WO2013057800A1 - 車両用制御装置 - Google Patents

車両用制御装置 Download PDF

Info

Publication number
WO2013057800A1
WO2013057800A1 PCT/JP2011/074028 JP2011074028W WO2013057800A1 WO 2013057800 A1 WO2013057800 A1 WO 2013057800A1 JP 2011074028 W JP2011074028 W JP 2011074028W WO 2013057800 A1 WO2013057800 A1 WO 2013057800A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing unit
shift
vehicle
microcomputer
value
Prior art date
Application number
PCT/JP2011/074028
Other languages
English (en)
French (fr)
Inventor
松原 正人
允人 舘野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/352,000 priority Critical patent/US9416870B2/en
Priority to PCT/JP2011/074028 priority patent/WO2013057800A1/ja
Priority to CN201180074313.6A priority patent/CN103906658B/zh
Priority to JP2013539445A priority patent/JP5713113B2/ja
Publication of WO2013057800A1 publication Critical patent/WO2013057800A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0231Circuits relating to the driving or the functioning of the vehicle
    • B60R16/0236Circuits relating to the driving or the functioning of the vehicle for economical driving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/126Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is the controller
    • F16H2061/1268Electric parts of the controller, e.g. a defect solenoid, wiring or microprocessor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the present invention relates to a technique for reducing the cost of a vehicle control device.
  • a vehicle control device including a first arithmetic processing unit and a second arithmetic processing unit is well known.
  • this is the vehicle computer system disclosed in Patent Document 1.
  • the first arithmetic processing unit and the second arithmetic processing unit have the same configuration and execute the same arithmetic processing.
  • the said computer system for vehicles detects abnormality by comparing the specific data of the said 1st arithmetic processing part and 2nd arithmetic processing part in an arithmetic processing process mutually.
  • Patent Document 1 if two arithmetic processing units that have the same configuration and execute the same arithmetic processing are provided in one vehicle control device, an abnormality is surely easily detected. The reliability of the calculation result is improved.
  • the monitoring unit in the vehicle control device in which one arithmetic processing unit that is a monitoring target is monitored by the other arithmetic processing unit (monitoring unit), the monitoring unit has the same configuration as the monitoring target. Therefore, as the calculation performed by the monitoring target becomes complicated, not only the monitoring target but also the monitoring unit becomes large, and thus there is a problem that the cost of the monitoring unit significantly increases. For example, a fail-safe calculation exists as one of the calculations often performed in a vehicle control device.
  • the present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a vehicle control device capable of suppressing an increase in cost while ensuring the reliability of the calculation result of the calculation processing unit. There is to do.
  • the gist of the first invention for achieving the above object is (a) a first arithmetic processing unit that outputs a calculation result based on an input value, and an input value that is the same as the input value of the first arithmetic processing unit.
  • the second calculation processing unit includes an input value of the second calculation processing unit and a calculation result of the first calculation processing unit. Based on the comparison of the above, or based on whether or not the calculation result is a predetermined advanced safety state value at which a relatively high safety state of the vehicle is obtained, the abnormality of the first arithmetic processing unit is detected It is characterized by doing.
  • the second calculation processing unit does not need to have the same configuration as the first calculation processing unit. Even if one arithmetic processing unit has a large-scale configuration, it is possible to suppress an increase in the cost of the vehicle control device while ensuring the reliability of the arithmetic result of the first arithmetic processing unit.
  • the gist of the second invention is the vehicle control device according to the first invention, wherein the second calculation processing unit is configured such that a calculation result of the first calculation processing unit is equal to that of the second calculation processing unit.
  • the condition that the calculation result of the first calculation processing unit is the highly safe state value, and the calculation result of the first calculation processing unit are compared with the input value of the second calculation processing unit. And when all of the conditions that the higher safety state of the vehicle is a value are not established, it is determined that the first arithmetic processing unit is abnormal. In this way, whether or not the first arithmetic processing unit is abnormal can be determined based on specific determination criteria.
  • the gist of the third invention is the vehicle control device according to the second invention, wherein (a) the shift position selected by the driver is set to the first arithmetic processing unit and the second arithmetic processing unit. And (b) input values of the first arithmetic processing unit and the second arithmetic processing unit are the shift positions selected by the shift operating device, (C) The calculation result of the first calculation processing unit is set to any one of the shift positions that can be selected by the shift operation device. According to this configuration, in shift control for recognizing the shift position based on an electric signal from the shift operation device and performing shift control or the like, the reliability of the calculation result of the first calculation processing unit, that is, the reliability of the shift control. The increase in the cost of the vehicle control device that performs the shift control can be suppressed without impairing the performance.
  • the gist of the fourth invention is the vehicle control device of the third invention, wherein (a) the shift operation device cuts off power transmission to the drive wheels and fixes the drive wheels.
  • the shift position is selected from a parking position, a neutral position that interrupts power transmission to the drive wheels and allows rotation of the drive wheels, and a travel position that moves the vehicle forward or backward, and (b )
  • the advanced safety state value is predetermined as the parking position, and (c) the neutral position is predetermined as a higher safety state of the vehicle compared to the traveling position. It is characterized by.
  • the second arithmetic processing unit determines whether or not the first arithmetic processing unit is abnormal. It can be easily judged.
  • the second arithmetic processing unit says that an arithmetic result of the first arithmetic processing unit is equal to an input value of the second arithmetic processing unit.
  • the first calculation processing unit is determined to be abnormal.
  • the second calculation processing unit is configured such that a calculation result of the first calculation processing unit is equal to an input value of the second calculation processing unit. And the condition that the calculation result of the first calculation processing unit is a value that can obtain a higher safety state of the vehicle compared with the input value of the second calculation processing unit is not satisfied. In this case, it is determined that the first arithmetic processing unit is abnormal.
  • the second calculation processing unit includes a condition that a calculation result of the first calculation processing unit is the highly safe state value, and the first calculation unit.
  • the condition that the calculation result of one calculation processing unit is a value that provides a higher safety state of the vehicle compared with the input value of the second calculation processing unit are not satisfied, It is determined that the first arithmetic processing unit is abnormal.
  • the second arithmetic processing unit does not satisfy a condition that a calculation result of the first arithmetic processing unit is the highly safe state value. In this case, it is determined that the first arithmetic processing unit is abnormal.
  • FIG. 2 is a functional block diagram that generalizes and shows a main part of a configuration in an electronic control unit for executing one of various controls executed in the vehicle of FIG. 1.
  • FIG. 4 is a flowchart for explaining a main part of a control operation executed by an abnormality detection control unit included in the monitoring microcomputer of FIG. 3, wherein the abnormality detection control unit is the first of judgment patterns performed for detecting an abnormality of the main microcomputer.
  • FIG. 4 is a flowchart for explaining a main part of a control operation executed by an abnormality detection control unit included in the monitoring microcomputer of FIG. 3, wherein the abnormality detection control unit is the first of judgment patterns performed for detecting an abnormality of the main microcomputer. It is a flowchart when it is assumed that the determination pattern of 2 is adopted.
  • FIG. 4 is a flowchart for explaining a main part of a control operation executed by an abnormality detection control unit included in the monitoring microcomputer of FIG. 3, wherein the abnormality detection control unit is the first of judgment patterns performed for detecting an abnormality of the main microcomputer.
  • 3 is a flowchart in a case where a determination pattern of 3 is adopted.
  • FIG. 4 is a flowchart for explaining a main part of a control operation executed by an abnormality detection control unit included in the monitoring microcomputer of FIG. 3, wherein the abnormality detection control unit is the first of judgment patterns performed for detecting an abnormality of the main microcomputer.
  • 4 is a flowchart in a case where a determination pattern of 4 is adopted.
  • FIG. 4 is a flowchart for explaining a main part of a control operation executed by an abnormality detection control unit included in the monitoring microcomputer of FIG. 3, wherein the abnormality detection control unit is the first of judgment patterns performed for detecting an abnormality of the main microcomputer.
  • 5 is a flowchart in a case where a determination pattern of 5 is adopted.
  • FIG. 4 is a functional block diagram corresponding to FIG.
  • FIG. 10 is an example of a vehicle safety state map in which the relationship between the level of the vehicle safety state and the shift position is predetermined in shift control using the calculation result of the main microcomputer of FIG. 9.
  • 10 is a list showing the relationship between the input value of the monitoring microcomputer, the control shift of the main microcomputer, and the establishment of the first to third conditions shown in FIG. 4 in the abnormality detection control performed by the monitoring microcomputer of FIG.
  • FIG. 1 is a diagram for explaining a schematic configuration of a vehicle 10 to which the present invention is applied, and is a block diagram illustrating input / output signals of an electronic control device 60 that controls the vehicle 10.
  • a vehicle 10 is an FF (front engine / front drive) type vehicle, and the vehicle 10 includes a parking lock device 16, a transmission 18, and a shift operation device that mechanically prevent rotation of the drive wheels 14 during parking. 30 and the like, and adopts a shift-by-wire (SBW) method in which the electronic control device 60 acquires the shift position Psh selected by the shift operation device 30 by an electric signal.
  • SBW shift-by-wire
  • the transmission 18 is a stepped automatic transmission generally used in a vehicle, and includes, for example, a plurality of planetary gear devices and a plurality of hydraulic friction engagement devices.
  • the power of the engine 12 which is an internal combustion engine as a driving power source for traveling, is transmitted in pairs via a transmission 18, a differential gear device (differential gear) 26, a pair of axles (drive shafts) 28, and the like. Is transmitted to the drive wheel 14. 1 has only the engine 12 as a driving force source for traveling, it may be a hybrid vehicle or an electric vehicle.
  • the vehicle 10 is provided with an electronic control device 60 that functions as a vehicle control device that performs various controls of the vehicle 10.
  • the electronic control device 60 is configured to include a so-called microcomputer provided with, for example, a CPU, a RAM, a ROM, an input / output interface, and the like.
  • the electronic control unit 60 performs signal processing in accordance with a program stored in advance in a ROM or the like, thereby controlling the output of the engine 12, the shift control of the transmission 18, the control related to the shift-by-wire system, and the operation of the parking lock device 16. Executes state switching control.
  • the electronic control device 60 includes, for example, a shift lever position signal corresponding to the operation position Pope from the shift sensor 36 and the select sensor 38 (see FIG. 2), which are position sensors for detecting the operation position Pope of the shift lever 32, and the shift.
  • a power switch signal indicating a switch operation in the vehicle power switch 40 for switching the power supply switching state of the vehicle 10, a signal indicating the vehicle speed V from the vehicle speed sensor 42, and the like are supplied.
  • a signal for controlling the engine 12 and the transmission 18 is output from the electronic control unit 60.
  • FIG. 2 is a diagram illustrating an example of a shift operation device 30 as a switching device (operation device) that switches a plurality of types of shift positions Psh by an artificial operation.
  • the shift operating device 30 is disposed, for example, in the vicinity of the driver's seat, and is automatically returned to the original position (initial position) when the momentary type operation element operated to any one of the plurality of operation positions Pope, that is, the operation force is solved.
  • a shift lever 32 is provided as an automatic return type operator that returns.
  • the shift operation device 30 of this embodiment includes a P switch 34 that is operated when the driver selects a parking position (P position) as a separate switch in the vicinity of the shift lever 32.
  • the shift lever 32 has three operation positions Pope arranged in the front-rear direction or the vertical direction, that is, the vertical direction of the vehicle 10. Corresponding), the D operation position (corresponding to the D position), and the M operation position and B operation position (corresponding to the B position) arranged in parallel therewith.
  • the shift operation device 30 when the shift lever 32 is shifted to the R operation position by the driver, the R position is selected as the shift position Psh, and when the shift lever 32 is shifted to the N operation position, the shift position Psh is set to N.
  • the D position is selected as the shift position Psh.
  • the shift operation device 30 uses an electronic signal to indicate the shift position Psh of the shift operation device 30 selected by the driver using an electric signal (shift lever position signal). Output to 60. Specifically, the data is output to the main microcomputer 62s and the monitoring microcomputer 64s (see FIG. 9).
  • the shift lever 32 can be operated in the vertical direction between the R operation position, the N operation position, and the D operation position, and can be operated in the vertical direction between the M operation position and the B operation position. Furthermore, it is possible to operate the vehicle 10 in the lateral direction perpendicular to the longitudinal direction between the N operation position and the B operation position.
  • the P switch 34 is, for example, a momentary push button switch, and outputs a P switch signal to the electronic control device 60 every time the user (driver) performs a push operation.
  • the shift operation device 30 is an electronic control device that uses the electric signal (P switch signal) to indicate the P position, which is the shift position Psh selected by the driver, when the driver pushes the P switch 34.
  • P switch signal the electric signal
  • the P position is a parking position in which the power transmission path in the transmission 18 is interrupted and the parking lock is executed by the parking lock device 16.
  • the P position is a parking position in which power transmission to the drive wheels 14 is interrupted and the drive wheels 14 are fixed by the parking lock device 16.
  • this parking lock is executed on condition that a predetermined condition such as a vehicle speed V equal to or less than a predetermined vehicle speed equal to that when the vehicle is stopped is satisfied.
  • the M operation position of the shift operating device 30 is the initial position of the shift lever 32, and even if the lever is operated to an operation position Pope (R, N, D, B operation position) other than the M operation position, the driver shifts.
  • the lever 32 is released, that is, when there is no external force acting on the shift lever 32, the shift lever 32 is returned to the M operation position by a mechanical mechanism such as a spring.
  • the electronic control device 60 operates the transmission 18, the parking lock device 16, and the like corresponding to the selected shift position Psh.
  • the R position is a travel position in which a driving force for moving the vehicle 10 backward is transmitted to the drive wheels 14, that is, a reverse travel position.
  • the N position neutral position
  • the D position is a traveling position where the driving force for moving the vehicle 10 forward is transmitted to the drive wheels 14, that is, the forward traveling position. For example, when the parking lock is executed by the parking lock device 16 and the R position, the N position, or the D position is selected by the shift operation device 30, the brake pedal is depressed. If the predetermined condition is satisfied, the electronic control unit 60 releases the parking lock.
  • the B position is a traveling position where the vehicle 10 exerts an engine braking effect and decelerates the rotation of the drive wheels 14 in the D position, that is, a decelerating forward traveling position (engine braking range). Therefore, when the current shift position Psh is a shift position Psh other than the D position, the electronic control unit 60 invalidates the selection of the B position even if a shift operation for selecting the B position is performed, and is the D position. Only when the shift operation for selecting the B position is valid.
  • a shift position display device 46 for displaying the currently selected shift position Psh is provided at a position that is easy for the driver to see in the passenger compartment.
  • a so-called shift-by-wire (SBW) method is employed, and the shift operation device 30 is a first direction P1 that is the vertical direction and a first direction that intersects the direction P1 (orthogonal in FIG. 2). Since the shift operation is two-dimensionally performed in two directions P2, the shift operation in the first direction P1 is detected in order to output the operation position Pope of the shift lever 32 to the electronic control device 60 as a detection signal of the position sensor.
  • a shift sensor 36 as a first direction detector and a select sensor 38 as a second direction detector for detecting a shift operation in the second direction P2 are provided.
  • Both the shift sensor 36 and the select sensor 38 output a detection signal (electric signal) corresponding to the operation position Pope to the electronic control device 60, and the electronic control device 60 operates the shift lever 32 based on the detection signal.
  • the position Pope that is, the shift position Psh selected by the shift operation is recognized (determined).
  • the shift sensor 36 includes a first direction first position P1_1 indicating the R operation position and a first direction second indicating the M operation position or the N operation position.
  • a detection signal corresponding to either the position P1_2 and the first direction third position P1_3 indicating the B operation position or the D operation position is output to the electronic control unit 60 according to the shift operation of the shift lever 32.
  • the select sensor 38 is either the second direction first position P2_1 indicating the M operation position or the B operation position, and the second direction second position P2_2 indicating the R operation position, the N operation position, or the D operation position. Is output to the electronic control unit 60 in accordance with the shift operation of the shift lever 32.
  • one shift sensor 36 and one select sensor 38 may be provided, but two each are provided in the present embodiment in preparation for sensor failure.
  • the main shift sensor and the sub shift sensor that are two sensors that function as the shift sensor 36 output the same detection signal to the electronic control device 60
  • the main select sensor and the sub select that are two sensors that function as the select sensor 38. The sensor outputs the same detection signal to the electronic control unit 60.
  • FIG. 3 is a functional block diagram showing a general part of a configuration in the electronic control unit 60 for executing one of various controls executed in the vehicle 10.
  • the various types of control are, for example, control related to vehicle travel, shift control for recognizing the shift position Psh based on an electric signal from the shift operation device 30, and an electronic throttle valve provided in the engine 12 with an accelerator opening Acc.
  • the throttle control that opens and closes based on the electrical signal corresponding to the above corresponds to the various controls.
  • the electronic control unit 60 includes a main microcomputer 62 that outputs a calculation result for executing the one control in the vehicle 10, and a main microcomputer 62 that is a monitoring target and is a main calculation processing unit.
  • a monitoring microcomputer 64 as a monitoring unit for monitoring whether there is an abnormality.
  • the main microcomputer 62 is a first calculation processing unit that outputs the calculation result based on the input value, and the monitoring microcomputer 64 obtains the same input value as the input value of the main microcomputer 62 and the above-mentioned based on the input value. It is a second arithmetic processing unit that detects an abnormality in the main microcomputer 62.
  • the main microcomputer 62 functionally includes an input reception unit 66 that receives input signals (electrical signals such as pulse intervals and voltages) from detection devices such as sensors, and the monitoring microcomputer 64 also includes a similar input reception unit 68. ing.
  • Both the input reception units 66 and 68 have the same configuration in which the main microcomputer 62 and the monitoring microcomputer 64 obtain the same input value, and thus perform the same processing. Specifically, the input receiving units 66 and 68 perform processing for obtaining an input value represented by the input signal from the input signal.
  • the input value is a control value directly represented by the input signal input to the input receiving units 66 and 68.
  • the input value is the shift position Psh directly represented by the input signal
  • the calculation result is used for the throttle control.
  • the input value is the magnitude of the accelerator opening Acc directly represented by the input signal from the accelerator opening sensor that detects the accelerator opening Acc. If the shift control is described as an example, the input receiving units 66 and 68 obtain the shift position Psh represented by the input signal from the input signals from the shift sensor 36 and the select sensor 38 as an input value.
  • the main microcomputer 62 determines the final control value as the calculation result based on the input value obtained by the input receiving unit 66, and outputs the final control value.
  • This final control value is used to execute the one control involving the main microcomputer 62.
  • the final control value is of the same type that can be compared with the input value. For example, if the input value is the accelerator opening Acc, the final control value is also the accelerator opening Acc, and the input value is shifted. If the position is Psh, the final control value is also the shift position Psh.
  • the main microcomputer 62 performs various generally known intermediate processes and a so-called fail-safe process for improving the safety of the vehicle 10.
  • the main microcomputer 62 compares the safety state of the vehicle 10 obtained from the final control value with the safety state of the vehicle 10 obtained from the input value if the processing in the main microcomputer 62 is normal. It does not worsen (decrease).
  • the safety state of the vehicle 10 is a vehicle state that is safe for the occupant of the vehicle 10, and the safety state of the vehicle 10 varies depending on the control contents of the main microcomputer 62. For example, the main microcomputer 62s performs the shift control. If it is to be executed, the vehicle 10 becomes safer as the vehicle state is closer to the stop state.
  • the input value changes discretely or continuously within a predetermined maximum change range that the input value can take, and the final control value also has the maximum change in the same manner as the input value. It changes discretely or continuously within the same range as the range.
  • the monitoring microcomputer 64 is based on the comparison between the input value of the monitoring microcomputer 64, that is, the input value obtained by the input receiving unit 68, and the calculation result of the main microcomputer 62, that is, the final control value, or the final control value is determined in advance.
  • the abnormality detection control for detecting the abnormality of the main microcomputer 62 is performed based on whether or not the value is a high safety state value. That is, the fail safe output indicating whether or not the main microcomputer 62 is abnormal is performed.
  • the high safety state value is determined in advance depending on what kind of control the one control involving the main microcomputer 62 is.
  • the advanced safety state value is a value at which a relatively high safety state of the vehicle 10 is obtained, for example, a value at which the highest safety state of the vehicle 10 is obtained within the maximum change range. It is.
  • the monitoring microcomputer 64 determines that the main microcomputer 62 is abnormal, for example, the final control value of the main microcomputer 62 is handled as an abnormal value in the one control involving the main microcomputer 62.
  • a predetermined process is executed by the electronic control unit 60 so as to be executed when the final control value is an abnormal value in the one control.
  • the monitoring microcomputer 64 functionally includes an abnormality detection control unit 70 for executing the abnormality detection control.
  • An abnormality of the main microcomputer 62 is detected by any one of the determination patterns shown. That is, it is determined whether or not the main microcomputer 62 is abnormal. Which of the judgment patterns shown in FIGS. 4 to 8 is adopted and the abnormality detection control is performed depends on what kind of control the one control involving the main microcomputer 62 is specifically. It is.
  • Each of the control operations shown in FIGS. 4 to 8 is executed alone or in parallel with other control operations. 4 to 8, common steps are denoted by the same reference numerals.
  • the abnormality detection control unit 70 performs the final control value (calculation) of the main microcomputer 62 in SA1.
  • the first condition that the result is equal to the input value of the monitoring microcomputer 64 is determined.
  • the second condition that the final control value of the main microcomputer 62 is the highly safe state value is determined.
  • SA3 The final control value of the main microcomputer 62 is compared with the input value of the monitoring microcomputer 64 to determine a third condition that a higher safety state of the vehicle 10 is obtained. Then, the abnormality detection control unit 70 determines that the main microcomputer 62 is abnormal in SA4 when all of the first to third conditions are not satisfied. It is preferable that the level of the safety state of the vehicle 10 obtained from the input value and the level of the safety state of the vehicle 10 obtained from the final control value are determined in advance.
  • the abnormality detection control unit 70 includes the first condition, the second condition, If these two conditions are not satisfied, it is determined in SA5 that the main microcomputer 62 is abnormal.
  • the abnormality detection control unit 70 includes the first condition and the third condition. If the two conditions are not satisfied, it is determined in SA6 that the main microcomputer 62 is abnormal.
  • the abnormality detection control unit 70 includes the second condition, the third condition, When these two conditions are not satisfied, it is determined in SA7 that the main microcomputer 62 is abnormal.
  • the abnormality detection control unit 70 when the second condition is not satisfied, In SA8, it is determined that the main microcomputer 62 is abnormal.
  • FIG. 9 is a functional block diagram corresponding to FIG. 3 and is a functional block diagram showing a main part of the configuration in the electronic control unit 60 for executing the shift control.
  • the main microcomputer 62 in FIG. 3 is specifically represented as the main microcomputer 62s in FIG. 9, and the monitoring microcomputer 64 in FIG. 3 is specifically represented as the monitoring microcomputer 64s in FIG.
  • the input receiving unit 66 of the main microcomputer 62 in FIG. 3 is specifically shown as the input receiving unit 66s of the main microcomputer 62s in FIG. 9, and the input receiving unit 68 of the monitoring microcomputer 64 in FIG.
  • the abnormality detection control unit 70 of the monitoring microcomputer 64 in FIG. 3 is specifically shown as the abnormality detection control unit 70s of the monitoring microcomputer 64s in FIG. 9. That is, in FIG. 9, the main microcomputer 62s and the monitoring microcomputer 64s are provided in the electronic control unit 60, the main microcomputer 62s corresponds to the first arithmetic processing unit of the present invention, and the monitoring microcomputer 64s is the second arithmetic processing of the present invention. Corresponding to the part.
  • an electrical signal from the shift operating device 30, that is, an input signal is input to the input receiving units 66s and 68s. From the input signal, the input receiving units 66s and 68s indicate the shift position Psh represented by the input signal. Calculate as input value.
  • the input value of the main microcomputer 62s and the monitoring microcomputer 64s is the shift position Psh selected by the shift operating device 30.
  • the input value is set to the R position
  • the shift lever 32 is operated to the N operation position by the driver
  • the input value is set to the N position.
  • the main microcomputer 62s performs the intermediate process and the fail-safe process on the input value obtained by the input receiving unit 66s.
  • the final control value which is a calculation result based on the input value, is determined and output.
  • the final control value is also called a control shift.
  • the main microcomputer 62s determines the control shift, for example, the shift control of the transmission 18 is executed according to the control shift, and the parking lock device 16 is operated.
  • the control shift is set to any one of the shift positions Psh that can be selected by the shift operating device 30, that is, any one of the R, N, D, B, and P positions.
  • the main microcomputer 62s executes the shift control, for example, as the intermediate process or the fail-safe process performed by the main microcomputer 62s, (i) when the current shift position Psh is other than the D position, When the B position is obtained as an input value, the control shift (final control value) is not changed to the B position but remains at the current shift position Psh, and (ii) at a high speed traveling above a predetermined vehicle speed When the current shift position Psh is the D position and the R position is obtained as the input value, the control shift is determined to be the N position, and (iii) When traveling at a high speed exceeding a predetermined vehicle speed When the current shift position Psh is the R position and the D position is obtained as the input value, the control is performed.
  • the shift is determined to be the N position; and (iv) the control shift when the input signal that cannot be normal if the electric circuit such as the shift operation device 30 is normal is continuously input to the input receiving units 66s and 68s. Is determined to be the N position.
  • the monitoring microcomputer 64s performs the abnormality detection control as described above with respect to the monitoring microcomputer 64 of FIG. Since the final control value of the main microcomputer 62s is used for the shift control, the closer the vehicle state obtained from the input value or the shift position Psh as the final control value is closer to the stop state, the higher the vehicle 10 is. Judged to be in a safe state. Therefore, as shown in the vehicle safety state map of FIG. 10, among the R, N, D, B, and P positions, the P position is the shift position Psh at which the highest safety state of the vehicle 10 is obtained. Further, the shift position Psh at which the high safety state of the vehicle 10 is obtained next to the P position is the N position.
  • the N position is a shift position Psh at which a higher safety state of the vehicle 10 can be obtained compared to the R, D, and B positions.
  • the relationship between the level of the safety state of the vehicle 10 and the shift position Psh is predetermined as a vehicle safety state map in FIG. 10 and stored in the monitoring microcomputer 64s.
  • the high safety state value in FIG. 9 is the P position.
  • the relationship between the input value of the monitoring microcomputer 64s, the control shift (final control value) of the main microcomputer 62s, and the establishment of the first to third conditions is It can be represented by the map shown in FIG. In FIG.
  • the monitoring microcomputer 64s determines whether or not the main microcomputer 62s is abnormal from the vehicle safety state map in the abnormality detection control. .
  • the control shift (final control value) of the main microcomputer 62s is determined in the shift control. Treated as an abnormal value.
  • a predetermined process is executed by the electronic control unit 60 so as to be executed when the control shift is an abnormal value. For example, the electronic control unit 60 executes a process of displaying that an abnormality has occurred at a location that is easy for the driver in the vehicle compartment to see, or stopping the vehicle 10 quickly if the vehicle 10 is traveling.
  • the abnormality detection control unit 70s of the monitoring microcomputer 64s executes the flowchart shown in FIG. 4 in the abnormality detection control. That is, the abnormality detection control unit 70s determines each of the first to third conditions indicated by SA1 to SA3 in FIG. 4 according to the vehicle safety state map. Then, the abnormality detection control unit 70s determines that the main microcomputer 62s is abnormal in SA4 of FIG. 4 when all of the first to third conditions are not satisfied.
  • the electronic control unit 60 includes the main microcomputers 62 and 62s that are the first arithmetic processing units that output the calculation results based on the input values, and the main microcomputers 62 and 62s.
  • the monitoring microcomputers 64 and 64s which are the second arithmetic processing unit, which obtains the same input value as the input value are provided.
  • the monitoring microcomputer 64, 64s is based on a comparison between the input value of the monitoring microcomputer 64, 64s and the calculation result of the main microcomputer 62, 62s, or the calculation result is relatively high safety of the vehicle 10.
  • An abnormality of the main microcomputers 62 and 62s is detected based on whether or not the state is the predetermined highly safe state value from which the state is obtained. Therefore, in order to ensure the reliability of the calculation results of the main microcomputers 62 and 62s, the monitoring microcomputers 64 and 64s do not have to have the same configuration as the main microcomputers 62 and 62s, so the main microcomputers 62 and 62s are large-scale. Even if it is a simple structure, the cost increase of the electronic control unit 60 can be suppressed while ensuring the reliability of the calculation results of the main microcomputers 62 and 62s.
  • the monitoring microcomputer 64s is configured such that the first control value (calculation result) of the main microcomputer 62s is equal to the input value of the monitoring microcomputer 64s.
  • the second condition that the calculation result of the main microcomputer 62s is the high safety state value, and the calculation result of the main microcomputer 62s is compared with the input value of the monitoring microcomputer 64s.
  • the monitoring microcomputer 64s can determine whether or not the main microcomputer 62s is abnormal based on a specific determination criterion.
  • the shift operating device 30 outputs the shift position Psh selected by the driver to the main microcomputer 62s and the monitoring microcomputer 64s as an electrical signal.
  • the input value of the main microcomputer 62s and the monitoring microcomputer 64s is the shift position Psh selected by the shift operation device 30, and the final control value (calculation result) of the main microcomputer 62s is selected by the shift operation device 30.
  • the shift position Psh (R, N, D, B, P position) to be obtained is set. Therefore, in the shift control for recognizing the shift position Psh based on the electric signal from the shift operating device 30, the monitoring microcomputer is maintained without impairing the reliability of the calculation result of the main microcomputer 62s, that is, the reliability of the shift control. An increase in cost of 64 s can be suppressed. In short, an increase in cost of the electronic control device 60 that performs the shift control can be suppressed.
  • the high safety state value is predetermined as the P position (parking position).
  • the N position neutral position
  • the N position is determined in advance to provide a higher safety state of the vehicle 10 than the R, D, B position (traveling position). Therefore, since the relationship between the level of the safe state of the vehicle 10 and the shift position Psh is determined in advance, the monitoring microcomputer 64s easily determines whether or not the main microcomputer 62s is abnormal according to the flowchart of FIG. It is possible.
  • the shift lever 32 is shifted in two dimensions, but may be shifted along one axis, or shifted in three dimensions. It may be.
  • the shift lever 32 returns to the M operation position when there is no external force acting on the shift lever 32, but does not return to the M operation position but stays at the operation position Pope operated by the driver. There is no problem.
  • the shift sensor 36 and the select sensor 38 are provided as position sensors for detecting the position of the shift lever 32, but the number of position sensors is not limited to two.
  • the shift lever 32 is a momentary lever switch, but may be a push button switch or a slide switch instead.
  • the shift operation device 30 may be operated by a foot instead of a manual operation, or may be operated in response to a driver's voice.
  • the shift operation device 30 may be an operation device that converts a driver's intention to shift into an electrical signal.
  • the vehicle safety state map is illustrated in FIG. 10, but the vehicle safety state map indicates whether the vehicle 10 is stopped, decelerating, or traveling at a high vehicle speed. Even if it can be switched according to the vehicle state, such as.
  • the input receiving units 66, 68, 66s, and 68s obtain the input value represented by the input signal from the input signal. If the input signal itself is abnormal, a predetermined failure is obtained. Safe processing may be performed. For example, in FIG. 9, the input receiving units 66 s and 68 s are when one of the main shift sensor and the sub shift sensor is abnormal, or when one of the main select sensor and the sub select sensor is abnormal. Alternatively, the input value may be obtained based on the input signal from the other sensor.
  • Vehicle 14 Drive wheel 30: Shift operation device 60: Electronic control device (vehicle control device) 62, 62s: main microcomputer (first arithmetic processing unit) 64, 64s: monitoring microcomputer (second arithmetic processing unit)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Transmission Device (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

 第1演算処理部の演算結果の信頼性を確保しつつコスト上昇を抑えることができる車両用制御装置を提供する。 電子制御装置は、入力値に基づいた演算結果を出力する第1演算処理部であるメインマイコン62sと、メインマイコン62sの入力値と同じ入力値を得る第2演算処理部である監視マイコン64sとを備えている。そして、監視マイコン64sは、その監視マイコン64sの入力値とメインマイコン62sの演算結果との比較に基づいて、或いは、その演算結果が車両10の相対的に高い安全状態が得られる予め定められた高度安全状態値であるか否かに基づいて、メインマイコン62sの異常を検出する。従って、監視マイコン64sをメインマイコン62sと同一の構成とする必要がないので、メインマイコン62sが大規模な構成であっても、そのメインマイコン62sの演算結果の信頼性を確保しつつ電子制御装置のコスト上昇を抑えることができる。

Description

車両用制御装置
 本発明は、車両用制御装置のコスト低減を図る技術に関するものである。
 第1演算処理部と第2演算処理部とを備えた車両用制御装置が、従来からよく知られている。例えば、特許文献1に開示された車両用コンピュータシステムがそれである。その特許文献1の車両用コンピュータシステムでは、前記第1演算処理部と第2演算処理部とは、互いに同一の構成であり且つ同一の演算処理を実行する。そして、前記車両用コンピュータシステムは、演算処理過程における前記第1演算処理部と第2演算処理部との特定のデータを相互に比較することにより異常を検出する。
特開平6-274361号公報 特開2001-063492号公報
 前記特許文献1に示すように、1つの車両用制御装置に、互いに同一の構成であり且つ同一の演算処理を実行する演算処理部を2つ設ければ、確かに、異常が検出され易く、その演算結果の信頼性は向上する。しかし、この特許文献1のように、監視対象である一方の演算処理部を他方の演算処理部(監視部)が監視する車両用制御装置において、その監視部を前記監視対象と同じ構成にしたのでは、その監視対象が行う演算が複雑化するにつれて、その監視対象のみならず前記監視部も大規模化するため、前記監視部のコストが著しく上昇するという課題があった。例えば、車両用制御装置にてよく行われる演算の1つとしてフェールセーフ演算が存在する。このフェールセーフ演算ではあらゆる車両の状況が想定されるため、その演算のロジックや必要な入力が複雑になる。前記監視対象がこのフェールセーフ演算を行う場合に、前記監視部にも同じフェールセーフ演算を行わせるとすれば、前記監視部が前記監視対象と同等に多くのROM等を必要として大規模化し、前記監視部のコスト高につながる。なお、このような課題は未公知である。
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、演算処理部の演算結果の信頼性を確保しつつコスト上昇を抑えることができる車両用制御装置を提供することにある。
 前記目的を達成するための第1発明の要旨とするところは、(a)入力値に基づいた演算結果を出力する第1演算処理部と、その第1演算処理部の入力値と同じ入力値を得る第2演算処理部とを備えた車両用制御装置であって、(b)前記第2演算処理部は、その第2演算処理部の入力値と前記第1演算処理部の演算結果との比較に基づいて、或いは、その演算結果が車両の相対的に高い安全状態が得られる予め定められた高度安全状態値であるか否かに基づいて、前記第1演算処理部の異常を検出することを特徴とする。
 このようにすれば、前記第1演算処理部の演算結果の信頼性を確保するために、前記第2演算処理部を前記第1演算処理部と同一の構成とする必要がないので、前記第1演算処理部が大規模な構成であっても、その第1演算処理部の演算結果の信頼性を確保しつつ車両用制御装置のコスト上昇を抑えることができる。
 また、第2発明の要旨とするところは、前記第1発明の車両用制御装置であって、前記第2演算処理部は、前記第1演算処理部の演算結果が前記第2演算処理部の入力値と等しいという条件と、前記第1演算処理部の演算結果が前記高度安全状態値であるという条件と、前記第1演算処理部の演算結果が前記第2演算処理部の入力値と比較して、前記車両のより高い安全状態が得られる値であるという条件との何れもが全て不成立である場合に、前記第1演算処理部が異常であると判断することを特徴とする。このようにすれば、前記第1演算処理部が異常であるか否かを、具体的な判断基準の下で判断することができる。
 また、第3発明の要旨とするところは、前記第2発明の車両用制御装置であって、(a)運転者に選択されたシフトポジションを前記第1演算処理部および前記第2演算処理部に電気信号で出力するシフト操作装置が設けられており、(b)前記第1演算処理部および前記第2演算処理部の入力値は、前記シフト操作装置で選択された前記シフトポジションであり、(c)前記第1演算処理部の演算結果は、前記シフト操作装置で選択され得る前記シフトポジションの何れかに設定されるものであることを特徴とする。このようにすれば、前記シフト操作装置からの電気信号に基づいて前記シフトポジションを認識し変速制御などを行うシフト制御において、前記第1演算処理部の演算結果の信頼性すなわち前記シフト制御の信頼性を損なわないようにしつつ、そのシフト制御を行う前記車両用制御装置のコスト上昇を抑えることができる。
 また、第4発明の要旨とするところは、前記第3発明の車両用制御装置であって、(a)前記シフト操作装置では、駆動輪への動力伝達を遮断すると共にその駆動輪を固定する駐車ポジションと、前記駆動輪への動力伝達を遮断すると共にその駆動輪の回転を許容する中立ポジションと、前記車両を前進又は後進させる走行ポジションとの何れかの前記シフトポジションが選択され、(b)前記高度安全状態値は前記駐車ポジションと予め定められており、(c)前記中立ポジションは前記走行ポジションと比較して、前記車両のより高い安全状態が得られるものと予め定められていることを特徴とする。このようにすれば、前記車両の安全状態の高低と前記シフトポジションとの関係が予め定められているので、前記第2演算処理部は、前記第1演算処理部が異常であるか否かを容易に判断することが可能である。
 ここで、好適には、前記第1発明の車両用制御装置であって、前記第2演算処理部は、前記第1演算処理部の演算結果が前記第2演算処理部の入力値と等しいという条件と、前記第1演算処理部の演算結果が前記高度安全状態値であるという条件との2つの条件が不成立である場合に、前記第1演算処理部が異常であると判断する。
 また、好適には、前記第1発明の車両用制御装置であって、前記第2演算処理部は、前記第1演算処理部の演算結果が前記第2演算処理部の入力値と等しいという条件と、前記第1演算処理部の演算結果が前記第2演算処理部の入力値と比較して、前記車両のより高い安全状態が得られる値であるという条件との2つの条件が不成立である場合に、前記第1演算処理部が異常であると判断する。
 また、好適には、前記第1発明の車両用制御装置であって、前記第2演算処理部は、前記第1演算処理部の演算結果が前記高度安全状態値であるという条件と、前記第1演算処理部の演算結果が前記第2演算処理部の入力値と比較して、前記車両のより高い安全状態が得られる値であるという条件との2つの条件が不成立である場合に、前記第1演算処理部が異常であると判断する。
 また、好適には、前記第1発明の車両用制御装置であって、前記第2演算処理部は、前記第1演算処理部の演算結果が前記高度安全状態値であるという条件が不成立である場合に、前記第1演算処理部が異常であると判断する。
本発明が適用される車両の概略構成を説明するための図であると共に、車両を制御する電子制御装置の入出力信号を例示したブロック線図である。 図1の車両に設けられたシフト操作装置の一例を示す図である。 図1の車両において実行される種々の制御のうちの一の制御を実行するための電子制御装置内の構成の要部を一般化して示した機能ブロック線図である。 図3の監視マイコンが有する異常検出制御部が実行する制御作動の要部を説明するためのフローチャートであって、その異常検出制御部がメインマイコンの異常を検出するために行う判断パターンのうち第1の判断パターンが採用されるとした場合のフローチャートである。 図3の監視マイコンが有する異常検出制御部が実行する制御作動の要部を説明するためのフローチャートであって、その異常検出制御部がメインマイコンの異常を検出するために行う判断パターンのうち第2の判断パターンが採用されるとした場合のフローチャートである。 図3の監視マイコンが有する異常検出制御部が実行する制御作動の要部を説明するためのフローチャートであって、その異常検出制御部がメインマイコンの異常を検出するために行う判断パターンのうち第3の判断パターンが採用されるとした場合のフローチャートである。 図3の監視マイコンが有する異常検出制御部が実行する制御作動の要部を説明するためのフローチャートであって、その異常検出制御部がメインマイコンの異常を検出するために行う判断パターンのうち第4の判断パターンが採用されるとした場合のフローチャートである。 図3の監視マイコンが有する異常検出制御部が実行する制御作動の要部を説明するためのフローチャートであって、その異常検出制御部がメインマイコンの異常を検出するために行う判断パターンのうち第5の判断パターンが採用されるとした場合のフローチャートである。 図3に対応した機能ブロック線図であって、シフト制御を実行するための電子制御装置内の構成の要部を示した機能ブロック線図である。 図9のメインマイコンの演算結果が用いられるシフト制御において、車両の安全状態の高低とシフトポジションとの関係を予め定めた車両安全状態マップの一例である。 図9の監視マイコンが行う異常検出制御において、監視マイコンの入力値とメインマイコンの制御シフトと図4に示す第1~第3の条件の成立との関係を表した一覧表である。
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。
 図1は、本発明が適用される車両10の概略構成を説明するための図であると共に、車両10を制御する電子制御装置60の入出力信号を例示したブロック線図である。図1において、車両10はFF(フロントエンジン・フロントドライブ)型車両であり、その車両10は、駐車時に駆動輪14の回転を機械的に阻止するパーキングロック装置16、変速機18、シフト操作装置30などを備え、電子制御装置60がシフト操作装置30で選択されたシフトポジションPshを電気信号により取得するシフトバイワイヤ(SBW)方式を採用している。また、変速機18は、車両において一般的に用いられる有段の自動変速機であって、例えば複数の遊星歯車装置と複数の油圧式摩擦係合装置とを備えている。車両10では、走行用駆動力源としての内燃機関であるエンジン12の動力は、変速機18、差動歯車装置(ディファレンシャルギヤ)26、及び一対の車軸(ドライブシャフト)28等を順次介して一対の駆動輪14へ伝達される。なお、図1の車両10は走行用駆動力源としてエンジン12だけを有するが、ハイブリッド車両または電動車両などであっても構わない。
 また、車両10には、車両10の各種制御を行う車両用制御装置として機能する電子制御装置60が備えられている。電子制御装置60は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されている。例えば電子制御装置60は、予めROM等に記憶されたプログラムに従って信号処理を行うことにより、エンジン12の出力制御、変速機18の変速制御、前記シフトバイワイヤ方式に関わる制御、パーキングロック装置16の作動状態の切替制御などを実行する。
 電子制御装置60には、例えばシフトレバー32の操作位置Popeを検出する為の位置センサであるシフトセンサ36及びセレクトセンサ38(図2参照)からの操作位置Popeに応じたシフトレバー位置信号、シフト操作装置30で選択されるシフトポジションPshを駐車ポジション(Pポジション)以外の非PポジションからPポジションへ切り替える為のPスイッチ34におけるスイッチ操作を表すPスイッチ信号、ユーザ(運転者)により操作されて車両10の電源供給の切替状態を切り替える為の車両電源スイッチ40におけるスイッチ操作を表すパワースイッチ信号、車速センサ42からの車速Vを表す信号などが、それぞれ供給される。
 また、電子制御装置60からは、例えば,エンジン12や変速機18を制御するための信号等が出力される。
 図2は、複数種類のシフトポジションPshを人為的操作により切り換える切換装置(操作装置)としてのシフト操作装置30の一例を示す図である。このシフト操作装置30は、例えば運転席の近傍に配設され、複数の操作位置Popeの何れかへ操作されるモーメンタリ式の操作子すなわち操作力を解くと元位置(初期位置)へ自動的に復帰する自動復帰式の操作子としてのシフトレバー32を備えている。また、本実施例のシフト操作装置30は、運転者が駐車ポジション(Pポジション)を選択するときに操作するPスイッチ34をシフトレバー32の近傍に別スイッチとして備えている。
 シフトレバー32は、図2に示すように車両10の前後方向または上下方向すなわち縦方向に配列された3つの操作位置PopeであるR操作位置(Rポジションに対応)、N操作位置(Nポジションに対応)、D操作位置(Dポジションに対応)と、それに平行に配列されたM操作位置、B操作位置(Bポジションに対応)とへそれぞれ操作されるようになっている。シフト操作装置30では、シフトレバー32が運転者によりR操作位置へシフト操作されるとシフトポジションPshとしてRポジションが選択され、シフトレバー32がN操作位置へシフト操作されるとシフトポジションPshとしてNポジションが選択され、シフトレバー32がD操作位置へシフト操作されるとシフトポジションPshとしてDポジションが選択され、シフトレバー32がB操作位置へシフト操作されるとシフトポジションPshとしてBポジションが選択される。そして、シフト操作装置30は、運転者によりシフトレバー32が操作された場合には、その運転者により選択されたシフト操作装置30のシフトポジションPshを電気信号(シフトレバー位置信号)で電子制御装置60へ出力する。詳細には、メインマイコン62sおよび監視マイコン64s(図9参照)へ出力する。また、シフトレバー32は、R操作位置とN操作位置とD操作位置との相互間で縦方向に操作可能とされ、M操作位置とB操作位置との相互間で縦方向に操作可能とされ、更に、N操作位置とB操作位置との相互間で上記縦方向に直交する車両10の横方向に操作可能とされている。
 Pスイッチ34は、例えばモーメンタリ式の押しボタンスイッチであって、ユーザ(運転者)により押込操作される毎にPスイッチ信号を電子制御装置60へ出力する。例えば、運転者は、パーキングロック装置16により駆動輪14の回転を機械的に阻止するパーキングロックが実行されていないときにシフトポジションPshをPポジションにする場合には、Pスイッチ34の押込操作を行う。すなわち、シフト操作装置30は、Pスイッチ34の押込操作が運転者によりなされた場合には、その運転者により選択されたシフトポジションPshであるPポジションを電気信号(Pスイッチ信号)で電子制御装置60へ出力する。詳細には、メインマイコン62sおよび監視マイコン64s(図9参照)へ出力する。前記Pポジションは、変速機18内の動力伝達経路が遮断され、且つ、パーキングロック装置16により前記パーキングロックが実行される駐車ポジション(パーキングポジション)である。言い換えれば、そのPポジションは、駆動輪14への動力伝達を遮断すると共に駆動輪14をパーキングロック装置16により固定する駐車ポジションである。但し、このパーキングロックは、車速Vが停車しているに等しい所定車速以下であるなどの所定の条件が満たされていれることを条件に実行されるものである。
 シフト操作装置30のM操作位置はシフトレバー32の初期位置であり、M操作位置以外の操作位置Pope(R,N,D,B操作位置)へレバー操作されていたとしても、運転者がシフトレバー32を解放すればすなわちシフトレバー32に作用する外力が無くなれば、バネなどの機械的機構によりシフトレバー32はM操作位置へ戻るようになっている。シフト操作装置30で各シフトポジションPshが選択された際には、電子制御装置60は、その選択されたシフトポジションPshに対応して変速機18およびパーキングロック装置16などを作動させる。
 各シフトポジションPshについて説明すると、Rポジションは、車両10を後進させる駆動力が駆動輪14に伝達される走行ポジションすなわち後進走行ポジションである。また、Nポジション(ニュートラルポジション)は、変速機18内の動力伝達経路が遮断されるニュートラル状態とする中立ポジションであり、言い換えれば、駆動輪14への動力伝達を遮断すると共に駆動輪14の回転を許容する中立ポジションである。また、Dポジションは、車両10を前進させる駆動力が駆動輪14に伝達される走行ポジションすなわち前進走行ポジションである。例えば、パーキングロック装置16により前記パーキングロックが実行されているときに、シフト操作装置30でRポジション、Nポジション、又はDポジションが選択された場合には、ブレーキペダルが踏込操作されているなどの所定の条件が満たされていれば、電子制御装置60はそのパーキングロックを解除する。
 また、Bポジションは、Dポジションにおいて例えば車両10にエンジンブレーキ効果を発揮させ駆動輪14の回転を減速させる走行ポジションすなわち減速前進走行ポジション(エンジンブレーキレンジ)である。従って、電子制御装置60は、現在のシフトポジションPshがDポジション以外のシフトポジションPshであるときに、Bポジションを選択するシフト操作がなされてもそのBポジションの選択を無効とし、Dポジションであるときのみ、そのBポジションを選択するシフト操作を有効とする。
 本実施例のシフト操作装置30では、シフトレバー32に作用する外力が無くなればM操作位置へ戻されるので、シフトレバー32の操作位置Popeを視認しただけでは選択中のシフトポジションPshを認識することは出来ない。そのため、車室内で運転者の見易い位置に、選択中のシフトポジションPshを表示するシフトポジション表示装置46が設けられている。
 本実施例では所謂シフトバイワイヤ(SBW)方式が採用されており、シフト操作装置30は上記縦方向である第1方向P1とその方向P1と交差する(図2では直交する)横方向である第2方向P2とに2次元的にシフト操作されるので、シフトレバー32の操作位置Popeを位置センサの検出信号として電子制御装置60に出力するために、上記第1方向P1のシフト操作を検出する第1方向検出部としてのシフトセンサ36と上記第2方向P2のシフト操作を検出する第2方向検出部としてのセレクトセンサ38とを備えている。シフトセンサ36とセレクトセンサ38との何れも上記操作位置Popeに応じた検出信号(電気信号)を電子制御装置60に対し出力し、その検出信号に基づき電子制御装置60は、シフトレバー32の操作位置Pope、すなわち、そのシフト操作により選択されたシフトポジションPshを認識(判定)する。
 シフトレバー32の操作位置Popeを示す検出信号について一例を示せば、シフトセンサ36は、R操作位置を示す第1方向第1位置P1_1と、M操作位置もしくはN操作位置を示す第1方向第2位置P1_2と、B操作位置もしくはD操作位置を示す第1方向第3位置P1_3との何れかに対応する検出信号を、シフトレバー32のシフト操作に応じて電子制御装置60に出力する。また、セレクトセンサ38は、M操作位置もしくはB操作位置を示す第2方向第1位置P2_1と、R操作位置、N操作位置、もしくはD操作位置を示す第2方向第2位置P2_2との何れかに対応する検出信号を、シフトレバー32のシフト操作に応じて電子制御装置60に出力する。なお、シフトセンサ36およびセレクトセンサ38は各々1つずつ設けられておればよいが、センサの故障等に備えて、本実施例では各々2つずつ設けられている。例えば、シフトセンサ36として機能する2つのセンサであるメインシフトセンサおよびサブシフトセンサは同じ検出信号を電子制御装置60に出力し、セレクトセンサ38として機能する2つのセンサであるメインセレクトセンサおよびサブセレクトセンサは同じ検出信号を電子制御装置60に出力する。
 図3は、車両10において実行される種々の制御のうちの一の制御を実行するための電子制御装置60内の構成の要部を一般化して示した機能ブロック線図である。その種々の制御は例えば車両走行に関わる制御であり、シフト操作装置30からの電気信号に基づいてシフトポジションPshを認識するシフト制御、及び、エンジン12に設けられた電子スロットル弁をアクセル開度Accに応じた電気信号に基づいて開閉作動させるスロットル制御などが前記種々の制御に該当する。図3に示すように、電子制御装置60は、車両10における前記一の制御を実行するための演算結果を出力するメインマイコン62と、監視対象であって主演算処理部であるメインマイコン62が異常か否かを監視する監視部としての監視マイコン64とを備えている。言い換えれば、そのメインマイコン62は入力値に基づいた前記演算結果を出力する第1演算処理部であり、監視マイコン64はメインマイコン62の入力値と同じ入力値を得てその入力値に基づき上記メインマイコン62の異常を検出する第2演算処理部である。メインマイコン62はセンサ等の検出機器からの入力信号(パルス間隔や電圧などの電気信号)を受け付ける入力受付部66を機能的に備え、監視マイコン64も同様の入力受付部68を機能的に備えている。両入力受付部66,68は、メインマイコン62と監視マイコン64とが互いに同じ入力値を得るので、互いに同じ処理を行う同じ構成になっている。この入力受付部66,68は、具体的には、前記入力信号からその入力信号が表す入力値を求める処理を行う。前記入力値とは、入力受付部66,68に入力される前記入力信号が直接的に表す制御値である。例えば、メインマイコン62の前記演算結果が前記シフト制御に用いられるのであれば前記入力値は、前記入力信号が直接的に表すシフトポジションPshであり、前記演算結果が前記スロットル制御に用いられるのであれば前記入力値は、アクセル開度Accを検出するアクセル開度センサからの前記入力信号が直接的に表すアクセル開度Accの大きさである。前記シフト制御を例として説明すれば、入力受付部66,68は、シフトセンサ36およびセレクトセンサ38からの入力信号から、その入力信号が表すシフトポジションPshを入力値として求める。
 図3に示すように、メインマイコン62は、入力受付部66で得た入力値に基づいて前記演算結果である最終制御値を決定し、その最終制御値を出力する。この最終制御値は、メインマイコン62が関与する前記一の制御を実行するために用いられる。また、前記最終制御値は前記入力値と比較可能な同じ種類のものであり、例えば前記入力値がアクセル開度Accであれば前記最終制御値もアクセル開度Accであり、前記入力値がシフトポジションPshであれば前記最終制御値もシフトポジションPshである。具体的に、メインマイコン62は、前記入力値から前記最終制御値を求める過程では、一般的に知られた種々の中間処理、および、車両10の安全性を向上させる所謂フェールセーフ処理などを行い、それらの処理を経た上で前記最終制御値を決定する。すなわち、メインマイコン62は、そのメインマイコン62内での処理が正常であれば、前記最終制御値から得られる車両10の安全状態を、前記入力値から得られる車両10の安全状態と比較して悪化(低下)させることはない。車両10の安全状態とは車両10の乗員にとって安全な車両状態であり、その車両10の安全状態はメインマイコン62の制御内容によって種々異なるものであるが、例えば、メインマイコン62sが前記シフト制御を実行するものであるとすれば、車両10は、車両状態が停車状態に近いほど、より高い安全状態になる。なお、前記入力値は、その入力値がとり得る予め定められた最大変化範囲内で離散的に又は連続的に変化するものであり、前記最終制御値も前記入力値と同様に、前記最大変化範囲と同一範囲内で離散的に又は連続的に変化するものである。
 監視マイコン64は、監視マイコン64の入力値すなわち入力受付部68で得た入力値とメインマイコン62の演算結果すなわち前記最終制御値との比較に基づいて、或いは、その最終制御値が予め定められた高度安全状態値であるか否かに基づいて、メインマイコン62の異常を検出する異常検出制御を行う。すなわち、メインマイコン62が異常であるか否かを示すフェールセーフ出力を行う。前記高度安全状態値は、メインマイコン62が関与する前記一の制御が具体的にどのような制御であるかによって予め定められるものである。その高度安全状態値を定義すれば、その高度安全状態値は、車両10の相対的に高い安全状態が得られる値、例えば、前記最大変化範囲内において車両10の最も高い安全状態が得られる値である。メインマイコン62が異常であると監視マイコン64により判断された場合には、例えば、メインマイコン62の前記最終制御値は、メインマイコン62が関与する前記一の制御において異常値であると取り扱われる。そして、その一の制御で前記最終制御値が異常値であるときに実行されるように予め定められた処理が電子制御装置60によって実行される。
 具体的に監視マイコン64は、前記異常検出制御を実行するために異常検出制御部70を機能的に備えており、その異常検出制御部70は、前記異常検出制御において、図4~図8に示す何れか一の判断パターンによってメインマイコン62の異常を検出する。すなわちメインマイコン62が異常であるか否かを判断する。この図4~図8に示す判断パターンの何れが採用されて前記異常検出制御が行われるかは、メインマイコン62が関与する前記一の制御が具体的にどのような制御であるかによって定まるものである。図4~図8に示す制御作動は各々、単独で或いは他の制御作動と並列的に実行される。図4~図8において共通のステップは同一の符号が付されている。
 例えば、図4に示す第1の判断パターンが前記異常検出制御において採用されるとすれば、図4に示すように、異常検出制御部70は、SA1においてメインマイコン62の前記最終制御値(演算結果)が監視マイコン64の前記入力値と等しいという第1の条件を判断し、SA2においてメインマイコン62の前記最終制御値が前記高度安全状態値であるという第2の条件を判断し、SA3においてメインマイコン62の前記最終制御値が監視マイコン64の前記入力値と比較して、車両10のより高い安全状態が得られる値であるという第3の条件を判断する。そして、異常検出制御部70は、前記第1~第3の条件の全部が不成立である場合に、SA4において、メインマイコン62が異常であると判断する。なお、前記入力値から得られる車両10の安全状態の高低、および、前記最終制御値から得られる車両10の安全状態の高低は予め定められているのが好ましい。
 また、図5に示す第2の判断パターンが前記異常検出制御において採用されるとすれば、図5に示すように、異常検出制御部70は、前記第1の条件と前記第2の条件との2つの条件が不成立である場合に、SA5において、メインマイコン62が異常であると判断する。
 また、図6に示す第3の判断パターンが前記異常検出制御において採用されるとすれば、図6に示すように、異常検出制御部70は、前記第1の条件と前記第3の条件との2つの条件が不成立である場合に、SA6において、メインマイコン62が異常であると判断する。
 また、図7に示す第4の判断パターンが前記異常検出制御において採用されるとすれば、図7に示すように、異常検出制御部70は、前記第2の条件と前記第3の条件との2つの条件が不成立である場合に、SA7において、メインマイコン62が異常であると判断する。
 また、図8に示す第5の判断パターンが前記異常検出制御において採用されるとすれば、図8に示すように、異常検出制御部70は、前記第2の条件が不成立である場合に、SA8において、メインマイコン62が異常であると判断する。
 次に、図3のメインマイコン62が関与する前記一の制御が、具体的に前記シフト制御である場合の例を図9を用いて説明する。図9は、前記図3に対応した機能ブロック線図であって、前記シフト制御を実行するための電子制御装置60内の構成の要部を示した機能ブロック線図である。図3のメインマイコン62は図9では具体的にメインマイコン62sとして表され、図3の監視マイコン64は図9では具体的に監視マイコン64sとして表されている。そして、図3のメインマイコン62の入力受付部66は図9では具体的にメインマイコン62sの入力受付部66sとして表され、図3の監視マイコン64の入力受付部68は図9では具体的に監視マイコン64sの入力受付部68sとして表され、図3の監視マイコン64の異常検出制御部70は図9では具体的に監視マイコン64sの異常検出制御部70sとして表されている。すなわち、図9ではメインマイコン62sおよび監視マイコン64sは電子制御装置60に備えられており、メインマイコン62sは本発明の第1演算処理部に対応し、監視マイコン64sは本発明の第2演算処理部に対応する。図9において、入力受付部66s,68sにはシフト操作装置30からの電気信号すなわち入力信号が入力され、その入力信号から、入力受付部66s,68sは、その入力信号が表すシフトポジションPshを前記入力値として求める。言い換えれば、メインマイコン62sおよび監視マイコン64sの前記入力値は、シフト操作装置30で選択されたシフトポジションPshである。例えば、シフトレバー32が運転者によりR操作位置にレバー操作されれば前記入力値はRポジションになり、シフトレバー32が運転者によりN操作位置にレバー操作されれば前記入力値はNポジションになる。
 メインマイコン62sは、図3のメインマイコン62について前述したように、入力受付部66sで得た前記入力値に対して前記中間処理および前記フェールセーフ処理などを行い、それらの処理を経た上で、前記入力値に基づいた演算結果である前記最終制御値を決定し出力する。図9ではその最終制御値を制御シフトとも呼ぶ。メインマイコン62sが前記制御シフトを決定すると、例えば、その制御シフトに従って変速機18の変速制御が実行され、パーキングロック装置16が作動させられる。前記制御シフトは、シフト操作装置30で選択され得るシフトポジションPshの何れか、すなわちR,N,D,B,Pポジションの何れかに設定されるものである。メインマイコン62sは前記シフト制御を実行するものであるので、例えば、メインマイコン62sが行う前記中間処理または前記フェールセーフ処理としては、(i)現在のシフトポジションPshがDポジション以外であるときに前記入力値としてBポジションが得られた場合に、前記制御シフト(最終制御値)がBポジションにはされずに現在のシフトポジションPshのままにされること、(ii)所定車速以上の高速走行時であって現在のシフトポジションPshがDポジションであるときに前記入力値としてRポジションが得られた場合に、前記制御シフトがNポジションに決定されること、(iii)所定車速以上の高速走行時であって現在のシフトポジションPshがRポジションであるときに前記入力値としてDポジションが得られた場合に、前記制御シフトがNポジションに決定されること、(iv)シフト操作装置30等の電気回路が正常であればあり得ない入力信号が入力受付部66s,68sに入力され続けている場合に、前記制御シフトがNポジションに決定されること等が挙げられる。
 監視マイコン64sは、図3の監視マイコン64について前述したように、前記異常検出制御を行う。メインマイコン62sの前記最終制御値は前記シフト制御に用いられるものであるので、前記入力値または前記最終制御値としてのシフトポジションPshから得られる車両状態が停車状態に近いほど、車両10がより高い安全状態にあると判断される。従って、図10の車両安全状態マップに示すように、R,N,D,B,Pポジションのうち、Pポジションが車両10の最も高い安全状態が得られるシフトポジションPshである。また、そのPポジションの次に車両10の高い安全状態が得られるシフトポジションPshはNポジションである。また、NポジションはR、D、及びBポジションと比較して、要するに前記走行ポジションと比較して、車両10のより高い安全状態が得られるシフトポジションPshである。このような車両10の安全状態の高低とシフトポジションPshとの関係は図10の車両安全状態マップとして予め定められており、監視マイコン64sに記憶されている。この車両安全状態マップから判るように、図9における前記高度安全状態値はPポジションである。図10の車両安全状態マップから、監視マイコン64sの前記入力値とメインマイコン62sの前記制御シフト(最終制御値)と前記第1~第3の条件(図4参照)の成立との関係は、図11に示すマップで表すことができる。その図11において、〔1〕は前記第1の条件が成立することを示し、〔2〕は前記第2の条件が成立することを示し、〔3〕は前記第3の条件が成立することを示し、「×」はその第1~第3の条件の何れもが不成立であることを示している。なお、DポジションとBポジションとは、何れも車両10を前進させる走行ポジションであるので、図11から判るように、監視マイコン64sが行う前記異常検出制御では、互いに同じシフトポジションPshであるとみなされる。
 上記のように図10の車両安全状態マップが予め定められているので、監視マイコン64sは、前記異常検出制御において、前記車両安全状態マップから、メインマイコン62sが異常であるか否かを判断する。そして、前述した図3での説明と同様に、メインマイコン62sが異常であると監視マイコン64sにより判断された場合には、メインマイコン62sの前記制御シフト(最終制御値)は、前記シフト制御において異常値であると取り扱われる。そして、その制御シフトが異常値であるときに実行されるように予め定められた処理が電子制御装置60によって実行される。例えば、車室内の運転者が見易い箇所に異常が発生した旨を表示したり、車両10が走行中であれば速やかに停車させる処理が、電子制御装置60によって実行される。
 図9において、具体的に監視マイコン64sが実行する前記異常検出制御では、図4~図8に示す前記第1~第5の判断パターンのうち前記第1の判断パターンが採用されている。その異常検出制御が前記シフト制御に関わるからである。従って、監視マイコン64sの異常検出制御部70sは前記異常検出制御において図4に示すフローチャートを実行する。すなわち、異常検出制御部70sは、図4のSA1~SA3に示す前記第1~第3の条件のそれぞれについて前記車両安全状態マップに従って判断する。そして、異常検出制御部70sは、前記第1~第3の条件の全部が不成立である場合に、図4のSA4において、メインマイコン62sが異常であると判断する。
 上述のように、本実施例によれば、電子制御装置60は、前記入力値に基づいた演算結果を出力する前記第1演算処理部であるメインマイコン62,62sと、メインマイコン62,62sの前記入力値と同じ入力値を得る前記第2演算処理部である監視マイコン64,64sとを備えている。そして、監視マイコン64,64sは、その監視マイコン64,64sの前記入力値とメインマイコン62,62sの前記演算結果との比較に基づいて、或いは、その演算結果が車両10の相対的に高い安全状態が得られる予め定められた前記高度安全状態値であるか否かに基づいて、メインマイコン62,62sの異常を検出する。従って、メインマイコン62,62sの前記演算結果の信頼性を確保するために、監視マイコン64,64sをメインマイコン62,62sと同一の構成とする必要がないので、メインマイコン62,62sが大規模な構成であっても、そのメインマイコン62,62sの演算結果の信頼性を確保しつつ電子制御装置60のコスト上昇を抑えることができる。
 また、本実施例によれば、図4のフローチャートに示すように、監視マイコン64sは、メインマイコン62sの前記最終制御値(演算結果)が監視マイコン64sの前記入力値と等しいという前記第1の条件と、メインマイコン62sの前記演算結果が前記高度安全状態値であるという前記第2の条件と、メインマイコン62sの前記演算結果が監視マイコン64sの前記入力値と比較して、車両10のより高い安全状態が得られる値であるという前記第3の条件との何れもが全て不成立である場合に、メインマイコン62sが異常であると判断する。従って、監視マイコン64sは、メインマイコン62sが異常であるか否かを、具体的な判断基準の下で判断することができる。
 また、本実施例によれば、シフト操作装置30は、運転者に選択されたシフトポジションPshをメインマイコン62sおよび監視マイコン64sに電気信号で出力する。そして、メインマイコン62sおよび監視マイコン64sの前記入力値は、シフト操作装置30で選択されたシフトポジションPshであり、メインマイコン62sの前記最終制御値(演算結果)は、シフト操作装置30で選択され得るシフトポジションPsh(R,N,D,B,Pポジション)の何れかに設定されるものである。従って、シフト操作装置30からの前記電気信号に基づいてシフトポジションPshを認識する前記シフト制御において、メインマイコン62sの演算結果の信頼性すなわち前記シフト制御の信頼性を損なわないようにしつつ、監視マイコン64sのコスト上昇を抑えることができる。要するに、前記シフト制御を行う電子制御装置60のコスト上昇を抑えることができる。
 また、本実施例によれば、前記高度安全状態値はPポジション(駐車ポジション)であると予め定められている。また、Nポジション(中立ポジション)はR,D,Bポジション(走行ポジション)と比較して、車両10のより高い安全状態が得られるものと予め定められている。従って、車両10の安全状態の高低とシフトポジションPshとの関係が予め定められているので、監視マイコン64sは、図4のフローチャートに従って、メインマイコン62sが異常であるか否かを容易に判断することが可能である。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
 例えば、前述の実施例において、シフトレバー32は2次元的にシフト操作されるものであるが、一軸に沿ってシフト操作されるものであってもよいし、3次元的にシフト操作されるものであってもよい。また、シフトレバー32は、そのシフトレバー32に作用する外力が無くなればM操作位置へ戻るが、M操作位置へ戻らずに、運転者に操作された操作位置Popeに留まる形式のものであっても差し支えない。
 また、前述の実施例において、シフトレバー32の位置を検出する位置センサとしてシフトセンサ36とセレクトセンサ38とを備えているが、位置センサの数は2つに限定されるわけではない。
 また、前述の実施例において、シフトレバー32は、モーメンタリ式のレバースイッチであるが、それに替えて、例えば押しボタン式のスイッチやスライド式スイッチ等であっても差し支えない。更に言えば、シフト操作装置30は、手動操作ではなく、足によりシフト操作されてもよいし、運転者の音声に反応してシフト操作されてもよい。要するに、シフト操作装置30は、運転者のシフト意思を電気信号に変換する操作装置であればよい。
 また、前述の実施例において、前記車両安全状態マップが図10に例示されているが、その車両安全状態マップは、車両10が停車中であるか減速中であるか高車速走行中であるか等の車両状態に応じて切り替えられるものであっても差し支えない。
 また、前述の実施例において、入力受付部66,68,66s,68sは、前記入力信号からその入力信号が表す前記入力値を求めるが、その入力信号自体が異常である場合には所定のフェールセーフ処理を実施しても差し支えない。例えば、図9において入力受付部66s,68sは、前記メインシフトセンサと前記サブシフトセンサとの一方が異常である場合、または、前記メインセレクトセンサと前記サブセレクトセンサとの一方が異常である場合には、他方のセンサからの前記入力信号に基づいて前記入力値を求めるものであっても差し支えない。
 なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10:車両
14:駆動輪
30:シフト操作装置
60:電子制御装置(車両用制御装置)
62,62s:メインマイコン(第1演算処理部)
64,64s:監視マイコン(第2演算処理部)

Claims (4)

  1.  入力値に基づいた演算結果を出力する第1演算処理部と、該第1演算処理部の入力値と同じ入力値を得る第2演算処理部とを備えた車両用制御装置であって、
     前記第2演算処理部は、該第2演算処理部の入力値と前記第1演算処理部の演算結果との比較に基づいて、或いは、該演算結果が車両の相対的に高い安全状態が得られる予め定められた高度安全状態値であるか否かに基づいて、前記第1演算処理部の異常を検出する
     ことを特徴とする車両用制御装置。
  2.  前記第2演算処理部は、前記第1演算処理部の演算結果が前記第2演算処理部の入力値と等しいという条件と、前記第1演算処理部の演算結果が前記高度安全状態値であるという条件と、前記第1演算処理部の演算結果が前記第2演算処理部の入力値と比較して、前記車両のより高い安全状態が得られる値であるという条件との何れもが全て不成立である場合に、前記第1演算処理部が異常であると判断する
     ことを特徴とする請求項1に記載の車両用制御装置。
  3.  運転者に選択されたシフトポジションを前記第1演算処理部および前記第2演算処理部に電気信号で出力するシフト操作装置が設けられており、
     前記第1演算処理部および前記第2演算処理部の入力値は、前記シフト操作装置で選択された前記シフトポジションであり、
     前記第1演算処理部の演算結果は、前記シフト操作装置で選択され得る前記シフトポジションの何れかに設定されるものである
     ことを特徴とする請求項2に記載の車両用制御装置。
  4.  前記シフト操作装置では、駆動輪への動力伝達を遮断すると共に該駆動輪を固定する駐車ポジションと、前記駆動輪への動力伝達を遮断すると共に該駆動輪の回転を許容する中立ポジションと、前記車両を前進又は後進させる走行ポジションとの何れかの前記シフトポジションが選択され、
     前記高度安全状態値は前記駐車ポジションと予め定められており、
     前記中立ポジションは前記走行ポジションと比較して、前記車両のより高い安全状態が得られるものと予め定められている
     ことを特徴とする請求項3に記載の車両用制御装置。
     
PCT/JP2011/074028 2011-10-19 2011-10-19 車両用制御装置 WO2013057800A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/352,000 US9416870B2 (en) 2011-10-19 2011-10-19 Vehicle control apparatus
PCT/JP2011/074028 WO2013057800A1 (ja) 2011-10-19 2011-10-19 車両用制御装置
CN201180074313.6A CN103906658B (zh) 2011-10-19 2011-10-19 车辆用控制装置
JP2013539445A JP5713113B2 (ja) 2011-10-19 2011-10-19 車両用制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074028 WO2013057800A1 (ja) 2011-10-19 2011-10-19 車両用制御装置

Publications (1)

Publication Number Publication Date
WO2013057800A1 true WO2013057800A1 (ja) 2013-04-25

Family

ID=48140477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074028 WO2013057800A1 (ja) 2011-10-19 2011-10-19 車両用制御装置

Country Status (4)

Country Link
US (1) US9416870B2 (ja)
JP (1) JP5713113B2 (ja)
CN (1) CN103906658B (ja)
WO (1) WO2013057800A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056859A1 (ja) * 2015-10-02 2017-04-06 株式会社デンソー 車両の制御装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013208709A1 (de) * 2013-05-13 2014-11-13 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Ermitteln von Eingangsdaten einer Fahrerassistenzeinheit
EP3418608A1 (en) * 2016-02-19 2018-12-26 Jatco Ltd Abnormality detection device for automatic transmission
JP6673817B2 (ja) * 2016-12-23 2020-03-25 トヨタ自動車株式会社 ハイブリッド車両の制御装置
CN115568932A (zh) * 2021-07-22 2023-01-06 海杰亚(北京)医疗器械有限公司 肿瘤微创治疗电气控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274361A (ja) * 1993-03-23 1994-09-30 Fujitsu Ten Ltd 車両制御用コンピュータシステム
JP2001063492A (ja) * 1999-08-27 2001-03-13 Nec Corp 車両安全制御装置の電子制御装置
JP2011126327A (ja) * 2009-12-15 2011-06-30 Hitachi Automotive Systems Ltd 車載制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19964419B4 (de) * 1999-11-27 2008-11-20 Daimler Ag Schaltvorrichtung
DE10056549C2 (de) * 2000-11-15 2003-11-06 Bosch Gmbh Robert Mehrfachnutzung von Sensorsignalen durch mehrere Fahrzeugsysteme
JP4155198B2 (ja) * 2004-01-19 2008-09-24 トヨタ自動車株式会社 車両の制御システムの異常検知装置
US7984784B2 (en) * 2008-05-23 2011-07-26 Deere & Company Directional transmission control with ECU authorization
US8510004B2 (en) * 2009-03-06 2013-08-13 Eaton Corporation Transmission control module with valve control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06274361A (ja) * 1993-03-23 1994-09-30 Fujitsu Ten Ltd 車両制御用コンピュータシステム
JP2001063492A (ja) * 1999-08-27 2001-03-13 Nec Corp 車両安全制御装置の電子制御装置
JP2011126327A (ja) * 2009-12-15 2011-06-30 Hitachi Automotive Systems Ltd 車載制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056859A1 (ja) * 2015-10-02 2017-04-06 株式会社デンソー 車両の制御装置

Also Published As

Publication number Publication date
CN103906658B (zh) 2016-01-20
US20140303861A1 (en) 2014-10-09
US9416870B2 (en) 2016-08-16
CN103906658A (zh) 2014-07-02
JPWO2013057800A1 (ja) 2015-04-02
JP5713113B2 (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5359459B2 (ja) 車両のシフト制御装置
JP4930457B2 (ja) 車両の制御装置
JP5555710B2 (ja) 車両の発進補助装置
US10571019B2 (en) Control system for vehicle
JP5071422B2 (ja) 車両用シフト制御装置
JP5713113B2 (ja) 車両用制御装置
JP5692246B2 (ja) 車両の制御装置
US20190220006A1 (en) Control apparatus for vehicle
EP2677214B1 (en) Vehicle control device
JP2008185168A (ja) 自動変速機の制御装置
US10458539B2 (en) Vehicle control device
US10508733B2 (en) Control system for vehicle
US8751120B2 (en) Driving control system for vehicle
JP2008006982A (ja) 車両のシフト制御装置
JP2020172184A (ja) 車両の制御装置
JP6164254B2 (ja) 車両用動力伝達装置
JP2009108922A (ja) 車両の制御装置
JP4935951B2 (ja) シフト制御装置
JP2005170600A (ja) 産業車両の安全装置
EP2090455B1 (en) Vehicle speed limiting device
JP2005113830A (ja) 動力システム
JP2021032101A (ja) 車両の急発進防止装置
JP2008247200A (ja) 自動変速機のシフト機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539445

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14352000

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874335

Country of ref document: EP

Kind code of ref document: A1