90°기울어진 인장쌍정(tension twin)의 분율이 5%이상인 것을 특징으로 하는 비열처리형 마그네슘 합금 판재.
PCT/KR2012/008357 2011-10-20 2012-10-15 편석 현상을 최소화한 상온 성형성이 우수한 비열처리형 마그네슘 합금 판재 WO2013058504A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014536978A JP6099656B2 (ja) 2011-10-20 2012-10-15 偏析現象を最小化した、常温成形性に優れた非熱処理型マグネシウム合金板材
US14/237,892 US20140205489A1 (en) 2011-10-20 2012-10-15 Non-heat treated magnesium alloy sheet with excellent formability at room temperature in which segreation is minimized
EP12841026.3A EP2770072A4 (en) 2011-10-20 2012-10-15 UNTREATED MAGNESIUM ALLOY FOIL WITH EXCELLENT FORMABILITY AT ROOM TEMPERATURE AND MINIMUM SEGREGATION
CN201280040577.4A CN103781928B (zh) 2011-10-20 2012-10-15 偏析最小化的在室温下具有优异成形性的不可热处理镁合金片

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0107405 2011-10-20
KR1020110107405A KR101342582B1 (ko) 2011-10-20 2011-10-20 편석 현상을 최소화한 상온 성형성이 우수한 비열처리형 마그네슘 합금 판재

Publications (2)

Publication Number Publication Date
WO2013058504A2 true WO2013058504A2 (ko) 2013-04-25
WO2013058504A3 WO2013058504A3 (ko) 2013-05-23

Family

ID=48141514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008357 WO2013058504A2 (ko) 2011-10-20 2012-10-15 편석 현상을 최소화한 상온 성형성이 우수한 비열처리형 마그네슘 합금 판재

Country Status (6)

Country Link
US (1) US20140205489A1 (ko)
EP (1) EP2770072A4 (ko)
JP (1) JP6099656B2 (ko)
KR (1) KR101342582B1 (ko)
CN (1) CN103781928B (ko)
WO (1) WO2013058504A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290288A (zh) * 2013-06-26 2013-09-11 重庆大学 一种低成本高塑性变形镁合金及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101603292B1 (ko) 2014-04-15 2016-03-14 한국신발피혁연구원 초임계 발포 사출용 저비중 동적 가교형 열가소성 탄성체 조성물, 이의 제조방법 및 이를 이용하여 제조된 신발 겉창
KR20160120688A (ko) 2016-08-29 2016-10-18 서울대학교산학협력단 마그네슘 합금 판재 및 이의 제조방법
WO2018155994A1 (ko) * 2017-02-27 2018-08-30 한국기계연구원 시효열처리형 고강도 마그네슘 합금 및 그 제조방법
KR102091563B1 (ko) * 2017-02-27 2020-03-20 한국기계연구원 시효열처리형 고강도 마그네슘 합금 및 그 제조방법
CN110031347A (zh) * 2019-04-02 2019-07-19 鞍钢股份有限公司 一种测定弹簧钢盘条偏析的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE452779B (sv) * 1979-09-19 1987-12-14 Magnesium Elektron Ltd Anvendning av en magnesiumlegering som elektrodmaterial i primerceller
US4675157A (en) * 1984-06-07 1987-06-23 Allied Corporation High strength rapidly solidified magnesium base metal alloys
JPH07116546B2 (ja) * 1988-09-05 1995-12-13 健 増本 高力マグネシウム基合金
JP2511526B2 (ja) * 1989-07-13 1996-06-26 ワイケイケイ株式会社 高力マグネシウム基合金
JP2006213983A (ja) * 2005-02-07 2006-08-17 Toyota Motor Corp マグネシウム合金軸受
JP4189687B2 (ja) 2005-11-16 2008-12-03 住友電気工業株式会社 マグネシウム合金材
CN101314178B (zh) * 2007-05-28 2010-06-09 宝山钢铁股份有限公司 利用双辊薄带连铸制备自生梯度功能材料的方法
JP5383314B2 (ja) * 2008-06-25 2014-01-08 リョービ株式会社 耐クリープマグネシウム合金
KR20100038809A (ko) * 2008-10-06 2010-04-15 포항공과대학교 산학협력단 고성형성 마그네슘 합금 판재 및 그 제조방법
JP5376507B2 (ja) * 2009-02-27 2013-12-25 独立行政法人産業技術総合研究所 優れた冷間成形性を有するマグネシウム合金板材及びその製造方法
CN101643871B (zh) * 2009-08-24 2011-04-13 吉林大学 一种超高塑性、高强度铸造镁合金及其制备方法
JP5660374B2 (ja) * 2009-11-24 2015-01-28 住友電気工業株式会社 マグネシウム合金板の製造方法及びマグネシウム合金コイル材
KR100994812B1 (ko) 2010-04-05 2010-11-16 한국기계연구원 고강도 고연성 마그네슘 합금 압출재 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290288A (zh) * 2013-06-26 2013-09-11 重庆大学 一种低成本高塑性变形镁合金及其制备方法
US20150000800A1 (en) * 2013-06-26 2015-01-01 Chongqing University Low-cost high-plasticity wrought magnesium alloy and its preparation method

Also Published As

Publication number Publication date
JP6099656B2 (ja) 2017-03-22
WO2013058504A3 (ko) 2013-05-23
KR20130043355A (ko) 2013-04-30
US20140205489A1 (en) 2014-07-24
CN103781928B (zh) 2016-08-17
EP2770072A4 (en) 2015-06-17
KR101342582B1 (ko) 2013-12-17
JP2014535005A (ja) 2014-12-25
CN103781928A (zh) 2014-05-07
EP2770072A2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
US10000836B2 (en) Low-cost fine-grain weak-texture magnesium alloy sheet and method of manufacturing the same
WO2013058504A2 (ko) 편석 현상을 최소화한 상온 성형성이 우수한 비열처리형 마그네슘 합금 판재
WO2012070870A2 (ko) 상온성형성이 우수한 마그네슘 합금 판재 및 그 제조방법
KR101277297B1 (ko) 이방성이 낮은 고강도 고연성 마그네슘 합금 압출재 및 그 제조방법
EP2453031B1 (en) Magnesium alloy plate
KR101585089B1 (ko) 발화 저항성이 우수한 고강도 마그네슘 합금 및 그 제조방법
JP4542016B2 (ja) 成形用アルミニウム合金板の製造方法
JP2006199996A (ja) 成形用アルミニウム合金板
WO2019008783A1 (ja) アルミニウム合金箔およびアルミニウム合金箔の製造方法
KR102155934B1 (ko) 마그네슘 합금 판재 및 이의 제조방법
KR20100038809A (ko) 고성형성 마그네슘 합금 판재 및 그 제조방법
JP4914098B2 (ja) アルミニウム合金鋳造板の製造方法
WO2015126054A1 (ko) 마그네슘 합금 판재 및 이의 제조방법
CN1340106A (zh) 冷轧钢
CN113462937A (zh) 一种抗冲击的高强韧铝合金材料及制备方法
WO2013172510A1 (ko) 극저온에서 기계적 성능이 우수한 Fe-Mn-C계 TWIP 강 및 그 제조 방법
KR102043786B1 (ko) 마그네슘 합금 판재 및 이의 제조방법
JP2008025006A (ja) 耐応力腐食割れ性に優れたアルミニウム合金板
US20160312340A1 (en) Copper alloy
NO761628L (ko)
JP2007098407A (ja) 成形用アルミニウム合金板の製造方法
KR101252784B1 (ko) 고강도 고성형성 마그네슘 합금 판재 및 그 제조방법
KR101757733B1 (ko) 결정립이 미세화된 알루미늄-아연-마그네슘-구리 합금 판재의 제조방법
KR101001893B1 (ko) 고강도 및 고연성의 마그네슘 합금 및 그 제조방법
KR20160140238A (ko) 마그네슘 합금판의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841026

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012841026

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14237892

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014536978

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE