WO2013056510A1 - 脱氧核苷与核苷组合在制备肿瘤药物中的应用 - Google Patents

脱氧核苷与核苷组合在制备肿瘤药物中的应用 Download PDF

Info

Publication number
WO2013056510A1
WO2013056510A1 PCT/CN2012/001392 CN2012001392W WO2013056510A1 WO 2013056510 A1 WO2013056510 A1 WO 2013056510A1 CN 2012001392 W CN2012001392 W CN 2012001392W WO 2013056510 A1 WO2013056510 A1 WO 2013056510A1
Authority
WO
WIPO (PCT)
Prior art keywords
deoxynucleoside
nucleoside
tumor
combination
deoxyadenosine
Prior art date
Application number
PCT/CN2012/001392
Other languages
English (en)
French (fr)
Inventor
张始状
程鑫
高志芹
韩明
Original Assignee
Zhang Shizhuang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhang Shizhuang filed Critical Zhang Shizhuang
Priority to ES12842329.0T priority Critical patent/ES2587850T3/es
Priority to DK12842329.0T priority patent/DK2769727T3/en
Priority to EP12842329.0A priority patent/EP2769727B1/en
Publication of WO2013056510A1 publication Critical patent/WO2013056510A1/zh
Priority to US14/254,911 priority patent/US20140309188A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • A61K31/708Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid having oxo groups directly attached to the purine ring system, e.g. guanosine, guanylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • A61K31/7072Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid having two oxo groups directly attached to the pyrimidine ring, e.g. uridine, uridylic acid, thymidine, zidovudine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia

Definitions

  • the present invention relates to the use of a combination of a deoxynucleoside and a nucleoside in the preparation of a tumor drug, in particular, a combination of one or two deoxynucleosides and one or more other nucleosides for the treatment of a tumor, It belongs to the field of oncology drugs.
  • a nucleoside is formed by linking a base with a five-carbon sugar (ribose or deoxyribose), that is, N-1 of purine or N-1 of pyrimidine is linked to C-1 of ribose or deoxyribose by ⁇ glycosidic bond.
  • ribose or deoxyribose a five-carbon sugar
  • N-1 of purine or N-1 of pyrimidine is linked to C-1 of ribose or deoxyribose by ⁇ glycosidic bond.
  • ribonucleosides are nucleosides that constitute RNA, mainly adenosine, guanosine, cytidine and uridine; deoxyribonucleosides (abbreviated as deoxynucleosides) are The nucleosides constituting DNA mainly include deoxyadenosine, deoxyguanosine, deoxycytidine, and deoxythymidine. Nucleosides can be prepared by hydrolyzing nucleic acids.
  • a ribonucleoside can be obtained by hydrolyzing ribonucleic acid RNA with an aqueous solution of pyridine, alumina or enzymatically; deoxyribonucleoside can be obtained by hydrolyzing deoxyribonucleic acid DNA with alumina or an enzyme. Nucleosides can also be synthesized chemically. Condensation of a suitably protected ribose or deoxyribose with a base derivative provides the corresponding ribonucleoside and deoxyribonucleoside.
  • Ribonucleoside a compound obtained by covalently binding a purine or pyrimidine other than thymine to a ribose molecule, mainly adenosine, guanosine, cytidine and uridine.
  • Adenosine is abbreviated as adenosine, chemical name: 9- ⁇ - ⁇ -ribofuranosyl adenine, CAS No.: 58-61-7, molecular formula: C 1() H 13 N 5 0 4 , molecular weight: 267.24.
  • Guanosine nucleoside abbreviated guanosine, chemical name: 9- ⁇ - ⁇ -furan nucleoside guanine, CAS No.: 118-00-3, Molecular formula: C 1() H 13 N 5 0 5 , Molecular weight: 283.24.
  • Cytosine nucleoside abbreviated as cytidine, chemical name: ⁇ - ⁇ -D-ribofuranosylcytosine, CAS No.: 65-46-3, molecular formula: C 9 H 13 N 3 0 5 , molecular weight 243.22.
  • Uridine is abbreviated as uridine, chemical name: ⁇ - ⁇ -D-ribofuranosyluracil, CAS No.: 58-96-8, molecular formula: C 9 H 12 N 2 0 6 , molecular weight 244.20.
  • Deoxynucleoside which is the C-1 of N-9 and 2-deoxy-D-ribose of N-9 or pyrimidine base (cytosine, thymine) of purine (adenine, guanine)
  • cytosine, thymine of purine (adenine, guanine)
  • purine adenine, guanine
  • thymidine a compound in which ⁇ -glycosidic bonds are linked, and the main deoxynucleosides in the body are deoxyadenosine, deoxyguanosine, deoxycytidine, and thymidine (referred to as thymidine).
  • Deoxyguanosine (2)-guanine deoxynucleoside chemical name: 9- ⁇ -2'-furan deoxynucleoside guanine, is the C-1 of guanine-9 and 2-deoxyribose A compound formed by the attachment of a ⁇ -glycosidic bond, CAS No.: 961-07-9, Molecular Formula: C 1() H 13 N 5 0 4 , Molecular Weight: 267.24.
  • Thymidine is abbreviated as Thymidine, 2'-deoxythymidine, or ⁇ -thymidine, chemical name: 9-PD-furan nucleoside thymine, CAS No.: 50-89-5, molecular formula : C 1() H 14 N 2 0 5 , molecular weight 242.423.
  • Deoxyribonucleoside monophosphate is a structural fragment constituting deoxyribonucleic acid DNA.
  • Deoxynucleosides and their derivatives have good physiological activity and are important raw materials for genetic drugs and genetic engineering research.
  • 2-chlorodeoxyadenosine is used to treat leukemia.
  • 2' deoxyadenosine and 3' deoxyadenosine and 2 deoxyadenosine and 3 deoxyadenosine extracted from compound cordycepin have obvious inhibitory effects on tumors.
  • Cyclic guanosine (Daloxifene) has significant antiviral effects
  • 2 deoxycytidine zaxicytidine is a commonly used drug for the treatment of AIDS.
  • deoxynucleoside analogs are good intermediates for many antiviral, antitumor, and anti-AIDS drugs.
  • the combination of deoxynucleoside or / with other nucleosides has been used in the field of anti-tumor, and no relevant reports have been reported. Summary of the invention
  • the object of the present invention is to provide a combination of a deoxynucleoside and a nucleoside for preparing a tumor drug
  • the four deoxynucleosides include one or two of deoxyadenosine, deoxyguanosine, deoxycytidine and thymidine.
  • nucleosides including adenosine, guanosine, cytidine, uridine, deoxyadenosine, deoxyguanosine, deoxycytidine, thymidine, as a pharmaceutical component for treating tumors, compared to separate applications It can achieve the purpose of significantly improving anti-tumor effect, reducing toxic side effects and delaying the occurrence of drug resistance.
  • a combination of a deoxynucleoside and a nucleoside in the preparation of a tumor drug, the deoxynucleoside comprising deoxyadenosine, deoxyguanosine, deoxycytidine, thymidine; the nucleoside comprising adenosine, guanosine, cell Glycosides, uridine, deoxyadenosine, deoxyguanosine, deoxycytidine, thymidine.
  • the deoxynucleoside is a replacement page of deoxyadenosine, deoxyguanosine, deoxycytidine, thymidine (Article 26) Or two; the nucleoside is one or more of adenosine, guanosine, cytidine, uridine, deoxyadenosine, deoxyguanosine, deoxycytidine, thymidine.
  • the deoxynucleoside is one of deoxyadenosine, deoxyguanosine, deoxycytidine, thymidine;
  • the nucleoside is adenosine, guanosine, cytidine, uridine, deoxyadenosine One or two of deoxyguanosine, deoxycytidine, and thymidine, and the selected deoxynucleoside is different from the nucleoside.
  • the deoxynucleoside is two of deoxyadenosine, deoxyguanosine, deoxycytidine, and thymidine;
  • the nucleoside is adenosine, guanosine, cytidine, uridine, deoxyadenosine One or two of deoxyguanosine, deoxycytidine, and thymidine, and the selected deoxynucleoside is different from the nucleoside.
  • the deoxynucleoside is two of deoxyadenosine, deoxyguanosine, deoxycytidine, and thymidine
  • the nucleoside is adenosine, guanosine, cytidine, uridine, deoxyadenosine.
  • one of deoxyguanosine, deoxycytidine, and thymidine is one of deoxyguanosine, deoxycytidine, and thymidine.
  • the deoxynucleoside is deoxyadenosine and deoxyguanosine
  • the nucleoside is a ribonucleoside
  • the tumor includes various common malignant tumors such as gastric cancer, lung cancer, liver cancer, colon cancer, breast cancer, leukemia, and reproductive system tumor.
  • the combination of different nucleosides is lower than the concentration of a single drug in the blood of a single drug, and thus the side effects are reduced.
  • multiple drugs can delay the occurrence of tumor resistance.
  • the dosage of each component can be reduced, and the absolute concentration of each specific nucleoside is significantly decreased, and the toxic side effects of the drug are decreased.
  • the combination of two or more chemotherapeutic drugs can greatly reduce the drug resistance. happened.
  • deoxynucleosides and another nucleoside Compared with deoxynucleosides and another nucleoside, the combination of deoxynucleosides and two other nucleosides is greatly reduced; compared with deoxynucleosides and four other nucleosides, deoxynucleosides and The combination of the other two nucleosides is easy to use and easy to formulate while reducing drug resistance.
  • the deoxynucleoside After the deoxynucleoside is combined with other nucleosides, it is used in the preparation of a medicament for treating the above tumor, and an injection is directly prepared for injection; the injection may be a conventional injection or various types of sustained release injections.
  • Deoxyadenosine, deoxyguanosine, deoxycytidine and its corresponding non-deoxynucleosides are one oxygen atom in the molecule, the molecular weight is 16D, and the concentration is above 0.03mmol/L. It showed anti-tumor activity, and the tumor inhibition rate was over 80% in the concentration of 0.4mmol/L.
  • Deoxynucleosides have an obvious anti-tumor effect, and single deoxyadenosine treats the tumor size by 15°/. Complete remission, the effective rate is above 91.0%, and the dosage is low, 4.0 ⁇ 35.0 mmol /Kg / day, continuous slow intravenous drip.
  • deoxynucleoside and other nucleosides are lower than the concentration of a single drug in the blood of a single drug, thereby reducing toxic and side effects;
  • deoxynucleoside combined with other nucleosides can delay the occurrence of tumor resistance.
  • Human hepatoma Bel-7402 tumor cells and human lung cancer cells PG (provided by Shanghai University of Chinese Academy of Sciences) were cultured in RPMI 1640 medium containing 10% newborn calf serum, and cells in logarithmic growth phase were digested with 0.25% trypsin. Then, the cells were inoculated into 96-well plates at 3 ⁇ 10 3 cells/well, and cultured in a 37° C., 5% CO 2 incubator for 24 hours. Each group was provided with 8 replicate wells, and the test group was added to a total concentration of 10 mmol/L.
  • the formula for calculating the growth inhibition rate of tumor cells is as follows:
  • Tumor cell survival rate (%) actual OD value of the drug-filled well / OD value of the negative control well;
  • Tumor cell growth inhibition rate (%) 100% - cell viability.
  • A, G, C, U represent adenosine, guanosine, cytidine and uridine, respectively
  • dA, dG, dC, T represent deoxyadenosine, deoxyguanosine, deoxycytidine and thymidine, respectively
  • Test method The combination of various deoxynucleosides and ribonucleosides and the control group (5-FU) were separately set up, as shown in Table 3.
  • the drug was administered to human liver cancer Bd-7402 tumor cells (provided by Shanghai University of Chinese Academy of Sciences), and the method and conditions were the same as those in Example 1.
  • the total concentration of nucleosides, the concentration of single nucleotide and the concentration of 5-FU were the same, and were the same as in Example 1.
  • a deoxynucleoside combined with two nucleosides one deoxygenated, one non-deoxygenated
  • the same single deoxynucleoside two ribonucleosides alone
  • a control group (5-FU) for human gastric cancer Cell line BGC823 anti-tumor test
  • the combination of various deoxynucleosides with other nucleosides and the control group (5-FU) were separately set up, as shown in Table 4.
  • the drug was applied to human gastric cancer cell line BGC823 tumor cells (provided by the Institute of Basic Medical Sciences, Chinese Academy of Sciences), and the method and conditions were the same as those in Example 1.
  • the total concentration of the nucleoside combination, the single nucleoside concentration, and the 5-FU concentration were the same as in Example 1.
  • the tumor inhibition test was performed by combining two kinds of deoxynucleosides with one ribonucleoside, and two kinds of deoxynucleosides alone, one ribonucleoside alone, and the control group (5-FU).
  • Medication for human breast cancer cell replacement page (Article 26) Bcap-37 tumor cells (provided by the Institute of Basic Medical Sciences, Chinese Academy of Sciences), methods and conditions are the same as in Example 1.
  • the total concentration of the nucleoside combination, the single nucleoside concentration, and the 5-FU concentration were the same, and were the same as in Example 1.
  • a ribonucleoside a combination of two deoxynucleosides, a combination of two deoxynucleosides and a non-deoxynucleoside, wherein the inhibitory effect on the tumor is sequentially increased, wherein the two deoxynucleosides and one ribonucleoside
  • the combination of glycosides has the highest inhibition rate for Bcap-37;
  • deoxynucleoside combinations were combined with two kinds of deoxynucleosides and a control group (5-FU) to suppress tumors, as shown in Table 7.
  • the drug was applied to human glioma SHG-44 tumor cells (provided by the Institute of Basic Medical Sciences, Chinese Academy of Sciences), and the method and conditions were the same as those in Example 1.
  • the total concentration of the nucleoside combination, the single nucleoside concentration, and the 5-FU concentration were the same, and were the same as in Example 1.
  • deoxynucleosides Two kinds of deoxynucleosides (dA+dG) were combined with one deoxynucleoside (C) and the control group (5-FU) to inhibit tumor growth, as shown in Table 8.
  • the drug was administered to human pancreatic cancer cell line PANC-1 tumor cells (provided by the Institute of Basic Medical Sciences, Chinese Academy of Sciences).
  • the method and conditions were the same as those in Example 1, and the total concentration of the nucleoside combination was the same as that of the control group.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

脱氧核苷与核苷组合在制备抗肿瘤药物中的应用,所述的脱氧核苷包括脱氧腺苷、脱氧鸟苷、脱氧胞苷、胸苷;所述的核苷包括腺苷、鸟苷、胞苷、尿苷、脱氧腺苷、脱氧鸟苷、脱氧胞苷、胸苷。本发明的脱氧核苷与核苷组合用于制备治疗胃癌、肺癌、肝癌、结肠癌、乳腺癌、生殖系统肿瘤等多种常见恶性肿瘤的药物。

Description

脱氧核苷与核苷组合在制备肿瘤药物中的应用 技术领域
本发明涉及脱氧核苷与核苷组合在制备肿瘤药物中的应用, 具体地说是将 一种或两种脱氧核苷与其它核苷中的一种或多种按组合成药用于治疗肿瘤, 属 于肿瘤药物领域。
背景技术
核苷 (nucleoside) 由碱基和五碳糖 (核糖或脱氧核糖)连接而成, 即嘌呤的 N-9或嘧啶的 N-1与核糖或脱氧核糖的 C-1通过 β糖苷键连接而成的化合物,包 括核糖核苷和脱氧核糖核苷两类, 核糖核苷是构成 RNA的核苷, 主要有腺苷、 鸟苷、 胞苷和尿苷; 脱氧核糖核苷 (简称脱氧核苷)是构成 DNA的核苷, 主要 有脱氧腺苷、 脱氧鸟苷、 脱氧胞苷和脱氧胸腺苷。 核苷可从水解核酸来制备。 用吡啶水溶液、 氧化铝或酶促水解核糖核酸 RNA, 可得到核糖核苷; 用氧化铝 或酶水解脱氧核糖核酸 DNA可得到脱氧核糖核苷。 核苷也可用化学方法合成。 适当保护的核糖或脱氧核糖与碱基衍生物缩合, 可得到相应的核糖核苷和脱氧 核糖核苷。
核糖核苷, 由除胸腺嘧啶外的嘌呤或嘧啶与核糖分子共价结合而成的化合 物, 主要有腺苷、 鸟苷、胞苷和尿苷。腺嘌呤核苷 (adenosine)简称腺苷, 化学名: 9-β-ϋ-呋喃核糖基腺嘌呤, CAS号: 58-61-7,分子式: C1()H13N504,分子量: 267.24。 鸟嘌呤核苷简称鸟苷, 化学名: 9-β-ϋ-呋喃核苷鸟嘌, CAS号: 118-00-3, 分子 式: C1()H13N505, 分子量: 283.24。 胞嘧啶核苷简称胞苷, 化学名: Ι-β-D-呋喃 核糖基胞嘧啶, CAS号: 65-46-3, 分子式: C9H13N305, 分子量 243.22。 尿嘧啶 核苷简称尿苷, 化学名: Ι-β-D-呋喃核糖基尿嘧啶, CAS号: 58-96-8, 分子式: C9H12N206, 分子量 244.20。
脱氧核糖核苷 (deoxynucleoside), 是嘌吟碱 (腺嘌呤、 鸟嘌呤)的 N-9或嘧 啶碱 (胞嘧啶、 胸腺嘧啶)的 N-1与 2-脱氧 -D-核糖的 C-1通过 β糖苷键相连接而 成的化合物, 体内主要的脱氧核苷有脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸腺嘧 啶脱氧核苷 (简称胸苷)。 脱氧腺苷 (deoxyadenosine) 即 2'-腺嘌呤脱氧核苷, 化学名: 9-p-D-2'-脱氧呋喃核苷腺嘌呤,是腺嘌呤的 N-9与 2-脱氧 核糖的 C-1 替换页 (细则第 26条) 通过 β糖苷键相连所形成的化合物, CAS号: 958-09-8, 分子式: C1QH13N503, 分子量: 251.24。 脱氧鸟苷 (deoxyguanosine) 即 2'-鸟嘌呤脱氧核苷, 化学名: 9-β-2'-呋喃脱氧核苷鸟嘌呤, 是鸟嘌呤的 Ν-9与 2-脱氧 核糖的 C-1通过 β糖 苷键相连接所形成的化合物, CAS号: 961-07-9, 分子式: C1()H13N504, 分子量: 267.24。 脱氧胞苷 (deoxycytidine) 即 2'-脱氧胞嘧啶核苷, 化学名: 1-β-2'-呋喃 脱氧核苷胞嘧啶, 是胞嘧啶的 N-1与 2-脱氧 -D-核糖的 C-1通过 β糖苷键相连接 所形成的化合物, CAS 号: 951-77-9, 分子式: C9H13N304, 分子量: 227.22。 胸腺嘧啶脱氧核苷简称胸苷 (Thymidine) 即 2'-脱氧胸腺嘧啶核苷, 或 β-胸苷, 化学名: 9-P-D-呋喃核苷胸腺嘧啶, CAS号: 50-89-5, 分子式: C1()H14N205, 分 子量为 242.023。
一磷酸脱氧核糖核苷是构成脱氧核糖核酸 DNA的结构片段,脱氧核苷及其 衍生物具有良好的生理活性, 是基因药物和基因工程研究的重要原料。 如 2-氯 脱氧腺苷用于治疗白血病,从复合虫草素中提取的 2'脱氧腺苷和 3'脱氧腺苷及 2 脱氧腺苷和 3 脱氧腺苷对肿瘤有明显的抑制作用, 脱氧无环鸟苷 (地昔洛伟) 有显著的抗病毒作用, 2脱氧胞苷(扎西胞苷)是临床上常用的治疗艾滋病的药 物。 因此脱氧核苷类似物是许多抗病毒、 抗肿瘤、 抗艾滋病药物的良好中间体。 但是将脱氧核苷或 /与其它核苷按组合, 用于抗肿瘤领域, 尚未见相关报道。 发明内容
本发明的目的在于, 提供了脱氧核苷与核苷组合在制备肿瘤药物中的应用, 将四种脱氧核苷包括脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷中的一种或两种与 其它核苷包括腺苷、 鸟苷、 胞苷、 尿苷、 脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸 苷的一种或多种组合作为治疗肿瘤的药物成分使用, 较单独应用能够达到明显 提高抗肿瘤效果, 减少毒副作用和延缓耐药性发生的目的。
本发明的技术方案为:
脱氧核苷与核苷组合在制备肿瘤药物中的应用, 所述的脱氧核苷包括脱氧 腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷; 所述的核苷包括腺苷、 鸟苷、 胞苷、 尿苷、 脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷。
其中, 所述的脱氧核苷为脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷中的一种 替换页 (细则第 26条) 或两种; 所述的核苷为腺苷、 鸟苷、 胞苷、 尿苷、 脱氧腺苷、 脱氧鸟苷、 脱氧 胞苷、 胸苷中的一种或多种。
优选地, 所述的脱氧核苷为脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷中的一 种; 所述的核苷为腺苷、 鸟苷、 胞苷、 尿苷、 脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷中的一种或两种, 且选择的脱氧核苷与核苷不同。
优选地, 所述的脱氧核苷为脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷中的两 种; 所述的核苷为腺苷、 鸟苷、 胞苷、 尿苷、 脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷中的一种或两种, 且选择的脱氧核苷与核苷不同。
进一步地, 所述的脱氧核苷为脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷中的 两种, 所述的核苷为腺苷、 鸟苷、 胞苷、 尿苷、 脱氧腺苷、 脱氧鸟苷、 脱氧胞 苷、 胸苷中的一种。
优选地, 所述的脱氧核苷为脱氧腺苷和脱氧鸟苷, 所述的核苷为一种核糖 核苷。
进一步地, 上述各成分的摩尔数相同。
所述的肿瘤包括胃癌、 肺癌、 肝癌、 结肠癌、 乳腺癌、 白血病、 生殖系统 肿瘤等多种常见恶性肿瘤。
经研究发现: 不同的核苷组合用药比单一用药血液中的单一药物浓度降低, 因而毒副作用下降。 同时多药用药可延缓肿瘤耐药性的发生。 通过组合用药, 能够降低各成分单一用药时的用药量, 而每种具体核苷的绝对浓度明显下降, 药物毒副作用就下降; 同时, 二种或多种化疗药物组合用药可大大降低耐药性 的发生。 相比脱氧核苷与另一种核苷用药, 脱氧核苷与另两种核苷的组合, 其 耐药性大大降低; 相比脱氧核苷与另四种核苷组合用药, 脱氧核苷与另两种核 苷的组合, 在降低了耐药性的同时, 使用起来也方便, 容易配制。
将脱氧核苷与其它核苷组合后, 用在制备治疗上述肿瘤的药物中, 直接制 成注射剂, 进行注射使用; 注射剂可以是常规注射剂, 也可是各种类型的缓释 注射剂。
不同肿瘤有不同的核苷代谢与组成特点, 对不同肿瘤细胞每种核苷有不同 的抑制强度。 经研究发现, 嘌呤核苷的抗肿瘤作用强于嘧啶核苷, 且嘌呤核苷 替换页 (细则第 26条) 的代谢产物次黄嘌吟核苷 (即肌苷) 也有一定的抗肿瘤作用; 同一碱基的核苷 脱氧核苷抗肿瘤作用强于非脱氧核苷。 脱氧腺苷、 脱氧鸟苷、 脱氧胞苷与其对 应的非脱氧核苷 (即腺苷、 鸟苷、 胞苷、 尿苷) 分子中差一个氧原子, 分子量 小 16D, 在浓度 0.03mmol/L以上表现出抗肿瘤活性, 在浓度 0.4mmol/L体外抑 瘤率达 80%以上。 脱氧核苷抗肿瘤作用明显, 单一脱氧腺苷治疗肿瘤瘤体大小 的 15°/。完全缓解, 有效率为 91.0%以上, 且使用剂量低, 为 4.0〜35.0 mmol /Kg/ 天, 持续缓慢静脉点滴。
本发明的优点在于:
1、 脱氧核苷与其它核苷组合用于制备治疗胃癌、 肺癌、 肝癌、 结肠癌、 乳 腺癌、 生殖系统肿瘤等多种常见恶性肿瘤的药物, 抗肿瘤效果明显, 具有高效、 广谱、 低毒的特点; 对正常细胞无细胞毒作用是该发明的最大优点。
2、 脱氧核苷与其它核苷组合用药比单一用药血液中的单一药物浓度降低, 从而毒副作用降低;
3、 脱氧核苷与其它核苷组合用药可延缓肿瘤耐药性的发生。
具体实施方式
以下对本发明的优选实施例进行说明, 应当理解, 此处所描述的优选实施 例仅用于说明和解释本发明, 并不用于限定本发明。
实施例 1
脱氧核苷与其它核苷的抑瘤实验
一、 试验方法
将人肝癌 Bel-7402肿瘤细胞和人肺癌细胞 PG (中国科学院上海细胞所提 供), 用含 10%新生牛血清的 RPMI 1640培养基培养, 取对数生长期的细胞, 用 0.25%胰蛋白酶消化后以 3χ103个 /孔接种于 96孔板, 置于 37°C、 5%C02培养箱 中培养 24小时, 每组设 8个复孔, 试验组分别加入总浓度为 lO.Ommol/L的核 苷溶液 60iiL,补充培养液至每孔 200μί,对照组的 5-FU试验组的脱氧腺苷的用 量 (mmol L) 相同, 用无血清培养基稀释, 0.22μπι的无菌微孔滤膜过滤。 在拟 定的测量时间 48小时,倒置显微镜观察细胞形态并拍照,然后每孔加入 5mg/mL 的 MTT溶液 20μί, 置于 37°C、 5%C02培养箱中继续培养 4小时, 终止培养, 替换页 (细则第 26条) 吸弃孔内培养的上清液, 每孔加入 15(^L DMSO, 震荡 10分钟, 使结晶物充分 溶解后, 以自动酶标仪(Thermo, 型号 MULTISKAN MK3 )测量 570mn处吸光 度。 每一板每组设 8个复孔, 每个实验重复 3次, 表 1 中数据为三次实验的平 均均数。 在以后的实施例中, 数据的计算完全与本实施例相同。
肿瘤细胞生长抑制率计算公式如下:
肿瘤细胞存活率(%)=加药孔的实际 OD值 /阴性对照孔的 OD值;
肿瘤细胞生长抑制率 (%)=100%—细胞存活率。
表 1.各种核苷对 7402、 PG肿瘤细胞 48小时抑制率 (%)
Figure imgf000006_0001
(表中: A、 G、 C、 U分别代表腺苷、 鸟苷、 胞苷和尿苷, dA、 dG、 dC、 T分别代表脱氧腺苷、 脱氧鸟苷、 脱氧胞苷和胸苷)
二、 结果与分析
从上表 1中可以看出:
1、 脱氧核苷与非脱氧核苷均有抗肿瘤作用;
2、 嘌呤核苷抗肿瘤作用强于嘧啶核苷;
3、 脱氧核苷抗肿瘤作用强于非脱氧核苷。
实施例 2
一种脱氧核苷与一种核苷组合及该种脱氧核苷、 核苷单独用药的抑瘤试验 一、 试验方法
分别设置各种脱氧核苷与核糖核苷的组合及对照组 (5-FU) 实验, 见表 2。 用药于人结肠癌细胞株 ΗΤ-29肿瘤细胞 (中国科学院基础医学研究所所提供), 方法和条件同实施例 1。 核苷的总浓度、 单一核苷浓度及 5-FU浓度的相同, 并 与实施例 1相同。 替换页 (细则第 26条) 表 2. 脱氧核苷与核苷组合对 HT-29细胞的抑制率 (%)
Figure imgf000007_0001
二、 结果与分析
从表 2 中可以看出, 脱氧核苷与核苷的组合抗肿瘤作用比单一核苷抑瘤率 均有所提高; 因单一核苷的浓度降低 50%, 从而其副作用也有不同程度降低。 实施例 3
一种脱氧核苷与二种核糖核苷组合、 以及相同的单独一种脱氧核苷、 单独 核糖核苷和对照组 (5-FU) 的对人肝癌 Bd-7402抑瘤试验
一、 试验方法: 分别设置各种脱氧核苷与核糖核苷的组合及对照组(5-FU) 实验, 见表 3。用药于人肝癌 Bd-7402肿瘤细胞(中国科学院上海细胞所提供), 方法和条件同实施例 1。 核苷的总浓度、 单一核苷浓度及 5-FU浓度的相同, 并 与实施例 1相同。
表 3、 脱氧核苷及不同组合对 7402抑制率 (%)
Figure imgf000007_0002
二、 结果与分析
从上表 3中可以看出: 一种脱氧核苷与二种核糖核苷组合对 BGC823有明 替换页 (细则第 26条) 显抑瘤率, 较单独的单独一种脱氧核苷或单独的二种核糖核苷组合的肿瘤抑制 率均高, 且临床发现其毒副作用低。
实施例 4
一种脱氧核苷与二种核苷 (一种脱氧、 一种非脱氧)组合、 以及相同的单 独一种脱氧核苷、 单独二种核糖核苷和对照组 (5-FU) 的对人胃癌细胞株 BGC823抑瘤试验
一、 试验方法
分别设置各种脱氧核苷与其它核苷的组合及对照组(5-FU)实验,见表 4。 用药于人胃癌细胞株 BGC823肿瘤细胞(中国科学院基础医学研究所所提供), 方法和条件同实施例 1。 核苷组合的总浓度、 单一核苷浓度及 5-FU浓度的相 同, 并与实施例 1相同。
表 4、 脱氧核苷及不同组合对 BGC823抑制率 (%)
Figure imgf000008_0001
二、 结果与分析
从上表 4中可以看出:
1、 一种脱氧核苷、 一种脱氧与一种非脱氧核苷组合、 二种脱氧核苷与一种 非脱氧核苷组合, 其对肿瘤的抑制作用依次提高, 其中, dA+dG+C因为有 2种 脱氧嘌呤核苷参与, 对胃癌细胞株 BGC823抑制最明显;
2、核苷组合后不但没有降低肿瘤抑制作用,而是提高了对肿瘤的抑制作用。 实施例 5
二种脱氧核苷与一种核糖核苷组合、 以及单独二种脱氧核苷、 单独一种核 糖核苷和对照组 (5-FU) 对人乳腺癌细胞株 Bcap-37的抑瘤试验
一、 试验方法
分别设置二种脱氧核苷与一种核糖核苷组合、 以及单独二种脱氧核苷、 单 独一种核糖核苷、 和对照组(5-FU) 的抑瘤试验, 见表 5。 用药于人乳腺癌细胞 替换页 (细则第 26条) 株 Bcap-37肿瘤细胞 (中国科学院基础医学研究所所提供), 方法和条件同实施 例 1。 核苷组合的总浓度、 单一核苷浓度及 5-FU浓度的相同, 并与实施例 1相 同。
表 5、 二种脱氧核苷与一种核糖核苷组合对 Bcap-37抑制率 (%)
Figure imgf000009_0001
二、 结果与分析
从上表 5中可以看出:
1、 一种核糖核苷、 两种脱氧核苷组合、 二种脱氧核苷与一种非脱氧核苷组 合, 其对肿瘤的抑制作用依次提高, 其中, 二种脱氧核苷与一种核糖核苷组合 对 Bcap-37抑制率最高;
2、 核苷组合与其它抑瘤率的变化与核苷抑瘤特点相关。
实施例 6
二种脱氧核苷与二种非脱氧核糖核苷组合、 以及单独二种脱氧核苷、 单独 二种核糖核苷和对照组 (5-FU) 人宫颈癌细胞株 (Hela)
的抑瘤试验
一、 试验方法
分别设置二种脱氧核苷与二种非脱氧核糖核苷组合、 以及单独二种脱氧核 苷、 单独二种核糖核苷和对照组(5-FU)抑瘤试验, 见表 6。 用药于人宫颈癌细 胞株 Hda肿瘤细胞(中国科学院基础医学研究所提供),方法和条件同实施例 1。 核苷组合的总浓度、 单一核苷浓度及 5-FU浓度的相同, 并与实施例 1相同。 表 6、 二种脱氧核苷与二种非脱氧核糖核苷组合对 Hda的抑瘤率 (%)
替换页 (细则第 26条) dA+dG dA+dG c+u dG+dC dG+dC A+G dC+T+ 5-FU
+C+U +A+G G C
48H 87 93 60 SO 85 80 78 92
72H 92 97 67 84 90 87 82 96 二、 结果与分析
从上表 6中可以看出:
1、 4种组合与 3种组合相比优势不明显;
2、 在 Hda细胞上显示出脱氧核苷抗肿瘤作用优于非脱氧核苷。
实施例 7
二种脱氧核苷与另外二种脱氧核苷组合、 以及分别单独的二种脱氧核苷和 对照组 (5-FU)对人胶质瘤细胞株 SHG-44的抑瘤试验
一、 试验方法
分别设置 4种脱氧核苷组合与 2种脱氧核苷组合和对照组 (5-FU) 抑瘤试 验, 见表 7。 用药于人胶质瘤 SHG-44肿瘤细胞(中国科学院基础医学研究所提 供), 方法和条件同实施例 1。核苷组合的总浓度、单一核苷浓度及 5-FU浓度的 相同, 并与实施例 1相同。
表 7、 4种脱氧核苷组合与 2种脱氧核苷组合对 SHG-44抑瘤率
Figure imgf000010_0001
二、 结果与分析
从上表 7中可以看出: 4种脱氧核苷组合与 2种脱氧核苷组合相比, 两种脱 氧嘌呤核苷的抗肿瘤作用最强, 其次是 4种脱氧核苷组合, 嘧啶核苷的作用最 小。
替换页 (细则第 26条) 实施例 8
二种脱氧核苷与一种非脱氧核糖核苷组合, 在不同的用量比试验对人胰腺 癌细胞株 PANC-1抑制实验。
一、 试验方法
设置 2种脱氧核苷 (dA+dG) 与 1种脱氧核苷 (C) 组合和对照组 (5-FU) 抑瘤试验, 见表 8。 用药于人胰腺癌细胞株 PANC-1肿瘤细胞(中国科学院基础 医学研究所提供), 方法和条件同实施例 1, 核苷组合的总浓度相同, 并与对照 组的浓度相同。
其中, A1用药比例 1 :1:1, A2用药比例 2:2:1 , A3用药比例 1 :1 :2, A4用药比例 2:1 :2, A5用药比例 3: 3: 1, A6用药比例 1 :1 :3, A7用药比例 3:1:3。
表 8、 不同用量比 2种脱氧 (dA+dG)、 1种非脱氧核苷 (C)对 PANC-1抑瘤率 (%)
Figure imgf000011_0001
二、 结果与分析
从上表 8 中可以看出: 二种脱氧核苷与一种非脱氧核糖核苷组合在用药比 例为 A5 (用药比例 dA: dG: C 为 3: 3: 1 ) 时抑瘤作用最佳。 同时在临床治 疗肿瘤药物制备时, 要考虑到临床用药的可行性和安全性。
通过上述实施例人肿瘤细胞抑瘤的观察发现, 脱氧核苷与核苷组合与单一 用药相比, 无细胞毒作用发生。
最后应说明的是: 以上所述仅为本发明的优选实施例而已, 并不用于限制 本发明, 尽管参照前述实施例对本发明进行了详细的说明, 对于本领域的技术 人员来说, 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换。 凡在本发明的精神和原则之内, 所作的任何修 改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
替换页 (细则第 26条)

Claims

权 利 要 求 书
1、 脱氧核苷与核苷组合在制备肿瘤药物中的应用, 所述的脱氧核苷包括脱 氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷; 所述的核苷包括腺苷、 鸟苷、 胞苷、 尿 苷、 脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷。
2、 根据权利要求 1所述的脱氧核苷与核苷组合在制备肿瘤药物中的应用, 其特征在于: 所述的脱氧核苷为脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷中的一 种或两种; 所述的核苷为腺苷、 鸟苷、 胞苷、 尿苷、 脱氧腺苷、 脱氧鸟苷、 脱 氧胞苷、 胸苷中的一种或多种。
3、 根据权利要求 1所述的脱氧核苷与核苷组合在制备肿瘤药物中的应用, 其特征在于: 所述的脱氧核苷为脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷中的一 种; 所述的核苷为腺苷、 鸟苷、 胞苷、 尿苷、 脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷中的一种或两种。
4、 根据权利要求 1所述的脱氧核苷与核苷组合在制备肿瘤药物中的应用, 其特征在于: 所述的脱氧核苷为脱氧腺苷、 脱氧鸟苷、 脱氧胞昔、 胸苷中的两 种; 所述的核苷为腺苷、 鸟苷、 胞苷、 尿苷、 脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷中的一种或两种。
5、 根据权利要求 1所述的脱氧核苷与核苷组合在制备肿瘤药物中的应用, 其特征在于: 所述的脱氧核苷为脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷中的两 种, 所述的核苷为腺苷、 鸟苷、 胞苷、 尿苷、 脱氧腺苷、 脱氧鸟苷、 脱氧胞苷、 胸苷中的一种。
6、 根据权利要求 5所述的脱氧核苷与核苷组合在制备肿瘤药物中的应用, 其特征在于: 所述的脱氧核苷为脱氧腺苷和脱氧鸟苷, 所述的核苷为一种核糖 核苷。
7、 根据权利要求 1-6中任意一项所述的脱氧核苷与核苷组合在制备肿瘤药 物中的应用, 其特征在于: 所述的每种脱氧核苷与核苷的摩尔数相同。
8、 根据权利要求 7中任意一项所述的脱氧核苷与核苷组合在制备肿瘤药物 中的应用, 其特征在于: 所述的肿瘤包括胃癌、 肺癌、 肝癌、 结 ¾癌、 乳腺癌、 白血病、 生殖系统肿瘤。
PCT/CN2012/001392 2011-03-02 2012-10-16 脱氧核苷与核苷组合在制备肿瘤药物中的应用 WO2013056510A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES12842329.0T ES2587850T3 (es) 2011-03-02 2012-10-16 Combinación de desoxinucleósido/nucleósido para usar en el tratamiento de tumores
DK12842329.0T DK2769727T3 (en) 2011-10-17 2012-10-16 Deoxynucleoside / nucleoside COMBINATION FOR USE IN THE TREATMENT OF TUMORS
EP12842329.0A EP2769727B1 (en) 2011-10-17 2012-10-16 Deoxynucleoside/nucleoside combination for use in the treatment of tumors
US14/254,911 US20140309188A1 (en) 2011-03-02 2014-04-17 Use of pharmaceutical composition comprising deoxynucleoside and nucleoside for treatment of tumor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110314309.4 2011-10-17
CN2011103143094A CN102499937A (zh) 2011-03-02 2011-10-17 脱氧核苷与核苷组合在制备治疗肿瘤药物中的应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/254,911 Continuation-In-Part US20140309188A1 (en) 2011-03-02 2014-04-17 Use of pharmaceutical composition comprising deoxynucleoside and nucleoside for treatment of tumor

Publications (1)

Publication Number Publication Date
WO2013056510A1 true WO2013056510A1 (zh) 2013-04-25

Family

ID=48141653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001392 WO2013056510A1 (zh) 2011-03-02 2012-10-16 脱氧核苷与核苷组合在制备肿瘤药物中的应用

Country Status (8)

Country Link
US (1) US20140309188A1 (zh)
EP (1) EP2769727B1 (zh)
CN (2) CN102172359A (zh)
DK (1) DK2769727T3 (zh)
ES (1) ES2587850T3 (zh)
HU (1) HUE029492T2 (zh)
PL (1) PL2769727T3 (zh)
WO (1) WO2013056510A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102172359A (zh) * 2011-03-02 2011-09-07 张始状 腺苷与核苷组合在制备治疗肿瘤药物中的应用
CN104622887A (zh) * 2014-11-24 2015-05-20 张始状 脱氧嘌呤核苷与其它核苷或碱基组合制备的抗肿瘤药物及其制备方法和应用
CN115068495B (zh) * 2022-07-05 2023-08-18 四川大学华西医院 核苷单体在制备抗肿瘤的药物中的用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002143A2 (en) * 1997-07-10 1999-01-21 Can-Fite Technologies Ltd. Medicament comprising adenosine
US20020198183A1 (en) * 2001-04-06 2002-12-26 Robins H. Ian Treatment of cancer with thymidine in combination with temozolamide
CN102172359A (zh) * 2011-03-02 2011-09-07 张始状 腺苷与核苷组合在制备治疗肿瘤药物中的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1941942A1 (de) * 1969-08-18 1971-03-04 Sylven Bengt Prof Dr Neues pharmazeutisches Mittel
US5104859A (en) * 1985-09-24 1992-04-14 Solimedco Aktiebolag Continuous administration of adenosine to reduce pulmonary vascular resistance
US5231086A (en) * 1985-09-24 1993-07-27 Item Development Aktiebolag Continuous administration adenosine to increase myocardial blood flow
US20020006913A1 (en) * 1997-11-04 2002-01-17 Von Borstel Reid W. Antimutagenic compositions for treatment and prevention of photodamage to skin
KR20060012622A (ko) * 2003-05-16 2006-02-08 하이브리돈, 인코포레이티드 화학요법제와 함께 이뮤노머를 사용하는 상승적 암 치료방법
ES2412489T3 (es) * 2003-08-14 2013-07-11 Thrombogenics N.V. Anticuerpos contra el factor VIII con glucosilación modificada en la región variable

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002143A2 (en) * 1997-07-10 1999-01-21 Can-Fite Technologies Ltd. Medicament comprising adenosine
US20020198183A1 (en) * 2001-04-06 2002-12-26 Robins H. Ian Treatment of cancer with thymidine in combination with temozolamide
CN102172359A (zh) * 2011-03-02 2011-09-07 张始状 腺苷与核苷组合在制备治疗肿瘤药物中的应用
CN102499937A (zh) * 2011-03-02 2012-06-20 张始状 脱氧核苷与核苷组合在制备治疗肿瘤药物中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2769727A1 *

Also Published As

Publication number Publication date
PL2769727T3 (pl) 2017-01-31
EP2769727B1 (en) 2016-05-18
HUE029492T2 (en) 2017-02-28
EP2769727A1 (en) 2014-08-27
DK2769727T3 (en) 2016-08-29
US20140309188A1 (en) 2014-10-16
CN102499937A (zh) 2012-06-20
CN102172359A (zh) 2011-09-07
EP2769727A4 (en) 2014-09-17
ES2587850T3 (es) 2016-10-27

Similar Documents

Publication Publication Date Title
CN103816174B (zh) 用于治疗病毒感染的化合物和方法
CN100528173C (zh) 4′-取代的核苷
US5968914A (en) Treatment of chemotherapeutic agent and antiviral agent toxicity with acylated pyrimidine nucleosides
CN104395330B (zh) 尿嘧啶基螺氧杂环丁烷核苷
WO2017165489A1 (en) Antiviral agents for treating zika and dengue virus infections
JP2002522552A (ja) B型肝炎の治療のためのβ−L−2’−デオキシ−ヌクレオシド
KR100256144B1 (ko) 아실화된 피리미딘 누클레오사이드를 이용한 화학요법제 및 항비루스제의 독성의 치료
JP7022069B2 (ja) ラパドシン(Rapadocins)、受動拡散型ヌクレオシド輸送体1阻害剤及びその使用
HU228064B1 (en) New antiviral nucleoside derivatives
EP0768883A1 (en) Pyrimidine nucleotide precursors for treatment of systemic inflammation and inflammatory hepatitis
AU732120B2 (en) Pyrimidine nucleotide precursors for treatment of systemic inflammation and inflammatory hepatitis
WO2013056510A1 (zh) 脱氧核苷与核苷组合在制备肿瘤药物中的应用
CN102516339B (zh) 嘧啶并嘧啶化合物及其核苷类似衍生物和制备方法及用途
SI9820003A (sl) Zdravljenje bolezni povezano s citokini
CN1447692A (zh) 药物释放至肝细胞和治疗黄病毒感染的方法
SI20802A (sl) Modulacija imunskega odgovora z ribavirinom
CN115068495B (zh) 核苷单体在制备抗肿瘤的药物中的用途
WO1988009796A1 (en) Nucleoside analogues
US20110118205A1 (en) Anti-tumor agent comprising cytidine derivative and carboplatin
AU2005232286A1 (en) Pyrimidine nucleotide precursors for treatment of systemic inflammation and inflammatory hepatitis
TW200423945A (en) Nucleoside derivatives for treating hepatitis c virus infection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012842329

Country of ref document: EP