WO2013058023A1 - 洗浄装置及び洗浄方法 - Google Patents

洗浄装置及び洗浄方法 Download PDF

Info

Publication number
WO2013058023A1
WO2013058023A1 PCT/JP2012/072538 JP2012072538W WO2013058023A1 WO 2013058023 A1 WO2013058023 A1 WO 2013058023A1 JP 2012072538 W JP2012072538 W JP 2012072538W WO 2013058023 A1 WO2013058023 A1 WO 2013058023A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cleaning
contamination
unit
ozone
Prior art date
Application number
PCT/JP2012/072538
Other languages
English (en)
French (fr)
Inventor
田中 潤一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013058023A1 publication Critical patent/WO2013058023A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement

Definitions

  • the present invention relates to a cleaning apparatus and a cleaning method for cleaning contamination on a substrate surface, and more particularly to a technique for cleaning a substrate surface using water containing fine ozone bubbles.
  • a cleaning solution composed of a mixed solution of sulfuric acid and hydrogen peroxide solution, or a cleaning solution containing an organic alkali or an organic acid in its components is used (for example, (See Patent Documents 1 and 2).
  • FIG. 7 is a schematic diagram showing a schematic configuration of a conventional cleaning system 100 for cleaning the substrate surface.
  • a white arrow in FIG. 7 represents a direction in which the substrate B is transported.
  • the processing substrate B on which the cleaning process is performed to remove the contamination is carried by the transport mechanism 101 in the order of the cleaning unit 102 and the drying unit 103.
  • the cleaning liquid is sprayed from the spray nozzle 102a toward the processing substrate B, and the processing substrate B is cleaned.
  • the cleaning liquid sprayed onto the processing substrate B is supplied from a cleaning liquid tank 104 that stores the cleaning liquid.
  • the cleaning liquid for example, a mixed liquid of sulfuric acid and hydrogen peroxide water or the like is used.
  • the cleaning liquid after being used for cleaning the processing substrate B is returned to the cleaning liquid tank 104 through the filter 105.
  • the filter 105 is provided to clean the cleaning liquid used for cleaning the processing substrate B.
  • the processing substrate B cleaned by the cleaning unit 102 is dried by the drying unit 103 and supplied to the next process.
  • the cleaning liquid in the cleaning liquid tank 104 is replaced with a new one at a stage where the cleaning liquid is contaminated or deteriorated (usually periodically at a predetermined timing). become. If the new cleaning liquid is used for a while after replacement, contamination and deterioration will inevitably progress. For this reason, there may occur a situation where the cleaning of the substrate surface is insufficient before the next replacement of the cleaning liquid. In recent years, since the demand for high cleaning of the substrate surface has become stricter, the resolution of this problem has become increasingly important.
  • an object of the present invention is to provide a cleaning apparatus and a cleaning method capable of stably obtaining a highly clean substrate surface.
  • a cleaning apparatus of the present invention is a cleaning apparatus that removes contamination on the surface of a substrate, and includes a generation unit that generates water containing fine ozone bubbles, and the generation unit that generates the water.
  • a jetting unit that jets water containing fine bubbles toward the substrate, an ultraviolet light emitting unit that emits ultraviolet light for irradiating the substrate, and irradiating the substrate with ultraviolet rays from the ultraviolet light emitting unit
  • a cleaning unit that sprays water containing the fine bubbles to clean the surface of the substrate (first configuration).
  • the fine bubbles in the present invention are bubbles having a diameter of the order of micrometers or less, preferably bubbles having a diameter of 50 ⁇ m or less.
  • the “water” of water containing fine bubbles in the present invention is used in a broad concept, and the “water” is, for example, pure water or a product obtained by adding an additive to pure water. Etc. are included. Examples of the additive include ammonia that is dissolved in water to prevent static electricity, and a surfactant.
  • the water containing fine bubbles of the present invention preferably corresponds to so-called micro bubble water, nano bubble water, or micro nano bubble water.
  • oxidizing radicals such as hydroxyl radicals can be generated by energy when the fine bubbles of ozone are crushed and further by irradiation of ultraviolet rays to water containing the fine bubbles of ozone.
  • the organic substance on the substrate surface can be decomposed by the generated oxidizing radical, and the organic substance contamination on the substrate surface can be removed.
  • the cleaning apparatus of the first configuration further includes a waste water treatment unit that irradiates waste water after cleaning the surface of the substrate with ultraviolet rays so that the waste water can be discharged out of the apparatus (second).
  • a waste water treatment unit that irradiates waste water after cleaning the surface of the substrate with ultraviolet rays so that the waste water can be discharged out of the apparatus (second).
  • the substrate cleaning can always be performed using a fresh cleaning liquid (water containing fine ozone bubbles).
  • waste water after washing water containing fine ozone bubbles
  • waste water after washing water containing fine ozone bubbles
  • the spray unit may spray water containing the fine bubbles obliquely with respect to the surface of the substrate (third configuration). According to this configuration, it is possible to reduce the possibility that the cleaning liquid after being used for cleaning is applied to the portion where the cleaning of the substrate surface has been completed.
  • the injection unit may have a plurality of injection nozzles (fourth configuration). According to this configuration, the substrate can be efficiently cleaned.
  • the cleaning apparatus of the fourth configuration further includes a transport mechanism for transporting the substrate, wherein the plurality of spray nozzles are parallel to the surface of the substrate and orthogonal to the transport direction of the substrate by the transport mechanism.
  • positioned in a line in the direction to perform may be employ
  • the cleaning device according to the fourth configuration further includes a transport mechanism that transports the substrate, and the plurality of spray nozzles are parallel to the surface of the substrate and are formed by the transport mechanism.
  • a configuration (sixth configuration) arranged in a zigzag shape in a direction orthogonal to the transport direction of the substrate may be employed. According to the latter configuration, it is possible to increase the amount of cleaning liquid (water containing fine ozone bubbles) that is sprayed onto the substrate while suppressing an increase in the size of the spraying unit, thereby improving cleaning efficiency. I can expect.
  • the contamination may include at least one of organic contamination, particle contamination, and metal contamination (seventh configuration).
  • a cleaning method of the present invention is a cleaning method for removing contamination on the surface of a substrate, which includes generating water containing fine ozone bubbles, and applying ultraviolet rays to the substrate. And cleaning the surface of the substrate by spraying water containing the fine bubbles while irradiating (8th configuration).
  • oxidizing radicals such as hydroxyl radicals can be generated by energy when the fine bubbles of ozone are crushed and further by irradiation of ultraviolet rays to water containing the fine bubbles of ozone.
  • the organic substance on the substrate surface can be decomposed by the generated oxidizing radical, and the organic substance contamination on the substrate surface can be removed.
  • water containing fine ozone bubbles used as a cleaning liquid can be easily rendered harmless by irradiation with ultraviolet rays after use. For this reason, in this configuration, waste liquid treatment is easy, and it is not necessary to repeatedly use a cleaning liquid as in the prior art, and it can be expected that a highly clean substrate surface can be stably obtained.
  • a configuration (9th configuration) in which the surface of the substrate is cleaned immediately before a functional film is formed on the surface of the substrate may be employed.
  • problems such as deterioration of electrical characteristics when contamination is confined between the substrate and the functional film and the substrate is incorporated into the device.
  • the functional film may be any one of a metal film, a semiconductor film, and an insulating film (tenth configuration).
  • the timing at which the cleaning method of the present invention (method for cleaning the substrate surface) is applied is, for example, immediately before the resist is applied to the substrate, or laser irradiation processing is performed on the substrate. Or just before the ion implantation process is performed on the substrate.
  • the contamination may include at least one of organic contamination, particle contamination, and metal contamination.
  • the schematic diagram which shows schematic structure of the washing
  • the schematic plan view which shows the structure of the injection nozzle unit with which the washing
  • the schematic plan view which shows the structure of the injection nozzle unit with which the washing
  • the schematic side view which shows the structure of the injection nozzle unit with which the washing
  • the cleaning apparatus and the cleaning method of the present invention are suitable for removing organic contamination, metal contamination, and particle contamination on the substrate surface.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a cleaning apparatus 1 according to the first embodiment of the present invention.
  • the cleaning device 1 of the first embodiment includes a loader unit 10, a shower unit 20, a cleaning unit 30, a drying unit 40, and an unloader unit 50.
  • the cleaning device 1 includes a transport mechanism 60.
  • the transport mechanism 60 is provided so that the substrate B can be transported in the order of the loader unit 10, the shower unit 20, the cleaning unit 30, the drying unit 40, and the unloader unit 50.
  • the conveyance speed of the substrate B by the conveyance mechanism 60 is appropriately adjusted within a range in which the purpose of cleaning the substrate surface is achieved.
  • the configuration of the transport mechanism 60 is not particularly limited as long as it can transport the substrate B in the direction of the arrow (white arrow) in FIG.
  • the transport mechanism 60 for example, a known transport mechanism including a plurality of transport rollers, a transport belt that is driven along with the rotation of the transport rollers, and a motor that drives the transport rollers can be applied.
  • the transport mechanism 60 is an example of the transport mechanism of the present invention.
  • the loader unit 10 is a part on which the substrate B to be cleaned is mounted.
  • the substrate B mounted on the loader unit 10 is sequentially transported to the shower unit 20 and the cleaning unit 30 by the transport mechanism 60 and cleaned.
  • Various timings are assumed as the timing for cleaning the substrate B (timing for supplying the substrate B to the loader unit 10).
  • the timing for cleaning the substrate B can be cited immediately before the functional film such as a metal film, a semiconductor film, or an insulating film is formed on the surface of the substrate B (immediately before the functional film forming step). If the functional film is formed in a state where the contamination remains on the substrate surface, the contamination is confined between the substrate surface and the functional film, and then it becomes impossible to remove the contamination. For this reason, the substrate B is cleaned immediately before the above-described functional film forming step.
  • the above-described functional film forming step includes a step of forming another functional film on the functional film formed on the surface of the substrate B. That is, the substrate B to be cleaned includes a substrate on which a functional film has already been formed.
  • Timings for cleaning the substrate B include immediately before applying a resist to the surface of the substrate B, immediately before performing laser irradiation processing on the substrate B, immediately before performing ion implantation processing on the substrate B, and the like. It is done. For example, if the surface of the substrate B is contaminated at the time when laser irradiation or ion implantation is performed, the surface of the substrate B may be shaded due to the contamination, and then the portion where the shadow is formed cannot be processed. is there. The substrate B may be cleaned to avoid such a situation.
  • the shower unit 20 includes a shower nozzle 21 that injects pure water (water from which impurities have been removed by a physical or chemical method) toward the surface of the substrate B. Due to the pure water sprayed from the shower nozzle 21, a part of the contamination (upper contamination) existing on the surface of the substrate B is levitated and removed from the substrate surface.
  • this configuration is merely an example, and the configuration may be changed as appropriate.
  • the cleaning unit 30 includes an injection nozzle unit 31 that injects ozone micro-nano bubble water (details will be described later) toward the surface of the substrate B, and an ultraviolet lamp 32 that irradiates the surface of the substrate B with ultraviolet rays.
  • the substrate B transported from the shower unit 20 to the cleaning unit 30 is sprayed with ozone micro-nano bubble water while the surface is irradiated with ultraviolet rays. Thereby, contaminations such as organic contamination, metal contamination, and particle contamination are removed from the substrate surface.
  • the injection nozzle unit 31 is an example of an injection unit according to the present invention.
  • the ultraviolet lamp 3 is an example of the ultraviolet light emission part of this invention.
  • FIG. 2 is a schematic plan view of the cleaning unit 30 provided in the cleaning device 1 of the first embodiment when viewed from above.
  • FIG. 3 is a schematic diagram for explaining the configuration of the cleaning unit 30 and the periphery thereof included in the cleaning device 1 of the first embodiment.
  • the injection nozzle unit 31 provided in the cleaning unit 30 includes a plurality of injection nozzles 31a.
  • the plurality of injection nozzles 31a are arranged in a line in a direction parallel to the surface of the substrate B and perpendicular to the transport direction of the substrate B (vertical direction in FIG. 2 and direction perpendicular to the paper surface in FIG. 3).
  • the injection nozzle unit 31 is connected to a generation unit 70 that generates ozone micro / nano bubble water via a connection pipe P.
  • the injection nozzle unit 31 receives the supply of ozone micro / nano bubble water from the generation unit 70 and can inject ozone micro / nano bubble water.
  • the ultraviolet lamp 32 is formed so as to irradiate the entire width direction of the substrate B with ultraviolet rays.
  • the ultraviolet lamp 32 is provided so as to be able to irradiate ultraviolet rays having a peak wavelength of 253.7 nm.
  • a low-pressure mercury lamp is used as such an ultraviolet lamp 32.
  • the generation unit 70 includes a pure water device 71.
  • the pure water device 71 a known device may be used, but the pure water device 71 is preferably a device capable of generating high-purity water from which impurities such as organic substances and fine particles are removed.
  • the pure water generated by the pure water device 71 is sent to the micro / nano bubble generator 77 through the filter 73 by the pump 72 and the connection pipe P.
  • the filter 73 is provided to increase the cleanliness of pure water, but may be eliminated depending on circumstances.
  • the generation unit 70 includes a known ozone generator 74 that generates ozone using an oxygen cylinder (or air) or the like.
  • the ozone generated by the ozone generator 74 is sent to the micro / nano bubble generator 77 by the compressor 75 and the connection pipe P.
  • an on-off valve 76 is provided between the compressor 75 and the micro / nano bubble generator 77. By opening / closing the opening / closing valve 76, the amount of ozone supplied from the ozone generator 74 to the micro / nano bubble generator 77 can be adjusted.
  • the micro-nano bubble generator 77 uses the pure water supplied from the pure water device 71 and the ozone supplied from the ozone generator 74 to generate ozone micro-nano bubbles (bubbles reduced from the micrometer to near the nanometer level. ) Containing water (ozone micro-nano bubble water).
  • the micro / nano bubble generator 77 also has a function of supplying the generated ozone micro / nano bubble water to the spray nozzle unit 31 (for example, a pump).
  • the function of supplying ozone micro / nano bubble water generated by the micro / nano bubble generator 77 to the spray nozzle unit 31 may be provided outside the micro / nano bubble generator 77.
  • micro / nano bubble generator 77 As a technique for generating ozone micro / nano bubbles by the micro / nano bubble generator 77, for example, a technique of hydrodynamically shearing a gas-liquid two-phase flow can be cited.
  • the micro / nano bubble generator 77 using this method creates a vortex flow of pure water in the apparatus, and rotates the shearing means (for example, a fan) while entraining ozone therein. Is generated.
  • the shearing means for example, a fan
  • entraining ozone therein Is generated.
  • generation part 70 comprised as mentioned above is an example of the production
  • generation part 70 is an example of the water containing the fine bubble of ozone of this invention.
  • FIG. 4 is a comparison diagram of an oxidation potential such as a hydroxyl radical (OH radical) and a bond energy between atoms existing in an organic substance such as a C—C bond.
  • the units of oxidation potential and binding energy are both volt (V).
  • OH radicals are larger than the bond energy of the C—C bond and can decompose organic substances. From FIG. 4, it can be seen that generation of oxidizing radicals such as OH radicals is very effective in decomposing organic substances with high efficiency.
  • oxidized radicals such as OH radicals are generated by the energy generated when the ozone micro-nano bubbles collapse on the surface of the substrate B.
  • the substrate surface is irradiated with ultraviolet rays at the same time, so that oxidizing radicals such as OH radicals are also generated.
  • the cleaning unit 30 can decompose organic substances existing on the surface of the substrate B by using oxidizing radicals such as OH radicals. That is, the cleaning unit 30 can remove organic contamination on the surface of the substrate B with high efficiency.
  • oxidizing radicals such as OH radicals
  • ozone nano-micro bubble water is sprayed on the surface of the substrate B, and simultaneously, the substrate B is irradiated with ultraviolet rays. It aims to generate many oxidizing radicals such as OH radicals.
  • an ozone treatment unit 80 is connected to the cleaning unit 30 via a connection pipe.
  • the ozone treatment unit 80 is a device that treats waste water generated in the washing unit 30 (ozone micro-nano bubble water after being used for washing) and discharges it to the outside of the washing apparatus 1.
  • the ozone processing unit 80 includes an ultraviolet lamp (not shown) (for example, a low-pressure mercury lamp; a peak wavelength of 253.7 nm).
  • the ozone treatment part 80 the process which irradiates an ultraviolet-ray with respect to the supplied wastewater is performed. Thereby, ozone contained in the wastewater is decomposed, and the ozone micro / nano bubble water used as the cleaning liquid becomes water and oxygen and can be discharged to the outside of the apparatus.
  • the ozone treatment part 80 is an example of the waste water treatment part of this invention.
  • the drying unit 40 (see FIG. 1) provided in the cleaning apparatus 1 includes an air nozzle 41 that blows air toward the surface of the substrate B.
  • the substrate B conveyed from the cleaning unit 30 to the drying unit 40 is blown with air by the air nozzle 41 to remove moisture on the substrate surface.
  • the air nozzle 41 is formed wide so that air can be blown over the entire width direction of the substrate B (the direction perpendicular to the paper surface in FIG. 1).
  • the unloader unit 50 is provided to guide the substrate B subjected to the cleaning process to the outside of the cleaning apparatus 1. For example, a functional film is formed, a resist is applied, a laser irradiation process is performed, or an ion implantation process is performed on the substrate B guided to the outside of the cleaning apparatus 1.
  • the cleaning device 1 has the crushing action of ozone micro-nano bubble water and the organic substance decomposing action by oxidizing radicals (for example, hydroxylated radicals) generated by the crushing action or ultraviolet irradiation.
  • oxidizing radicals for example, hydroxylated radicals
  • the organic matter contamination, metal contamination, and particle contamination on the substrate surface can be removed.
  • the waste water after cleaning generated in the cleaning device 1 is rendered harmless by ultraviolet irradiation and discharged to the outside of the device. For this reason, it is not necessary to circulate the cleaning liquid in the cleaning apparatus as in the prior art. That is, according to the cleaning apparatus 1, since the surface of the substrate B can always be cleaned with a fresh (no deterioration or contamination) cleaning solution, it is easy to stably obtain a highly clean substrate surface, and the load on the environment is extremely small. it can.
  • the cleaning device of the second embodiment is almost the same as the configuration of the cleaning device 1 of the first embodiment, but the configuration of the injection nozzle unit 31 is different. In the following, description will be given focusing on this different configuration.
  • FIG. 5 is a schematic plan view showing the configuration of the injection nozzle unit 31 provided in the cleaning device of the second embodiment.
  • the injection nozzle unit 31 includes a plurality of injection nozzles 31 a.
  • the plurality of injection nozzles 31a are in a zigzag shape (a state in which the positions are alternately changed) in a direction parallel to the surface of the substrate B and perpendicular to the transport direction of the substrate B (the vertical direction in FIG. 5). Are lined up.
  • the injection nozzle unit 31 When the injection nozzle unit 31 is configured in this way, it is possible to increase the number of injection nozzles 31a included in the injection nozzle unit 31 without substantially increasing the size of the injection nozzle unit 31. That is, since the amount of ozone micro / nano bubble water sprayed onto the surface of the substrate B per unit area can be increased, the cleaning efficiency can be improved.
  • the cleaning device of the third embodiment is almost the same as the configuration of the cleaning device 1 of the first embodiment, but the configuration of the injection nozzle unit 31 is different. In the following, description will be given focusing on this different configuration.
  • FIG. 6A and FIG. 6B are schematic views showing the configuration of the injection nozzle unit 31 provided in the cleaning device of the third embodiment.
  • 6A is a schematic plan view
  • FIG. 6B is a schematic side view.
  • the injection nozzle unit 31 includes a plurality of injection nozzles 31a.
  • the plurality of injection nozzles 31a are aligned in a direction parallel to the surface of the substrate B and perpendicular to the transport direction of the substrate B (the vertical direction in FIG. 6A and the direction perpendicular to the paper surface in FIG. 6B). Yes.
  • Each of the plurality of spray nozzles 31a is inclined so as to spray ozone micro-nano bubble water obliquely with respect to the substrate B.
  • the inclination direction of the injection nozzle 31a is adjusted so that the injection direction of water (ozone micro-nano bubble water) injected from the injection nozzle 31a has a component in the direction opposite to the transport direction of the substrate B (the left direction component in FIG. 6B). (See FIG. 6B).
  • the spray nozzle unit 31 When the spray nozzle unit 31 is configured in this way, it is difficult for the ozone micro / nano bubble water used for the cleaning to be applied to the portion where the cleaning of the substrate surface is completed. For this reason, the phenomenon that the contamination removed by the cleaning is reattached to the surface of the substrate B hardly occurs, and a highly clean substrate surface is easily obtained.
  • the plurality of injection nozzles 31a are arranged in a line, but the plurality of injection nozzles 31a may be arranged in a zigzag shape as in the second embodiment.
  • the cleaning apparatus 1 includes the transport mechanism 60 and can continuously clean the substrate B.
  • the present invention can be applied not only to a cleaning process in which the substrate B is continuously cleaned, but also to a case where a single wafer cleaning process is performed.
  • the present invention is also applicable to a cleaning apparatus that does not include a transport mechanism depending on circumstances.
  • the cleaning apparatus 1 includes the plurality of injection nozzles 31a.
  • the present invention includes a configuration in which the number of injection nozzles is one.
  • the present invention is suitable for a cleaning apparatus that removes organic contamination, metal contamination, and particle contamination on the substrate surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

基板(B)の表面の汚染を除去する洗浄装置(1)は、オゾンの微細気泡を含む水を生成する生成部(70)と、生成部(70)で生成された前記微細気泡を含む水を基板(B)に向けて噴射する噴射部(31)と、基板(B)に照射するための紫外線を発光する紫外線発光部(32)と、基板(B)に対して、紫外線発光部(32)からの紫外線を照射しながら前記微細気泡を含む水を噴射して、基板(B)の表面を洗浄する洗浄部(30)と、を備える。

Description

洗浄装置及び洗浄方法
 本発明は、基板表面の汚染を洗浄する洗浄装置及び洗浄方法に関し、詳細にはオゾンの微細な気泡を含む水を用いて基板表面を洗浄する技術に関する。
 液晶ディスプレイ等のフラットパネルディスプレイの製造工程や、マイクロプロセッサー、メモリー等の半導体デバイスの製造工程では、ガラスやシリコン等の基板表面に薄膜形成やパターン形成を行う。これらの製造工程においては、基板表面の汚染を極力低減することが重要である。
 例えば、有機物、金属、微粒子(パーティクル)が基板表面に付着していると、デバイスの電気的特性や歩留まりが低下する原因になる。このために、半導体デバイス等の製造工程においては、有機物汚染、金属汚染、パーティクル汚染等が次工程に持ち込まれないように、適宜、汚染を除去する工程(洗浄工程)を設ける必要がある。
 上述のような基板表面の汚染を除去するために、従来、例えば硫酸と過酸化水素水の混合液からなる洗浄液や、成分中に有機アルカリや有機酸を含む洗浄液が用いられている(例えば、特許文献1、2参照)。
特開2007-103518号公報 特開2005-260213号公報
 上述した洗浄液が基板表面の汚染除去に用いられる場合には、例えば、図7に示すように、洗浄液を循環させて繰り返し使用し、定期的に交換する方法が採用される。
 図7は、従来の基板表面を洗浄する洗浄システム100の概略構成を示す模式図である。図7中の白抜きの矢印は基板Bが搬送される方向を表す。汚染を除去すべく洗浄処理が行われる処理基板Bは、搬送機構101によって洗浄部102、乾燥部103の順に運ばれる。洗浄部102では、噴射ノズル102aから洗浄液が処理基板Bに向けて噴射され、処理基板Bの洗浄が行われる。処理基板Bに噴射する洗浄液は、洗浄液を貯蔵する洗浄液タンク104から供給される。洗浄液としては、例えば硫酸と過酸化水素水の混合液等が使用される。
 処理基板Bの洗浄に用いられた後の洗浄液は、フィルタ105を介して洗浄液タンク104に戻される。フィルタ105は、処理基板Bの洗浄に用いられた洗浄液を清浄化するために設けられる。洗浄部102で洗浄された処理基板Bは、乾燥部103で乾燥されて次工程へと供給される。
 洗浄液を循環させて繰り返し使用する洗浄システム100では、洗浄液の汚染や劣化等が生じた段階で(通常は予め決められたタイミングで定期的に)、洗浄液タンク104の洗浄液を新しいものに交換することになる。新しい洗浄液は、交換後しばらく使用されると、どうしても汚染、劣化が進む。このために、洗浄液の次の交換までの間に、基板表面の清浄化が不十分となる事態が生じ得る。近年においては、基板表面の高清浄化に対する要求が厳しくなっているために、この問題の解消は益々重要になっている。
 以上の点に鑑みて、本発明の目的は、高清浄な基板表面を安定して得ることが可能な洗浄装置及び洗浄方法を提供することである。
 上記目的を達成するために本発明の洗浄装置は、基板の表面の汚染を除去する洗浄装置であって、オゾンの微細気泡を含む水を生成する生成部と、前記生成部で生成された前記微細気泡を含む水を前記基板に向けて噴射する噴射部と、前記基板に照射するための紫外線を発光する紫外線発光部と、前記基板に対して、前記紫外線発光部からの紫外線を照射しながら前記微細気泡を含む水を噴射して、前記基板の表面を洗浄する洗浄部と、を備える構成(第1の構成)となっている。
 なお、本発明(本明細書)における微細気泡とは、直径がマイクロメートルオーダー以下の気泡のことで、好ましくは、直径が50μm以下の気泡のことである。また、本発明(本明細書)における微細気泡を含む水の「水」は、広い概念で用いられており、前記「水」には、例えば純水や純水に添加物が添加されたもの等が含まれる趣旨である。添加物としては、例えば、静電気防止用に水に溶解されるアンモニア等や、界面活性剤等が挙げられる。本発明の微細気泡を含む水としては、好ましくは、いわゆる、マイクロバブル水、ナノバブル水、或いは、マイクロナノバブル水と呼ばれるものが該当する。
 本構成の洗浄装置によれば、オゾンの微細気泡の圧壊によって生じるエネルギーを利用して、金属汚染やパーティクル汚染を基板の表面から引き剥がすことが可能である。また、本構成では、オゾンの微細気泡の圧壊時のエネルギーによって、更には、オゾンの微細気泡を含む水への紫外線の照射によって、水酸化ラジカル等の酸化性ラジカルを発生させることができる。そして、発生した酸化性ラジカルによって基板表面の有機物を分解することができ、基板表面の有機物汚染も除去できる。
 上記第1の構成の洗浄装置において、前記基板の表面を洗浄した後の廃水に対して紫外線を照射して、前記廃水を装置外に排出可能とする廃水処理部を更に備える構成(第2の構成)を採用するのが好ましい。これによれば、洗浄装置内で、洗浄液を循環させる必要がなく、常に新鮮な洗浄液(オゾンの微細気泡を含む水)を用いて基板洗浄を行える。また、洗浄後の廃水(オゾンの微細気泡を含む水)は、紫外線照射によってオゾンが分解されて水と酸素になるために、無害な状態で装置外に排出されることになる。すなわち、本構成によれば、基板洗浄時において洗浄液の汚染や劣化の心配が少なく、更には、環境に対しての負荷が極めて少ない洗浄装置を提供できる。
 上記第1又は第2の構成の洗浄装置において、前記噴射部は、前記基板の表面に対して斜めに前記微細気泡を含む水を噴射する構成(第3の構成)としてもよい。本構成によれば、基板表面の洗浄が完了した部分に、洗浄に使用された後の洗浄液がかかる可能性を低減可能である。
 上記第1から第3のいずれかの構成の洗浄装置において、前記噴射部は複数の噴射ノズルを有する構成(第4の構成)としてもよい。本構成によれば、基板の洗浄を効率良く行える。
 上記第4の構成の洗浄装置において、前記基板を搬送する搬送機構を更に備え、前記複数の噴射ノズルは、前記基板の表面に平行な方向であって前記搬送機構による前記基板の搬送方向に直交する方向に一列に配置されている構成(第5の構成)が採用されてもよい。また、他の構成として、上記第4の構成の洗浄装置において、前記基板を搬送する搬送機構を更に備え、前記複数の噴射ノズルは、前記基板の表面に平行な方向であって前記搬送機構による前記基板の搬送方向に直交する方向にジグザグ状に配置されている構成(第6の構成)が採用されてもよい。後者の構成によれば、噴射部のサイズが大型化するのを抑制しつつ、基板に噴射する洗浄液(オゾンの微細気泡を含む水)の量を増やすことが可能であり、洗浄効率の向上が期待できる。
 上記第1から第6のいずれかの構成の洗浄装置において、前記汚染には、有機汚染、パーティクル汚染、及び、金属汚染のうちの少なくともいずれか1つが含まれてよい(第7の構成)。
 また、上記目的を達成するために本発明の洗浄方法は、基板の表面の汚染を除去する洗浄方法であって、オゾンの微細気泡を含む水を生成するステップと、前記基板に対して、紫外線を照射しながら前記微細気泡を含む水を噴射して、前記基板の表面を洗浄するステップと、を含む構成(第8の構成)となっている。
 本構成によれば、オゾンの微細気泡の圧壊によって生じるエネルギーを利用して、金属汚染やパーティクル汚染を基板の表面から引き剥がすことが可能である。また、本構成では、オゾンの微細気泡の圧壊時のエネルギーによって、更には、オゾンの微細気泡を含む水への紫外線の照射によって、水酸化ラジカル等の酸化性ラジカルを発生させることができる。そして、発生した酸化性ラジカルによって基板表面の有機物を分解することができ、基板表面の有機物汚染も除去できる。また、洗浄液として使用する、オゾンの微細気泡を含む水は、その使用後に、紫外線の照射によって簡単に無害化可能である。このために、本構成では廃液処理が容易であり、従来のように洗浄液を繰り返し使用する必要がなく、高清浄な基板表面を安定して得ることが期待できる。
 上記第8の構成の洗浄方法において、前記基板の表面の洗浄が、前記基板の表面に機能膜を形成する直前に行われる構成(第9の構成)が採用されてもよい。これにより、基板と機能膜との間に汚染が封じ込められて、基板がデバイスに組み込まれた際に電気的特性が低下する等の問題が発生するのを抑制できる。
 上記第9の構成の洗浄方法において、前記機能膜は、金属膜、半導体膜、及び、絶縁膜のうちのいずれかであってよい(第10の構成)。
 なお、本発明の洗浄方法(基板表面を洗浄する方法)が適用されるタイミングは、上記以外に、例えば、基板にレジストが塗付される直前であったり、基板に対してレーザ照射処理が行われる直前であったり、基板にイオン注入処理が行われる直前であったりしてもよい。
 上記第8から第10のいずれかの構成の洗浄方法において、前記汚染には、有機汚染、パーティクル汚染、及び、金属汚染のうちの少なくともいずれか1つが含まれてよい。
 本発明によると、高清浄な基板表面を安定して得ることが可能な洗浄装置及び洗浄方法を提供できる。
本発明の第1実施形態の洗浄装置の概略構成を示す模式図 第1実施形態の洗浄装置が備える洗浄部を上から見た場合の概略平面図 第1実施形態の洗浄装置が備える洗浄部及びその周辺の構成を説明するための模式図 水酸化ラジカル(OHラジカル)等の酸化ポテンシャルと、C-C結合等の有機物中に存在する原子間の結合エネルギーと、の比較図 第2実施形態の洗浄装置が備える噴射ノズルユニットの構成を示す概略平面図 第3実施形態の洗浄装置が備える噴射ノズルユニットの構成を示す概略平面図 第3実施形態の洗浄装置が備える噴射ノズルユニットの構成を示す概略側面図 従来の基板表面を洗浄する洗浄システムの概略構成を示す模式図
 以下、本発明の洗浄装置及び洗浄方法の実施形態について、図面を参照しながら説明する。なお、実施形態に係る洗浄装置及び洗浄方法は、基板表面の有機物汚染、金属汚染、パーティクル汚染の除去に好適である。
<第1実施形態>
 図1は、本発明の第1実施形態の洗浄装置1の概略構成を示す模式図である。図1に示すように、第1実施形態の洗浄装置1は、ローダ部10と、シャワー部20と、洗浄部30と、乾燥部40と、アンローダ部50と、を備える。また、洗浄装置1は搬送機構60を備える。搬送機構60は、基板Bを、ローダ部10、シャワー部20、洗浄部30、乾燥部40、アンローダ部50の順に搬送可能に設けられている。搬送機構60による基板Bの搬送速度は、基板表面の洗浄という目的が達成される範囲で適宜調整される。
 なお、搬送機構60は、基板Bを図1の矢印(白抜きの矢印)方向に搬送できるものであれば、その構成について特に限定されるものではない。搬送機構60としては、例えば、複数の搬送ローラと、搬送ローラの回転とともに駆動する搬送ベルトと、搬送ローラを駆動するモータと、を備える公知の搬送機構が適用できる。搬送機構60は、本発明の搬送機構の一例である。
 ローダ部10は、洗浄する基板Bを搭載する部分である。ローダ部10に搭載された基板Bは、搬送機構60によって順次シャワー部20、洗浄部30へと搬送されて洗浄される。なお、基板Bを洗浄するタイミング(ローダ部10に基板Bを供給するタイミング)としては、様々なタイミングが想定される。
 例えば、基板Bの表面に、金属膜、半導体膜、絶縁膜等の機能膜が形成される直前(機能膜の形成工程の直前)が、基板Bを洗浄するタイミングとして挙げられる。汚染が基板表面に残った状態で機能膜が形成されると、基板表面と機能膜との間に汚染が封じ込められ、その後、汚染を除去することが不可能になってしまう。このために、上述の機能膜の形成工程の直前に基板Bの洗浄が行われる。なお、上述の機能膜の形成工程には、基板Bの表面に形成された機能膜の上に更に他の機能膜を形成するという工程も含む趣旨である。すなわち、洗浄が行われる基板Bには、その表面に既に機能膜が形成されているものも含まれる。
 基板Bを洗浄するタイミングとしては、他に、基板Bの表面にレジストを塗付する直前、基板Bに対してレーザ照射処理を行う直前、基板Bに対してイオン注入処理を行う直前等も挙げられる。例えばレーザ照射やイオン注入が行われる時点で基板Bの表面が汚染されていると、汚染によって基板Bの表面に影が出来てしまい、その後、影が形成された部分の処理が行えない場合がある。基板Bの洗浄処理は、このような事態を避けるために行われることもある。
 シャワー部20は、基板Bの表面に向けて純水(物理的又は化学的手法によって不純物が除去された水)を噴射するシャワーノズル21を備える。シャワーノズル21から噴射される純水によって、基板Bの表面に存在する一部の汚染(上乗り汚染)は基板表面から浮上して除去される。なお、本実施形態においては、シャワーノズル21は複数個あって、複数個のシャワーノズル21は、図1における紙面と垂直な方向(基板表面に平行な方向であって基板の搬送方向に対して垂直な方向)に一列に並んでいる。
 ただし、この構成はあくまでも一例であり、適宜、その構成は変更されてよい。また、シャワー部20は、基板Bの洗浄レベルを向上するために設けるのが好ましいが、場合によっては無くしても構わない。
 洗浄部30は、基板Bの表面に向けてオゾンマイクロナノバブル水(詳細は後述する)を噴射する噴射ノズルユニット31と、基板Bの表面に紫外線を照射する紫外線ランプ32と、を備える。シャワー部20から洗浄部30に搬送された基板Bは、その表面に紫外線が照射されつつ、オゾンマイクロナノバブル水を噴射される。これにより、基板表面から有機物汚染、金属汚染、パーティクル汚染といった汚染が除去される。なお、噴射ノズルユニット31は、本発明の噴射部の一例である。また、紫外線ランプ3は、本発明の紫外線発光部の一例である。
 図2及び図3を参照しながら、洗浄部30及びその周辺の構成について更に詳細に説明する。なお、図2は、第1実施形態の洗浄装置1が備える洗浄部30を上から見た場合の概略平面図である。図3は、第1実施形態の洗浄装置1が備える洗浄部30及びその周辺の構成を説明するための模式図である。
 図2に示すように、洗浄部30が備える噴射ノズルユニット31は、複数の噴射ノズル31aを備える。複数の噴射ノズル31aは、基板Bの表面に平行な方向であって基板Bの搬送方向に直交する方向(図2において上下方向、図3において紙面と垂直な方向)に一列に並んでいる。このように複数の噴射ノズル31aが設けられることによって、洗浄領域を基板Bの幅(図2において上下方向の長さが該当)に合わせることが可能になる。噴射ノズルユニット31は、オゾンマイクロナノバブル水を生成する生成部70に接続パイプPを介して繋がっている。これにより、噴射ノズルユニット31は、生成部70からオゾンマイクロナノバブル水の供給を受けて、オゾンマイクロナノバブル水の噴射が可能になっている。
 図2に示すように、紫外線ランプ32は、基板Bの幅方向全体に対して紫外線を照射できるように形成されている。紫外線ランプ32は、ピーク波長253.7nmの紫外線を照射可能に設けられている。このような紫外線ランプ32として、例えば低圧水銀ランプが使用される。
 図3に示すように、生成部70は純水装置71を備える。純水装置71としては、公知の構成のものが用いられればよいが、純水装置71は、有機物や微粒子等の不純物が取り除かれた高純度の水を生成可能な装置であるのが好ましい。純水装置71で生成された純水は、ポンプ72及び接続パイプPによって、フィルタ73を経てマイクロナノバブル発生器77に送られる。なお、フィルタ73は、純水の清浄度を高めるために設けられるが、場合によっては無くしても構わない。
 また、生成部70は、酸素ボンベ(或いは空気)等を用いてオゾンを発生させる、公知のオゾン発生装置74を備える。オゾン発生装置74で発生されたオゾンは、コンプレッサ75及び接続パイプPによってマイクロナノバブル発生器77に送られる。なお、本実施形態では、コンプレッサ75とマイクロナノバブル発生器77との間に開閉弁76が設けられる。この開閉弁76の開閉によって、オゾン発生装置74からマイクロナノバブル発生器77へ供給するオゾンの量が調節可能になっている。
 マイクロナノバブル発生器77は、純水装置71から供給された純水と、オゾン発生装置74から供給されたオゾンとを用いて、オゾンのマイクロナノバブル(マイクロメートルからナノメートルレベル近くにまで小さくした気泡)を含む水(オゾンマイクロナノバブル水)を生成する装置である。なお、本実施形態においては、マイクロナノバブル発生器77は、発生したオゾンマイクロナノバブル水を噴射ノズルユニット31に供給する機能(例えばポンプ)も備えている。ただし、マイクロナノバブル発生器77で発生したオゾンマイクロナノバブル水を噴射ノズルユニット31に供給する機能は、マイクロナノバブル発生器77の外部に設けられても勿論よい。
 マイクロナノバブル発生器77による、オゾンのマイクロナノバブルの発生手法として、例えば、気液2相流を流体力学的にせん断させる手法が挙げられる。この手法が用いられるマイクロナノバブル発生器77は、装置内で純水の渦流を作り、この中にオゾンを巻き込みながら、せん断手段(例えばファン)を回転させることによって、純水中にオゾンのマイクロナノバブルを発生させる。ただし、マイクロナノバブルを発生するための手法が別の手法(例えば加圧溶解法等)であるマイクロバブル発生器が用いられても勿論よい。
 なお、以上のように構成される生成部70は、本発明の生成部の一例である。そして、生成部70によって生成されるオゾンマイクロナノバブル水は、本発明のオゾンの微細気泡を含む水の一例である。
 噴射ノズルユニット31から基板Bの表面に向けてオゾンマイクロナノバブル水が洗浄水として噴射されると、基板Bとの衝突によってオゾンマイクロナノバブルは圧壊する。この圧壊の際には、エネルギー(圧力波)が発生する。発生したエネルギーによって、基板Bの表面に付着する汚染を基板Bから引き剥がす作用(力学的作用)が得られ、例えば、基板Bの表面に存在する金属汚染やパーティクル汚染が基板Bから引き剥がされる。
 図4は、水酸化ラジカル(OHラジカル)等の酸化ポテンシャルと、C-C結合等の有機物中に存在する原子間の結合エネルギーと、の比較図である。図4において、酸化ポテンシャル及び結合エネルギーの単位は、いずれもボルト(V)である。結合エネルギーは、以下の換算式によってボルトに換算されている。
1 kcal/mol = 4.19 kJ/mol = 4.34×10-2
 図4に示すように、例えばOHラジカルは、C-C結合の結合エネルギーより大きく、有機物の分解が可能である。この図4から、有機物を高効率で分解するためには、OHラジカル等の酸化性ラジカルの発生が非常に有効であることがわかる。
 この点、オゾンマイクロナノバブルが基板Bの表面で圧壊する際に生じるエネルギーによって、OHラジカル等の酸化ラジカルが発生する。また、オゾンマイクロナノバブル水の基板Bへの噴射時に、同時に基板表面に紫外線が照射されるために、これによってもOHラジカル等の酸化性ラジカルが発生する。このために、洗浄部30においては、OHラジカル等の酸化性ラジカルを利用して、基板Bの表面に存在する有機物の分解を行うことができる。すなわち、洗浄部30においては、基板Bの表面の有機物汚染を高効率で除去することが可能である。
 なお、OHラジカル等の酸化性ラジカルの寿命は極めて短い。この短命のOHラジカル等の作用を有効に活用するために、本実施形態では、基板Bの表面にオゾンナノマイクロバブル水を噴射すると同時に、基板Bの表面に紫外線を照射することで、基板B上に多くのOHラジカル等の酸化性ラジカルを発生させることを狙っている。
 図3に示すように、洗浄部30には、オゾン処理部80が接続パイプを介して接続されている。オゾン処理部80は、洗浄部30で発生した廃水(洗浄に使用された後のオゾンマイクロナノバブル水)を処理し、洗浄装置1の外部に排出可能とする装置である。オゾン処理部80は、図示しない紫外線ランプ(例えば低圧水銀ランプ;ピーク波長253.7nm)を備える。オゾン処理部80内では、供給された廃水に対して紫外線を照射する処理が行われる。これにより、廃水に含まれるオゾンが分解されて、洗浄液として使用されたオゾンマイクロナノバブル水は、水と酸素になって装置外部への排出が可能になる。なお、オゾン処理部80は、本発明の廃水処理部の一例である。
 洗浄装置1に備えられる乾燥部40(図1参照)は、基板Bの表面に向けてエアーを吹き付けるエアノズル41を備える。洗浄部30から乾燥部40へと搬送されてきた基板Bは、エアノズル41によってエアーを吹き付けられることによって基板表面の水分が除去される。なお、エアノズル41は、基板Bの幅方向(図1において紙面に垂直な方向)全体に対してエアーを吹き付けられるように幅広に形成されている。
 アンローダ部50は、洗浄処理が行われた基板Bを洗浄装置1の外部へと導くために設けられる。洗浄装置1の外部へと導かれた基板Bは、例えば機能膜の形成が行われたり、レジストが塗付されたり、レーザ照射処理が行われたり、イオン注入処理が行われたりする。
 以上に示したように、第1実施形態に係る洗浄装置1は、オゾンマイクロナノバブル水の圧壊作用、及び、前記圧壊作用や紫外線照射によって生じる酸化性ラジカル(例えば水酸化ラジカル)による有機物分解作用によって、基板表面の有機物汚染、金属汚染、及び、パーティクル汚染を除去できる。
 また、洗浄装置1で発生する洗浄後の廃水は、紫外線照射によって無害にされて装置外部に排出される。このために、従来のように洗浄装置内で洗浄液を循環させて使用する必要がない。すなわち、洗浄装置1によれば、常に新鮮な(劣化や汚染がない)洗浄液で基板Bの表面を洗浄できるために高清浄な基板表面を安定して得やすく、更に、環境に対する負荷を極めて小さくできる。
<第2実施形態>
 次に、第2実施形態の洗浄装置について説明する。第2実施形態の洗浄装置は、第1実施形態の洗浄装置1の構成とほとんど同じであるが、噴射ノズルユニット31の構成が異なる。以下、この異なる構成に絞って説明する。
 図5は、第2実施形態の洗浄装置が備える噴射ノズルユニット31の構成を示す概略平面図である。図5に示すように、第2実施形態においては、噴射ノズルユニット31は複数の噴射ノズル31aを備える。そして、複数の噴射ノズル31aは、基板Bの表面に平行な方向であって基板Bの搬送方向に直交する方向(図5において上下方向)に、ジグザグ状(互い違いに位置が入れ替えられた状態)に並んでいる。
 このように噴射ノズルユニット31が構成された場合、噴射ノズルユニット31の大きさをほとんど大きくすることなく、噴射ノズルユニット31が備える噴射ノズル31aの数を増やすことが可能である。すなわち、基板Bの表面に噴射される、単位面積当たりのオゾンマイクロナノバブル水の量を増やすことができるために、洗浄効率を向上させることが可能になる。
<第3実施形態>
 次に、第3実施形態の洗浄装置について説明する。第3実施形態の洗浄装置は、第1実施形態の洗浄装置1の構成とほとんど同じであるが、噴射ノズルユニット31の構成が異なる。以下、この異なる構成に絞って説明する。
 図6A及び図6Bは、第3実施形態の洗浄装置が備える噴射ノズルユニット31の構成を示す概略図である。図6Aは概略平面図、図6Bは概略側面図である。図6A及び図6Bに示すように、第3実施形態においては、噴射ノズルユニット31は複数の噴射ノズル31aを備える。そして、複数の噴射ノズル31aは、基板Bの表面に平行な方向であって基板Bの搬送方向に直交する方向(図6Aにおいて上下方向、図6Bにおいて紙面に垂直な方向)に一列に並んでいる。
 複数の噴射ノズル31aのそれぞれは、オゾンマイクロナノバブル水を基板Bに対して斜めに噴射するように傾斜配置されている。噴射ノズル31aから噴射される水(オゾンマイクロナノバブル水)の噴射方向が、基板Bの搬送方向と反対方向の成分(図6Bの左方向成分)を有するように噴射ノズル31aの傾斜方向は調整されている(図6B参照)。
 このように噴射ノズルユニット31が構成された場合、基板表面の洗浄が完了した部分に、洗浄に使用されたオゾンマイクロナノバブル水がかかり難くなる。このために、洗浄によって除去された汚染が基板Bの表面に再付着するという現象が起こり難くなり、高清浄な基板表面が得やすくなる。
 なお、本実施形態では、複数の噴射ノズル31aが一列に並ぶ構成としたが、複数の噴射ノズル31aは、第2実施形態と同様に、ジグザグ状に配置されても構わない。
<その他>
 以上に示した実施形態の洗浄装置及び洗浄方法は、本発明の例示にすぎず、実施形態で示した構成は、本発明の技術的思想を逸脱しない範囲で適宜変更されてよい。
 例えば、以上に示した実施形態では、洗浄装置1が搬送機構60を備え、連続的に基板Bの洗浄を行える構成とした。しかし、本発明は、連続的に基板Bの洗浄が行われる洗浄工程ばかりではなく、枚葉式の洗浄工程が実行される場合にも適用可能である。また、本発明は、場合によっては、搬送機構を備えない洗浄装置にも適用可能である。
 また、以上に示した実施形態では、洗浄装置1が複数の噴射ノズル31aを備える構成としたが、噴射ノズルの数が1つの構成も、本発明は含む趣旨である。
 本発明は、基板表面の有機物汚染、金属汚染、パーティクル汚染を除去する洗浄装置に好適である。
   1 洗浄装置
   30 洗浄部
   31 噴射ノズルユニット(噴射部)
   31a 噴射ノズル
   32 紫外線ランプ(紫外線発光部)
   60 搬送機構
   70 生成部
   80 オゾン処理部(廃水処理部)
   B 基板

Claims (11)

  1.  基板の表面の汚染を除去する洗浄装置であって、
     オゾンの微細気泡を含む水を生成する生成部と、
     前記生成部で生成された前記微細気泡を含む水を前記基板に向けて噴射する噴射部と、
     前記基板に照射するための紫外線を発光する紫外線発光部と、
     前記基板に対して、前記紫外線発光部からの紫外線を照射しながら前記微細気泡を含む水を噴射して、前記基板の表面を洗浄する洗浄部と、
     を備えることを特徴とする洗浄装置。
  2.  前記基板の表面を洗浄した後の廃水に対して紫外線を照射して、前記廃水を装置外に排出可能とする廃水処理部を更に備えることを特徴とする請求項1に記載の洗浄装置。
  3.  前記噴射部は、前記基板の表面に対して斜めに前記微細気泡を含む水を噴射することを特徴とする請求項1又は2に記載の洗浄装置。
  4.  前記噴射部は複数の噴射ノズルを有することを特徴とする請求項1から3のいずれかに記載の洗浄装置。
  5.  前記基板を搬送する搬送機構を更に備え、
     前記複数の噴射ノズルは、前記基板の表面に平行な方向であって前記搬送機構による前記基板の搬送方向に直交する方向に一列に配置されていることを特徴とする請求項4に記載の洗浄装置。
  6.  前記基板を搬送する搬送機構を更に備え、
     前記複数の噴射ノズルは、前記基板の表面に平行な方向であって前記搬送機構による前記基板の搬送方向に直交する方向にジグザグ状に配置されていることを特徴とする請求項4に記載の洗浄装置。
  7.  前記汚染には、有機汚染、パーティクル汚染、及び、金属汚染のうちの少なくともいずれか1つが含まれることを特徴とする請求項1から6のいずれかに記載の洗浄装置。
  8.  基板の表面の汚染を除去する洗浄方法であって、
     オゾンの微細気泡を含む水を生成するステップと、
     前記基板に対して、紫外線を照射しながら前記微細気泡を含む水を噴射して、前記基板の表面を洗浄するステップと、
     を含むことを特徴とする洗浄方法。
  9.  前記基板の表面の洗浄が、前記基板の表面に機能膜を形成する直前に行われることを特徴とする請求項8に記載の洗浄方法。
  10.  前記機能膜は、金属膜、半導体膜、及び、絶縁膜のうちのいずれかであることを特徴とする請求項9に記載の洗浄方法。
  11.  前記汚染には、有機汚染、パーティクル汚染、及び、金属汚染のうちの少なくともいずれか1つが含まれることを特徴とする請求項8から10のいずれかに記載の洗浄方法。
PCT/JP2012/072538 2011-10-20 2012-09-05 洗浄装置及び洗浄方法 WO2013058023A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-230373 2011-10-20
JP2011230373 2011-10-20

Publications (1)

Publication Number Publication Date
WO2013058023A1 true WO2013058023A1 (ja) 2013-04-25

Family

ID=48140678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072538 WO2013058023A1 (ja) 2011-10-20 2012-09-05 洗浄装置及び洗浄方法

Country Status (1)

Country Link
WO (1) WO2013058023A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016197426A1 (zh) * 2015-06-12 2016-12-15 深圳市华星光电技术有限公司 玻璃基板的紫外光清洗装置
JP2017124361A (ja) * 2016-01-13 2017-07-20 学校法人関東学院 合成樹脂材塗装の前処理方法
US20220219208A1 (en) * 2021-01-14 2022-07-14 Samsung Display Co., Ltd. Deposition mask cleaning apparatus and deposition mask cleaning method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001318A (ja) * 2000-06-16 2002-01-08 Shibaura Mechatronics Corp オゾン水処理装置および洗浄処理装置
JP2006007052A (ja) * 2004-06-24 2006-01-12 Sharp Corp 電子部品の洗浄方法及び洗浄装置
WO2011052111A1 (ja) * 2009-10-27 2011-05-05 シャープ株式会社 基板洗浄装置及び基板洗浄方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001318A (ja) * 2000-06-16 2002-01-08 Shibaura Mechatronics Corp オゾン水処理装置および洗浄処理装置
JP2006007052A (ja) * 2004-06-24 2006-01-12 Sharp Corp 電子部品の洗浄方法及び洗浄装置
WO2011052111A1 (ja) * 2009-10-27 2011-05-05 シャープ株式会社 基板洗浄装置及び基板洗浄方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016197426A1 (zh) * 2015-06-12 2016-12-15 深圳市华星光电技术有限公司 玻璃基板的紫外光清洗装置
JP2017124361A (ja) * 2016-01-13 2017-07-20 学校法人関東学院 合成樹脂材塗装の前処理方法
US20220219208A1 (en) * 2021-01-14 2022-07-14 Samsung Display Co., Ltd. Deposition mask cleaning apparatus and deposition mask cleaning method

Similar Documents

Publication Publication Date Title
TWI415694B (zh) Substrate processing device and processing method thereof
WO2011052111A1 (ja) 基板洗浄装置及び基板洗浄方法
JPWO2016088731A1 (ja) マイクロ・ナノバブルによる洗浄方法及び洗浄装置
CN1291347A (zh) 光刻胶膜去除方法及其所用装置
CN102284447B (zh) 清洗方法和清洗装置
KR100982492B1 (ko) 기판 세정용 이류체 분사 노즐
JP2008093577A (ja) 基板処理装置および基板処理方法
CN103008311A (zh) 一种基于紫外光的干式清洗方法
JP2008080230A (ja) 基板処理装置および基板処理方法
WO2015075922A1 (ja) 紫外線透過性基板の洗浄装置及び洗浄方法
TWI422439B (zh) Ultrasonic cleaning method
WO2013058023A1 (ja) 洗浄装置及び洗浄方法
JP2009295655A (ja) 微小気泡生成装置、微小気泡生成方法および基板処理装置
JP5984622B2 (ja) 水洗装置
JP2005199196A (ja) 洗浄方法及び装置
JP2005353739A (ja) 基板洗浄装置
JP2009000595A (ja) ウエット洗浄装置および基板洗浄システム
JP2008098430A (ja) 基板処理装置および基板処理方法
JP2003266088A (ja) 紫外線併用オゾン促進酸化水処理システム
WO2011142060A1 (ja) 洗浄方法及び洗浄装置
JP2004241726A (ja) レジスト処理方法およびレジスト処理装置
WO2012090815A1 (ja) レジスト除去装置及びレジスト除去方法
JP2006007052A (ja) 電子部品の洗浄方法及び洗浄装置
JP2009246042A (ja) 処理液の製造装置、製造方法及び基板の処理装置、処理方法
CN112805041A (zh) 气体处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP