WO2013056453A1 - 一种无针注射用注射剂的制备方法及应用 - Google Patents

一种无针注射用注射剂的制备方法及应用 Download PDF

Info

Publication number
WO2013056453A1
WO2013056453A1 PCT/CN2011/081064 CN2011081064W WO2013056453A1 WO 2013056453 A1 WO2013056453 A1 WO 2013056453A1 CN 2011081064 W CN2011081064 W CN 2011081064W WO 2013056453 A1 WO2013056453 A1 WO 2013056453A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
vaccine
inorganic salt
insulin
powder
Prior art date
Application number
PCT/CN2011/081064
Other languages
English (en)
French (fr)
Inventor
王伽伯
肖小河
李奇
Original Assignee
中国人民解放军第三〇二医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军第三〇二医院 filed Critical 中国人民解放军第三〇二医院
Priority to PCT/CN2011/081064 priority Critical patent/WO2013056453A1/zh
Priority to CN201180074284.3A priority patent/CN103957890B/zh
Publication of WO2013056453A1 publication Critical patent/WO2013056453A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0021Intradermal administration, e.g. through microneedle arrays, needleless injectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/143Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a preparation method and use of a needle-free injection for injection, and more particularly to a preparation method and use of a biological product injection in powder form.
  • Biological products are prepared from common biological materials or biological materials such as microorganisms, cells, and various animal and human tissues and liquids obtained through biotechnology such as genetic engineering, cell engineering, protein engineering, and fermentation engineering, for human diseases. Drugs for prevention, treatment and diagnosis.
  • human biological products in China include bacterial vaccines (including toxoids), viral vaccines, antitoxins and immune serum, blood products, cytokines, in vivo and in vitro diagnostic products, and other active preparations (including toxins, antigens, allergens). , monoclonal antibodies, recombinant DNA products, antigen-antibody complexes, immunomodulators, microbial preparations, etc.).
  • the active components of most biological products are macromolecular life substances (such as proteins, peptides, nucleic acids, polysaccharides, etc.), which have relatively large molecular mass, are not easy to penetrate the gastrointestinal barrier and are absorbed by the body, and are easily digested. The liquid is decomposed and inactivated, so it is not suitable for oral administration. In most cases, intravenous, intramuscular, subcutaneous injection, etc. are required.
  • problems with ordinary injection such as: 1) bleeding, the risk of cross-infection; 2) large tissue damage, some chronic diseases such as diabetes patients need long-term injection of insulin, often causing tissue hardening, agglomeration, etc. 3)
  • the pain is strong, the patient's compliance is poor, and it is difficult for children and people with fear of acupuncture to adapt. The pain of acupuncture makes them intolerable; 4) usually requires professional completion, not suitable for self medicine.
  • the needle-free powder injection technology (CN 201643226) previously applied by the applicant of this patent just makes up for these defects:
  • the needle-free powder injection technology is administered through the skin, and the transdermal absorption can avoid the first-pass effect and the bioavailability is high. Effectively avoid cross-infection, needle-free, painless, high-efficiency, self-operating, especially suitable for patients, children and patients with a sense of acupuncture.
  • the needle-free powder injection technology has special requirements on the preparation method and powder properties of the drug powder: 1) The density of the drug-loaded powder is large, and it is a solid particle with a large mechanical strength, which is favorable for penetrating the stratum corneum; 2) The powder has a large particle size (such as tens to hundreds of microns) to allow the drug-loaded powder to be subjected to high-speed airflow. Larger kinetic energy (momentum) is obtained during acceleration, which is good for penetrating the stratum corneum; 3) The powder particle size distribution is narrow to ensure similar kinetic energy (momentum) when the drug-loaded powder is accelerated by high-speed airflow, ensuring drug delivery. Reproducibility and stability.
  • Some of the disclosed pharmaceutical powder or microparticle preparation methods are mostly designed for microspheres and micro-pills, the carriers are mostly polymer compounds, the density is low (usually around lg/cm3 or lower), and most of them are hollow particles.
  • the mechanical strength is small, and it is difficult to penetrate the stratum corneum of the skin; at the same time, most of the obtained microspheres or micropiles have a small particle size, such as several micrometers to twenty or thirty micrometers, and the particle size distribution is wide, which is difficult to satisfy the above-mentioned needle-free injection powder.
  • the efficiency of administration by needle-free powder injection is low, and the bioavailability is low; in addition, the biocompatibility problem of the carrier material used and the degradation in vivo are also one of the limiting factors.
  • the inventors of the present invention have disclosed a method for preparing a directly mixed powder, which still has major drawbacks: 1) a mixed solution of phosphate and insulin, dried under reduced pressure to co-crystallize insulin and phosphate (or Only the mixture of the two crystals separately), the obtained powder has poor particle size uniformity; 2) insulin is not effectively attached to the phosphate carrier, and the administration efficiency is low; 3) decompression drying causes insulin to be inactivated seriously And other issues. Summary of the invention
  • the present invention provides a high-efficiency powder preparation method suitable for loading biological products, and the powder prepared by the method is solid particles, high density, high mechanical strength, uniform particle size, high stability, and drug loading. High, it can effectively penetrate the stratum corneum of the skin, reach the intradermal or subcutaneous parts, and has high bioavailability.
  • a primary object of the present invention is to provide an injection for needle-free injection.
  • Another object of the present invention is to provide a method for preparing an injection for needle-free injection.
  • Another object of the present invention is to provide a use of an injection for needle-free injection for the preparation of a medicament for preventing or treating a disease.
  • the present invention provides an injection for needle-free injection, the injection of the present invention is in the form of a powder, and the injection comprises a biological product having a mass ratio of 1:20 to 1:80 and no decrystallization water.
  • the machine salt is a solid particle in which the biological product is wrapped on the outer surface of the demineralized water inorganic salt, and the powder has a particle diameter of between 20 and 200 microns.
  • the mass ratio is from 1:20 to 1:60, most preferably from 1:20 to 1:40; and the particle size is between 50 and 70 microns.
  • the biological product includes, but is not limited to, one or more of the following biological products: insulin, interferon, vaccine, antitoxin and immune serum, blood products, cytokines, in vivo and in vitro diagnostics Products and other active preparations.
  • the biological product is selected from one or more of the group consisting of insulin, interferon and vaccine. More preferably, the biological product is insulin.
  • the insulin is selected from the group consisting of common insulin, low protamine insulin, protamine insulin, premixed insulin;
  • the interferon is selected from the group consisting of: IFN-a 2b, IFN-a 2a, lymphoblastiod interferon or a combination thereof;
  • the vaccine is a bacterial or viral vaccine, and may be selected from one or more of the following vaccines: hepatitis B vaccine, tetanus toxoid vaccine, mumps vaccine, measles vaccine, typhoid vaccine, influenza vaccine, Diphtheria vaccine, anthrax vaccine, Brucella vaccine, Leptospira vaccine and forest encephalitis vaccine.
  • the deionized water inorganic salt is selected from the group consisting of anhydrous sodium sulfate, anhydrous calcium gramate, anhydrous aluminum sulphate, anhydrous magnesium sulphate, anhydrous sulphuric acid, anhydrous ⁇ Potassium aluminum silicate, anhydrous potassium nitrate, anhydrous aluminum ate, anhydrous dipotassium hydrogen phosphate or a combination thereof.
  • the inorganic salt of decrystallization water is sodium anhydrous sodium.
  • the injection of the present invention further comprises a tackifier, wherein the biological product, the tackifier, and the decrystallized water
  • the mass ratio of the inorganic salt is 1:0.2:20-1:10:80, preferably 1:0.5:20-1:2:60, more preferably 1:0.5:40-1:2:40.
  • the tackifier may be selected from the group consisting of sodium hyaluronate, human serum albumin, or a combination thereof.
  • the injection of the present invention further comprises a pharmaceutically acceptable adjuvant, wherein the biological product, the adjuvant, and the The mass ratio of the decrystallized water inorganic salt is 1:0.2:20-1:10:80, preferably 1:0.5:20-1:7:60, more preferably 1:0.8:20-1:2:40.
  • the adjuvant is preferably a traditional Chinese medicine adjuvant, and the traditional Chinese medicine adjuvant may be selected from the group consisting of saponins, polysaccharides, flavonoids or Combination.
  • the saponin is selected from the group consisting of ginsenoside, notoginsenoside, gynosaponin, clematis saponin, diosgenin or a combination thereof;
  • the polysaccharide is selected from the group consisting of astragalus polysaccharide, ginseng polysaccharide, polyporus polysaccharide, Rhodiola polysaccharide, jujube polysaccharide or The combination thereof;
  • the flavonoid is selected from the group consisting of Epimedium flavonoids, kumquat flavonoids, Hedyotis flavonoids, daidzein, seabuckthorn flavonoids or combinations thereof.
  • the injection of the present invention further comprises a pharmaceutically acceptable adjuvant and a tackifier, wherein the biological product, the adjuvant
  • the mass ratio of the agent, the tackifier and the decrystallized water inorganic salt is 1:0.2:0.2:20-1:10:10:80, and 4 is particularly selected as 1:0.5:0.5:20-1:7 : 7:60 , more preferably 1:0.8:0.8:20-1 : 2:2:40.
  • the adjuvant is preferably a traditional Chinese medicine adjuvant, and the traditional Chinese medicine adjuvant may be selected from the group consisting of saponins, polysaccharides, flavonoids or a combination thereof.
  • the tackifier may be selected from the group consisting of sodium hyaluronate, human serum albumin, or a combination thereof.
  • the saponin is selected from the group consisting of ginsenoside, notoginsenoside, gynosaponin, clematis saponin, diosgenin or a combination thereof;
  • the polysaccharide is selected from the group consisting of astragalus polysaccharide, ginseng polysaccharide, polyporus polysaccharide, Rhodiola polysaccharide, jujube polysaccharide or The combination thereof;
  • the flavonoid is selected from the group consisting of Epimedium flavonoids, kumquat flavonoids, Hedyotis flavonoids, daidzein, seabuckthorn flavonoids or combinations thereof.
  • the injection is administered by needle-free injection.
  • the injection is prepared by a method of: having a particle size in the range of 20 to 200 ⁇ m, preferably 50 to 70 ⁇ m, and most preferably 50 ⁇ m in an environment of 0-4 ° C a left and right decrystallized water inorganic salt powder is added to the aqueous solution of the biological product, or to an aqueous solution of the mixture of the biological product and the adhesion promoter and/or the adjuvant to saturation; the decrystallization is continued to be added
  • the water inorganic salt powder is such that the mass ratio of the biological product to the total decrystallized water inorganic salt is 1:20 to 1:80, preferably 1:20 to 1:60, most preferably 1:20 to 1:40, to obtain a mixture.
  • a crystallization solution; the mixed crystallization solution is freeze-dried to collect a powder having a particle diameter of 20
  • the present invention provides a method for preparing a needle-free injection according to the first aspect, the method comprising the steps of: having a particle size of from 20 to 200 ⁇ m in an environment of 0-4 ° C, preferably a decrystallized water inorganic salt powder in the range of 50-70 micrometers, most preferably about 50 micrometers, is added to the raw An aqueous solution of the article, or an aqueous solution of the mixture of the biological product and the adhesion promoter and/or the adjuvant to saturation; the addition of the decrystallized water inorganic salt powder is continued such that the biological product and the total
  • the mass ratio of the decrystallized water inorganic salt is 1:20 to 1:80, preferably 1:20 to 1:60, and most preferably 1:20 to 1:40, to obtain a mixed crystal solution; the mixed crystal solution is freeze-dried,
  • the method for producing an injection of the present invention comprises the steps of: (1) pulverizing and decrystallizing a particle size of 20 to 200 ⁇ m, preferably 50 to 70 ⁇ m, and most preferably about 50 ⁇ m.
  • a water inorganic salt powder (2) adding the decrystallized water inorganic salt powder to an aqueous solution of the biological product to saturation at 0-4 ° C; (3) continuing to add the decrystallized water inorganic salt powder to make the organism
  • the mass ratio of the product to the decrystallized water inorganic salt powder is 1:20-1:80, preferably 1:20-1:60, most preferably 1:20-1:40, to obtain a mixed crystallization solution;
  • the mixed crystallization solution is freeze-dried to collect a powder having a particle diameter of 20 to 200 ⁇ m, preferably 50 to 70 ⁇ m, to obtain an injection of the present invention.
  • the needle-free injection for injection of the present invention comprises insulin and anhydrous sodium sulfate, and the preparation method thereof comprises the following steps:
  • the above mixed crystal solution is rapidly freeze-dried, and then a powder having a particle diameter of about 20 to 200 ⁇ m, preferably 50 to 70 ⁇ m, is collected to obtain an insulin injection of the present embodiment.
  • the method for producing an injection of the present invention comprises the steps of: (1) pulverizing and decrystallizing a particle size of from 20 to 200 ⁇ m, preferably from 50 to 70 ⁇ m, and most preferably from about 50 ⁇ m.
  • the decrystallized water inorganic salt powder is such that the mass ratio of the biological product, the thickener and the decrystallized water inorganic salt powder is 1:0.2:20-1:10:80, and particularly preferably 1: 0.5:20-1:2:60, the most 4 is 1:0.5:40-1:2:40, and the h' Kunming crystal solution is obtained; (4) The mixed crystal solution is freeze-dried to collect the particle size.
  • the needle-free injection for injection of the present invention comprises: insulin, sodium hyaluronate and anhydrous sodium sulfate, and the preparation method comprises the following steps:
  • the above mixed crystallization solution is rapidly freeze-dried, and then a powder having a particle diameter of about 20 to 200 ⁇ m, preferably 50 to 70 ⁇ m, is collected to obtain an insulin injection of the present embodiment.
  • the method for producing an injection of the present invention comprises the steps of: (1) pulverizing and decrystallizing a particle size of from 20 to 200 ⁇ m, preferably from 50 to 70 ⁇ m, and most preferably from about 50 ⁇ m.
  • Water inorganic salt powder (2) adding the decrystallized water inorganic salt powder to a mass ratio of 1:0.2 to 1:10, preferably 1:0.5 to 1:7, in an environment of about 0 to 4 ° C, most preferably a biological product of 1:0.8-1:2 and an adjuvant, preferably an aqueous solution of a traditional Chinese medicine adjuvant to saturation; (3) continuing to add the decrystallized water inorganic salt powder such that the biological product, the adjuvant and the The deuterated water inorganic salt powder has a mass t ⁇ of 1:0.2:20-1:10:80, 4 especially 1:0.5:20-1:7:60, and most 4:1:0.8:20-1: 2:40, obtaining h' Kunming crystallization solution; (4) lyophilizing the mixed crystallization solution to collect a particle size of 20-200 microns, A powder of 50 to 70 ⁇ m is preferred to obtain an injection of the present invention.
  • the needle-free injection for injection of the present invention comprises an interferon, a traditional Chinese medicine adjuvant and a decrystallized water inorganic salt
  • the decrystallized water inorganic salt is preferably anhydrous sodium sulfate
  • the preparation method comprises the following steps:
  • the needle-free injection for injection of the present invention comprises a vaccine, a traditional Chinese medicine adjuvant and a crystallized water inorganic salt, and the decrystallized water inorganic salt is preferably anhydrous sodium sulfate, and the preparation method comprises the following steps:
  • the method for producing an injection of the present invention comprises the steps of: (1) pulverizing and selecting a particle size of 20 to 200 ⁇ m, preferably 50 to 70 ⁇ m, and most preferably 50 ⁇ m. (2) The decrystallized water inorganic salt powder is added to a mass ratio of 1:0.2:0.2-1:10:10, preferably 1 in an environment of about 0-4 °C.
  • 0.5:0.5-1:7:7 most preferably 1:0.8:0.8-1:2:2 of a mixture of biological products, adjuvants (preferably traditional Chinese medicine adjuvants) and a thickener in an aqueous solution to saturation;
  • the decrystallized water inorganic salt powder such that the mass ratio of the biological product, the adjuvant (preferably a traditional Chinese medicine adjuvant), the tackifier, and the decrystallized water inorganic salt powder is 1:0.2:0.2:20- 1:10:10:80, select 1:0.5:0.5:20-1:7:7:60, the last choice 1:0.8:0.8:20-1:2:2:40;
  • the needle-free injection for injection of the present invention comprises an interferon, a traditional Chinese medicine adjuvant, a thickener and a decrystallized water inorganic salt
  • the decrystallized water inorganic salt is preferably anhydrous sodium sulfate
  • the preparation method thereof comprises the following steps :
  • step (3) weighing the traditional Chinese medicine adjuvant and the thickener into the interferon solution obtained in the step (1); (4) placing the interferon-tackifier-medicine adjuvant solution obtained in the above step (3) in water In a water bath, adding a certain amount of sieved anhydrous sodium salt of sodium sulphate to a saturated state;
  • the needle-free injection for injection of the present invention comprises a common insulin, a traditional Chinese medicine adjuvant, a thickener and a decrystallized water inorganic salt
  • the decrystallized water inorganic salt is preferably anhydrous sodium sulfate
  • the preparation method thereof comprises the following steps :
  • the present invention provides the use of the injection for needle-free injection according to the first aspect for the preparation of a medicament for preventing or treating a disease.
  • the diseases include, but are not limited to: diabetes, viral hepatitis, tumor, blood disease, cutaneous spondylosis, viral keratitis, chronic cervicitis, tetanus, mumps, diphtheria, measles, typhoid or flu.
  • the present invention provides a method of performing needle-free injection using the injection for needle-free injection according to the first aspect.
  • the method comprises: loading the injection into a cartridge of a needleless syringe, and applying by the needleless syringe.
  • the needle-free injector can be an automatic needle-free powder injector (as shown in Figure 1) as disclosed in the patent application No. US Pat.
  • the prepared injection is combined with an automatic needle-free powder syringe, and the prepared powdered injection is filled into a medicine cartridge of a needle-free injector, and the gas storage device, the excitation device, and the emission device of the needle-free injector are provided.
  • the powdered injection loaded in the drug sputum is transmitted through the needle-free syringe through the skin tissue cells, and is released into the intradermal, subcutaneous or mucosal tissues.
  • the injection-free injection powder of the invention has the advantages of uniform particle size, high drug loading, strong drug adsorption, high bioavailability, stable and safe nature.
  • the crystallized water inorganic salt as a drug carrier has an adsorption effect on biological products such as insulin, interferon, and vaccine.
  • the preparation method of the powdery needle-free injection for injection according to the present invention is completely different from the principle and preparation process of the prior art preparation method (for example, the method for preparing a crystalline powder disclosed in CN 1285753A and CN 1315854A).
  • the invention adopts a recrystallization and dispersion adsorption method for preparing an injection,
  • the inorganic salt of decrystallized water is used as a carrier, and the decrystallized water inorganic salt powder having a predetermined particle diameter and distribution which has been previously pulverized and sieved is added to a saturated inorganic salt in which the biological product has been previously dissolved.
  • the water of the solution system is absorbed by the inorganic salt of the decrystallization water to absorb the water in the solution system, so that the system is concentrated, and the opportunity of encapsulating the biological product on the surface of the inorganic salt powder is increased, and the sodium carboxylate can be added in the system.
  • the biological product is more easily adsorbed on the surface of the inorganic salt particles, and then the mixed system is freeze-dried. In the process of dehydration, the biological product is firmly wrapped on the surface of the inorganic salt particles.
  • the initial particle diameter of the inorganic salt powder is not substantially changed, so that the particle diameter of the finally obtained drug-loaded powder is both solid particles, which can satisfy the needle-free powder injection.
  • the matrix developed into a biological product based on adsorption can fully exert its pharmacy advantages.
  • the tackifiers such as sodium hyaluronate and human serum albumin have certain viscosity-increasing and curing ability, which can play an auxiliary curing role and further enhance the adsorption capacity of the inorganic salt of the decrystallization water.
  • the selected soluble inorganic salt is dissolved quickly after being injected into the body, has no residue, is non-toxic and harmless, and has good biocompatibility.
  • the technique for preparing an injection of the present invention may be referred to as an outer package-solid particle-loaded powder preparation technique.
  • the needle-free injection for injection of the invention provides a new dosage form of biological product, which is especially suitable for needle-free injection technology, thereby effectively avoiding the first-pass effect caused by oral pharmaceutical preparation, and the particle size is in accordance with the percutaneous
  • the requirements for administration are easy to pass through the barrier layer of the stratum corneum, which can greatly improve the efficacy of the drug and shorten the onset time. Therefore, injections suitable for needle-free powder injection technology are particularly suitable for medical emergencies under major emergencies and in remote areas, large-scale field operations, and patients with fearfulness (such as children) and long-term self-administration.
  • the patient, and the dosage form is more stable, so the application prospect is very broad.
  • the invention adopts the recrystallization and dispersion adsorption method to prepare the injection for needle-free injection, has the advantages of convenient process, short process, low cost and is suitable for large-scale powder preparation.
  • Figure 1 shows an automatic needle-free powder syringe that can be used in the present invention.
  • Fig. 2 is a scanning electron micrograph of a powder of a low-fermented protein insulin injection prepared in Example 5 of the present invention, the left picture is a single powder scanning electron microscope photograph, and the right picture is a surface detail photograph.
  • Figure 3A is a bar graph showing the drug loading amount of the insulin injection prepared in Examples 1-4 of the present invention,
  • the abscissa is the mass ratio of insulin to anhydrous sodium sulfate, and the ordinate is the drug loading.
  • Fig. 3B is a bar graph showing the bioavailability of the insulin injection prepared in Examples 1-4 of the present invention, the abscissa is the bioavailability, and the ordinate is the mass ratio of insulin to anhydrous sodium sulfate.
  • 4A is a graph showing the change of serum glucose content with time after injection of the low-fermentation insulin injection prepared in Example 5 of the present invention into the white rabbit, the abscissa is time (h), and the ordinate is glucose in serum. Content (mmol/L).
  • Fig. 4B is a graph showing the change of serum glucose content with time after injection of a low-protein injection of insulin-free insulin injection prepared by a prior art in a white needle-free rabbit, the abscissa is time (h), and the ordinate is serum glucose. Content (mmol/L).
  • Fig. 5A is a graph showing the insulin content of the low-fermented protein insulin injection prepared in Examples 5-10 of the present invention, wherein the abscissa indicates the mass ratio of insulin, sodium hyaluronate and anhydrous sodium sulfate, and the ordinate indicates the insulin content (mg/ Mg ).
  • Fig. 5B is a graph showing the results of bioavailability of the low-fermentation insulin injection prepared in Examples 5-10 of the present invention, wherein the abscissa indicates the mass ratio of insulin, sodium hyaluronate and anhydrous sodium sulfate, and the ordinate indicates the bioavailability. degree.
  • Figure 6 is a graph showing the results of measurement of interferon titer of the interference energy injection prepared in Examples 12-16 of the present invention, wherein the abscissa indicates the interference energy, the mass ratio of notoginsenoside and anhydrous sodium sulfate, and the ordinate indicates the interferon effect.
  • Price ( IU ) indicates the interferon effect.
  • Figure 7 is a graph showing the results of titration of l g G antibody titers of hepatitis B vaccine injection prepared in Examples 17-21 of the present invention, wherein the abscissa indicates the mass ratio of the vaccine, ginsenoside, and anhydrous sodium sulfate, and the ordinate indicates the hepatitis B vaccine pair. Concentration (U/L) of hepatitis B vaccine IgG antibody measured 6 weeks after guinea pig injection.
  • Fig. 8A is a graph showing the immunological effect of the tetanus vaccination injection prepared in Example 22 of the present invention, wherein the abscissa indicates time (week), and the ordinate indicates the concentration of IgG antibody in the serum of tetanus vaccine (UL" 1 ).
  • Fig. 8B is a view showing the immunological effect of a needle-injection tetanus vaccination preparation prepared by the prior art, wherein the abscissa indicates time (week), and the ordinate indicates the concentration of IgG antibody in the serum tetanus vaccine (UL- 1 ).
  • Figure 9 is a graph showing the results of measurement of interferon titer of the interferon injection prepared in Examples 23-28 of the present invention, wherein the abscissa indicates the quality of the interferon, the xanthine polysaccharide, the sodium hyaluronate, and the anhydrous sodium sulfate. Ratio, ordinate indicates interferon titer (IU) t preferred embodiment of the present invention
  • the mixed crystallization solution obtained in the above step (4) is rapidly subjected to low-temperature freeze-drying, and then a powder having a particle diameter of about 50 to 70 ⁇ m is collected to obtain a desired insulin injection.
  • the insulin injection for needle-free injection of the present invention was prepared in the same manner as in Example 1, except that the total mass ratio of ordinary insulin to anhydrous sodium sulfate in this example was 1:80.
  • Example 3 The insulin injection for needle-free injection of the present invention was prepared in the same manner as in Example 1, except that the total mass ratio of ordinary insulin to anhydrous sodium sulfate in this example was 1:20.
  • the insulin injection preparation for needle-free injection of the present invention was prepared in the same manner as in Example 1 except that the total mass ratio of ordinary insulin to anhydrous sodium sulfate in this example was 1:60.
  • the drug-loading amount and bioavailability of the insulin injection for needle-free injection prepared in Examples 1-4 were measured.
  • the serum of the white rabbits was taken at 0, 0.33, 0.66, 1, 2, 3, 5, 7, and 10 hours, respectively, and then the glucose assay kit (glucose oxidase-peroxidase method) was used. Sheng Biopharmaceutical Co., Ltd.) Determine the concentration of glucose in the serum according to the instructions, and plot the glucose content in the serum (average of each group of animals) as a function of time;
  • Bioavailability calculation The bioavailability was calculated using the trapezoidal area method based on the graph obtained in the hypoglycemic effect measurement. The results are shown in Fig. 3B. Fig. 3B shows that the insulin injections prepared in Examples 1-4 all have hypoglycemic effects, and the bioavailability is above 78%.
  • Example 5
  • the low-fermentation insulin injection prepared in this example is prepared by the method of preparing a crystalline powder according to CN 1315854A, and the mass ratio of aluminum hydroxide and low-protamine is 40:1.
  • the needle-free injection consisting of insulin is compared with the low-fermentation protein injection:
  • Morphological characteristics measurement S The S4800 cold field emission scanning electron microscope (Beijing Physical and Chemical Analysis Test Center) was used to observe the morphological characteristics of the two injections;
  • Particle size ⁇ The particle size of the two injection powders was determined by a conventional method using a laser particle size analyzer (Omega Technology Co., Ltd.);
  • Determination of hypoglycemic effect Take different amounts of two injection samples, so that the amount of insulin contained in the two injection samples is the same, and determine the hypoglycemic effect of the two injections by the method of measuring the hypoglycemic effect described above.
  • Bioavailability According to the graph obtained in the determination of the hypoglycemic effect (Fig. 4A and Fig. 4B), the bioavailability of the two injections was determined by the trapezoidal area method.
  • the morphological characteristics of the protamine injection prepared by the present invention are more suitable for needle-free injection, and have significantly higher insulin content and bioavailability than the low-prepared insulin injection prepared by the prior art. Further, Fig. 4A and Fig. 4B show that the low-precision insulin injection prepared by the present invention has a better hypoglycemic effect than the low-protein-free insulin injection prepared by the prior art for needle-free injection.
  • Example 6
  • the needle-free injection low-protein injection insulin injection of the present invention was prepared in the same manner as in Example 5, except that the sodium hyaluronate used in the example was 4 mg, and wherein insulin: sodium hyaluronate: none The total mass ratio of sodium sulphate is 1: 0.2: 20.
  • Example 7 The hypotinic injection of the low-protein injection insulin injection of the present invention was prepared in the same manner as in Example 5, except that the sodium hyaluronate used in the example was 200 mg, and wherein insulin: sodium hyaluronate: none The total mass ratio of sodium sulphate is 1:10:80.
  • Example 5 In the same manner as in Example 5, the low-protein injection insulin injection of the present invention for needle-free injection was prepared, except that the total mass ratio of insulin: sodium hyaluronate: anhydrous sodium sulfate in this example was 1:0.5. :20.
  • the hypotinic injection of the low-protein injection insulin injection of the present invention was prepared in the same manner as in Example 5, except that the sodium hyaluronate used in the example was 40 mg, and wherein insulin: sodium hyaluronate: none The total mass ratio of sodium sulphate is 1: 2: 60.
  • the needle-free injection low-protein injection insulin injection of the present invention was prepared in the same manner as in Example 5, except that the sodium hyaluronate used in the example was 40 mg, and wherein insulin: sodium hyaluronate: The total mass ratio of anhydrous sodium gram is 1: 2:40.
  • the insulin content of the low-fermentin insulin injection prepared in Examples 5-10 was determined by the method described above, and the results are shown in Fig. 5A, and Fig. 5A shows that the low-fermentation insulin injections prepared in Examples 5-10 are both Has a high insulin content (0.02 mg / mg or more); ⁇
  • the method described above is used to determine the hypoglycemic effect of the low-fermentation insulin injection prepared in Examples 5-10 and to plot the glucose content in the serum as a function of time.
  • the graph, then the bioavailability was calculated by the trapezoidal area method according to the graph of the glucose content in the serum as a function of time.
  • the results are shown in Fig. 5B, and Fig. 5B shows that the low protamine insulin injections prepared in Examples 5-10 have good results.
  • the hypoglycemic effect and bioavailability are all above 75%.
  • the human serum albumin-containing premixed insulin (30% of short-acting insulin and 70% of intermediate-acting insulin) injection for needle-free injection of the present invention was prepared in the same manner as in Example 5, except that this example was Premixed insulin (Sigma) was used instead of low protamine insulin, human serum albumin (Sigma) instead of sodium hyaluronate.
  • interfering energy (IFN-a2b) injection containing notoginsenoside for needle-free injection is prepared by using the outer package-solid particle-loaded powder preparation technique of the present invention:
  • the interference energy (IFN-a2b) injection containing notoginsenoside for needle-free injection of the present invention was prepared in the same manner as in Example 12, except that the notoginsenoside used was 8 mg, and among them, dried : Notoginsenoside: The total mass ratio of anhydrous sodium is 1:0.2:20.
  • Example 14 The interference energy (IFN-a2b) injection containing notoginsenoside for needle-free injection of the present invention was prepared in the same manner as in Example 12, except that the notoginsenoside used was 400 mg, and wherein interferon: Sanqi Saponin: The total mass ratio of sodium sulphate is 1:10:80.
  • the interference energy (IFN-a2b) injection containing notoginsenoside for needle-free injection of the present invention was prepared in the same manner as in Example 12, except that the notoginsenoside used was 32 mg, and wherein interferon: three or seven
  • the total mass ratio of saponin: anhydrous sodium is 1: 0.8: 20.
  • the interference energy (IFN-a2b) injection containing notoginsenoside for needle-free injection of the present invention was prepared in the same manner as in Example 12, except that the notoginsenoside used was 80 mg, and wherein interferon: Sanqi Saponin: The total mass ratio of sodium sulphate is 1: 2:40.
  • Interferon titers were determined for the interfering energy injections prepared in Examples 12-16.
  • Interferon titer determination according to the "Chinese Biological Products Regulations” 2000 edition “Interferon titer determination” (cytopathic inhibition method) using human amniotic cells (WISH, purchased from Beijing Shengxu Baichuan Biological Co., Ltd.), vesicular stomatitis virus (vsv, purchased from Beijing Shengxu Baichuan Biotechnology Co., Ltd.), in which BH-2 inverted microscope (Olympus) count was used to determine mortality and convert it into interferon according to the formula provided in the method. The price, see Figure 6 for the results. Figure 6 shows that the interfering energy injections prepared in Examples 12-16 have high activity, and the interferon titers are all above 500 IU.
  • the preparation of the hepatitis B vaccine containing ginsenosides for needle-free injection of the present invention is prepared by using the outer package-solid particle-loaded powder preparation technique of the present invention and the liquid preparation method of the traditional Chinese medicine adjuvant:
  • the hepatitis B vaccine (Beijing Zongheng Yangzhou Biotechnology Co., Ltd.) was diluted to 40 mL at a concentration of 1 mg/ml; (2) Weighing 48 mg of ginsenosides in double distilled water (4 ° C) to a concentration of 0.5 mg / ml;
  • the mixed crystallization solution obtained in the above step (5) is quickly freeze-dried, and a powder having a particle diameter of 50 to 70 ⁇ m is collected and stored at a low temperature to obtain a desired hepatitis B vaccine injection.
  • Example 18 Hepatitis B vaccine injection, the difference is: 40 mg of ginsenoside is weighed in step (2), hepatitis B vaccine in step (3): ginsenoside is 1:1, and hepatitis B vaccine: ginsenoside : The total mass ratio of anhydrous sodium is 1: 1: 40.
  • Example 19 Hepatitis B vaccine injection, the difference is: 400 mg of ginsenoside is weighed in step (2), hepatitis B vaccine in step (3): ginsenoside mass ratio is 1:10, and hepatitis B vaccine: ginsenoside : The total mass ratio of anhydrous sodium is 1:10:80.
  • Example 20 Hepatitis B vaccine injection, the difference is: 32 mg of ginsenoside is weighed in step (2), hepatitis B vaccine in step (3): ginsenoside mass ratio is 1:0.8, and hepatitis B vaccine: ginsenoside : The total mass ratio of anhydrous sodium is 1: 0.8: 20.
  • Hepatitis B vaccine injections prepared in Examples 17-21 were tested for lgG antibody titer.
  • Hepatitis B vaccine lgG antibody titer assay Hepatitis B vaccine lgG antibody titer was determined for the vaccine injections obtained in Examples 17-21 in guinea pigs (male, Beijing Keyu Animal Culture Center). 42 guinea pigs were randomly divided into 7 groups: blank group, control group (subcutaneous injection of tetanus toxoid 1 mg), Example 17 group (no needle powder injection vaccine 40 mg), and Example 18 (needle-free powder injection vaccine injection) 40 mg), Example 19 group (80 mg of needle-free powder injection vaccine), Example 20 group (20 mg of needle-free powder injection vaccine), and Example 21 group (20 mg of needle-free powder injection vaccine).
  • a tetanus vaccination injection containing ginsenosides for needle-free injection is prepared by using the outer package-solid particle-loaded powder preparation technique of the present invention:
  • the mixed crystallization solution obtained in the above step (4) is quickly freeze-dried to collect a powder having a particle diameter of about 50 to 70 ⁇ m, thereby obtaining a desired tetanus vaccine injection.
  • the cold vaccination injection prepared in this example is composed of a 40:1 mass ratio of aluminum hydroxide and tetanus vaccine prepared according to the crystal powder preparation technique disclosed in CN 1285753 A. Comparison of tetanus vaccine injections for needle injection:
  • Morphological characteristics, particle size, and hardness were measured by the method described in Example 5; determination of tetanus vaccine content using the Coomassie brilliant blue protein assay kit (Nanjing Institute of Bioengineering) Quality of the two injections of tetanus vaccine content;
  • the IgG antibody concentration of two tetanus vaccination injections was determined by the same method as that used in the hepatitis B vaccine IgG antibody titer measurement, except that the ELISA tetanus IgG antibody diagnostic kit was used (Zhuhai Haitai Biopharmaceutical) Ltd.) The results are shown in Figures 8A and 8B.
  • the morphological characteristics of the tetanus vaccine injection prepared by the present invention are more suitable for needle-free injection, and have a tetanus vaccine content which is significantly higher than that of the needle-free injection tetanus vaccination preparation prepared by the prior art.
  • FIG. 8A and FIG. 8B show that the tetanus vaccination preparation prepared by the present invention has a better immunological effect than the needle-free injection tetanus vaccination preparation prepared by the prior art.
  • step (1) In the solution of step (1), add 1.5625g of ergosamine (Sigma) at a mass ratio of aspirin: astragalus polysaccharides to 1:0.8 and mix well, then with interferon: sodium hyaluronate The mass ratio was 1:0.8, and 1.25 g of sodium hyaluronate was added to the mixed solution and mixed, and the mixture was allowed to stand at room temperature for 15 minutes to obtain a mixed suspension;
  • ergosamine Sigma
  • the rodent injection containing the astragalus polysaccharide of the present invention was prepared in the same manner as in Example 23 except that the interferon added in the step 2 was 0.625 g, and the interferon: astragalus polysaccharide: Sodium hyaluronate: The total mass ratio of anhydrous sodium gram is 1:2:2:40.
  • the rodent injection containing the astragalus polysaccharide of the present invention was prepared in the same manner as in Example 23, except that the interferon added in the step 2 was 2.5 g, and the interferon: astragalus polysaccharide: Sodium hyaluronate: The total mass ratio of anhydrous sodium gram is 1:0.5:0.5:20.
  • Example 26 The rodent injection containing the astragalus polysaccharide of the present invention was prepared in the same manner as in Example 23, except that the interferon added in the step 2 was 0.18 g, and the interferon: astragalus polysaccharide: Sodium hyaluronate: The total mass ratio of anhydrous sodium sulphate is 1:7:7:60.
  • Example 27 The total mass ratio of anhydrous sodium sulphate is 1:7:7:60.
  • the rodent injection containing the astragalus polysaccharide of the present invention was prepared in the same manner as in Example 23 except that the interferon added in the step 2 was 6.25 g, and the interferon: astragalus polysaccharide: Sodium hyaluronate: The total mass ratio of anhydrous sodium gram is 1:0.2:0.2:20.
  • Example 28
  • interferon-containing (IFN-a2a) injection containing the xanthine polysaccharide of the present invention in the same manner as in Example 23 was prepared, except that the interferon added in the step 2 was 0.125 g, and the interference was Element: Astragalus polysaccharide: Sodium hyaluronate: The total mass ratio of anhydrous sodium sulfate is 1:10:10:80.
  • the interferon potency of the interferon injections prepared in Examples 23-28 was measured by interferon titer, and the same method as used in Examples 12-16 was used. The results are shown in Fig. 9. Fig. 9 shows that the interferon injections prepared in Examples 23-28 all have high potency and thus have high activity.
  • the injection-free injection powder of the invention has the advantages of uniform particle size, high drug loading, strong drug adsorption, high bioavailability, stable and safe nature.
  • the crystallized water inorganic salt as a drug carrier has an adsorption effect on biological products such as insulin, interferon, and vaccine.
  • an injection preparation is prepared by a recrystallization dispersion adsorption method.
  • an inorganic salt of decrystallized water is used as a carrier, and a pre-pulverized and sieved decrystallized water inorganic having a predetermined particle diameter and distribution is prepared.
  • the salt powder is added to the saturated inorganic salt solution in which the biological product has been previously dissolved, and the water in the solution system is absorbed by the action of the decrystallized water inorganic salt to absorb the crystal water, so that the system is concentrated, and the biological product is coated on the surface of the inorganic salt powder.
  • a suitable thickening agent such as sodium hyaluronate can be added to the system to make the biological product more easily adsorbed on the surface of the inorganic salt particles, and then the mixed system is freeze-dried. In the process of water loss, the biological product is firmly wrapped on the surface of the inorganic salt particles. .
  • the initial particle diameter of the inorganic salt powder is not substantially changed, so that the particle diameter of the finally obtained drug-loaded powder is both solid particles, which can satisfy the needle-free powder injection.
  • the matrix developed into a biological product based on adsorption can fully exert its pharmacy advantages.
  • the tackifiers such as sodium hyaluronate and human serum albumin have certain viscosity-increasing and curing ability, which can play an auxiliary curing role and further enhance the adsorption capacity of the inorganic salt of the decrystallization water.
  • the selected soluble inorganic salt is dissolved quickly after being injected into the body, has no residue, is non-toxic and harmless, and has good biocompatibility.
  • the technique for preparing an injection of the present invention may be referred to as an outer package-solid particle-loaded powder preparation technique.
  • the needle-free injection for injection of the invention provides a new dosage form of biological product, which is especially suitable for needle-free injection technology, thereby effectively avoiding the first-pass effect caused by oral pharmaceutical preparation, and the particle size is in accordance with the percutaneous
  • the requirements for administration are easy to pass through the barrier layer of the stratum corneum, which can greatly improve the efficacy of the drug and shorten the onset time. Therefore, injections suitable for needle-free powder injection technology are particularly suitable for medical emergencies under major emergencies and in remote areas, large-scale field operations, and patients with fearfulness (such as children) and long-term self-administration.
  • the patient, and the dosage form is more stable, so the application prospect is very broad.
  • the invention adopts the recrystallization and dispersion adsorption method to prepare the injection for needle-free injection, has the advantages of convenient process, short process, low cost and is suitable for large-scale powder preparation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Diabetes (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Biotechnology (AREA)
  • Obesity (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

一种无针注射用注射剂,该注射剂呈粉末形式,包含质量比为1:20-1:80的生物制品和脱结晶水无机盐,所述粉末为所述生物制品包裹在所述脱结晶水无机盐外表面的实心颗粒。所述粉末粒径为20-200微米,优选为50-70微米。本发明的注射剂还可以包含增粘剂或中药佐剂,其中,生物制品:增粘剂或中药佐剂:脱结晶水无机盐的质量比为1:0.2:20-1:10:80。本发明还公开了所述无针注射用注射剂的制备方法,其用于制备预防或治疗疾病的药物的用途,以及使用其进行无针注射的方法。

Description

一种无针注射用注射剂的制备方法及应用
技术领域
本发明涉及一种无针注射用注射剂的制备方法和用途, 且尤其涉及一种 呈粉末形式的生物制品注射剂的制备方法和用途。
背景技术
生物制品是应用普通的生物材料或通过基因工程、 细胞工程、 蛋白质工 程、 发酵工程等生物技术获得的微生物、 细胞及各种动物和人源的组织和液 体等生物材料制备的, 用于人类疾病预防、 治疗和诊断的药品。 目前, 我国 人用生物制品包括细菌类疫苗 (含类毒素) 、 病毒类疫苗、 抗毒素及免疫血 清、 血液制品、 细胞因子、 体内及体外诊断制品以及其他活性制剂 (包括毒 素、 抗原、 变态反应原、 单克隆抗体、 重组 DNA产品、 抗原-抗体复合物、 免疫调节剂、 微生物制剂等) 。 大多数生物制品的活性组分均为大分子的生 命物质 (如蛋白质、 多肽、 核酸、 多糖等) , 其相对分子质量较大, 不易穿 透胃肠道屏障被机体所吸收, 且易被消化液分解而失活, 故不适宜口服给药, 大多数情况下需静脉注射、 肌肉注射、 皮下注射等。 但是, 普通注射给药存 在很多问题, 例如: 1 )会导致出血, 存在交叉感染风险; 2 )组织损伤大, 一些慢性疾病如糖尿病患者需长期注射胰岛素,往往造成注射部位组织硬化、 结块等病变; 3 )痛感强烈, 患者的顺应性较差, 对于儿童和有恐针感的人更 是难以适应, 针刺的疼痛感让他们无法忍受; 4 )通常需要专业人员完成, 不 适于自我给药。
本专利申请人在先申请的无针粉末注射给药技术(CN 201643226 ) 刚好 弥补了这些缺陷: 无针粉末注射技术通过皮肤给药, 透皮吸收可避免首过效 应, 生物利用度高, 可有效避免交叉感染, 无针、 无痛, 给药效率高, 可自 我操作, 特别适合需长期给药治疗的患者、 儿童和有恐针感的患者。 无针粉末注射技术对药物粉末的制备方法和粉末性质有特殊的要求: 1 ) 载药粉末的密度较大, 且为实心颗粒, 具有较大的机械强度, 利于穿透皮肤 角质层; 2 )粉末粒径较大(如数十到数百微米) , 以使载药粉末被高速气流 加速时获得较大的动能(动量), 利于穿透皮肤角质层; 3 )粉末粒径分布较 窄, 以保证载药粉末被高速气流加速时获得相近似的动能(动量) , 保证药 物递送的重现性和稳定性。 目前已有的粉末制备方法大多不适应于无针粉末 注射, 达不到实用化、 商业化的要求。 已公开的一些药物粉末或微粒制备方 法大多数是针对于微球和微嚢设计的,载体大多为高分子化合物,密度低(通 常在 lg/cm3左右或更低), 且多为空心颗粒, 机械强度小, 不易穿透皮肤角 质层; 同时, 所获得微球或微嚢大多粒径较小, 如数微米到二三十微米, 且 粒径分布较宽, 难以满足上述对无针注射粉末的技术要求, 因而通过无针粉 末注射给药的效率不高、 生物利用度较低; 另外, 所釆用载体物质的生物相 容性问题和体内降解也是限制因素之一。 之前, 本专利发明人曾公开过一种 直接混合的粉末制备方法, 此方法仍然存在较大的缺陷: 1 )磷酸盐与胰岛素 混合溶液, 减压干燥, 以使胰岛素和磷酸盐共同结晶 (或仅是二者分别结晶 的混合物), 所得到的粉末粒径均匀性较差; 2 )胰岛素并不能有效附着在磷 酸盐载体上, 给药效率较低; 3 )减压干燥使胰岛素失活严重等问题。 发明内容
鉴于上述因素, 本发明提供了一种适于载荷生物制品的高效粉末制备方 法, 以此法制备出的粉末为实心颗粒、 密度大、 机械强度大、 粒度均勾、 稳 定性强、 载药量高, 可有效穿透皮肤角质层、 到达皮内或皮下部位发挥效力, 生物利用度高。
本发明的首要目的在于提供一种无针注射用的注射剂。
本发明的另一个目的是提供一种无针注射用的注射剂的制备方法。
本发明的另一个目的是提供一种无针注射用的注射剂用于制备预防或治 疗疾病的药物的用途。
本发明的又一目的是提供一种使用无针注射用的注射剂进行无针注射的 方法。
在第一方面, 本发明提供了一种无针注射用的注射剂, 本发明的注射剂 呈粉末形式, 且所述注射剂包括质量比为 1 :20-1 :80的生物制品和脱结晶水无 机盐, 所述粉末为所述生物制品包裹在所述脱结晶水无机盐外表面的实心颗 粒,且所述粉末的粒径在 20-200微米之间。优选地,所述质量比为 1:20-1:60, 最优选为 1:20-1:40; 所述粒径在 50-70微米之间。
在第一方面的实施方案中, 所述生物制品包括但不限于下列生物制品中 的一种或多种: 胰岛素、 干扰素、 疫苗、 抗毒素及免疫血清、 血液制品、 细 胞因子、 体内及体外诊断制品以及其他活性制剂。 优选地, 所述生物制品选 自胰岛素、 干扰素和疫苗中的一种或多种。 更优选地, 所述生物制品为胰岛 素。
优选地, 所述胰岛素选自普通胰岛素、 低精蛋白辞胰岛素、 精蛋白辞胰 岛素、 预混胰岛素; 所述干扰素选自: IFN - a 2b、 IFN - a 2a、 类淋巴母细 胞干扰素或其组合; 所述疫苗为细菌或病毒性疫苗, 可以选自下列疫苗中的 一种或多种: 乙肝疫苗、 破伤风类毒素疫苗、 流行性腮腺炎疫苗、 麻疹疫苗、 伤寒疫苗、 流感疫苗、 白喉疫苗、 炭疽疫苗、 布氏菌疫苗、 钩端螺旋体疫苗 和森林脑炎疫苗。
在第一方面的实施方案中, 所述脱结晶水无机盐选自无水硫酸钠、 无水 石克酸钙、 无水^ 酸铝、 无水^ 酸镁、 无水^ 酸辞、 无水^ 酸铝钾、 无水硝酸 钾、 无水酸酸铝、 无水磷酸氢二钾或其组合。 优选地, 所述脱结晶水无机盐 为无水疏酸钠。
在第一方面的另一实施方案中,除了上述生物制品和脱结晶水无机盐外, 本发明的注射剂还包含增粘剂, 其中所述生物制品、 所述增粘剂和所述脱结 晶水无机盐的质量比为: 1:0.2:20-1:10:80, 优选为 1:0.5:20-1:2:60, 更优选为 1:0.5:40-1:2:40。
所述增粘剂可选自透明质酸钠、 人血白蛋白或其组合。
在第一方面的另一实施方案中,除了上述生物制品和脱结晶水无机盐外, 本发明的注射剂还包含药学上可接受的佐剂, 其中所述生物制品、 所述佐剂 和所述脱结晶水无机盐的质量比为 1:0.2:20-1:10:80, 优选为 1:0.5:20-1:7:60, 更优选为 1:0.8: 20-1:2:40。
所述佐剂优选为中药佐剂, 所述中药佐剂可选自皂苷、 多糖、 黄酮或其 组合。
优选地, 皂苷选自人参皂苷、 三七皂苷、 绞股蓝皂苷、 威灵仙皂苷、 薯 蓣皂苷或其组合等; 多糖选自黄芪多糖、 人参多糖、 猪苓多糖、 红景天多糖、 大枣多糖或其组合等; 黄酮选自淫羊藿黄酮、 金橘黄酮、 白花蛇舌草黄酮、 大豆黄酮、 沙棘黄酮或其组合等。
在第一方面的另一实施方案中,除了上述生物制品和脱结晶水无机盐外, 本发明的注射剂还包含药学上可接受的佐剂和增粘剂, 其中所述生物制品、 所述佐剂 、 所述增粘剂和所述脱结晶水无机盐的质量比为 1 :0.2:0.2:20-1 :10:10:80 , 4尤 选 为 1 :0.5:0.5:20-1 :7:7:60 , 更 优 选 为 1 :0.8:0.8:20-1 :2:2:40。
所述佐剂优选为中药佐剂, 所述中药佐剂可选自皂苷、 多糖、 黄酮或其 组合。 所述增粘剂可选自透明质酸钠、 人血白蛋白或其组合。
优选地, 皂苷选自人参皂苷、 三七皂苷、 绞股蓝皂苷、 威灵仙皂苷、 薯 蓣皂苷或其组合等; 多糖选自黄芪多糖、 人参多糖、 猪苓多糖、 红景天多糖、 大枣多糖或其组合等; 黄酮选自淫羊藿黄酮、 金橘黄酮、 白花蛇舌草黄酮、 大豆黄酮、 沙棘黄酮或其组合等。
在本发明的第一方面的上述实施方案中,所述注射剂通过无针注射施用。 在本发明的第一方面的上述实施方案中,所述注射剂通过如下方法制备: 在 0-4 °C环境中将粒径在 20-200微米, 优选 50-70微米范围内, 最优选 50微 米左右的脱结晶水无机盐粉末添加到所述生物制品的水溶液中、 或所述生物 制品与所述增粘剂和 /或所述佐剂的混合物的水溶液中至饱和; 继续添加所述 脱结晶水无机盐粉末使得所述生物制品与总的脱结晶水无机盐的质量比为 1 :20-1 :80, 优选 1 :20-1 :60, 最优选 1 :20-1 :40, 得到混合结晶溶液; 将所述混 合结晶溶液冷冻干燥, 收集粒径在 20-200微米, 优选 50-70微米范围内的粉 末, 得到本发明的无针注射用注射剂。
在第二方面, 本发明提供了如第一方面所述的无针注射用注射剂的制备 方法, 所述方法包括下列步骤: 在 0-4 °C环境中将粒径在 20-200微米, 优选 50-70微米范围内, 最优选 50微米左右的脱结晶水无机盐粉末添加到所述生 物制品的水溶液中、 或所述生物制品与所述增粘剂和 /或所述佐剂的混合物的 水溶液中至饱和; 继续添加所述脱结晶水无机盐粉末使得所述生物制品与总 的脱结晶水无机盐的质量比为 1:20-1:80, 优选 1:20-1:60, 最优选 1:20-1:40, 得到混合结晶溶液;将所述混合结晶溶液冷冻干燥,收集粒径在 20-200微米, 优选 50-70微米范围内的粉末, 得到本发明的无针注射用注射剂。
在第二方面的一个实施方案中, 本发明的注射剂的制备方法包括下述步 骤: ( 1 )粉碎并 选粒径在 20-200微米, 优选 50-70微米, 最优选 50微米 左右的脱结晶水无机盐粉末; ( 2 )在 0-4 °C将所述脱结晶水无机盐粉末添加 到生物制品的水溶液中至饱和; ( 3 )继续添加所述脱结晶水无机盐粉末使得 所述生物制品与所述脱结晶水无机盐粉末的质量比为 1:20-1:80, 优选 1 :20-1:60 , 最优选 1 :20-1 :40 , 得到混合结晶溶液; ( 4 )将所述混合结晶溶液 冷冻干燥, 收集粒径为 20-200微米, 优选 50-70微米的粉末, 得到本发明的 注射剂。
优选地, 本发明的无针注射用注射剂包括胰岛素和无水硫酸钠, 其制备 方法包括下述步骤:
( 1 )称取胰岛素并用双蒸水( 4°C )溶解 (可加少量 0.01mol/l的盐酸助 溶) ;
(2)将无水硫酸钠颗粒进行过筛处理, 收集 50微米左右的颗粒, 待用;
(3)将上述步骤(1 ) 中配制的胰岛素溶液置于水水浴中, 加入一定量 的已过筛无水硫酸钠颗粒至饱和状态;
(4)继续向上述饱和溶液中加入已过筛无水硫酸钠颗粒, 直至胰岛素: 无水硫酸钠的总质量比为 1:20-1:80, 优选 1:20-1:60, 最优选为 1:20-1:40, 搅 拌混勾, 至析出大量晶体为止;
(5)迅速将上述混合结晶溶液进行冷冻干燥, 之后收集粒径约 20-200 微米, 优选在 50-70微米之间的粉末, 得到本实施方案的胰岛素注射剂。
在第二方面的另一个实施方案中, 本发明的注射剂的制备方法包括下列 步骤: ( 1 )粉碎并 选粒径在 20-200微米, 优选 50-70微米, 最优选 50微 米左右的脱结晶水无机盐粉末; (2)在 0-4 °C环境中将所述脱结晶水无机盐 粉末添加至质量比为 1:0.2-1:10, 优选 1:0.2-1:2, 最优选 1:0.5-1:2的生物制品 与增粘剂的水溶液中至饱和; (3 )继续添加所述脱结晶水无机盐粉末使得所 述生物制品、 所述增粘剂与所述脱结晶水无机盐粉末的质量比为 1:0.2:20-1:10:80, 4尤选为 1:0.5:20-1:2:60, 最 4尤选为 1:0.5:40-1:2:40, 得 h'昆合 结晶溶液; (4)将所述混合结晶溶液冷冻干燥, 收集粒径为 20-200微米, 优选 50-70微米的粉末, 得到本发明的注射剂。
优选地, 本发明的无针注射用注射剂包括: 胰岛素、 透明质酸钠和无水 硫酸钠, 其制备方法包括下述步骤:
( 1 )称取胰岛素并加入双蒸水(4°C )至完全溶解(可加少量 0.01mol/l 的盐酸助溶) ;
(2)将无水硫酸钠颗粒进行过筛处理, 收集 50微米左右的颗粒, 待用;
( 3 )称取透明质酸钠加入到胰岛素溶液中(可加少量浓氨水助溶 )使得 胰岛素与透明质酸钠的质量比为 1:0.2-1:2;
(4)将上述步骤(3)所得的胰岛素 -透明质酸钠溶液置于水水浴中, 加 入一定量的已过筛无水石克酸钠颗粒至饱和状态;
(5)继续向步骤(4)所得的饱和溶液中加入已过筛的无水硫酸钠颗粒, 直至胰岛素: 透明质酸钠: 无水硫酸钠的总质量比为 1:0.5:20-1:2:40, 搅拌混 匀, 至析出大量晶体为止;
( 6 )迅速将上述混合结晶溶液进行冷冻干燥,之后收集粒径约在 20-200 微米, 优选在 50-70微米之间的粉末, 得到本实施方案的胰岛素注射剂。
在第二方面的另一个实施方案中, 本发明的注射剂的制备方法包括下列 步骤: ( 1 )粉碎并 选粒径在 20-200微米, 优选 50-70微米, 最优选 50微 米左右的脱结晶水无机盐粉末; (2)在 0-4 °C左右环境中将所述脱结晶水无 机盐粉末添加至质量比为 1:0.2-1:10, 优选 1:0.5-1:7, 最优选 1:0.8-1:2的生物 制品与佐剂, 优选中药佐剂的水溶液中至饱和; (3)继续添加所述脱结晶水 无机盐粉末使得所述生物制品、 所述佐剂与所述脱结晶水无机盐粉末的质量 t匕为 1:0.2:20-1:10:80, 4尤选 1:0.5:20-1:7:60, 最 4尤选 1:0.8:20-1:2:40, 得 h'昆合 结晶溶液; (4)将所述混合结晶溶液冷冻干燥, 收集粒径为 20-200微米, 优选 50-70微米的粉末, 得到本发明的注射剂。
优选地, 本发明的无针注射用注射剂包括干扰素、 中药佐剂和脱结晶水 无机盐, 所述脱结晶水无机盐优选为无水硫酸钠, 其制备方法包括下述步骤:
( 1 )量取干扰素并加入双蒸水(4°C )至完全溶解;
(2)将无水硫酸钠颗粒进行过筛处理, 收集 50微米左右的颗粒, 待用;
(3)称取中药佐剂加入到步骤(1 )所得的干扰素溶液中;
(4)将上述步骤(3)所得的干扰素-中药佐剂溶液置于水水浴中, 加入 一定量的已过筛无水硫酸钠颗粒至饱和状态;
(5)继续向上述步骤(4)所得的饱和溶液中加入已过筛的无水硫酸钠 颗粒, 直至干扰素: 中药佐剂: 无水硫酸钠的总质量比为 1:0.2:20-1:2:60, 优 选 =1:1:25-1:2:25, 搅拌混匀, 至析出大量晶体为止;
(6)迅速将上述步骤(5)所得的混合结晶溶液进行冷冻干燥, 之后收 集粒径约在 50-70微米之间的粉末, 得到本实施方案的干扰素注射剂。
优选地, 本发明的无针注射用注射剂包括疫苗、 中药佐剂和脱结晶水无 机盐, 所述脱结晶水无机盐优选为无水硫酸钠, 其制备方法包括下述步骤:
( 1 )量取疫苗原液并用双蒸水(4°C )稀释到 lmg/ml;
(2)将无水硫酸钠颗粒进行过筛处理, 收集 50微米左右的颗粒, 待用;
(3)称取中药佐剂加入到步骤(1 )所得的疫苗溶液中;
(4)将上述步骤(3)所得的疫苗-中药佐剂溶液置于水水浴中, 加入一 定量的已过筛无水硫酸钠颗粒至饱和状态;
(5)继续向上述步骤(4)所得的饱和溶液中加入已过筛的无水硫酸钠 颗粒, 直至疫苗: 中药佐剂: 无水石克酸钠的总质量比为 1:0.5:20-1:10:60, 优 选 =1:0.5:20-1:5:20, 搅拌混匀, 至析出大量晶体为止;
(6)迅速将上述混合结晶溶液进行冷冻干燥, 之后收集粒径约在 50-70 微米之间的粉末, 得到本实施方案的疫苗注射剂。
在第二方面的另一个实施方案中, 本发明的注射剂的制备方法包括下列 步骤: ( 1 )粉碎并 选粒径在 20-200微米, 优选 50-70微米, 最优选 50微 米左右的脱结晶水无机盐粉末; (2)在 0-4 °C左右环境中将所述脱结晶水无 机盐粉末添加至质量比为 1:0.2:0.2-1:10:10, 优选 1:0.5:0.5-1:7:7, 最优选 1:0.8:0.8-1:2:2的生物制品、 佐剂 (优选中药佐剂)与增粘剂的混合物的水溶 液中至饱和; ( 3 )继续添加所述脱结晶水无机盐粉末使得所述生物制品、 佐 剂 (优选中药佐剂) 、 增粘剂与所述脱结晶水无机盐粉末的质量比为 1:0.2:0.2:20-1:10:10:80,仂 ύ选 1:0.5:0.5:20-1:7:7:60,最仂 ύ选 1:0.8:0.8:20-1:2:2:40; (4)冷冻干燥, 收集粒径为 20-200微米, 优选 50-70微米的粉末, 得到本发 明的注射剂。
优选地, 本发明的无针注射用注射剂包括干扰素、 中药佐剂、 增粘剂和 脱结晶水无机盐, 所述脱结晶水无机盐优选为无水硫酸钠, 其制备方法包括 下述步骤:
( 1 )量取干扰素并加入双蒸水(4°C )至完全溶解;
(2)将无水硫酸钠颗粒进行过筛处理, 收集 50微米左右的颗粒, 待用;
(3)称取中药佐剂和增粘剂加入到步骤(1 )所得的干扰素溶液中; ( 4 )将上述步骤( 3 )所得的干扰素 -增粘剂-中药佐剂溶液置于水水浴中 , 加入一定量的已过筛无水石克酸钠颗粒至饱和状态;
(5)继续向上述步骤(4)所得的饱和溶液中加入已过筛的无水硫酸钠 颗粒, 直至干扰素: 中药佐剂: 增粘剂: 无水硫酸钠的总质量为 =1:0.2:0.2:20-1:2:2:60, 仂 ύ选为 1:1:1:25-1:2:2:25, 搅拌混匀, 至析出大量晶体 为止;
(6)迅速将上述步骤(5)所得的混合结晶溶液进行冷冻干燥, 之后收 集粒径约在 50-70微米之间的粉末, 得到本实施方案的干扰素注射剂。
优选地, 本发明的无针注射用注射剂包括普通胰岛素、 中药佐剂、 增粘 剂和脱结晶水无机盐, 所述脱结晶水无机盐优选为无水硫酸钠, 其制备方法 包括下述步骤:
( 1 )量取胰岛素并用加入双蒸水( 4°C )至完全溶解 (可加少量 0.01mol/l 的盐酸助溶) ;
(2)将无水硫酸钠颗粒进行过筛处理, 收集 50微米左右的颗粒, 待用; ( 3 )称取中药佐剂和增粘剂加入到步骤(1 )所得的胰岛素溶液中;
( 4 )将上述步骤( 3 )所得的胰岛素 -增粘剂-中药佐剂溶液置于水水浴中 , 加入一定量的已过筛无水石克酸钠颗粒至饱和状态;
( 5 )继续向上述步骤(4 )所得的饱和溶液中加入已过筛的无水硫酸钠 颗粒, 直到胰岛素: 中药佐剂: 增粘剂: 无水硫酸钠的总质量比为
1 :0.5:0.5:20-1 :10:10:60, 仂 ύ选为 1 :0.5:0.5:20-1 :5:5:20, 搅拌混匀, 至析出大量 晶体为止;
( 6 )迅速将上述混合结晶溶液进行冷冻干燥, 之后收集粒径约在 50-70 微米之间的粉末, 得到本实施方案的胰岛素注射剂。
在第三方面, 本发明提供了如第一方面所述的无针注射用注射剂用于制 备预防或治疗疾病的药物的用途。
其中, 所述疾病包括, 但不限于: 糖尿病、 病毒性肝炎、 肿瘤、 血液病、 皮肤性病、 病毒性角膜炎、 慢性宫颈炎、 破伤风、 流行性腮腺炎、 白喉、 麻 疹、 伤寒或流感。
在第四方面, 本发明提供了使用如第一方面所述的无针注射用注射剂进 行无针注射的方法。 所述方法包括: 将所述注射剂装入无针注射器的药匣中, 通过所述无针注射器施用。
其中,所述无针注射器可为 CN 201643226号专利申请中所公开的自动无 针粉末注射器(如附图 1所示) 。 使用时, 将所制得的注射剂与自动无针粉 末注射器相配合, 将所制备的粉末状注射剂装入无针注射器的药匣中, 通过 无针注射器具有的储气装置、 激发装置, 发射装置, 将药匣中装载的粉末状 注射剂通过无针注射器透射皮肤组织细胞, 进入皮内、皮下或粘膜组织释药。
本发明的无针注射用注射剂粉末具有颗粒大小一致、 载药量高、 药物吸 附牢固、 生物利用度高、 性质稳定安全等优势。 作为药物载体的脱结晶水无 机盐具有对胰岛素、 干扰素、 疫苗等生物制品能够产生吸附作用。
本发明的粉末状无针注射用注射剂的制备方法与现有技术的制备方法 (例如, CN 1285753A和 CN 1315854A号专利中所公开的结晶粉末制备方法) 的原理及制备过程完全不同。本发明釆用的是重结晶分散吸附法制备注射剂, 在本发明的方法中, 釆用脱结晶水的无机盐为载体, 将预先粉碎并筛分的具 有规定粒径及分布的脱结晶水无机盐粉末, 加入已预先溶解了生物制品的饱 和无机盐溶液中, 利用脱结晶水无机盐吸收结晶水的作用将溶液体系中的水 吸收, 使体系浓缩, 增加生物制品包裹在无机盐粉末表面的机会, 体系中可 适量加入透明质酸钠等增粘剂, 使生物制品更易吸附在无机盐颗粒表面, 然 后将混合体系冷冻干燥, 在失水过程中, 生物制品牢固地包裹在无机盐颗粒 表面。 由于将已预先 分的无机盐粉末加入其饱和溶液, 因此基本不会改变 无机盐粉末的初始粒径, 使得最终获得的载药粉末粒径均勾且为实心颗粒, 可以满足无针粉末注射给药的技术要求。 基于吸附作用开发成生物制品的基 质, 能充分发挥其药剂学优势。 透明质酸钠、 人血白蛋白等增粘剂具有一定 的增粘、 固化能力, 可起到辅助固化作用, 进一步增强了脱结晶水无机盐的 吸附能力。 此外, 所选用的可溶性无机盐注射到体内后很快溶解, 无残留、 无毒无害, 生物相容性好。 本发明制备注射剂的技术可以称为外包裹-实心颗 粒载药粉末制备技术。
本发明的无针注射用注射剂提供了生物制品的一种新剂型, 该剂型尤其 适用于无针注射技术, 从而有效避免了因口服药物制剂造成的首过效应, 其 粒径的大小符合经皮给药要求, 易于通过被角质层屏障, 可大幅提高药物的 疗效, 缩短起效时间。 因此, 适用于无针粉末注射技术的注射剂特别适合重 大突发事件以及边远地区、 大规模野外作业等条件下的医疗预防保障, 及有 恐针感的患者 (如儿童)和需长期自我给药的患者, 并且该剂型更加稳定, 因此应用前景十分广阔。 本发明釆用重结晶分散吸附法制备无针注射用注射剂, 工艺便捷, 流程 简短, 成本低廉且适用于较大规模的粉末制备。
附图概述
图 1 显示可用于本发明的自动无针粉末注射器。
图 2显示本发明实施例 5所制备的低精蛋白辞胰岛素注射剂的粉末的扫 描电镜照片, 左图为单个粉末扫描电镜照片, 右图为表面细节照片。
图 3A显示本发明实施例 1-4所制备的胰岛素注射剂的载药量的柱形图, 横坐标为胰岛素与无水硫酸钠的质量比, 纵坐标为载药量。
图 3B 显示本发明实施例 1-4所制备的胰岛素注射剂的生物利用度的柱 形图, 横坐标为生物利用度, 纵坐标为胰岛素与无水硫酸钠的质量比。
图 4A显示本发明实施例 5所制备的低精蛋白辞胰岛素注射剂注射曰本 大白兔后, 血清中葡萄糖含量随时间变化的曲线图,横坐标为时间 (h ) , 纵 坐标为血清中葡萄糖的含量(mmol/L ) 。
图 4B 显示现有技术制备的无针注射用低精蛋白辞胰岛素注射剂注射曰 本大白兔后, 血清中葡萄糖含量随时间变化的曲线图, 横坐标为时间 (h ) , 纵坐标为血清中葡萄糖的含量(mmol/L ) 。
图 5A显示本发明实施例 5-10所制备的低精蛋白辞胰岛素注射剂的胰岛 素含量图, 横坐标表示胰岛素、 透明质酸钠和无水硫酸钠的质量比, 纵坐标 表示胰岛素含量(mg/mg ) 。
图 5B显示本发明实施例 5-10所制备的低精蛋白辞胰岛素注射剂的生物 利用度的结果图, 横坐标表示胰岛素、 透明质酸钠和无水硫酸钠的质量比, 纵坐标表示生物利用度。
图 6 显示本发明实施例 12-16所制备的干扰能注射剂的干扰素效价测定 结果图, 其中横坐标表示干扰能、 三七皂苷、 无水硫酸钠的质量比, 纵坐标 表示干扰素效价( IU ) 。
图 7 显示本发明实施例 17-21所制备的乙肝疫苗注射剂的 lgG抗体滴度 测定结果图, 其中横坐标表示疫苗、 人参皂苷、 无水硫酸钠的质量比, 纵坐 标表示乙肝疫苗对豚鼠注射后 6周所测定的乙肝疫苗 lgG抗体的浓度( U/L )。
图 8A显示本发明实施例 22所制备的破伤风疫苗注射剂的免疫效果图, 横坐标表示时间(周 ),纵坐标表示血清中破伤风疫苗 IgG抗体的浓度( U-L"1 )。
图 8B 显示现有技术制备的无针注射用破伤风疫苗注射剂的免疫效果 图, 横坐标表示时间 (周) , 纵坐标表示血清中破伤风疫苗 IgG抗体的浓度 ( U-L- 1 ) 。
图 9 显示本发明实施例 23-28所制备的干扰素注射剂的干扰素效价测定 结果图, 其中横坐标表示罗扰素、 黄芪多糖、 透明质酸钠、 无水硫酸钠的质 量比, 纵坐标表示干扰素效价 (IU)t 本发明的较佳实施方式
以下通过实施例进一步说明和解释本发明, 但不作为本发明的限制。 本 文所包括的实施例仅仅是为了帮助更完整地理解本文所述的发明。 这些实施 例不以任何方式限制本文所述的或本文所要求保护的范围。 以下实施例中所 用的物质, 除了注明的之外, 其余均为市售。
实施例 1:
釆用本发明的外包裹-实心颗粒载药粉末制备技术制备无针注射用的胰 岛素注射剂:
( 1 )称取普通胰岛素( Sigma ) 40mg并加入 2mL双蒸水( 4°C )至完全 溶解 (可加少量 0.01mol/l的盐酸助溶 ) ;
( 2 )将无水硫酸钠颗粒进行过筛处理, 收集 50微米左右的颗粒, 待用; ( 3 )将上述步骤(1 ) 中配制的胰岛素溶液置于水水浴中, 加入一定量 的已过筛无水硫酸钠颗粒至饱和状态;
( 4 )继续向上述步骤(3 )所得的饱和溶液中投入大量粒径大小基本一 致的无水硫酸钠颗粒, 直至胰岛素: 无水硫酸钠的总质量比为 1 :40, 搅拌混 匀, 至析出大量晶体为止;
( 5 )迅速将上述步骤(4 )所得的混合结晶溶液进行低温冷冻干燥, 之 后收集粒径约在 50-70微米之间的粉末, 得到所需胰岛素注射剂。
实施例 2:
釆用与实施例 1相同的方法制备本发明的无针注射用的胰岛素注射剂, 不同的是该实施例中普通胰岛素与无水硫酸钠的总质量比为 1 :80。
实施例 3: 釆用与实施例 1相同的方法制备本发明的无针注射用的胰岛素注射剂, 不同的是该实施例中普通胰岛素与无水硫酸钠的总质量比为 1 :20。
实施例 4:
釆用本发明与实施例 1相同的方法制备本发明的无针注射用的胰岛素注 射剂, 不同的是该实施例中普通胰岛素与无水硫酸钠的总质量比为 1 :60。
对实施例 1-4所制备的无针注射用的胰岛素注射剂进行载药量和生物利 用度测定。
载药量测定 釆用考马斯亮兰蛋白测定试剂盒(南京建成生物工程研究 所)完成实施例 1-4所得的胰岛素注射剂的载药量测定, 结果参见图 3A。 图 3A表明实施例 1-4所制备的胰岛素注射剂均具有高的载药量,在 0.015/mg以 上;
降糖效果测定: 在曰本大白兔(雄性, 北京科宇动物养殖中心) 中对实 施例 1-4所获得的胰岛素注射剂进行体内葡萄糖浓度检测。 将 21只大白兔随 机分为 7组: 空白组、 阳性对照组(静脉注射 0.3mg胰岛素) 、 阴性对照组、 实施例 1组(无针粉末注射 12mg胰岛素注射剂 )、 实施例 2组(无针粉末注 射 24mg胰岛素注射剂 ) 、 实施例 3组(无针粉末注射 6mg胰岛素注射剂 ) 、 实施例 4组(无针粉末注射 15mg胰岛素注射剂), 除空白组外各组实验动物 需用四氧嘧啶(Sigma )按照 120mg/kg造模。 给药后分别于 0、 0.33、 0.66、 1、 2、 3、 5、 7、 10 小时取大白兔的血清, 然后釆用葡萄糖测定试剂盒(葡 萄糖氧化酶-过氧化物酶法) (上海荣盛生物药业有限公司)按照说明测定血 清中葡萄糖的浓度, 绘制血清中葡萄糖含量(每组动物的平均值) 随时间变 化的曲线图;
生物利用度计算 根据降糖效果测定中所得的曲线图运用梯形面积法计 算生物利用度, 结果参见图 3B。 图 3B表明实施例 1-4所制备的胰岛素注射 剂均具有降糖效果, 生物利用度均在 78%以上。 实施例 5:
釆用本发明的外包裹-实心颗粒载药粉末制备技术, 透明质酸钠增粘方式 制备无针注射用低精蛋白辞胰岛素注射剂:
( 1 )取低精蛋白辞胰岛素 ( Sigma ) 20mg, 加入双蒸水 2mL ( 4°C )溶 解, 在超声清洗器中超声处理、 分散 2小时, 使其溶解。 若仍不溶解, 则加 少量浓盐酸即可;
( 2 )将无水硫酸钠颗粒进行过筛处理, 收集 50微米左右的颗粒, 待用;
( 3 )往上述步骤( 1 )所得的溶液中加入 10mg透明质酸钠 ( aladdin )并 緩慢搅拌, 直至完全溶解, 可加少量浓氨水助溶;
( 4 )将上述步骤(3 )配制的胰岛素 -透明质酸钠溶液置于水水浴中, 加 入一定量的已过筛无水硫酸钠颗粒至饱和状态;
( 5 )继续向上述步骤(4 )所得的饱和溶液中投入大量粒径大小基本一 致的无水硫酸钠颗粒, 直至胰岛素: 透明质酸钠: 无水硫酸钠的总质量比为 1 :0.5:40, 搅拌混匀, 至析出大量晶体为止;
( 6 )迅速将上述步骤(5 )所得的混合结晶溶液进行低温冷冻干燥, 之 后收集粒径约在 50-70微米之间的粉末, 得到所需低精蛋白辞胰岛素注射剂。
釆用如下的方法将该实施例中所制备的低精蛋白辞胰岛素注射剂与根据 CN 1315854A号专利中所公开的结晶粉末制备技术制备的由质量比为 40: 1 的氢氧化铝和低精蛋白辞胰岛素组成的无针注射用低精蛋白辞胰岛素注射剂 进行比较:
形态学特征测量 釆用 S4800冷场发射扫描电子显微镜(北京理化分析 测试中心)来观察两种注射剂的形态学特征;
粒径大小 釆用激光粒度分析仪(欧美克科技有限公司)按照常规方法 测定两种注射剂粉末的粒径大小;
硬度'. 釆用 MC010-HV-5型小负荷维氏硬度计(上海研润光机科技有限 公司)按照常规方法测定两种注射剂的硬度; 胰岛素含量测定 釆用考马斯亮兰蛋白测定试剂盒(南京建成生物工程 研究所)测定两种注射剂中的胰岛素含量;
降糖效果测定: 取不同量的两种注射剂样品, 使得两种注射剂样品中所 含的胰岛素的量相同, 釆用上文所描述的降糖效果测定方法测定两种注射剂 的降糖效果, 绘制血清中葡糖糖含量随时间变化的曲线图, 结果参见图 4A 和图 4B;
生物利用度: 根据降糖效果测定中所得的曲线图 (图 4A和图 4B )釆用 梯形面积法求得两种注射剂的生物利用度。
两种注射剂比较结果参见下表 1。
表 1 本发明的低精蛋白辞胰岛素注射剂与现有技术的无针注射用低精蛋 白辞胰岛素注射剂的比较
Figure imgf000016_0001
由表 1可知, 本发明所制备的低精蛋白辞胰岛素注射剂的形态特征更适 用于无针注射, 且具有明显高于现有技术制备的低精蛋白辞胰岛素注射剂的 胰岛素含量和生物利用度。 另外, 图 4A和图 4B表明本发明所制备的低精蛋 白辞胰岛素注射剂具有比现有技术制备的无针注射用低精蛋白辞胰岛素注射 剂更好的降糖效果。 实施例 6:
釆用与实施例 5相同的方法制备本发明的无针注射用低精蛋白辞胰岛素 注射剂, 不同的是该实施例中所用的透明质酸钠为 4mg, 并且其中胰岛素: 透明质酸钠: 无水石克酸钠的总质量比为 1 : 0.2: 20。
实施例 7: 釆用与实施例 5相同的方法制备本发明的无针注射用低精蛋白辞胰岛素 注射剂, 不同的是该实施例中所用的透明质酸钠为 200mg, 并且其中胰岛素: 透明质酸钠: 无水石克酸钠的总质量比为 1 : 10: 80。
实施例 8:
釆用与实施例 5相同的方法制备本发明的无针注射用低精蛋白辞胰岛素 注射剂, 不同的是该实施例中胰岛素: 透明质酸钠: 无水硫酸钠的总质量比 为 1 : 0.5 :20。
实施例 9:
釆用与实施例 5相同的方法制备本发明的无针注射用低精蛋白辞胰岛素 注射剂, 不同的是该实施例中所用的透明质酸钠为 40mg, 并且其中胰岛素: 透明质酸钠: 无水石克酸钠的总质量比为 1 : 2: 60。
实施例 10:
釆用与实施例 5相同的方法制备本发明的无针注射用低精蛋白辞胰岛素 注射剂, 不同的是该实施例中所用的透明质酸钠为 40 mg, 并且其中胰岛素: 透明质酸钠: 无水石克酸钠的总质量比为 1 : 2: 40。
釆用上文所述的方法测定实施例 5-10所制备的低精蛋白辞胰岛素注射剂 的胰岛素含量, 结果参见图 5A, 图 5A表明实施例 5-10所制备的低精蛋白辞 胰岛素注射剂均具有高的胰岛素含量(0.02 mg/mg以上) ; 釆用上文所述的 方法测定实施例 5-10所制备的低精蛋白辞胰岛素注射剂的降糖效果并绘制血 清中葡萄糖含量随时间变化的曲线图, 然后根据血清中葡萄糖含量随时间变 化的曲线图釆用梯形面积法计算生物利用度, 结果参见图 5B, 图 5B表明实 施例 5-10所制备的低精蛋白辞胰岛素注射剂均具有好的降糖效果, 生物利用 度均在 75%以上。 实施例 11:
釆用与实施例 5相同的方法制备本发明的无针注射用的包含人血白蛋白 的预混胰岛素 (30%的短效胰岛素和 70%的中效胰岛素) 注射剂, 不同的是 该实施例中使用预混胰岛素 (Sigma)代替低精蛋白辞胰岛素、 人血白蛋白 ( Sigma )代替透明质酸钠。
实施例 12:
釆用本发明的外包裹-实心颗粒载药粉末制备技术制备无针注射用的包 含三七皂苷的干扰能(IFN- a2b) 注射剂:
( 1 )取干扰能 ( Sigma) 40mg, 加入双蒸水 2mL (4°C )至完全溶解, 超声处理并滤去不溶物;
(2)将无水硫酸钠颗粒进行过筛处理, 收集 50微米左右的颗粒, 待用;
(3)往上述步骤(1 )所得的溶液中加入 40mg三七皂苷并緩慢搅拌;
(4)将上述步骤(3)配制的干扰素-三七皂苷溶液置于水水浴中, 加入 一定量的已过筛无水硫酸钠颗粒至饱和状态;
(5)立即继续向上述步骤(4)所得的饱和溶液中投入大量粒径大小基 本一致的无水硫酸钠颗粒, 直至干扰素: 三七皂苷: 无水硫酸钠的总质量比 为 1:1:25的比例, 搅拌混匀, 至析出大量晶体为止;
(6)迅速将上述混合结晶溶液进行低温冷冻干燥, 之后收集粒径约在 50-70微米之间的粉末, 得到所需干扰能注射剂。
实施例 13:
釆用与实施例 12相同的方法制备本发明的无针注射用的包含三七皂苷 的干扰能(IFN- a2b) 注射剂, 不同的是所用的三七皂苷为 8mg, 并且其中 干 ·ί尤素: 三七皂苷: 无水^ 酸钠的总质量比为 1: 0.2: 20。
实施例 14: 釆用与实施例 12相同的方法制备本发明的无针注射用的包含三七皂苷 的干扰能(IFN - a2b ) 注射剂, 不同的是所用的三七皂苷为 400mg, 并且其 中干扰素: 三七皂苷: 无水疏酸钠的总质量比为 1: 10: 80。
实施例 15:
釆用与实施例 12相同的方法制备本发明的无针注射用的包含三七皂苷 的干扰能(IFN - a2b )注射剂, 不同的是所用的三七皂苷为 32mg, 并且其中 干扰素: 三七皂苷: 无水^ 酸钠的总质量比为 1: 0.8: 20。
实施例 16:
釆用与实施例 12相同的方法制备本发明的无针注射用的包含三七皂苷 的干扰能(IFN - a2b )注射剂, 不同的是所用的三七皂苷为 80mg, 并且其中 干扰素: 三七皂苷: 无水疏酸钠的总质量比为 1: 2: 40。
对实施例 12-16所制备的干扰能注射剂进行干扰素效价测定。
干扰素效价测定 根据《中国生物制品规程》 2000年版 "干扰素效价测 定"(细胞病变抑制法)使用人羊膜细胞(WISH, 购自北京盛旭百川生物有 限公司 ) , 水泡性口腔炎病毒(vsv, 购自北京盛旭百川生物有限公司 )测定, 其中使用 BH-2倒置显微镜 (奥林巴斯)计数来测定死亡率并按该方法中所提 供的公式将其转化为干扰素的效价, 结果参见图 6。 图 6表明实施例 12-16所 制备的干扰能注射剂均具有较高的活性, 干扰素效价均在 500 IU以上。
实施例 17:
釆用本发明的外包裹-实心颗粒载药粉末制备技术, 中药佐剂液态混合方 式制备本发明的无针注射用的包含人参皂苷的乙肝疫苗注射剂:
( 1 )量取乙肝疫苗 (北京纵横洋洲生物科技公司 )稀释成 40mL, 浓度 为 lmg/ml; (2)称取 48mg人参皂苷用双蒸水(4°C )溶解至浓度为 0.5mg/ml;
(3)按乙肝疫苗: 人参皂苷的总质量比为 1:1.2的比例混合步骤( 1 )和 步骤(2)所得的溶液, 在超声清洗器中超声处理、 分散 2小时, 得到悬液;
(4)将上述步骤(3)所得的乙肝疫苗-人参皂苷溶液置于水水浴中, 加 入一定量的已过筛无水硫酸钠颗粒至饱和状态;
( 5 )立即继续向该饱和溶液中投入大量粒径大小基本一致的无水硫酸钠 颗粒, 直至乙肝疫苗: 人参皂苷: 无水硫酸钠的总质量比为 1:1.2:40, 使其析 出大量晶体, 混匀;
(6)迅速将上述步骤(5)所得的混合结晶溶液进行冷冻干燥, 收集粒 径在 50-70微米之间的粉末, 低温保存, 得到所需乙肝疫苗注射剂。
实施例 18: 的乙肝疫苗疫苗注射剂, 不同的是: 在步骤(2) 中称取 40mg人参皂苷, 步 骤(3) 中乙肝疫苗: 人参皂苷的质量比为 1:1, 并且乙肝疫苗: 人参皂苷: 无水^ 酸钠的总质量比为 1: 1: 40。
实施例 19: 的乙肝疫苗疫苗注射剂, 不同的是: 在步骤(2) 中称取 400mg人参皂苷, 步骤(3)中乙肝疫苗: 人参皂苷的质量比为 1:10, 并且乙肝疫苗: 人参皂苷: 无水^ 酸钠的总质量比为 1: 10: 80。
实施例 20: 的乙肝疫苗疫苗注射剂, 不同的是: 在步骤(2) 中称取 32mg人参皂苷, 步 骤(3)中乙肝疫苗: 人参皂苷的质量比为 1:0.8, 并且乙肝疫苗: 人参皂苷: 无水^ 酸钠的总质量比为 1: 0.8: 20。 实施例 21: 的乙肝疫苗疫苗注射剂, 不同的是: 在步骤(2 ) 中称取 8mg人参皂苷, 步 骤(3 ) 中乙肝疫苗: 人参皂苷的质量比 =1 :0.2 , 并且乙肝疫苗: 人参皂苷: 无水石克酸钠的总质量比为 1 : 0.2: 20。
对实施例 17-21所制备的乙肝疫苗注射剂进行乙肝疫苗 lgG抗体滴度测 定。
乙肝疫苗 lgG抗体滴度测定: 在豚鼠(雄性, 北京科宇动物养殖中心) 中对实施例 17-21所获得的疫苗注射剂进行乙肝疫苗 lgG抗体滴度测定。 将 42只豚鼠随机分为 7组: 空白组、 对照组(皮下注射破伤风类毒素 lmg ) 、 实施例 17组(无针粉末注射疫苗注射剂 40mg )、 实施例 18组(无针粉末注 射疫苗注射剂 40mg ) 、 实施例 19组(无针粉末注射疫苗注射剂 80mg ) 、 实 施例 20组(无针粉末注射疫苗注射剂 20mg )、 实施例 21组(无针粉末注射 疫苗注射剂 20mg ) 。 在免疫 6周后, 取豚鼠血清, 利用 ELISA酶联免疫法 釆用 ELISA乙肝疫苗 lgG抗体诊断试剂盒(珠海海泰生物制药有限公司 )根 据说明测定血清中乙肝疫苗 IgG抗体的浓度(每组动物的平均值) , 结果参 见图 7。图 7表明实施例 17-21所制备的乙肝疫苗注射剂均具有好的免疫效果。
实施例 22:
釆用本发明的外包裹-实心颗粒载药粉末制备技术制备无针注射用的包 含人参皂苷的破伤风疫苗注射剂:
( 1 )称取人参皂苷 5.2克, 用双蒸水( 4°C ) 配制成浓度为 0.087 mg/ml 的人参皂苷溶液, 湿热灭菌;
( 2 )取步骤(1 ) 配制的人参皂苷溶液 4ml, 按破伤风疫苗: 人参皂苷 的质量比约为 1 :7的比例加入破伤风疫苗 5(^g (北京纵横洋洲生物科技公司), 混匀, 室温静置 15分钟得混合悬液;
( 3 )将上述步骤(2 ) 配制的破伤风疫苗-人参皂苷溶液置于水水浴中, 加入一定量的已过筛无水石克酸钠颗粒至饱和状态;
( 4 )向该饱和溶液中投入大量粒径大小基本一致的无水硫酸钠颗粒, 使 破伤风疫苗: 人参皂苷: 无水硫酸钠的总质量比为 1 : 7: 40, 使其析出大量 晶体, 混匀, 静置;
( 5 )迅速将上述步骤(4 )所得的混合结晶溶液冷冻干燥, 收集粒径约 在 50-70微米之间的粉末, 即得所需破伤风疫苗注射剂。
釆用如下的方法将该实施例中所制备的伤风疫苗注射剂与根据 CN 1285753A号专利中所公开的结晶粉末制备技术制备的由质量比为 40: 1的氢 氧化铝和破伤风疫苗组成的无针注射用的破伤风疫苗注射剂进行比较:
形态学特征、粒径大小、硬度均釆用如实施例 5中所述的方法进行测定; 破伤风疫苗含量测定 釆用考马斯亮兰蛋白测定试剂盒(南京建成生物 工程研究所)按照说明测定相同质量的两种注射剂的破伤风疫苗含量;
免疫效果: 釆用与乙肝疫苗 IgG抗体滴度测定中所用的相同方法测定两 种破伤风疫苗注射剂的 IgG抗体浓度, 不同的是使用的是 ELISA破伤风 IgG 抗体诊断试剂盒(珠海海泰生物制药有限公司) , 结果参见图 8A和图 8B。
两种注射剂比较结果参见下表 2。
表 2 本发明的破伤风疫苗注射剂与现有技术的无针注射用破伤风疫苗注 射剂的比较
Figure imgf000022_0001
由表 2可知, 本发明所制备的破伤风疫苗注射剂的形态特征更适用于无 针注射, 且具有明显高于现有技术制备的无针注射用破伤风疫苗注射剂的破 伤风疫苗含量。 另外, 图 8A和图 8B表明本发明所制备的破伤风疫苗注射剂 具有比现有技术制备的无针注射用破伤风疫苗注射剂更好的免疫效果。 实施例 23:
釆用本发明的外包裹-实心颗粒载药粉末制备技术, 透明质酸钠增粘方式 和黄芪多糖液态混合方式制备无针注射用的包含黄芪多糖的罗扰素 ( IFN - a2a ) 注射剂:
( 1 )称取黄芪多糖 1.25g, 用双蒸水(4°C ) 配制成浓度为 0.025 mg/ml 的黄芪多糖溶液, 湿热灭菌;
( 2 )在步骤( 1 )的溶液中, 按罗扰素: 黄芪多糖的质量比为 1 :0.8加入 罗扰素 (Sigma) 1.5625g并混匀, 再以罗扰素: 透明质酸钠的质量比为 1 :0.8向 混合溶液中加入 1.25g透明质酸钠并混匀, 室温静置 15分钟得混合悬液;
( 3 )将上述步骤(2 ) 配制的罗扰素-黄芪多糖 -透明质酸钠溶液置于水水 浴中, 加入一定量的已过筛无水硫酸钠颗粒至饱和状态;
( 4 ) 向该饱和溶液中投入大量粒径大小基本一致的无水硫酸钠颗粒, 使 罗扰素: 黄芪多糖: 透明质酸钠: 无水硫酸钠总质量比为 1 :0.8:0.8:20, 使其 析出大量晶体, 混匀, 静置;
( 5 )迅速将上述步骤 ( 4 )所得的混合结晶溶液冷冻干燥, 收集粒径约在 50-70微米之间的粉末, 低温保存, 即得所需罗扰素注射剂。 实施例 24:
釆用与实施例 23 相同的方法制备本发明的无针注射用的包含黄芪多糖 的罗扰素注射剂, 不同的是步骤 2中加入的罗扰素为 0.625g, 并且罗扰素: 黄芪多糖: 透明质酸钠: 无水石克酸钠的总质量比为 1 :2:2:40。
实施例 25:
釆用与实施例 23 相同的方法制备本发明的无针注射用的包含黄芪多糖 的罗扰素注射剂, 不同的是步骤 2中加入的罗扰素为 2.5g, 并且罗扰素: 黄 芪多糖: 透明质酸钠: 无水石克酸钠的总质量比为 1 :0.5:0.5:20。
实施例 26: 釆用与实施例 23 相同的方法制备本发明的无针注射用的包含黄芪多糖 的罗扰素注射剂, 不同的是步骤 2中加入的罗扰素为 0.18g, 并且罗扰素: 黄 芪多糖: 透明质酸钠: 无水石克酸钠的总质量比为 1 :7:7:60。 实施例 27:
釆用与实施例 23 相同的方法制备本发明的无针注射用的包含黄芪多糖 的罗扰素注射剂, 不同的是步骤 2中加入的罗扰素为 6.25g, 并且罗扰素: 黄 芪多糖: 透明质酸钠: 无水石克酸钠的总质量比为 1 :0.2:0.2:20。 实施例 28:
釆用与实施例 23 相同的方法制备本发明的无针注射用的包含黄芪多糖 的罗扰素 (IFN - a2a ) 注射剂, 不同的是步骤 2中加入的罗扰素为 0.125g, 并且罗扰素: 黄芪多糖: 透明质酸钠: 无水硫酸钠的总质量比为 1 :10:10:80。
对实施例 23-28所制备的干扰素注射剂进行干扰素效价测定, 干扰素效 价测定釆用实施例 12-16所用的相同的方法, 结果参见图 9。 图 9表明实施例 23-28所制备的干扰素注射剂均具有高的效价, 从而具有高的活性。
中重复。 所釆用的术语和措辞用作说明并且不具有限制性, 并且使用这些术 语和措辞时不旨在排除所显示和描述的特征的任何等同形式或其部分, 应认 识到多种改动是可能在本发明的范围内的。
工业实用性
本发明的无针注射用注射剂粉末具有颗粒大小一致、 载药量高、 药物吸 附牢固、 生物利用度高、 性质稳定安全等优势。 作为药物载体的脱结晶水无 机盐具有对胰岛素、 干扰素、 疫苗等生物制品能够产生吸附作用。
本发明的粉末状无针注射用注射剂的制备方法与现有技术的制备方法 (例如, CN 1285753A和 CN 1315854A号专利中所公开的结晶粉末制备方法) 的原理及制备过程完全不同。本发明釆用的是重结晶分散吸附法制备注射剂, 在本发明的方法中, 釆用脱结晶水的无机盐为载体, 将预先粉碎并筛分的具 有规定粒径及分布的脱结晶水无机盐粉末, 加入已预先溶解了生物制品的饱 和无机盐溶液中, 利用脱结晶水无机盐吸收结晶水的作用将溶液体系中的水 吸收, 使体系浓缩, 增加生物制品包裹在无机盐粉末表面的机会, 体系中可 适量加入透明质酸钠等增粘剂, 使生物制品更易吸附在无机盐颗粒表面, 然 后将混合体系冷冻干燥, 在失水过程中, 生物制品牢固地包裹在无机盐颗粒 表面。 由于将已预先 分的无机盐粉末加入其饱和溶液, 因此基本不会改变 无机盐粉末的初始粒径, 使得最终获得的载药粉末粒径均勾且为实心颗粒, 可以满足无针粉末注射给药的技术要求。 基于吸附作用开发成生物制品的基 质, 能充分发挥其药剂学优势。 透明质酸钠、 人血白蛋白等增粘剂具有一定 的增粘、 固化能力, 可起到辅助固化作用, 进一步增强了脱结晶水无机盐的 吸附能力。 此外, 所选用的可溶性无机盐注射到体内后很快溶解, 无残留、 无毒无害, 生物相容性好。 本发明制备注射剂的技术可以称为外包裹-实心颗 粒载药粉末制备技术。
本发明的无针注射用注射剂提供了生物制品的一种新剂型, 该剂型尤其 适用于无针注射技术, 从而有效避免了因口服药物制剂造成的首过效应, 其 粒径的大小符合经皮给药要求, 易于通过被角质层屏障, 可大幅提高药物的 疗效, 缩短起效时间。 因此, 适用于无针粉末注射技术的注射剂特别适合重 大突发事件以及边远地区、 大规模野外作业等条件下的医疗预防保障, 及有 恐针感的患者 (如儿童)和需长期自我给药的患者, 并且该剂型更加稳定, 因此应用前景十分广阔。
本发明釆用重结晶分散吸附法制备无针注射用注射剂, 工艺便捷, 流程 简短, 成本低廉且适用于较大规模的粉末制备。

Claims

权 利 要 求 书
1. 一种无针注射用注射剂, 呈粉末形式, 所述注射剂包括质量比为 1:20-1:80, 优选为 1:20-1:60, 最优选为 1:20-1:40的生物制品和脱结晶水无机 盐,所述粉末为所述生物制品包裹在所述脱结晶水无机盐外表面的实心颗粒, 且所述粉末的粒径在 20-200微米之间, 优选在 50-70微米之间。
2. 如权利要求 1所述的注射剂, 其中所述生物制品选自下列生物制品的 一种或多种: 胰岛素、 干扰素、 疫苗、 抗毒素及免疫血清、 血液制品、 细胞 因子、 体内及体外诊断制品以及其他活性制剂, 优选地, 所述生物制品选自 胰岛素、 干扰素和疫苗中的一种或多种, 更优选地, 所述生物制品为胰岛素。
3. 如权利要求 2所述的注射剂, 其中所述胰岛素选自普通胰岛素、 低精 蛋白辞胰岛素、 精蛋白辞胰岛素、 预混胰岛素; 所述干扰素选自 IFN- a2b、 IFN - a 2a, 类淋巴母细胞干扰素或其组合; 所述疫苗为细菌或病毒性疫苗, 优选选自下列疫苗中的一种或多种: 乙肝疫苗、 破伤风类毒素疫苗、 流行性 腮腺炎疫苗、 麻疹疫苗、 伤寒疫苗、 流感疫苗、 白喉疫苗、 炭疽疫苗、 布氏 菌疫苗、 钩端螺旋体疫苗和森林脑炎疫苗。
4. 如权利要求 1所述的注射剂, 其中所述脱结晶水无机盐选自无水硫酸 钠、 无水^ 酸钙、 无水^ 酸铝、 无水^ 酸镁、 无水^ 酸辞、 无水^ 酸铝钾、 无水硝酸钾、 无水酸酸铝、 无水碑酸氢二钾或其组合; 优选地, 所述脱结晶 水无机盐为无水^ 酸钠。
5. 如权利要求 1-4中任一项所述的注射剂, 所述注射剂还包含增粘剂, 其中所述生物制品、 所述增粘剂和所述脱结晶水无机盐的质量比为 1: 0.2: 20-1:10:80, 优选为 1:0.5:20-1:2:60, 更优选为 1:0.5:40-1:2:40; 并且所述增粘 剂选自透明质酸钠、 人血白蛋白或其组合。
6. 如权利要求 1-4中任一项所述的注射剂, 所述注射剂还包含药学上可 接受的佐剂, 其中所述生物制品、 所述佐剂和所述脱结晶水无机盐的质量比 为 1:0.2:20-1:10:80, 仂 ύ选为 1:0.5:20-1:7:60, 更优选为 1:0.8: 20-1:2:40; 并且 所述佐剂优选为中药佐剂。
7. 如权利要求 1-4中任一项所述的注射剂, 所述注射剂还包含药学上可 接受的佐剂和增粘剂, 其中所述生物制品、 所述佐剂、 所述增粘剂和所述脱 结晶水无机盐的质量比为 1 :0.2:0.2:20-1 :10:10:80,优选为 1 :0.5:0.5:20-1 :7:7:60, 更优选为 1 :0.8:0.8:20-1 :2:2:40; 并且所述佐剂优选为中药佐剂。
8. 如权利要求 6或 7所述的注射剂,其中所述中药佐剂选自皂苷、多糖、 黄酮或其组合, 所述皂苷选自人参皂苷、 三七皂苷、 绞股蓝皂苷、 威灵仙皂 苷、 薯蓣皂苷或其组合; 所述多糖选自黄芪多糖、 人参多糖、 猪苓多糖、 红 景天多糖、 大枣多糖或其组合; 所述黄酮选自淫羊藿黄酮、 金橘黄酮、 白花 蛇舌草黄酮、 大豆黄酮、 沙棘黄酮或其组合。
9. 如权利要求 1-8中任一项所述的注射剂, 所述注射剂通过如下方法制 备: 在 0-4 °C环境中将粒径在 20-200微米, 优选 50-70微米范围内, 最优选 50微米左右的脱结晶水无机盐粉末添加到所述生物制品的水溶液、 或所述生 物制品与所述增粘剂和 /或所述佐剂的混合物的水溶液中至饱和; 继续添加所 述脱结晶水无机盐粉末使得所述生物制品与总的脱结晶水无机盐的质量比为 1 :20-1 :80, 优选 1 :20-1 :60, 最优选 1 :20-1 :40; 冷冻干燥, 收集粒径在 20-200 微米, 优选 50-70微米范围内的粉末。
10. 一种制备权利要求 1-9中任一项所述的无针注射用注射剂的方法,包 括下列步骤:
在 0-4 °C环境中将粒径在 20-200微米, 优选 50-70微米范围内, 最优选 50微米左右的脱结晶水无机盐粉末添加到所述生物制品的水溶液中、 或所述 生物制品与所述增粘剂和 /或所述佐剂的混合物的水溶液中至饱和;
继续添加所述脱结晶水无机盐粉末使得所述生物制品与总的脱结晶水无 机盐的质量比为 1 :20-1 :80, 优选 1 :20-1 :60, 最优选 1 :20-1 :40, 得到混合结晶 溶液;
将所述混合结晶溶液冷冻干燥, 收集粒径在 20-200微米, 优选 50-70微 米范围内的粉末。
11. 权利要求 1-9 中任一项所述的无针注射用注射剂用于制备预防或治 疗疾病的药物的用途。
12、如权利要求 11所述的用途,其中所述疾病包括糖尿病、病毒性肝炎、 肿瘤、 血液病、 皮肤性病、 病毒性角膜炎、 慢性宫颈炎、 破伤风、 流行性腮 腺炎、 白喉、 麻疹、 伤寒或流感。
13. 使用如权利要求 1-9中任一项所述的注射剂进行无针注射的方法,包 括: 将所述注射剂装入无针注射器的药匣中, 并通过所述无针注射器施用。
PCT/CN2011/081064 2011-10-20 2011-10-20 一种无针注射用注射剂的制备方法及应用 WO2013056453A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/081064 WO2013056453A1 (zh) 2011-10-20 2011-10-20 一种无针注射用注射剂的制备方法及应用
CN201180074284.3A CN103957890B (zh) 2011-10-20 2011-10-20 一种无针注射用注射剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/081064 WO2013056453A1 (zh) 2011-10-20 2011-10-20 一种无针注射用注射剂的制备方法及应用

Publications (1)

Publication Number Publication Date
WO2013056453A1 true WO2013056453A1 (zh) 2013-04-25

Family

ID=48140334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081064 WO2013056453A1 (zh) 2011-10-20 2011-10-20 一种无针注射用注射剂的制备方法及应用

Country Status (2)

Country Link
CN (1) CN103957890B (zh)
WO (1) WO2013056453A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102133396A (zh) * 2011-03-16 2011-07-27 中国人民解放军第三〇二医院 一种疫苗注射剂及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102133396A (zh) * 2011-03-16 2011-07-27 中国人民解放军第三〇二医院 一种疫苗注射剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAA, Y.F. ET AL.: "Optimization of an alum-adsorbed vaccine powder formulation for epidermal powder immunization", PHARMACEUTICAL RESEARCH, vol. 20, no. 7, July 2003 (2003-07-01), pages 969 - 977, XP002364354 *
ZHOU, XU ET AL.: "Development and Application of Needle-Free Drug Powder Delivery System", MEDICINE & PUBLIC HEALTH, CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 2008, pages E079 - 28 *

Also Published As

Publication number Publication date
CN103957890B (zh) 2016-09-21
CN103957890A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5538897B2 (ja) 体表適用製剤、並びに、体表適用製剤保持シート
US20070237826A1 (en) Polymerized solid lipid nanoparticles for oral or mucosal delivery of therapeutic proteins and peptides
EP1150918B1 (en) Method of manufacturing therapeutic calcium phosphate particles
JP2017522287A (ja) 界面活性剤を含まない水中油エマルジョン及びその用途
JP2021501144A (ja) アジュバントワクチン
CN111603556B (zh) 一种新型冠状病毒亚单位纳米疫苗的制备和应用
CZ300931B6 (cs) Prípravek v práškové forme pro podání na sliznici
WO2021077770A1 (zh) 一种迷你联合佐剂纳米颗粒及其制备方法和应用
WO2012122725A1 (zh) 疫苗注射剂及其制备方法和用途
US10172936B2 (en) Peptide particle formulation
Tian et al. Intradermal administration of influenza vaccine with trehalose and pullulan-based dissolving microneedle arrays
Mansoor et al. Microneedle-based vaccine delivery: Review of an emerging technology
CN103054805A (zh) 一种无针注射用注射剂的制备方法及应用
WO2013056453A1 (zh) 一种无针注射用注射剂的制备方法及应用
TWI827732B (zh) 用於治療b型肝炎的藥物製劑及其製備方法和用途
CN105194663A (zh) 聚乙二醇化磷脂为载体的胶束多肽疫苗
Yu et al. Combination of microneedles and mf59 adjuvant as a simple approach to enhance transcutaneous immunization
CN112999154B (zh) 一种可发生柔性形变的白蛋白水包油乳液及其制备方法和应用
US11491219B2 (en) Nasal hepatitis B vaccine composition and method for producing same
CN114762675A (zh) 一种控释型狂犬疫苗可溶性微针
Mezhenny et al. Study of immunogenic properties of transmissible gastroenteritis virus antigen conjugated to gold nanoparticles
CN109876140A (zh) 一种治疗慢性乙肝的疫苗及其制备方法和应用
Colombani et al. Harnessing the Potential of Biomaterials for COVID-19 Therapeutic Strategies
Beukema Intradermal administration of influenza accine ith trehalose and pullulan-based dissol ing microneedle arra s
CN118021949A (zh) 一种用于甲型肝炎疫苗的中药佐剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874256

Country of ref document: EP

Kind code of ref document: A1