WO2013056490A1 - 一种预测soi mosfet器件可靠性寿命的方法 - Google Patents
一种预测soi mosfet器件可靠性寿命的方法 Download PDFInfo
- Publication number
- WO2013056490A1 WO2013056490A1 PCT/CN2011/083250 CN2011083250W WO2013056490A1 WO 2013056490 A1 WO2013056490 A1 WO 2013056490A1 CN 2011083250 W CN2011083250 W CN 2011083250W WO 2013056490 A1 WO2013056490 A1 WO 2013056490A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- self
- temperature
- heating
- lifetime
- soi mosfet
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/2607—Circuits therefor
- G01R31/2621—Circuits therefor for testing field effect transistors, i.e. FET's
Definitions
- Embodiments of the present invention relate to the field of semiconductor reliability research. Since the self-heating effect of the SOI MOSFET device may aggravate the degree of device degradation, the effect of the self-heating effect in the actual digital circuit is small, and the embodiment of the present invention mainly relates to the self-SOI MOSFET device. A method of predicting reliability life after heat correction. Background technique
- SOI Silicon-On-Insulator
- SOI MOSFET devices have good electrical isolation performance, small parasitic capacitance, easy formation of shallow junctions, and can avoid latch-up effects and strong radiation resistance.
- the lattice temperature of the channel region of the device rises, resulting in a drop in the on-state leakage current of the device.
- the basic idea of the accelerated life test is to use the life characteristics under high stress to extrapolate the life characteristics at normal stress levels.
- the key to realizing this basic idea is to establish the relationship between the life characteristics and the stress level, that is, the acceleration model.
- the applied stress condition is DC (direct current) voltage
- the corresponding TTF time to failure
- this method has a large error in the prediction of the actual working logic circuit or AC analog circuit.
- the reason for the self-heating effect is related to the frequency of the working circuit. The higher the operating frequency, the thermal response of the device is too late to establish the signal. Has been conducted out, and the smaller the working frequency, the self-heating effect The more serious it is.
- An object of the embodiments of the present invention is to provide a reliability life prediction method for an SOI MOSFET device under the same batch process under different bias conditions, which is self-heating correction.
- a method for predicting the reliability lifetime of a SOI MOSFET device comprising the steps of: a) measuring a gate resistance of a SOI MOSFET device as a function of temperature at different tester temperatures, and obtaining a resistance temperature relationship coefficient a and autothermal temperature under different bias conditions, ⁇ , and in the presence sh measured substrate current and the drain-side current Id 'sh under self-heating; b) accelerated life test of SOI MOSFET devices on the wafer at different temperatures Î ⁇ , The parameters that characterize the lifetime of the device are degraded with stress time, and the lifetime of the self-heating effect when the parameter degrades to 10%; c) using the measured autothermal temperature and the Arrhenius model (eg formula 1) Perform self-heat correction on the measured device life to obtain the life after removing the self-heating effect
- Equation 2 Equation 1
- ⁇ the pre-form coefficient
- Equation 2 Equation 2
- T the absolute temperature
- ⁇ the Boltzmann constant
- ⁇ the lifetime of self-heating effect
- Vgl Vg+AVg
- Vg2 Vg-AVg
- Vg the stress bias applied to the gate
- Rg ⁇ Rg t / n
- Rg ⁇ ) is the measured gate resistance at T >u ⁇ ; iii) when both Vg and Vd stress voltages are greater than zero, step i) is performed at different wafer temperatures, measured under different bias conditions The gate resistance is different due to the difference in self-heating effect, using the resistance temperature coefficient "and the measured resistance"
- Rg calculates the self-heating temperature ⁇
- the reliability test stress described in step a) is hot electron injection (HCI) stress.
- the parameter characterizing the lifetime of the device described in step b) is the maximum transconductance value GTM- max or the saturated drain current.
- GTM- max the maximum transconductance value
- f The value of Vg described in step i) should be much larger than A Vg, and A Vg should be less than 50mV.
- the method provided by the embodiment of the present invention removes the actual logic SOI MOSFET devices in analog circuits or AC analog circuits do not have the effect of self-heating effects on lifetime prediction, making the predicted results more accurate.
- Figure 1 Three-dimensional structure of a five-terminal body-contact SOI MOSFET device
- FIG. 2 is a schematic diagram of gate resistance extraction
- Figure 3 Diagram of gate resistance versus test bench temperature
- Figure 4 The maximum transconductance value of the device versus stress time degradation curve
- Figure 6 Diagram of the relationship between the drain current and temperature
- Figure 7 Diagram of the relationship between impact ionization rate and temperature
- Figure 8 Diagram of related parameters in the Hu model. detailed description
- the SOI MOSFET device tested in this example is a five-terminal SOI MOS device with physical contact (PMOS and similar).
- the three-dimensional schematic is shown in Figure 1.
- the NMOS tubes with good process conditions and uniform interface state are selected, and the width (W) and length (L) are 5um and 0.18um, respectively.
- the specific implementation steps are as follows:
- the gate current Igli and Ig2i are measured, and the gate resistance under different A Vg conditions is obtained.
- Rg ⁇ Rg t / n
- Vstress is the stress voltage.
- step 1) at the above wafer temperature can obtain the relationship between the gate resistance and the temperature (wafer temperature) under the condition of no self-heating effect. As shown in Table 1, the resistance temperature coefficient constant is obtained.
- the self-heating temperatures of 2.8V and 3.0V and different wafer temperatures show that the autothermal temperatures produced under the same bias conditions are essentially the same at different wafer temperatures.
- T non sh (A ⁇ W / I n — sl I s ' un sh IU, from the fitted coefficients A, B can be calculated in this working environment, the device
- the maximum transconductance degradation of 10% of the lifetime value is about 10 years, in line with the normal working life of the device.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/504,433 US9086448B2 (en) | 2011-10-21 | 2011-11-30 | Method for predicting reliable lifetime of SOI mosfet device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110322634.5 | 2011-10-21 | ||
CN201110322634.5A CN103063995B (zh) | 2011-10-21 | 2011-10-21 | 一种预测soi mosfet器件可靠性寿命的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013056490A1 true WO2013056490A1 (zh) | 2013-04-25 |
Family
ID=48106701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/083250 WO2013056490A1 (zh) | 2011-10-21 | 2011-11-30 | 一种预测soi mosfet器件可靠性寿命的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103063995B (zh) |
WO (1) | WO2013056490A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113624506A (zh) * | 2020-05-09 | 2021-11-09 | 郑州宇通集团有限公司 | 一种汽车零部件产品的寿命验证方法 |
CN113968356A (zh) * | 2021-09-18 | 2022-01-25 | 国营芜湖机械厂 | 一种飞机电源系统功率mosfet模块的可靠性测试系统及方法 |
CN116991646A (zh) * | 2023-09-27 | 2023-11-03 | 致真存储(北京)科技有限公司 | 磁存储器寿命预测方法、装置、电子设备及存储介质 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103278759B (zh) * | 2013-05-02 | 2016-02-17 | 北京大学 | 分离soi器件中两种效应导致阈值电压漂移的方法 |
CN103246787B (zh) * | 2013-05-27 | 2016-12-28 | 北京工业大学 | 一种快速评价半导体器件可靠性的方法 |
CN104599991A (zh) * | 2013-10-31 | 2015-05-06 | 无锡华润上华半导体有限公司 | 一种晶圆检测方法 |
CN103955579B (zh) * | 2014-04-28 | 2017-06-23 | 天津大学仁爱学院 | 基于spice软件的模拟/射频集成电路设计方法 |
CN104237764B (zh) * | 2014-09-15 | 2017-01-25 | 工业和信息化部电子第五研究所 | Mos器件热载流子注入寿命退化的测试方法和装置 |
US10591531B2 (en) * | 2015-06-10 | 2020-03-17 | Qualcomm Incorporated | Method and apparatus for integrated circuit monitoring and prevention of electromigration failure |
CN105373660A (zh) * | 2015-11-12 | 2016-03-02 | 成都嘉石科技有限公司 | 基于等效电路的晶体管可靠性表征方法 |
CN107315138B (zh) * | 2016-04-21 | 2021-07-02 | 深圳市智鼎自动化技术有限公司 | 功率mosfet的故障预测和健康处理方法及测试系统 |
CN106354692B (zh) * | 2016-08-30 | 2019-05-03 | 工业和信息化部电子第五研究所 | 面向SoC的片上TDDB退化监测及失效预警电路 |
CN106291331A (zh) * | 2016-09-14 | 2017-01-04 | 电子科技大学 | 基于tddb效应的集成电路寿命检测方法和系统 |
CN110596560B (zh) * | 2018-05-25 | 2020-07-28 | 北京大学 | 一种评估FinFET器件总剂量辐射效应的方法 |
CN110096765B (zh) * | 2019-04-12 | 2020-10-09 | 北京大学 | 一种FinFET器件的单粒子效应评估方法 |
CN110346702B (zh) * | 2019-06-12 | 2021-05-04 | 北京大学 | 自热效应测试结构及方法 |
CN110411392B (zh) * | 2019-07-17 | 2021-04-13 | 上海华力集成电路制造有限公司 | 半导体器件的纳米条或纳米片宽度的测量方法 |
CN111060794B (zh) * | 2019-11-19 | 2022-05-13 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | 热载流子注入效应的寿命评估方法、装置和计算机设备 |
CN112557861A (zh) * | 2020-11-17 | 2021-03-26 | 深圳宝铭微电子有限公司 | 一种检测mos管的方法和系统 |
CN113155719B (zh) * | 2021-04-16 | 2023-01-31 | 西安热工研究院有限公司 | 电站材料在实际工况中的蒸汽氧化动力学数据获得方法 |
CN113203929B (zh) * | 2021-04-23 | 2022-11-11 | 香港科技大学深圳研究院 | 氮化镓功率器件反偏压可靠性测试方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5497076A (en) * | 1993-10-25 | 1996-03-05 | Lsi Logic Corporation | Determination of failure criteria based upon grain boundary electromigration in metal alloy films |
US5650336A (en) * | 1994-09-19 | 1997-07-22 | Matsushita Electric Industrial Co., Ltd. | Method of presuming life time of semiconductor device |
JPH09246342A (ja) * | 1996-03-11 | 1997-09-19 | Sony Corp | エレクトロマイグレーション評価方法及び装置 |
JPH09330964A (ja) * | 1996-04-08 | 1997-12-22 | Matsushita Electric Ind Co Ltd | 半導体装置の寿命推定方法 |
CN1568430A (zh) * | 2001-10-26 | 2005-01-19 | 国际商业机器公司 | 加速确定半导体布线的电迁移特性的方法和装置 |
CN101089642A (zh) * | 2006-06-13 | 2007-12-19 | 中芯国际集成电路制造(上海)有限公司 | 一种加速热载流子注入测试的方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0949861A (ja) * | 1994-09-19 | 1997-02-18 | Matsushita Electric Ind Co Ltd | 半導体装置の寿命推定方法 |
US6456104B1 (en) * | 1999-08-18 | 2002-09-24 | International Business Machines Corporation | Method and structure for in-line monitoring of negative bias temperature instability in field effect transistors |
CN102073004B (zh) * | 2009-11-25 | 2013-07-10 | 北京大学 | 测试半导体器件可靠性的方法 |
-
2011
- 2011-10-21 CN CN201110322634.5A patent/CN103063995B/zh active Active
- 2011-11-30 WO PCT/CN2011/083250 patent/WO2013056490A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5497076A (en) * | 1993-10-25 | 1996-03-05 | Lsi Logic Corporation | Determination of failure criteria based upon grain boundary electromigration in metal alloy films |
US5650336A (en) * | 1994-09-19 | 1997-07-22 | Matsushita Electric Industrial Co., Ltd. | Method of presuming life time of semiconductor device |
JPH09246342A (ja) * | 1996-03-11 | 1997-09-19 | Sony Corp | エレクトロマイグレーション評価方法及び装置 |
JPH09330964A (ja) * | 1996-04-08 | 1997-12-22 | Matsushita Electric Ind Co Ltd | 半導体装置の寿命推定方法 |
CN1568430A (zh) * | 2001-10-26 | 2005-01-19 | 国际商业机器公司 | 加速确定半导体布线的电迁移特性的方法和装置 |
CN101089642A (zh) * | 2006-06-13 | 2007-12-19 | 中芯国际集成电路制造(上海)有限公司 | 一种加速热载流子注入测试的方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113624506A (zh) * | 2020-05-09 | 2021-11-09 | 郑州宇通集团有限公司 | 一种汽车零部件产品的寿命验证方法 |
CN113968356A (zh) * | 2021-09-18 | 2022-01-25 | 国营芜湖机械厂 | 一种飞机电源系统功率mosfet模块的可靠性测试系统及方法 |
CN116991646A (zh) * | 2023-09-27 | 2023-11-03 | 致真存储(北京)科技有限公司 | 磁存储器寿命预测方法、装置、电子设备及存储介质 |
CN116991646B (zh) * | 2023-09-27 | 2023-12-29 | 致真存储(北京)科技有限公司 | 磁存储器寿命预测方法、装置、电子设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN103063995A (zh) | 2013-04-24 |
CN103063995B (zh) | 2015-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013056490A1 (zh) | 一种预测soi mosfet器件可靠性寿命的方法 | |
US9086448B2 (en) | Method for predicting reliable lifetime of SOI mosfet device | |
CN108037438B (zh) | 一种总剂量辐照对pmosfet负偏压温度不稳定性影响的试验方法 | |
Faccio et al. | Influence of LDD spacers and H+ transport on the total-ionizing-dose response of 65-nm MOSFETs irradiated to ultrahigh doses | |
CN101089642B (zh) | 一种加速热载流子注入测试的方法 | |
Fleury et al. | A new technique to extract the source/drain series resistance of MOSFETs | |
US20120299608A1 (en) | Method of testing reliability of semiconductor device | |
CN103278759B (zh) | 分离soi器件中两种效应导致阈值电压漂移的方法 | |
CN103576066B (zh) | 一种半导体器件热载流子寿命的测量方法 | |
JP5656489B2 (ja) | 集積回路の信頼性を評価するための方法及びシステム | |
US20090281745A1 (en) | Monitoring Plasma Induced Damage During Semiconductor Wafer Processes | |
CN102680875B (zh) | 从soi pmosfet中分离两种可靠性效应导致阈值电压漂移的方法 | |
Vandemaele et al. | The influence of gate bias on the anneal of hot-carrier degradation | |
Wang et al. | Separation of interface states and electron trapping for hot carrier degradation in ultra-scaled replacement metal gate n-FinFET | |
CN110596560B (zh) | 一种评估FinFET器件总剂量辐射效应的方法 | |
Zhang et al. | Comparison of total ionizing dose effects in SOI FinFETs between room and high temperature | |
JP5357337B2 (ja) | インライン特性化 | |
Silvestri et al. | Channel hot carrier stress on irradiated 130-nm NMOSFETs | |
Kim et al. | Accurate extraction of effective channel length and source/drain series resistance in ultrashort-channel MOSFETs by iteration method | |
Wang et al. | Characterization of various stress-induced oxide traps in MOSFET's by using a subthreshold transient current technique | |
Tataridou et al. | Influence of series resistance on the experimental extraction of FinFET noise parameters | |
Zheng et al. | Measurement and evaluation of the within-wafer TID response variability on BOX layer of SOI technology | |
US6750673B1 (en) | Method for measuring an effective channel length of a MOSFET | |
Severi et al. | Accurate channel length extraction by split CV measurements on short-channel MOSFETs | |
Wang et al. | Advanced compact modeling for transistor aging: Trap-based approaches and mixed-mode coupling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 13504433 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11874243 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/09/2014) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11874243 Country of ref document: EP Kind code of ref document: A1 |