WO2013058321A1 - フェライト系ステンレス鋼板のtig溶接方法 - Google Patents

フェライト系ステンレス鋼板のtig溶接方法 Download PDF

Info

Publication number
WO2013058321A1
WO2013058321A1 PCT/JP2012/076958 JP2012076958W WO2013058321A1 WO 2013058321 A1 WO2013058321 A1 WO 2013058321A1 JP 2012076958 W JP2012076958 W JP 2012076958W WO 2013058321 A1 WO2013058321 A1 WO 2013058321A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sec
stainless steel
shield
volume
Prior art date
Application number
PCT/JP2012/076958
Other languages
English (en)
French (fr)
Inventor
裕貴 大野
勝則 和田
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to US14/352,115 priority Critical patent/US9505075B2/en
Priority to CN201280051066.2A priority patent/CN103889633B/zh
Publication of WO2013058321A1 publication Critical patent/WO2013058321A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel

Definitions

  • the present invention relates to a TIG welding method for ferritic stainless steel sheets.
  • This application claims priority based on Japanese Patent Application No. 2011-229533 filed in Japan on October 19, 2011, the contents of which are incorporated herein by reference.
  • a tungsten electrode Conventionally, a tungsten electrode, a first shield nozzle that surrounds the tungsten electrode, and a second shield nozzle that is disposed outside the first shield nozzle, the first shield nozzle from the inside of the first shield nozzle.
  • TIG Torsten Inert Gas Welding
  • argon is used as a shielding gas from the viewpoint of protecting the molten pool.
  • Patent Document 1 discloses the following TIG welding method.
  • a tungsten electrode of a welding torch is inserted into a groove of a workpiece having a groove, and a voltage is applied to a current-carrying portion of the tungsten electrode while flowing a shielding gas, so that a gap between the workpiece and the tungsten electrode is obtained.
  • a welding arc is generated to form a molten pool.
  • a welding wire fed from a welding torch is inserted into the formed molten pool, and the welding torch is run to perform welding.
  • the inner shield gas that flows from the periphery of the tungsten electrode to the tip thereof, the flow for preventing oxidation of the molten pool that flows from the outside of the inner shield gas toward the groove, and the outside of the workpiece to be welded.
  • an outer shielding gas having two flows for preventing entrainment of oxygen in the air.
  • Patent Document 1 discloses that argon gas containing 2 to 10 vol% hydrogen or argon gas containing 10 to 80 vol% helium is used as the inner shield gas and the outer shield gas in order to increase the penetration depth. ing.
  • Patent Document 2 discloses double shield TIG welding in which welding is performed using a primary shield gas surrounding a tungsten electrode and a secondary shield gas surrounding the primary shield gas. In this welding, welding is performed using He gas as a primary shield gas at a flow rate of 6 to 10 liters / min and Ar gas as a secondary shield gas at a flow rate of 10 to 30 liters / min.
  • Patent Document 3 the flow density of the inner shield gas injected from the inner nozzle of the double shield TIG welding torch is adjusted to a value within a certain range, and then an arc is generated in the electrode to weld the weld.
  • a heavy shield TIG welding method is disclosed.
  • the inner shielding gas argon gas containing 5% hydrogen is used.
  • Patent Document 3 by setting the flow rate density of the inner shield gas within the range of 0.1 to 0.2 L / min ⁇ mm 2 , the depth variation of the penetration is within the range of 0.5 mm. Is disclosed.
  • Patent Document 1 When using a welding torch having the above double shield structure and deeply setting the penetration depth and TIG welding a ferritic stainless steel sheet, hydrogen described in Patent Document 1 is used as a shielding gas from the viewpoint of hydrogen embrittlement and cold cracking. It is difficult to use an argon gas, and therefore it is suitable to use an argon gas containing helium. Moreover, the ferritic stainless steel sheet has a feature that it is less expensive than other stainless steel sheets.
  • Patent Document 1 also did not disclose a ferritic stainless steel sheet.
  • Patent Document 2 discloses that He gas (helium simple substance gas) is used as a primary shield gas surrounding a tungsten electrode, but helium has a high ionization potential. For this reason, it is difficult to generate an arc, and the closer the mixing ratio of helium is to that of helium alone, the higher the arc temperature directly below the tungsten electrode, and the greater the consumption of the tungsten electrode. Thereby, there existed a problem that the cost at the time of TIG welding a ferritic stainless steel plate further increased.
  • Patent Document 3 when the flow rate of the inner shield gas is set within the range of 1.66 to 3.33 m / sec, the flow rate of the inner shield gas becomes too high, and thus an improper bead may occur. was there. Furthermore, Patent Document 3 does not describe any flow rate of the outer shield gas. For example, if the flow rate of the outer shield gas is too high, the helium concentration in the arc portion does not become an appropriate value, and becomes a considerably low value. On the other hand, if the flow rate of the outer shielding gas is too slow, the bead appearance deteriorates due to insufficient shielding ability, and oxidation or the like occurs. However, Patent Document 3 does not describe anything about the flow rate of the outer shielding gas.
  • the present invention is a welding method using a double shield welding torch capable of supplying the first and second shielding gases, can reduce the cost, and can enhance the shielding effect for suppressing oxidation. And it aims at providing the TIG welding method of a ferritic stainless steel plate which can obtain sufficient penetration depth.
  • a first aspect of the present invention includes an electrode having a tip for generating an arc, a first shield nozzle surrounding the electrode, and a second shield nozzle arranged outside the first shield nozzle.
  • the first shield gas is supplied to the tip of the electrode from the inside of the first shield nozzle, and the second is provided between the first shield nozzle and the second shield nozzle to the tip side of the electrode.
  • a gas to which the first shield gas is a mixed gas of argon gas and helium gas, and the helium gas contained in the mixed gas is 20 to 90% by volume used, as well as the flow rate S 1 of the first shielding gas to 0.175m / sec ⁇ S 1 ⁇ 1.75m / sec, as the second shield gas, argon gas
  • the flow rate S 2 of the second shielding gas characterized in that a 0.05m / sec ⁇ S 2 ⁇ 1.51m / sec, TIG welding method for a ferrite stainless steel is provided.
  • the flow velocity S 1 is set to 0.35 m / sec ⁇ S 1 ⁇ 1.58 m / sec
  • the flow velocity S 2 is set to 0.24 m / sec ⁇ S 2 ⁇ 1.21 m / sec. It is preferable to do.
  • the helium gas contained in the mixed gas is preferably 25 to 75% by volume.
  • the temperature of the arc formed immediately below the electrode will not become too high. For this reason, since consumption of an electrode can be suppressed, the cost of TIG welding of ferritic stainless steel can be reduced, and a sufficient penetration depth can be obtained.
  • the flow rate S 1 of the first shield gas is set to 0.175 m / sec ⁇ S 1 ⁇ 1.75 m / sec, the flow rate S 1 becomes an appropriate value, and the generation of irregular beads can be suppressed. For this reason, welding of ferritic stainless steel can be performed accurately.
  • the TIG of ferritic stainless steel is used as the second shielding gas, as compared with the case of using a shielding gas in which helium and argon gas are mixed. Welding costs can be reduced. Moreover, the shielding effect can be improved.
  • the flow rate S 2 of the second shield gas can be set to 0.05 m / sec ⁇ S 2 ⁇ 1.51 m / sec. It is possible to obtain a sufficient shielding effect for suppressing the above. Therefore, a good bead appearance can be obtained.
  • FIG. 1 is a cross-sectional view of a main part of a double shield welding torch applied to a TIG welding method for ferritic stainless steel.
  • Stainless steel is made by adding special elements such as molybdenum, copper, aluminum, niobium, and titanium to alloy steel in which chromium is added to iron, if necessary.
  • Ferritic stainless steel generally has a small amount of carbon, for example, 0.3 or less, preferably 0.15% or less.
  • ferritic stainless steel may mean stainless steel containing 10% or more, preferably 16% or more of chromium.
  • the double shield welding torch 10 includes an electrode 15, a first shield nozzle 16, and a second shield nozzle 17.
  • the electrode 15 has a tip 15A that generates an arc.
  • a tungsten electrode can be used as the electrode 15.
  • the first shield nozzle 16 has a cylindrical shape and is disposed outside the electrode 15. As shown in the figure, the lower tip may be inclined inward.
  • the nozzle diameter of the first shield nozzle can be arbitrarily changed and selected according to the type of nozzle and other accessories. For example, an inner diameter (outlet inner diameter) of about 5 mm to 15 mm can be generally used, and 6.5 mm to 12.5 mm cm is more preferable. However, the present invention is not limited to this range. Between the first shield nozzle 16 and the electrode 15, a first flow path 21 for supplying the first shield gas to the tip 15 ⁇ / b> A of the electrode 15 is formed.
  • the second shield nozzle 17 has a cylindrical shape and is disposed outside the first shield nozzle 16. As shown in the figure, the lower tip may be inclined inward. The inner diameter of the outer nozzle only needs to be larger than the outer diameter of the inner nozzle, and can be determined as necessary. The lower ends of the first shield nozzle 16 and the second shield nozzle 17 are substantially parallel to each other. The tip of the electrode 15 protrudes from the nozzle. In addition, as long as the effect of this invention is acquired, you may change these conditions of an electrode arbitrarily. The protruding length of the electrode can be arbitrarily selected. For example, the lower limit is preferably 0 mm or more, and may be 10 mm or more.
  • an upper limit can be selected arbitrarily, it may be 15 mm or less, for example, 20 mm or less, or 25 mm or less.
  • the electrode diameter can also be selected arbitrarily, but is generally 1.6 mm or more and 5.0 mm or less, and preferably 2.4 mm or more and 4.0 mm or less.
  • the distance between the inner surface of the second shield nozzle 17 and the outer surface of the first shield nozzle 16 can be arbitrarily selected.
  • the first shielding gas a gas which is a mixed gas of argon gas and helium gas and whose helium gas contained in the mixed gas is 20 to 90% by volume is used. Thereby, compared with the case where only helium gas is used as 1st shielding gas, the cost of TIG welding of ferritic stainless steel can be reduced.
  • the helium gas contained in the first shield gas (mixed gas) is 25 to 75% by volume.
  • the “penetration depth that is set to a sufficient depth” refers to a case where the width of the back wave is 2 mm or more. If the ratio of helium gas contained in 1st shielding gas is the said range, it can select as needed.
  • the lower limit of the amount of helium gas is set to 20 vol% or more, 25 vol% or more, 30 vol% or more, 35 vol% or more, 40 vol% or more, 50 vol% or more, and 60 vol%. Any of the above may be selected.
  • the upper limit of the amount of helium gas is 90% by volume or less, 85% by volume or less, 80% by volume or less, 75% by volume, 70% by volume or less, 60% by volume or less, and 50% by volume or less, depending on conditions or the like. You may choose.
  • the helium gas in the first shield gas may be 30 to 80% by volume, 40 to 90% by volume, or 20 to 50% by volume as required. It may be 50 to 90% by volume or 75 to 90% by volume.
  • the temperature of the arc formed immediately below the electrode 15 does not become too high. Consumption can be suppressed. Therefore, the cost of TIG welding of the ferritic stainless steel 11 can be reduced, and a sufficient penetration depth can be obtained.
  • the ratio of helium gas is lower than 20% by volume, a problem that the penetration depth is shallow is likely to occur, and when it exceeds 90% by volume, problems such as poor arc generation are likely to occur.
  • the flow rate S 1 (first flow rate) of the first shield gas is slower than 0.175 m / sec, stable agitation of the molten pool cannot be obtained, and sufficient penetration depth cannot be obtained. On the other hand, if it is higher than 1.75 m / sec, the molten pool is excessively stirred and disturbed, so that irregular beads are generated.
  • the flow rate S 1 of the first shield gas is preferably set within a range of 0.175 m / sec ⁇ S 1 ⁇ 1.75 m / sec.
  • optimum values the flow velocity S 1 because it is possible suppress the occurrence of irregular bead can be performed accurately welded ferritic stainless steel 11.
  • the lower limit of the flow rate S 1 is preferably 0.35 m / sec or more, more preferably 0.526 m / sec or more, and even more preferably 0.702 m / sec or more.
  • the upper limit of the flow rate S 1, for example, preferably be below 1.58 m / sec, more preferably equal to or less than 1.40 m / sec, and still more preferably to less than 1.23m / sec.
  • the second shield nozzle 17 is disposed outside the first shield nozzle 16 so as to surround the first shield nozzle 16. Between the 2nd shield nozzle 17 and the 1st shield nozzle 16, the 2nd flow path 22 for supplying 1st shield gas to the front-end
  • the ferritic stainless steel 11 can be used as compared with the case where a shield gas in which helium and argon gas are mixed as the second shield gas.
  • the cost of TIG welding can be reduced, and the shielding effect for suppressing oxidation can be improved.
  • the second shielding gas is not flowing, or less, i.e., the flow rate S 2 is slower and gas is small to protect the bead than 0.05 m / sec, it is impossible to obtain a shielding effect sufficiently. As a result, the beads are oxidized and the electrodes are also consumed. If the flow rate S2 of the second shield gas is greater than 1.51 m / sec, an irregular bead that is mixed into the first shield gas and the start ends are not aligned is generated.
  • the flow rate S 2 (second flow rate) of the second shield gas is preferably set within a range of 0.05 m / sec ⁇ S 2 ⁇ 1.51 m / sec.
  • the helium concentration at the arc portion is set to an appropriate value by setting the flow rate S 2 of the second shield gas within the range of 0.05 m / sec ⁇ S 2 ⁇ 1.51 m / sec.
  • a sufficient shielding effect can be obtained, a good bead appearance can be obtained.
  • it may be selected in any optionally the upper and lower limits of flow rate S 2.
  • the lower limit of the flow rate S 2 preferably be at least 0.18 m / sec, more preferably be at least 0.24 m / sec, more preferably be at least 0.30 m / sec .
  • the flow rate S 1 of the first shield gas is set to 0.35 m / sec ⁇ S 1 ⁇ 1.58 m / sec
  • the flow rate S 2 of the second shield gas is set to 0.18 m / sec ⁇ S. 2 ⁇ 1.21 m / sec is preferable.
  • the flow velocity S 1 is 0.35 m / sec ⁇ S 1 ⁇ 1.58 m / sec
  • the flow velocity S 2 is 0.24 m / sec ⁇ S 2 ⁇ 1.21 m / sec.
  • the flow velocity S 1 is set to 0.35 m / sec ⁇ S 1 ⁇ 1.58 m / sec
  • the flow velocity S 2 is set to 0.24 m / sec ⁇ S 2 ⁇ 1.21 m / sec.
  • the first shielding gas is a mixed gas of argon gas and 20 to 90 volume% helium gas, and is contained in the mixed gas.
  • a gas containing 20 to 90% by volume of helium gas is used.
  • the first flow rate S 1 of the first shield gas is set to 0.175 m / sec ⁇ S 1 ⁇ 1.75 m / sec.
  • the first flow rate S 1 becomes an appropriate value and generation of irregular beads can be suppressed. It becomes. For this reason, the ferritic stainless steel 11 can be welded with high accuracy.
  • the ferritic stainless steel 11 can be used as the second shield gas as compared with the case where a shield gas in which helium and argon gas are mixed.
  • the cost of TIG welding can be reduced.
  • the shielding effect for suppressing oxidation can be improved.
  • the flow rate S 2 of the second shield gas can be set to 0.05 m / sec ⁇ S 2 ⁇ 1.51 m / sec. It is possible to obtain a sufficient shielding effect for suppressing the above. Therefore, a good bead appearance can be obtained.
  • Comparative Example 1 As Comparative Example 1, evaluation was performed using a first shield gas having a helium ratio smaller than the range of the present invention. Specifically, SUS430 having a thickness of 2 mm is welded as ferritic stainless steel 11 using the double shield welding torch 10 shown in FIG. Then, the presence or absence of bead oxidation, the presence or absence of electrode wear, and the occurrence of arc (arc startability) were evaluated. The electrode diameter of the torch shown in FIG.
  • Example 1 As Example 1, the double shield welding torch 10 shown in FIG. 1 (welding torch having a tungsten electrode as the electrode 15) was used to weld SUS430 having a thickness of 2 mm as the ferritic stainless steel 11, and the penetration depth. The presence or absence of bead oxidation, the presence or absence of electrode wear, and the occurrence of arcs were evaluated. In Example 1, the same welding conditions as in Comparative Example 1 were used except that Ar-20% volume He was used as the first shielding gas. Table 1 shows the evaluation results of Example 1.
  • Example 3 As Example 3, the double shield welding torch 10 shown in FIG. 1 (welding torch with a tungsten electrode as the electrode 15) was used to weld SUS430 having a thickness of 2 mm as the ferritic stainless steel 11, and the penetration depth The presence or absence of bead oxidation, the presence or absence of electrode wear, and the occurrence of arcs were evaluated. In Example 3, the same welding conditions as in Comparative Example 1 were used except that Ar-50% volume He was used as the first shielding gas. Table 1 shows the evaluation results of Example 3.
  • Example 4 As Example 4, the double shield welding torch 10 shown in FIG. 1 (welding torch having a tungsten electrode as the electrode 15) was used to weld SUS430 having a thickness of 2 mm as the ferritic stainless steel 11, and the penetration depth The presence or absence of bead oxidation, the presence or absence of electrode wear, and the occurrence of arcs were evaluated. In Example 4, the same welding conditions as in Comparative Example 1 were used except that Ar-75% volume He was used as the first shielding gas. Table 1 shows the evaluation results of Example 4.
  • the case where the bead oxidation could be confirmed was judged as x (impossible), and the case where the bead oxidation could not be confirmed was judged as o (good).
  • the presence or absence of bead oxidation was confirmed visually.
  • the electrode 15 is consumed, it is visually checked and a case where no arc is generated is determined as x (impossible), and a case where time is required for arc generation is determined as ⁇ (possible). When the arc was generated, it was judged as “good”.
  • arc generation state it is determined as x (impossible) when the arc does not occur, ⁇ (possible) when it takes time to generate the arc, and a stable arc is generated instantaneously. ⁇ (Good).
  • Example 1 in Comparative Example 1, a sufficient penetration depth could not be obtained. Moreover, in Example 1, although it was a little shallow, the penetration depth which can be welded was able to be obtained. In Examples 2 and 3, a sufficient penetration depth could be obtained. Further, it was confirmed that when the first shield gas containing 75% or more of helium gas was used, the penetration depth further increased.
  • Example 5 As for the state of arc generation, good results were obtained in Comparative Example 1 and Examples 1 to 4.
  • Example 5 the arc generation state was slightly poor, but it was not so large as to affect welding.
  • Comparative Example 2 no arc was generated. Therefore, it was confirmed that the ratio of the helium gas contained in the first shield gas needs to be in the range of 15 to 90% by volume from the viewpoint of the arc generation state.
  • the helium gas contained in the first shield gas which is a mixed gas of argon gas and helium gas
  • the first shield gas which is a mixed gas of argon gas and helium gas
  • the penetration depth is made sufficiently deep, It was confirmed that welding with a good arc generation state could be performed without oxidation of the bead and consumption of the electrode 15.
  • the flow rate S 1 of the first shield gas is 0 m / sec,. 175m / sec, 0.35m / sec, 0.526m / sec, 0.702m / sec, 0.877m / sec, 1.05m / sec, 1.23m / sec, 1.40m / sec, 1.58m / sec, and using a 1.75 m / sec, it was evaluated upon changing the flow rate S 2 of the second shielding gas to the respective flow rates S 1.
  • the flow rate S2 of the second shield gas is 0 m / sec, 0.01 m / sec, 0.05 m / sec, 0.18 m / sec, 0.24 m / sec, 0.30 m / sec,. 60 m / sec, 0.91 m / sec, 1.21 m / sec, 1.51 m / sec, and 1.81 m / sec were used.
  • Table 2 shows the evaluation results. Table 2 shows the results of comprehensive evaluation of the penetration depth, the presence / absence of bead oxidation, the presence / absence of electrode wear, and the arc generation state.
  • Table 2 shows the results of comprehensive evaluation of the penetration depth, the presence / absence of bead oxidation, the presence / absence of electrode wear, and the arc generation state.
  • the comprehensive evaluation result is at a level where there is no problem in TIG welding the ferritic stainless steel 11, it is determined as “good”, and the evaluation result indicates that the ferritic stainless steel 11 is TIG welded.
  • a case where the level was not possible was judged as x (impossible), and a very good evaluation result was judged as ⁇ (excellent).
  • Example 7 Except that Ar-25% volume He was used as the first shielding gas, SUS430 with a thickness of 2 mm was welded as ferritic stainless steel 11 using the same conditions as in the experiment shown in Table 2, and the penetration depth The presence or absence of bead oxidation, the presence or absence of electrode wear, and the occurrence of arcs were evaluated. The results are shown in Table 3.
  • Example 8 Except that Ar-50% volume He was used as the first shielding gas, SUS430 having a thickness of 2 mm was welded as ferritic stainless steel 11 using the same conditions as in the experiment shown in Table 2, and the penetration depth The presence or absence of bead oxidation, the presence or absence of electrode wear, and the occurrence of arcs were evaluated. The results are shown in Table 4.
  • Example 9 Except that Ar-75% volume He was used as the first shielding gas, SUS430 having a thickness of 2 mm was welded as ferritic stainless steel 11 using the same conditions as the experiment shown in Table 2, and the penetration depth The presence or absence of bead oxidation, the presence or absence of electrode wear, and the occurrence of arcs were evaluated. The results are shown in Table 5.
  • Example 10 Except that Ar-90% volume He was used as the first shielding gas, SUS430 having a thickness of 2 mm was welded as ferritic stainless steel 11 using the same conditions as in the experiment shown in Table 2, and the penetration depth The presence or absence of bead oxidation, the presence or absence of electrode wear, and the occurrence of arcs were evaluated. The results are shown in Table 6.
  • First flow rate S 1 was fixed at 0.175 m / sec, and the evaluation results when changing the helium concentration and a second flow rate S 2)
  • the flow rate S2 of the second shield gas is 0 to 0.18 m / In the range of sec and in the range of 0.91 to 1.81 m / sec, good beads with stable back waves were not obtained.
  • the back wave means a back wave bead formed on the back side of the stainless steel. In other words, it was a condition that cannot be used when TIG welding the ferritic stainless steel 11.
  • the flow rate S2 of the second shielding gas is in the range of 0.24 to 0.60 m / sec.
  • the bead was slightly irregular, but it was at a level with no problem in performing TIG welding of the ferritic stainless steel 11.
  • the flow rate S2 of the second shielding gas is in the range of 0 to 0.05 m / sec, and 0.91 to Within the range of 1.81 m / sec, good beads with stable back waves could not be obtained. In other words, it was a condition that cannot be used when TIG welding the ferritic stainless steel 11. Further, when Ar-50% volume He was used as the first shielding gas, the bead was slightly irregular when the flow rate S2 of the second shielding gas was in the range of 0.18 to 0.60 m / sec. However, it was a level which does not have a problem in performing TIG welding of the ferritic stainless steel 11.
  • the flow rate S2 of the second shield gas 2 is 0 to 0.01 m. In the range of / sec and in the range of 0.91 to 1.81 m / sec, good beads with stable back waves were not obtained. In other words, it was a condition that cannot be used when TIG welding the ferritic stainless steel 11. Further, when Ar-75% volume He or Ar-90% volume He is used as the first shield gas, the flow rate S2 of the second shield gas is within the range of 0.05 to 0.60 m / sec. Although the bead was slightly irregular, it was at a level where there was no problem in performing TIG welding of the ferritic stainless steel 11.
  • Ar-20% volume He or Ar-25% volume He is used as the first shield gas, and the flow rate S2 of the second shield gas is 0.18 m / sec and 1.51 m / sec. In this case, although a thin back wave was obtained, the back wave was obtained stably, so that it was at a level with no problem in performing TIG welding of the ferritic stainless steel 11. Further, when Ar-20% volume He or Ar-25% volume He is used as the first shield gas, the flow rate S 2 of the second shield gas is within the range of 0.24 to 21,21 m / sec. Very good results were obtained.
  • the flow rate S2 of the second shield gas is in the range of 0 to 0.01 m / sec. Inside and at 1.81 m / sec, a continuous back wave was not obtained. In other words, it was a condition that cannot be used when TIG welding the ferritic stainless steel 11.
  • Ar-75% volume He or Ar-90% volume He is used as the first shielding gas, and the flow rate S2 of the second shielding gas is 0.05 m / sec and 1.51 m / sec.
  • the back wave was obtained stably, so that it was at a level with no problem in performing TIG welding of the ferritic stainless steel 11.
  • the flow rate S2 of the second shield gas is in the range of 0.18 to 1.21 m / sec. In the case of, very good results were obtained.
  • the flow rate S2 of the second shield gas is 0 to 0.01 m / In the range of sec and 1.81 m / sec, a continuous back wave was not obtained. In other words, it was a condition that cannot be used when TIG welding the ferritic stainless steel 11.
  • the flow rate S2 of the second shielding gas is in the range of 0.05 to 0.18 m / sec. In the case of the inner and 1.51 m / sec, although the thin back wave was obtained stably, the back wave was obtained stably, so that it was at a level with no problem in performing TIG welding of the ferritic stainless steel 11. Further, when Ar-25% volume He or Ar-50% volume He is used as the first shield gas, the flow rate S2 of the second shield gas is within the range of 0.24 to 21,21 m / sec. Very good results were obtained.
  • the flow rate S2 of the second shield gas is 0 to 0.01 m / In the range of sec and 1.81 m / sec, a continuous back wave was not obtained. In other words, it was a condition that cannot be used when TIG welding the ferritic stainless steel 11.
  • the flow rate S2 of the second shield gas is 0.05 / sec and 1.51 m / sec. In this case, although a thin back wave was obtained, the back wave was obtained stably, so that it was at a level with no problem in performing TIG welding of the ferritic stainless steel 11. Further, when Ar-75% volume He or Ar-90% volume He is used as the first shielding gas, the flow rate S2 of the second shielding gas is in the range of 0.18 to 21,21 m / sec. In the case of, very good results were obtained.
  • the flow rate S2 of the second shield gas is 0.05 / sec and 1.51 m / sec. In this case, although a thin back wave was obtained, the back wave was obtained stably, so that it was at a level with no problem in performing TIG welding of the ferritic stainless steel 11. Further, when Ar-75% volume He or Ar-90% volume He is used as the first shield gas, the flow rate S2 of the second shield gas is in the range of 0.18 to 21,21 m / sec. In the case of, very good results were obtained.
  • the ferritic stainless steel 11 cannot be TIG welded when the flow rate S2 of the second shield gas is within the range of 0 to 0.01 m / sec and 1.81 m / sec, and the second shield gas in the flow rate S 2 is 0.05 ⁇ 0.18 m / sec and 1.51 m / sec, a level of no problem in performing the TIG welding of ferritic stainless steel 11, the flow rate S 2 of the second 0.24 to Very good results were obtained within the range of 1,21 m / sec.
  • the flow rate S2 of the second shield gas is 0.702 m / sec. Similar results were obtained. That is, when the flow rate S2 of the second shield gas is within the range of 0 to 0.01 m / sec and 1.81 m / sec, the ferritic stainless steel 11 cannot be TIG welded, and the second flow rate S 2 is 0.05 / sec and 1.51 m / sec, there is no problem when TIG welding of the ferritic stainless steel 11 is performed, and the flow rate S2 of the second shield gas is 0.18 to 1.2. In the range of 21 m / sec, very good results were obtained.
  • First flow rate S 1 was fixed at 1.75 m / sec, and the evaluation results when changing the helium concentration and a second flow rate S 2)
  • the first shielding gas is Ar-20% volume He, Ar-25% volume He, Ar-50% volume He, Ar-75% volume He, and Ar-90% volume.
  • the flow rate S2 of the second shield gas is in the range of 0 to 0.01 m / sec and 1.81 m / sec. It was. In other words, it was a condition that cannot be used when TIG welding the ferritic stainless steel 11.
  • any gas of Ar-20% volume He, Ar-25% volume He, Ar-50% volume He, Ar-75% volume He, and Ar-90% volume He is used.
  • the flow rate S2 of the second shield gas is in the range of 0.05 to 1.51 m / sec, although the back wave is obtained stably, the ferritic stainless steel 11 It was a level which has no problem in performing TIG welding.
  • the first shield gas is a mixed gas of argon gas and helium gas, and helium gas contained in the mixed gas is 20 to 90.
  • a volume% gas is used, and the flow rate S 1 of the first shield gas is set within a range of 0.175 m / sec ⁇ S 1 ⁇ 1.75 m / sec, and argon is used as the shield gas of the second shield gas.
  • the gas is used, and the flow rate S2 of the second shield gas is set within a range of 0.05 m / sec ⁇ S 1 ⁇ 1.51 m / sec, and TIG welding of the ferritic stainless steel 11 is performed, thereby reducing the cost. It was confirmed that the shielding effect for suppressing oxidation can be enhanced, and a sufficient penetration depth can be obtained.
  • first flow velocity S 1 is set to 0.35 m / sec ⁇ S 1 ⁇ 1.58 m / sec
  • second flow velocity S 2 is set to 0.24 m / sec ⁇ S 1 ⁇ 1.21 m / sec.
  • the present invention provides a TIG welding method for ferritic stainless steel that can reduce the cost, enhance the shielding effect for suppressing oxidation, and obtain a sufficient penetration depth. This problem was solved.
  • INDUSTRIAL APPLICABILITY The present invention can be applied to a TIG welding method of ferritic stainless steel that can suppress costs, can enhance a shielding effect for suppressing oxidation, and can obtain a sufficient penetration depth. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

本発明は、第1及び第2のシールドガスを供給可能な二重シールド溶接トーチを用いた溶接方法であって、コストを抑制可能であり、酸化を抑制するためのシールド効果を高めることが可能であり、かつ十分な溶け込み深さを得ることの可能なフェライト系ステンレス鋼板のTIG溶接方法を提供する。第1のシールドガスとして、アルゴンガスとヘリウムガスとの混合ガスであって、かつ前記混合ガスに含まれるヘリウムガスが20~90体積%のガスを用い、第1のシールドガスの流速Sを0.175m/sec≦S≦1.75m/secの範囲内で設定し、第2のシールドガスとして、アルゴンガスを用い、第2のシールドガスの流速Sを0.05m/sec≦S≦1.51m/secの範囲内で設定して、フェライト系ステンレス鋼のTIG溶接を行なう。

Description

フェライト系ステンレス鋼板のTIG溶接方法
 本発明は、フェライト系ステンレス鋼板のTIG溶接方法に関する。
 本願は、2011年10月19日に、日本に出願された特願2011-229533号に基づき優先権を主張し、その内容をここに援用する。
 従来より、タングステン電極と、タングステン電極を囲む第1のシールドノズルと、第1のシールドノズルの外側に配置された第2のシールドノズルと、を有し、第1のシールドノズルの内側から第1のシールドガスを供給すると共に、第1のシールドノズルと第2のシールドノズルとの間から第2のシールドガスを供給する、二重シールド構造を有する溶接トーチを用いた、TIG(Tangsten Inert Gas Welding)溶接が行なわれている(例えば、特許文献1~3参照。)。
 一般的に、TIG溶接では、溶融プールを保護する観点から、シールドガスとしてアルゴンを用いる。
 特許文献1には、以下のティグ溶接方法が開示されている。この方法は、開先を有する被溶接物の開先に溶接トーチのタングステン電極を挿入し、シールドガスを流しながら、タングステン電極の通電部に電圧を印加し、被溶接物とタングステン電極との間で溶接アークを発生させて、溶融プールを形成する。そして、前記形成された溶融プールに溶接トーチから送り出される溶接ワイヤを挿入し溶接トーチを走行させて、溶接を行う。この溶接では、タングステン電極の周囲からその先端部まで流し込まれる内側シールドガスと、前記内側シールドガスの外側から開先に向けて流される溶融プールの酸化防止のための流れ及び被溶接物の外側からの空気中の酸素の巻き込み防止のための流れの2つの流れを有する外側シールドガスと、が用いられる。
 また、特許文献1には、溶け込み深さを深くするために、内側シールドガス及び外側シールドガスとして、2~10vol%水素入りアルゴンガス、または10~80vol%ヘリウム入りアルゴンガスを用いることが開示されている。
 特許文献2には、タングステン電極を囲む1次シールドガス、及び1次シールドガスを囲む2次シールドガスを用いて溶接する、2重シールドTIG溶接が開示されている。この溶接では、1次シールドガスとしてHeガスを流量6~10リットル/min、2次シールドガスとしてArガスを流量10~30リットル/minで使用して溶接する。
 特許文献3には、二重シールドティグ溶接用トーチの内側ノズルより噴射する内側シールドガスの流量密度を一定範囲内の値に調整した後、電極にアークを発生させて溶接部を溶接する、二重シールドティグ溶接方法が開示されている。内側シールドガスの例として5%水素入りアルゴンガスを使用されている。
 また、特許文献3には、内側シールドガスの流量密度を0.1~0.2L/min・mmの範囲内にすることで、溶け込みの深さバラツキが0.5mmの範囲内におさまることが開示されている。
 なお、上記内側シールドガスの流量密度の値を0.1L/min・mmとした場合、0.1L/min・mmを変換することで得られる内側シールドガスの流速Vは、
 V=(0.1×1000×1000)/(60×1000)≒1.66(m/sec)となる。
 また、上記内側シールドガスの流量密度の値を0.2L/min・mmとした場合、内側シールドガスの流速Vは、3.3m/secとなる。
 上記二重シールド構造を有する溶接トーチを用い、溶け込み深さを深く設定して、フェライト系ステンレス鋼板をTIG溶接する場合、水素脆化や低温割れの観点から、シールドガスとして特許文献1記載の水素入りアルゴンガスを用いることが困難であり、このため、ヘリウム入りアルゴンガスを用いることが適している。
 また、フェライト系ステンレス鋼板は、他のステンレス鋼板と比較して、安価であるという特徴がある。
 しかしながら、特許文献1記載のヘリウム入りアルゴンガスを内側シールドガス及び外側シールドガスに使用した場合、ヘリウムが高価なため、TIG溶接のコストが増大するという問題があった。
 また、ヘリウム入りアルゴンガスを内側シールドガス及び外側シールドガスに使用した場合、ヘリウムの影響により内側シールドガス及び外側シールドガスの比重が小さくなるため、シールド不良が発生しやすい。前記シールド不良を抑制するためには、大量のヘリウム入りアルゴンガスを供給する必要があるため、フェライト系ステンレス鋼板をTIG溶接する際のコストがさらに増大するという問題があった。また特許文献1にはフェライト系のステンレス鋼板についての開示もなかった。
 また、特許文献2には、タングステン電極を囲む1次シールドガスとしてHeガス(ヘリウム単体ガス)を用いることが開示されているが、ヘリウムはイオン化ポテンシャルが高い。
 このため、アークを発生させることが困難であり、ヘリウムの混合割合がヘリウム単体に近ければ近いほど、タングステン電極直下のアーク温度が高くなり、タングステン電極の消耗が大きくなってしまう。
 これにより、フェライト系ステンレス鋼板をTIG溶接する際のコストがさらに増大するという問題があった。
 また、特許文献3に記載のように、内側シールドガスの流速を1.66~3.33m/secの範囲内に設定すると、内側シールドガスの流速が速くなりすぎるため、不正ビードが発生する虞があった。
 さらに、特許文献3には、外側シールドガスの流速について、なんら記載されていない。例えば、外側シールドガスの流速が速すぎると、アーク部分でのヘリウム濃度が適正な値とはならず、かなり低い値となる。
 また、外側シールドガスの流速が遅すぎると、シールド能力不足により、ビード外観が悪化し、酸化等が発生する。しかしながら特許文献3には、何も外側シールドガスの流速について記載がない。
特開平9-10943号公報 特開平7-227673号公報 特開平6-297149号公報
 本発明は、第1及び第2のシールドガスを供給可能な二重シールド溶接トーチを用いた溶接方法であって、コストを抑制可能であり、酸化を抑制するためのシールド効果を高めることが可能であり、かつ十分な溶け込み深さを得ることの可能な、フェライト系ステンレス鋼板のTIG溶接方法を提供することを目的とする。
 上記課題を解決するため、本発明は以下の方法を提供する。
 本発明の第一の態様は、アークを発生させる先端を備えた電極、前記電極を囲む第1のシールドノズル、及び前記第1のシールドノズルの外側に配置された第2のシールドノズルを有し、前記第1のシールドノズルの内側から前記電極の先端に第1のシールドガスを供給すると共に、前記第1のシールドノズルと前記第2のシールドノズルとの間から前記電極の先端側に第2のシールドガスを供給する溶接トーチを用い、前記第1のシールドガスとして、アルゴンガスとヘリウムガスとの混合ガスであって、かつ前記混合ガスに含まれるヘリウムガスが20~90体積%であるガスを用い、前記第1のシールドガスの流速Sを0.175m/sec≦S≦1.75m/secにすると共に、前記第2のシールドガスとして、アルゴンガスを用い、前記第2のシールドガスの流速Sを0.05m/sec≦S≦1.51m/secとしたことを特徴とする、フェライト系ステンレス鋼のTIG溶接方法が提供される。
 また、本発明においては、前記流速Sを0.35m/sec≦S≦1.58m/secにすると共に、前記流速Sを0.24m/sec≦S≦1.21m/secとすることが好ましい。
 また、本発明においては、前記混合ガスに含まれる前記ヘリウムガスが25~75体積%であることが好ましい。
 本発明のフェライト系ステンレス鋼のTIG溶接方法によれば、第1のシールドガスとして、アルゴンガスとヘリウムガスとの混合ガスであって、かつ混合ガスに含まれるヘリウムガスが20~90体積%であるガスを用いることで、第1のシールドガスとしてヘリウムのみを用いた場合と比較して、フェライト系ステンレス鋼のTIG溶接のコストを低減することができる。
 また、第1のシールドガスとしてアルゴンガスと20~90体積%のヘリウムガスとの混合ガスを用いることで、電極の直下に形成されるアークの温度が高くなりすぎることがなくなる。このため、電極の消耗が抑制可能となるので、フェライト系ステンレス鋼のTIG溶接のコストを低減できると共に、十分な溶け込み深さを得ることができる。
 また、第1のシールドガスの流速Sを0.175m/sec≦S≦1.75m/secにすることで、流速Sが適度な値となり、不整ビードの発生を抑制可能となる。このため、フェライト系ステンレス鋼の溶接を精度よく行なうことができる。
 さらに、第2のシールドガスとして、アルゴンガスのみを用いることで、第2のシールドガスとして、ヘリウムとアルゴンガスとが混合されたシールドガスを用いた場合と比較して、フェライト系ステンレス鋼のTIG溶接のコストを低減することができる。またシールド効果を向上させることができる。
 また、第2のシールドガスの流速Sを0.05m/sec<S≦1.51m/secとすることで、アーク部分でのヘリウム濃度を適正な値にすることができ、また、酸化を抑制するためのシールド効果を十分に得ることが可能となる。よって、良好なビード外観を得ることができる。
フェライト系ステンレス鋼のTIG溶接方法に適用できる二重シールド溶接トーチの例の主要部の断面図である。
 以下、図面を参照して本発明を適用した実施の形態について詳細に説明する。なお、以下の説明で用いる図面は、本発明の実施形態の構成を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際の二重シールド溶接トーチの寸法関係とは異なる場合がある。本発明はこれらの例のみに限定されることは無く、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、その他の変更が可能である。
 (実施の形態)
 図1は、フェライト系ステンレス鋼のTIG溶接方法に適用される二重シールド溶接トーチの主要部の断面図である。
 ステンレス鋼とは、鉄にクロムを加えた合金鋼に、更に必要に応じて、モリブデン・銅・アルミニウム・ニオブ・チタンなど特殊な元素を選択し加えたものである。フェライト系ステンレス鋼は、一般に炭素の量が少なく、例えば0.3以下、好ましくは0.15%以下の炭素が含まれる。本発明ではフェライト系ステンレス鋼とは、10%以上、好ましくは16%以上のクロムを含む、ステンレス鋼を意味してよい。クロムの量の例としては、11%、12%、13%、15%、16%、17%、18%、19%、21%、22%、28%などが挙げられる。よってクロムの量は11~28%程度が一般的であり、目的とする性質などに基づき、クロムの量は11~13%、16~19%、あるいは16から19%程度と、必要に応じて選択される。なおクロムの上限は任意で選択されるが、一般的には30%以下であり、好ましくは29%以下である。
 本発明において、フェライト系ステンレス鋼版は任意で選択できる。例えばその種類としては、JIS規格に記載される、SUS405,SUS409,SUS409L、SUS410L、SUS410Ti、SUS429、SUD430,SUS430F,SUS430lX、SUS430J1L、SUS434、SUS436L、SUS436J1L、SUS444、SUS445J1、SUS445J2、SUS447J1、SUSXM8、SUSXM27、SUH21、SUH409、SUH409L、SUH446などが挙げられる。ただしこれらに限定されるわけではない。なおSUSはSteel Use Stainlessの略称であり、SUHはSteel Use Heat Resistingの略称である。
 始めに、図1を参照して、フェライト系ステンレス鋼のTIG溶接方法に適用される二重シールド溶接トーチ10の構成について説明する。
 二重シールド溶接トーチ10は、電極15と、第1のシールドノズル16と、第2のシールドノズル17と、を有する。
 電極15は、アークを発生させる先端15Aを有する。電極15としては、タングステン電極を用いることができる。
 第1のシールドノズル16は、筒状とされており、電極15の外側に配置されている。図に示すように、下先端部が内側に傾斜しても良い。第1のシールドノズルのノズル径はノズルの形式や他の付属品等によって任意で変更及び選択できる。例えば一例を挙げれば、内径(出口内径)は5mm~15mm程度が一般的に使用でき、6.5mm~12.5mmcmがより好ましい。ただし本発明は、この範囲に限定されるわけではない。
 第1のシールドノズル16と電極15との間には、第1のシールドガスを電極15の先端15Aに供給するための第1の流路21が形成されている。
 第2のシールドノズル17は、筒状とされており、第1のシールドノズル16の外側に配置されている。図に示すように、下先端部が内側に傾斜しても良い。外側ノズル内径は内側ノズル外径よりも大きければ良く、必要に応じて決定できる。
 第1のシールドノズル16と第2のシールドノズル17の下末端は互いにほぼ並行である。電極15の先端はノズルから突出している。なお本発明の効果が得られる限り、電極のこれら条件は任意に変更しても良い。電極の突出長さは任意で選択できる。一例を挙げれば、例えば、下限は、0mm以上であることが好ましく、10mm以上であってもよい。上限は任意で選択できるが、例えば15mm以下であっても良く、20mm以下や、25mm以下であっても良い。電極径も任意で選択できるが、一般的には1.6mm以上5.0mm以下であり、好ましくは2.4mm以上4.0mm以下である。
 第2のシールドノズル17の内面と第1のシールドノズル16の外面の距離は任意で選択できる。
 第1のシールドガスとしては、アルゴンガスとヘリウムガスとの混合ガスであって、かつ前記混合ガスに含まれるヘリウムガスが20~90体積%のガスを用いる。
 これにより、第1のシールドガスとしてヘリウムガスのみを用いた場合と比較して、フェライト系ステンレス鋼のTIG溶接のコストを低減することができる。
 また、より好ましくは、第1のシールドガス(混合ガス)に含まれるヘリウムガスを25~75体積%にするとよい。このように、第1のシールドガス(混合ガス)に含まれるヘリウムガスを25~75体積%にすることで、安定した十分な深さとされた溶け込み深さを得ることができ、かつアークを安定して発生させることができる。
 なお、ここでの「十分な深さとされた溶け込み深さ」とは、裏波の幅が2mm以上の場合のことをいう。
 第1のシールドガスに含まれるヘリウムガスの割合は上記範囲であれば、必要に応じて選択できる。よって条件等に応じて、例えば、ヘリウムガス量の下限を、20体積%以上、25体積%以上、30体積%以上、35体積%以上、40体積%以上、50体積%以上、及び60体積%以上のいずれから選択しても良い。またヘリウムガス量の上限を条件等に応じて、90体積%以下、85体積%以下、80体積%以下、75体積%、70体積%以下、60体積%以下、及び50体積%以下のいずれから選択しても良い。具体例を挙げれば、必要に応じて、第1のシールドガス中のヘリウムガスは、30~80体積%であってもよく、40~90体積%であってもよく、20~50体積%であってもよく、50~90体積%や、75~90体積%であってもよい。
 また、第1のシールドガスとしてアルゴンガスと20~90体積%のヘリウムガスとの混合ガスを用いることで、電極15の直下に形成されるアークの温度が高くなりすぎることがなくなるため、電極15の消耗が抑制可能となる。よって、フェライト系ステンレス鋼11のTIG溶接のコストを低減でき、かつ十分な溶け込み深さを得ることができる。
 なおヘリウムガスの割合が20体積%より低いときは、溶け込み深さが浅いという問題が発生しやすく、90体積%を超えるときはアークの発生状態が悪い等の問題が発生しやすい。
 第1のシールドガスの流速S(第1の流速)が0.175m/secよりも遅いと溶融池の安定した攪拌が得られず、十分な溶け込み深さを得られない。また、1.75m/secよりも大きいと溶融池が過度に攪拌されて乱れるため、不整ビードが発生してしまう。
 したがって、第1のシールドガスの流速Sは、0.175m/sec≦S≦1.75m/secの範囲内で設定するとよい。これにより、流速Sが適度な値となり、不整ビードの発生を抑制可能となるため、フェライト系ステンレス鋼11の溶接を精度よく行なうことができる。
 上記範囲内であれば、流速Sの上限下限を必要に応じて任意で選択してよい。一例を挙げれば、流速Sの下限としては、0.35m/sec以上にすることが好ましく、0.526m/sec以上にすることがより好ましく、0.702m/sec以上にすることが更に好ましい。流速Sの上限としては、例えば、1.58m/sec以下にすることが好ましく、1.40m/sec以下にすることがより好ましく、1.23m/sec以下にすることが更に好ましい。
 第2のシールドノズル17は、第1のシールドノズル16を囲むように、第1のシールドノズル16の外側に配置されている。第2のシールドノズル17と第1のシールドノズル16との間には、第1のシールドガスを電極15の先端15A側に供給するための第2の流路22が形成されている。
 第2のシールドガスとしては、アルゴンガスのみを用いる。このように、第2のシールドガスとしてアルゴンガスのみを用いることで、第2のシールドガスとしてヘリウムとアルゴンガスとが混合されたシールドガスを用いた場合と比較して、フェライト系ステンレス鋼11のTIG溶接のコストを低減できると共に、酸化を抑制するためのシールド効果を向上させることができる。
 第2のシールドガスが流れていない、あるいは少ない場合、すなわち、流速Sが0.05m/secよりも遅いとビードを保護するガスが少ないため、シールド効果を十分に得ることが出来ない。結果、ビードが酸化し、電極も消耗してしまう。
 また、第2のシールドガスの流速Sが1.51m/secよりも大きいと、第1のシールドガスに混入し、始端が揃わないような不整ビードが発生してしまう。
 したがって、第2のシールドガスの流速S(第2の流速)は、0.05m/sec<S≦1.51m/secの範囲内で設定するとよい。
 このように、第2のシールドガスの流速Sを0.05m/sec<S≦1.51m/secの範囲内で設定することにより、アーク部分でのヘリウム濃度を適正な値にすることができ、また、シールド効果を十分に得ることが可能となるので、良好なビード外観を得ることができる。
 上記範囲内であれば、流速Sの上限下限を必要に応じて任意で選択してよい。一例を挙げれば、流速Sの下限としては、0.18m/sec以上にすることが好ましく、0.24m/sec以上にすることがより好ましく、0.30m/sec以上にすることが更に好ましい。流速Sの上限としては、例えば、1.21m/sec以下にすることが好ましく、0.91m/sec以下にすることがより好ましく、0.60m/sec以下にすることが更に好ましい。
 また、好ましくは、第1のシールドガスの流速Sを0.35m/sec≦S≦1.58m/secにすると共に、第2のシールドガスの流速Sを0.18m/sec≦S≦1.21m/secにするとよい。
 また、より好ましくは、流速Sを0.35m/sec≦S≦1.58m/secにすると共に、流速Sを0.24m/sec≦S≦1.21m/secにするとよい。
 このような条件、例えば、流速Sを0.35m/sec≦S≦1.58m/secにすると共に、流速Sを0.24m/sec≦S≦1.21m/secにすることで、安定した溶け込み深さが得られると共に、綺麗にシールドされた安定したビード始端を得ることができる。
 本実施の形態では、上記構成とされた二重シールド溶接トーチ10を用いて、第1のシールドガスとして、アルゴンガスとヘリウムガスとの混合ガスであって、かつ前記混合ガスに含まれるヘリウムガスが20~90体積%のガスを用い、第1のシールドガスの流速Sを0.175m/sec≦S≦1.75m/secの範囲内に設定すると共に、第2のシールドガスとして、アルゴンガスを用い、第2のシールドガスの流速Sを0m/sec<S≦1.51m/secの範囲内で設定して、フェライト系ステンレス鋼11のTIG溶接を行なう。
 本実施の形態のフェライト系ステンレス鋼のTIG溶接方法によれば、第1のシールドガスとして、アルゴンガスと20~90体積%のヘリウムガスとの混合ガスであって、かつ前記混合ガスに含まれるヘリウムガスが20~90体積%のガスを用いる。このことで、第1のシールドガスとしてヘリウムのみを用いた場合と比較して、フェライト系ステンレス鋼11のTIG溶接のコストを低減することができる。
 また、第1のシールドガスとしてアルゴンガスとヘリウムガスとの混合ガスを用いることで、電極15の直下に形成されるアークの温度が高くなりすぎることがなくなるため、電極15の消耗が抑制可能となる。これにより、フェライト系ステンレス鋼11のTIG溶接のコストを低減できると共に、十分な溶け込み深さを得ることができる。
 また、第1のシールドガスの流速Sを0.175m/sec≦S≦1.75m/secにすることで、第1の流速Sが適度な値となり、不整ビードの発生を抑制可能となる。このため、フェライト系ステンレス鋼11の溶接を精度よく行なうことができる。
 さらに、第2のシールドガスとして、アルゴンガスのみを用いることで、第2のシールドガスとして、ヘリウムとアルゴンガスとが混合されたシールドガスを用いた場合と比較して、フェライト系ステンレス鋼11のTIG溶接のコストを低減することができる。また更に、酸化を抑制するためのシールド効果を向上させることができる。
 また、第2のシールドガスの流速Sを0.05m/sec<S≦1.51m/secとすることで、アーク部分でのヘリウム濃度を適正な値にすることができ、また、酸化を抑制するためのシールド効果を十分に得ることが可能となる。よって良好なビード外観を得ることができる。
 以上、本発明の好ましい実施の形態について詳述したが、本発明はかかる特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
実施例
 以下、本発明の効果を、実施例及び比較例を用いて具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
 <第1のシールドガスに含まれるヘリウムガスの割合が溶接結果に及ぼす影響についての、実施例1~5、比較例1及び比較例2の評価>
比較例1
 比較例1として、ヘリウムの割合が本発明の範囲より小さい、第1のシールドガスを用いて評価を行なった。具体的には、図1に示す二重シールド溶接トーチ10(電極15としてタングステン電極を備えた溶接トーチ)を用いて、フェライト系ステンレス鋼11として厚さ2mmのSUS430の溶接を行い、溶け込み深さ、ビードの酸化の有無、電極の消耗の有無、及びアークの発生状態(アークのスタート性)についての評価を行なった。
 なお図1に示すトーチの電極径は2.4mm、内側ノズルの内側直径は9.5mm、外側直径は14mm、外側ノズルの内側直径は25mm、外側直径は28mmである。また電極はノズルから3mm突出している。
 このとき、第1のシールドガスとしてAr-15%体積He(アルゴンと15体積%のヘリウムガスよりなる混合ガス)、その流速S(第1の流速)として0.35m/sec、第2のシールドガスとしてAr(アルゴンガスのみ)、その流速S(第2の流速)として0.60m/secとした。表1に、比較例1の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
                 
比較例2
 比較例2として、ヘリウムの割合が本発明の範囲より大きい第1のシールドガスを用いて評価を行なった。具体的には、図1に示す二重シールド溶接トーチ10(電極15としてタングステン電極を備えた溶接トーチ)を用いて、フェライト系ステンレス鋼11として厚さ2mmのSUS430の溶接を行い、溶け込み深さ、ビードの酸化の有無、電極の消耗の有無、及びアークの発生状態についての総合的評価を行なった。
 比較例2では、第1のシールドガスとしてAr-95%体積Heとした以外は、比較例1と同じ溶接条件を用いた。表1に、比較例2の評価結果を示す。
実施例1
 実施例1として、図1に示す二重シールド溶接トーチ10(電極15としてタングステン電極を備えた溶接トーチ)を用いて、フェライト系ステンレス鋼11として厚さ2mmのSUS430の溶接を行い、溶け込み深さ、ビードの酸化の有無、電極の消耗の有無、及びアークの発生状態についての評価を行なった。
 実施例1では、第1のシールドガスとしてAr-20%体積Heとした以外は、比較例1と同じ溶接条件を用いた。表1に、実施例1の評価結果を示す。
実施例2
 実施例2として、図1に示す二重シールド溶接トーチ10(電極15としてタングステン電極を備えた溶接トーチ)を用いて、フェライト系ステンレス鋼11として厚さ2mmのSUS430の溶接を行い、溶け込み深さ、ビードの酸化の有無、電極の消耗の有無、及びアークの発生状態についての評価を行なった。
 実施例2では、第1のシールドガスとしてAr-25%体積Heとした以外は、比較例1と同じ溶接条件を用いた。表1に、実施例2の評価結果を示す。
実施例3
 実施例3として、図1に示す二重シールド溶接トーチ10(電極15としてタングステン電極を備えた溶接トーチ)を用いて、フェライト系ステンレス鋼11として厚さ2mmのSUS430の溶接を行い、溶け込み深さ、ビードの酸化の有無、電極の消耗の有無、及びアークの発生状態についての評価を行なった。
 実施例3では、第1のシールドガスとしてAr-50%体積Heとした以外は、比較例1と同じ溶接条件を用いた。表1に、実施例3の評価結果を示す。
実施例4
 実施例4として、図1に示す二重シールド溶接トーチ10(電極15としてタングステン電極を備えた溶接トーチ)を用いて、フェライト系ステンレス鋼11として厚さ2mmのSUS430の溶接を行い、溶け込み深さ、ビードの酸化の有無、電極の消耗の有無、及びアークの発生状態についての評価を行なった。
 実施例4では、第1のシールドガスとしてAr-75%体積Heとした以外は、比較例1と同じ溶接条件を用いた。表1に、実施例4の評価結果を示す。
実施例5
 実施例5として、図1に示す二重シールド溶接トーチ10(電極15としてタングステン電極を備えた溶接トーチ)を用いて、フェライト系ステンレス鋼11として厚さ2mmのSUS430の溶接を行い、溶け込み深さ、ビードの酸化の有無、電極の消耗の有無、及びアークの発生状態についての評価を行なった。
 実施例5では、第1のシールドガスとしてAr-90%体積Heとした以外は、比較例1と同じ溶接条件を用いた。表1に、実施例5の評価結果を示す。
 ここで、表1の評価結果の見方について説明する。
 溶け込み深さについては、溶け込みの深さが浅く裏波がでない場合を×(不可)と判定し、溶け込みに伴い生じる裏波が0より大きく1mm未満の範囲内を△(可)と判定し、裏波が1mm以上2mm未満の範囲内を○(良)と判定し、溶け込み深さが2mm以上の場合を◎(優)と判定した。
 また、ビードの酸化の有無については、ビードの酸化が確認できた場合を×(不可)と判定し、ビードの酸化が確認できない場合を○(良)と判定した。ビードの酸化の有無については、目視で確認を行なった。
 また、電極15の消耗の有無については、目視するとともに、アークが発生しない場合を×(不可)と判定し、アークの発生に時間を要する場合を△(可)と判定し、瞬時に安定してアークが発生する場合を○(良)と判定した。
 また、アークの発生状態については、アークが発生しない場合を×(不可)と判定し、アークの発生に時間を要する場合を△(可)と判定し、瞬時に安定したアークが発生する場合を○(良)と判定した。
 表1を参照するに、比較例1では、十分な溶け込み深さを得ることができなかった。また、実施例1では、やや浅いが、溶接を行なうことの可能な溶け込み深さを得ることができた。また、実施例2,3では、十分な溶け込み深さを得ることができた。また、ヘリウムガスが75%体積以上含まれる第1のシールドガスを用いた場合、溶け込み深さはさらに、深くなることが確認できた。
 このことから、溶け込み深さは、ヘリウムガスの割合が高くなると、深くなることが確認できると共に、第1のシールドガスに含まれるヘリウムガスの割合が20体積%以上のときに、十分な溶け込み深さを得ることができることが確認できた。
 ビードの酸化については、比較例1、実施例1~5、及び比較例2の全てについて観察されることはなく、良好な結果が得られた。
 電極15の消耗については、比較例2のみが少し電極15の消耗が確認された。このことから、電極15の消耗の観点から、第1のシールドガスに含まれるヘリウムガスの割合は、15~90体積%の範囲内にする必要があることが確認できた。
 アークの発生状態は、比較例1及び実施例1~実施例4で良好な結果が得られた。実施例5では、ややアークの発生状態がよくなかったが溶接に大きな影響を及ぼす程ではなかった。また、比較例2では、アークが発生しなかった。よって、アークの発生状態の観点から、第1のシールドガスに含まれるヘリウムガスの割合は、15~90体積%の範囲内にする必要があることが確認できた。
 上記表1に示す評価結果から、アルゴンガスとヘリウムガスとの混合ガスである第1のシールドガスに含まれるヘリウムガスを20~90体積%のガスとすることで、ビード及び酸化がなく、かつバラツキが少なく、十分な溶け込み深さを得ることができることが確認できた。
 また、アルゴンガスと20~90体積%のヘリウムガスとの混合ガスである第1のシールドガスに含まれるヘリウムガスを25~75体積%とすることで、溶け込み深さが十分な深さとされ、ビードの酸化がなく、電極15の消耗もなく、良好なアーク発生状態とされた溶接を行なうことが可能なことが確認できた。
 <第1及び第2のシールドガスの流速S,Sを変化させた際の溶接評価>
実施例6
 次に、実施例1でも用いた、図1に示す二重シールド溶接トーチ10(電極15としてタングステン電極を備えた溶接トーチ)を用いて、フェライト系ステンレス鋼11として厚さ2mmのSUS430の溶接を行い、流速S,Sを変化させて、溶け込み深さ、ビードの酸化の有無、電極の消耗の有無、及びアークの発生状態についての総合的な評価を行なった。
 このとき、第1のシールドガスとしてAr-20%体積Heを用い、第2のシールドガスとしてAr(アルゴンガスのみ)を用いると共に、第1のシールドガスの流速Sとして0m/sec、0.175m/sec、0.35m/sec、0.526m/sec、0.702m/sec、0.877m/sec、1.05m/sec、1.23m/sec、1.40m/sec、1.58m/sec、及び1.75m/secを用い、これら各流速Sに対して第2のシールドガスの流速Sを変化させた際の評価を行なった。
 また、第2のシールドガスの流速Sとしては、0m/sec、0.01m/sec、0.05m/sec、0.18m/sec、0.24m/sec、0.30m/sec、0.60m/sec、0.91m/sec、1.21m/sec、1.51m/sec、1.81m/secを用いた。
 表2に、上記評価結果を示す。また、表2は、溶け込み深さ、ビードの酸化の有無、電極の消耗の有無、及びアークの発生状態についての評価を、総合的に判断した結果を示している。また、表2では、総合的評価結果が、フェライト系ステンレス鋼11をTIG溶接する上で問題のないレベルである場合を○(良)と判定し、評価結果がフェライト系ステンレス鋼11をTIG溶接できないレベルの場合を×(不可)と判定し、非常に良好な評価結果を◎(優)と判定した。
Figure JPOXMLDOC01-appb-T000002
                  
実施例7
 第1のシールドガスとしてAr-25%体積Heを用いた以外は、表2に示す実験と同様な条件を用いて、フェライト系ステンレス鋼11として厚さ2mmのSUS430の溶接を行い、溶け込み深さ、ビードの酸化の有無、電極の消耗の有無、及びアークの発生状態についての評価を行なった。この結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
                  
実施例8
 第1のシールドガスとしてAr-50%体積Heを用いた以外は、表2に示す実験と同様な条件を用いて、フェライト系ステンレス鋼11として厚さ2mmのSUS430の溶接を行い、溶け込み深さ、ビードの酸化の有無、電極の消耗の有無、及びアークの発生状態についての評価を行なった。この結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
                  
実施例9
 第1のシールドガスとしてAr-75%体積Heを用いた以外は、表2に示す実験と同様な条件を用いて、フェライト系ステンレス鋼11として厚さ2mmのSUS430の溶接を行い、溶け込み深さ、ビードの酸化の有無、電極の消耗の有無、及びアークの発生状態についての評価を行なった。この結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
                  
実施例10
 第1のシールドガスとしてAr-90%体積Heを用いた以外は、表2に示す実験と同様な条件を用いて、フェライト系ステンレス鋼11として厚さ2mmのSUS430の溶接を行い、溶け込み深さ、ビードの酸化の有無、電極の消耗の有無、及びアークの発生状態についての評価を行なった。この結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
                  
 (第1の流速Sを0m/secで固定し、かつ第2の流速Sを変化させた際の評価結果)
 表2~表6に示すように、第1のシールドガスの流速Sが0m/secで、第2のシールドガスの流速Sを0~1.81m/secの範囲内で変化させた場合は、アークの発生が不安定となり、安定したビードを得ることができなかった。これにより、良好な結果を得ることができなかった。
 (第1の流速Sを0.175m/secで固定し、かつヘリウム濃度及び第2の流速Sを変化させた際の評価結果)
表2及び表3を参照するに、第1のシールドガスとしてAr-20%体積HeまたはAr-25%体積Heを用いた場合、第2のシールドガスの流速Sが0~0.18m/secの範囲内、及び0.91~1.81m/secの範囲内では、裏波の安定した良好なビードが得られなかった。ここで裏波とは、ステンレス鋼の裏側に形成された裏波ビードを意味する。つまり、フェライト系ステンレス鋼11をTIG溶接する際に使用できない条件であった。
 また、第1のシールドガスとしてAr-20%体積HeまたはAr-25%体積Heを用いた場合であって、第2のシールドガスの流速Sが0.24~0.60m/secの範囲内の場合では、ビードが少し不整であったが、フェライト系ステンレス鋼11のTIG溶接を行なう上で問題ないレベルであった。
 表4を参照するに、第1のシールドガスとしてAr-50%体積Heを用いた場合、第2のシールドガスの流速Sが0~0.05m/secの範囲内、及び0.91~1.81m/secの範囲内では、裏波の安定した良好なビードが得られなかった。つまり、フェライト系ステンレス鋼11をTIG溶接する際に使用できない条件であった。
 また、第1のシールドガスとしてAr-50%体積Heを用いた場合、第2のシールドガスの流速Sが0.18~0.60m/secの範囲内では、ビードが少し不整であったが、フェライト系ステンレス鋼11のTIG溶接を行なう上で問題ないレベルであった。
 表5及び表6を参照するに、第1のシールドガスとしてAr-75%体積HeまたはAr-90%体積Heを用いた場合、第2のシールドガス2の流速Sが0~0.01m/secの範囲内、及び0.91~1.81m/secの範囲内では、裏波の安定した良好なビードが得られなかった。つまり、フェライト系ステンレス鋼11をTIG溶接する際に使用できない条件であった。
 また、第1のシールドガスとしてAr-75%体積HeまたはAr-90%体積Heを用いた場合、第2のシールドガスの流速Sが0.05~0.60m/secの範囲内では、ビードが少し不整であったが、フェライト系ステンレス鋼11のTIG溶接を行なう上で問題ないレベルであった。
 (第1の流速Sを0.35m/secで固定し、かつヘリウム濃度及び第2の流速Sを変化させた際の評価結果)
 表2及び表3を参照するに、第1のシールドガスとしてAr-20%体積HeまたはAr-25%体積Heを用いた場合、第2のシールドガスの流速Sが0~0.05m/secの範囲内、及び1.81m/secでは、連続した裏波が得られなかった。つまり、フェライト系ステンレス鋼11をTIG溶接する際に使用できない条件であった。
 また、第1のシールドガスとしてAr-20%体積HeまたはAr-25%体積Heを用いた場合であって、第2のシールドガスの流速Sが0.18m/sec及び1.51m/secの場合では、細い裏波ではあるが、裏波は安定して得られているため、フェライト系ステンレス鋼11のTIG溶接を行う上で問題ないレベルであった。
 さらに、第1のシールドガスとしてAr-20%体積HeまたはAr-25%体積Heを用いた場合、第2のシールドガスの流速Sが0.24~1,21m/secの範囲内では、非常に良好な結果が得られた。
 表4を参照するに、第1のシールドガスとしてAr-50%体積HeまたはAr-25%体積Heを用いた場合、第2のシールドガスの流速Sが0~0.01m/secの範囲内、及び1.81m/secでは、連続した裏波が得られなかった。つまり、フェライト系ステンレス鋼11をTIG溶接する際に使用できない条件であった。
 また、第1のシールドガスとしてAr-50%体積Heを用いた場合であって、第2の流速Sが0.05~0.18m/sec及び1.51m/secの場合では、細い裏波ではあるが、裏波は安定して得られているため、フェライト系ステンレス鋼11のTIG溶接を行う上で問題ないレベルであった。
 さらに、第1のシールドガスとしてAr-50%体積Heを用いた場合であって、第2のシールドガスの流速Sが0.24~1,21m/secの範囲内の場合では、非常に良好な結果が得られた。
 表5及び表6を参照するに、第1のシールドガスとしてAr-75%体積HeまたはAr-90%体積Heを用いた場合、第2の流速Sが0~0.01m/secの範囲内、及び1.81m/secでは、連続した裏波が得られなかった。つまり、フェライト系ステンレス鋼11をTIG溶接する際に使用できない条件であった。
 また、第1のシールドガスとしてAr-75%体積HeまたはAr-90%体積Heを用いた場合であって、第2のシールドガスの流速Sが0.05m/sec及び1.51m/secの場合では、細い裏波ではあるが、裏波は安定して得られているため、フェライト系ステンレス鋼11のTIG溶接を行う上で問題ないレベルであった。
 さらに、第1のシールドガスとしてAr-75%体積HeまたはAr-90%体積Heを用いた場合であって、第2のシールドガスの流速Sが0.18~1.21m/secの範囲内の場合では、非常に良好な結果が得られた。
 (第1の流速Sを0.526m/secで固定し、かつヘリウム濃度及び第2の流速Sを変化させた際の評価結果)
 表2を参照するに、第1のシールドガスとしてAr-20%体積Heを用いた場合、第2のシールドガスの流速Sが0~0.05m/secの範囲内、及び1.81m/secでは、連続した裏波が得られなかった。つまり、フェライト系ステンレス鋼11をTIG溶接する際に使用できない条件であった。
 また、第1のシールドガスとしてAr-20%体積Heを用いた場合であって、第2のシールドガスの流速Sが0.18m/sec及び1.51m/secの場合では、細い裏波ではあるが、裏波は安定して得られているため、フェライト系ステンレス鋼11のTIG溶接を行う上で問題ないレベルであった。
 さらに、第1のシールドガスとしてAr-20%体積Heを用いた場合であって、第2の流速Sが0.24~1,21m/secの範囲内の場合では、非常に良好な結果が得られた。
 表3及び表4を参照するに、第1のシールドガスとしてAr-25%体積HeまたはAr-50%体積Heを用いた場合、第2のシールドガスの流速Sが0~0.01m/secの範囲内、及び1.81m/secでは、連続した裏波が得られなかった。つまり、フェライト系ステンレス鋼11をTIG溶接する際に使用できない条件であった。
 また、第1のシールドガスとしてAr-25%体積HeまたはAr-50%体積Heを用いた場合であって、第2のシールドガスの流速Sが0.05~0.18m/secの範囲内及び1.51m/secの場合では、細い裏波ではあるが、裏波は安定して得られているため、フェライト系ステンレス鋼11のTIG溶接を行う上で問題ないレベルであった。
 さらに、第1のシールドガスとしてAr-25%体積HeまたはAr-50%体積Heを用いた場合、第2のシールドガスの流速Sが0.24~1,21m/secの範囲内では、非常に良好な結果が得られた。
 表5及び表6を参照するに、第1のシールドガスとしてAr-75%体積HeまたはAr-90%体積Heを用いた場合、第2のシールドガスの流速Sが0~0.01m/secの範囲内、及び1.81m/secでは、連続した裏波が得られなかった。つまり、フェライト系ステンレス鋼11をTIG溶接する際に使用できない条件であった。
 また、第1のシールドガスとしてAr-75%体積HeまたはAr-90%体積Heを用いた場合であって、第2のシールドガスの流速Sが0.05/sec及び1.51m/secの場合では、細い裏波ではあるが、裏波は安定して得られているため、フェライト系ステンレス鋼11のTIG溶接を行う上で問題ないレベルであった。
 さらに、第1のシールドガスとしてAr-75%体積HeまたはAr-90%体積Heを用いた場合であえって、第2のシールドガスの流速Sが0.18~1,21m/secの範囲内の場合では、非常に良好な結果が得られた。
 (第1の流速Sを0.702m/secで固定し、かつヘリウム濃度及び第2の流速Sを変化させた際の評価結果)
 表2~表4を参照するに、第1のシールドガスとしてAr-20%体積He、Ar-25%体積He、及びAr-50%体積Heのうち、いずれかのガスを用いた場合、第2のシールドガスの流速Sが0~0.01m/secの範囲内、及び1.81m/secでは、連続した裏波が得られなかった。つまり、フェライト系ステンレス鋼11をTIG溶接する際に使用できない条件であった。
 また、第1のシールドガスとしてAr-20%体積He、Ar-25%体積He、及びAr-50%体積Heのうち、いずれかのガスを用いた場合であって、第2のシールドガスの流速Sが0.05~0.18m/sec及び1.51m/secの場合では、細い裏波ではあるが、裏波は安定して得られているため、フェライト系ステンレス鋼11のTIG溶接を行う上で問題ないレベルであった。
 さらに、第1のシールドガスとしてAr-20%体積He、Ar-25%体積He、及びAr-50%体積Heのうち、いずれかのガスを用いた場合であって、第2の流速Sが0.24~1,21m/secの範囲内の場合では、非常に良好な結果が得られた。
 表5及び表6を参照するに、第1のシールドガスとしてAr-75%体積HeまたはAr-90%体積Heを用いた場合、第2の流速Sが0~0.01m/secの範囲内、及び1.81m/secでは、連続した裏波が得られなかった。つまり、フェライト系ステンレス鋼11をTIG溶接する際に使用できない条件であった。
 また、第1のシールドガスとしてAr-75%体積HeまたはAr-90%体積Heを用いた場合であって、第2のシールドガスの流速Sが0.05/sec及び1.51m/secの場合では、細い裏波ではあるが、裏波は安定して得られているため、フェライト系ステンレス鋼11のTIG溶接を行う上で問題ないレベルであった。
 さらに、第1のシールドガスとしてAr-75%体積HeまたはAr-90%体積Heを用いた場合であって、第2のシールドガスの流速Sが0.18~1,21m/secの範囲内の場合では、非常に良好な結果が得られた。
 (第1の流速Sを0.877m/secで固定し、かつヘリウム濃度及び第2の流速Sを変化させた際の評価結果)
 表2~表4を参照するに、第1のシールドガスとしてAr-20%体積He、Ar-25%体積He、及びAr-50%体積Heのうち、いずれかのガスを用いた場合、第2のシールドガスの流速Sが0.702m/secのときと同様な結果が得られた。
 つまり、第2のシールドガスの流速Sが0~0.01m/secの範囲内、及び1.81m/secの条件では、フェライト系ステンレス鋼11をTIG溶接できず、第2のシールドガスの流速Sが0.05~0.18m/sec及び1.51m/secでは、フェライト系ステンレス鋼11のTIG溶接を行う上で問題ないレベルであり、第2の流速Sが0.24~1,21m/secの範囲内では、非常に良好な結果が得られた。
 表5及び表6を参照するに、第1のシールドガスとしてAr-75%体積HeまたはAr-90%体積Heを用いた場合、第2のシールドガスの流速Sが0.702m/secのときと同様な結果が得られた。
 つまり、第2のシールドガスの流速Sが0~0.01m/secの範囲内、及び1.81m/secでは、フェライト系ステンレス鋼11をTIG溶接することができず、第2の流速Sが0.05/sec及び1.51m/secの場合、フェライト系ステンレス鋼11のTIG溶接を行う上で問題ないレベルであり、第2のシールドガスの流速Sが0.18~1.21m/secの範囲内では、非常に良好な結果が得られた。
 (第1の流速Sを1.05m/sec、1.23m/sec、1.40m/sec、1.58m/secのいずれかで固定し、かつヘリウム濃度及び第2の流速Sを変化させた際の評価結果)
 表2~表4を参照するに、第1のシールドガスとしてAr-20%体積He、Ar-25%体積He、及びAr-50%体積Heのうち、いずれかのガスを用いた場合、第2のシールドガスの流速Sが0.702m/secのときと同様な結果が得られた。
 また、表5及び表6を参照するに、第1のシールドガスとしてAr-75%体積HeまたはAr-90%体積Heを用いた場合、第2のシールドガスの流速Sが0.702m/secのときと同様な結果が得られた。
 (第1の流速Sを1.75m/secで固定し、かつヘリウム濃度及び第2の流速Sを変化させた際の評価結果)
 表2~表6を参照するに、第1のシールドガスとしてAr-20%体積He、Ar-25%体積He、Ar-50%体積He、Ar-75%体積He、及びAr-90%体積Heのうち、いずれかのガスを用いた場合、第2のシールドガスの流速Sが0~0.01m/secの範囲内、及び1.81m/secでは、連続した裏波が得られなかった。つまり、フェライト系ステンレス鋼11をTIG溶接する際に使用できない条件であった。
 また、第1のシールドガスとしてAr-20%体積He、Ar-25%体積He、Ar-50%体積He、Ar-75%体積He、及びAr-90%体積Heのうち、いずれかのガスを用いた場合であって、
 第2のシールドガスの流速Sが0.05~1.51m/secの範囲内の場合では、細い裏波ではあるが、裏波は安定して得られているため、フェライト系ステンレス鋼11のTIG溶接を行う上で問題ないレベルであった。
 上記評価結果から、図1に示す二重シールド溶接トーチ10を用いて、第1のシールドガスとして、アルゴンガスとヘリウムガスとの混合ガスで、かつ前記混合ガスに含まれるヘリウムガスが20~90体積%のガスを用い、第1のシールドガスの流速Sを0.175m/sec≦S≦1.75m/secの範囲内で設定すると共に、第2のシールドガスのシールドガスとして、アルゴンガスを用い、第2のシールドガスの流速Sを0.05m/sec≦S≦1.51m/secの範囲内で設定して、フェライト系ステンレス鋼11のTIG溶接を行なうことで、コストを抑制でき、酸化を抑制するためのシールド効果を高めることができ、かつ十分な溶け込み深さを得ることができることが確認できた。
 また、第1の流速Sを0.35m/sec≦S≦1.58m/secにすると共に、第2の流速Sを0.24m/sec≦S≦1.21m/secにすることで、第1及び第2の流速S,Sが適正な範囲内に保たれるため、アークの集中性が増し、連続した良好な裏波を得られることが確認できた。
 なお、 外側の流速S(第2の流速)がある一定以上速くなると、 内側の流速S(第1の流速)に乱入し、十分な裏波(溶け込み)を得ることができない。
 本発明は、コストを抑制可能であり、酸化を抑制するためのシールド効果を高めることが可能であり、かつ十分な溶け込み深さを得ることの可能なフェライト系ステンレス鋼のTIG溶接方法を提供することを課題とし、この課題を解決した。
 本発明は、コストを抑制可能であり、酸化を抑制するためのシールド効果を高めることが可能であり、かつ十分な溶け込み深さを得ることの可能なフェライト系ステンレス鋼のTIG溶接方法に適用可能である。
 10…二重シールド溶接トーチ
 11…フェライト系ステンレス鋼
 15…電極
 15A…先端
 21…第1の流路
 22…第2の流路

Claims (15)

  1.  アークを発生させる先端を備えた電極、
    前記電極を囲む第1のシールドノズル、及び
    前記第1のシールドノズルの外側に配置された第2のシールドノズルを有し、
    前記第1のシールドノズルの内側から前記電極の先端に第1のシールドガスを供給すると共に、前記第1のシールドノズルと前記第2のシールドノズルとの間から前記電極の先端側に第2のシールドガスを供給する、溶接トーチを用い、
     前記第1のシールドガスとして、アルゴンガスとヘリウムガスとの混合ガスであって、かつ前記混合ガスに含まれるヘリウムガスが20~90体積%であるガスを用い、前記第1のシールドガスの流速Sを0.175m/sec≦S≦1.75m/secにすると共に、
     前記第2のシールドガスとして、アルゴンガスを用い、前記第2のシールドガスの流速Sを0.05m/sec≦S≦1.51m/secとしたことを特徴とする、
    フェライト系ステンレス鋼のTIG溶接方法。
  2.  前記流速Sを0.35m/sec≦S≦1.58m/secにすると共に、前記流速Sを0.24m/sec≦S≦1.21m/secとしたことを特徴とする請求項1記載のフェライト系ステンレス鋼のTIG溶接方法。
  3.  前記混合ガスに含まれる前記ヘリウムガスが25~75体積%であることを特徴とする請求項1記載のフェライト系ステンレス鋼のTIG溶接方法。
  4. 前記電極がタングステン電極である、請求項1記載のフェライト系ステンレス鋼のTIG溶接方法。
  5. 第1のシールドノズル及び第2のシールドノズルがそれぞれ筒状である、請求項1記載のフェライト系ステンレス鋼のTIG溶接方法。
  6. 第1のシールドノズルと第2のシールドノズルの下末端が互いにほぼ並行であり、電極の先端はこれらノズルから突出している、請求項1記載のフェライト系ステンレス鋼のTIG溶接方法。
  7. 前記混合ガスに含まれるヘリウムガスが40~90体積%である、請求項1記載のフェライト系ステンレス鋼のTIG溶接方法。
  8. 前記混合ガスに含まれるヘリウムガスが30~80体積%である、請求項1記載のフェライト系ステンレス鋼のTIG溶接方法。
  9. 前記混合ガスに含まれるヘリウムガスが20~50体積%である、請求項1記載のフェライト系ステンレス鋼のTIG溶接方法。
  10. 流速Sが、0.35m/sec以上である、請求項1記載のフェライト系ステンレス鋼のTIG溶接方法。
  11. 流速Sが、1.586m/sec以下である、請求項1記載のフェライト系ステンレス鋼のTIG溶接方法。
  12. 流速Sが、1.40m/sec以下である、請求項1記載のフェライト系ステンレス鋼のTIG溶接方法。
  13. 流速Sが、0.18m/sec以上である、請求項1記載のフェライト系ステンレス鋼のTIG溶接方法。
  14. 流速Sが、1.21m/sec以下である、請求項1記載のフェライト系ステンレス鋼のTIG溶接方法。
  15. フェライト系ステンレス鋼が、炭素の量が0.3%以下でありかつクロムの量が11~28%であるステンレス鋼である、請求項1記載のフェライト系ステンレス鋼のTIG溶接方法。
     
     
     
     
     
PCT/JP2012/076958 2011-10-19 2012-10-18 フェライト系ステンレス鋼板のtig溶接方法 WO2013058321A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/352,115 US9505075B2 (en) 2011-10-19 2012-10-18 TIG welding method of ferrite stainless steel sheet
CN201280051066.2A CN103889633B (zh) 2011-10-19 2012-10-18 铁素体系不锈钢板的tig焊接方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011229533A JP2013086136A (ja) 2011-10-19 2011-10-19 フェライト系ステンレス鋼板のtig溶接方法
JP2011-229533 2011-10-19

Publications (1)

Publication Number Publication Date
WO2013058321A1 true WO2013058321A1 (ja) 2013-04-25

Family

ID=48140964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076958 WO2013058321A1 (ja) 2011-10-19 2012-10-18 フェライト系ステンレス鋼板のtig溶接方法

Country Status (4)

Country Link
US (1) US9505075B2 (ja)
JP (1) JP2013086136A (ja)
CN (1) CN103889633B (ja)
WO (1) WO2013058321A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103394835A (zh) * 2013-08-14 2013-11-20 哈尔滨哈锅锅炉工程技术有限公司 一种用于p91/t91集箱管焊接的充氩保护罩

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9266182B2 (en) * 2012-04-06 2016-02-23 Illinois Tools Works Inc. Welding torch with a temperature measurement device
DE102013015171A1 (de) * 2013-09-12 2015-03-12 Linde Aktiengesellschaft Verfahren zum Metallschutzgasschweißen
FR3012758B1 (fr) * 2013-11-07 2015-10-30 Air Liquide Procede de rechargement a l'arc electrique avec melange gazeux ar/he
DE102015001456A1 (de) * 2014-07-15 2016-01-21 Linde Aktiengesellschaft Verfahren zum Wolfram-Schutzgasschweißen
JP7419860B2 (ja) 2020-02-14 2024-01-23 マツダ株式会社 ガスシールド溶接方法及び溶接トーチ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227673A (ja) * 1994-02-17 1995-08-29 Nippon Steel Corp 高能率tig溶接法
JPH11229034A (ja) * 1998-02-10 1999-08-24 Nisshin Steel Co Ltd フェライト系ステンレス鋼管の加工方法
JP2008200750A (ja) * 2007-01-26 2008-09-04 Kobe Steel Ltd 片面アークスポット溶接方法
JP2008221266A (ja) * 2007-03-09 2008-09-25 Nisshin Steel Co Ltd 温水容器およびその製造法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3604889A (en) * 1969-05-08 1971-09-14 North American Rockwell Plasma-generating method and means
US4680440A (en) * 1981-04-07 1987-07-14 Barlet Loren E Shielding arrangement and method for TIG
JPS5835071A (ja) * 1981-08-26 1983-03-01 Furukawa Electric Co Ltd:The 金属細径管の溶接方法
JPH06297149A (ja) 1993-04-16 1994-10-25 Mitsubishi Heavy Ind Ltd 二重シールドティグ溶接方法
FR2719514B1 (fr) 1994-05-04 1996-06-07 Air Liquide Mélange gazeux de protection et procédé de soudage à l'arc de pièces en aciers inoxydables.
JP3420658B2 (ja) 1995-06-30 2003-06-30 株式会社東芝 ティグ溶接方法およびその溶接トーチ
JP3934251B2 (ja) * 1997-06-10 2007-06-20 株式会社東芝 Tig溶接方法および装置
JP2000312972A (ja) * 1999-04-26 2000-11-14 Honda Motor Co Ltd 溶極式ガスシールドアーク溶接用トーチ
JP3735274B2 (ja) * 2001-07-02 2006-01-18 三菱重工業株式会社 アルミニウムまたはアルミニウム系合金のアーク溶接方法
JP3845819B2 (ja) * 2002-02-18 2006-11-15 株式会社日立製作所 ガスタービン翼及びその製造方法
FR2908061B1 (fr) * 2006-11-07 2009-02-13 Areva Np Sas Dispositif et procede de soudage automatique sous eau pour la realisation sur une surface d'un joint a souder.
EP2042257A2 (en) * 2007-09-26 2009-04-01 BOC Limited Method for controlling weld quality
WO2013157036A1 (ja) * 2012-04-18 2013-10-24 Murata Akihisa 狭窄ノズル及びこれを用いたtig溶接用トーチ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227673A (ja) * 1994-02-17 1995-08-29 Nippon Steel Corp 高能率tig溶接法
JPH11229034A (ja) * 1998-02-10 1999-08-24 Nisshin Steel Co Ltd フェライト系ステンレス鋼管の加工方法
JP2008200750A (ja) * 2007-01-26 2008-09-04 Kobe Steel Ltd 片面アークスポット溶接方法
JP2008221266A (ja) * 2007-03-09 2008-09-25 Nisshin Steel Co Ltd 温水容器およびその製造法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103394835A (zh) * 2013-08-14 2013-11-20 哈尔滨哈锅锅炉工程技术有限公司 一种用于p91/t91集箱管焊接的充氩保护罩

Also Published As

Publication number Publication date
JP2013086136A (ja) 2013-05-13
US9505075B2 (en) 2016-11-29
CN103889633B (zh) 2017-01-18
CN103889633A (zh) 2014-06-25
US20140246406A1 (en) 2014-09-04

Similar Documents

Publication Publication Date Title
WO2013058321A1 (ja) フェライト系ステンレス鋼板のtig溶接方法
US8324524B2 (en) Plasma welding process and outer gas for use in the plasma welding process
WO2015141768A1 (ja) 非移行型のプラズマアークシステム、変換用アダプタキット、非移行型のプラズマアーク用トーチ
JP2009255125A (ja) 純Arシールドガス溶接用MIGフラックス入りワイヤ及びMIGアーク溶接方法
JP5120131B2 (ja) 多電極サブマージアーク溶接法
KR20130103495A (ko) 복합 용접 방법 및 복합 용접용 용접 토치
US9586293B2 (en) Welding gas and plasma welding method
Mahrle et al. Laser-assisted plasma arc welding of stainless steel
JP6091974B2 (ja) 溶接物の製造方法、溶接方法、溶接装置
CA2555426C (en) Shielding gas, welding method by using the same and weldment thereof
JP5302558B2 (ja) プラズマ溶接法およびこれに用いられるアウターガス
CA2461317A1 (en) Tig welding equipment and tig welding method
JP2013043181A (ja) 溶接トーチ及びプラズマ溶接方法
JP2013184212A (ja) タンデムガスシールドアーク溶接方法
JP6442789B2 (ja) 溶接方法
JP2004298963A (ja) Tig溶接装置および方法
JP2006075847A (ja) レーザとアークのハイブリッド溶接方法
JP2010046708A (ja) ミグ溶接用シールドガスおよびインバーのミグ溶接方法
JP6539039B2 (ja) 溶接装置及びプラズマ溶接方法
JP2014108458A (ja) プラズマgma溶接トーチ
JP2006026651A (ja) ステンレス鋼溶接用シールドガス
Kikani Study of shielded gases for MIG welding
Gao et al. Effect of shielding gas on hybrid laser-arc welding
JP5280237B2 (ja) プラズマ溶接法およびこれに用いられるアウターガス
JP2006026644A (ja) 非消耗電極式ガスシールドアーク溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842159

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14352115

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842159

Country of ref document: EP

Kind code of ref document: A1