WO2013054857A1 - 摩擦材 - Google Patents

摩擦材 Download PDF

Info

Publication number
WO2013054857A1
WO2013054857A1 PCT/JP2012/076358 JP2012076358W WO2013054857A1 WO 2013054857 A1 WO2013054857 A1 WO 2013054857A1 JP 2012076358 W JP2012076358 W JP 2012076358W WO 2013054857 A1 WO2013054857 A1 WO 2013054857A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction material
friction
graphite
sintering
sintered body
Prior art date
Application number
PCT/JP2012/076358
Other languages
English (en)
French (fr)
Inventor
洋介 川上
生 栗原
祐樹 高橋
英里 仁王
Original Assignee
曙ブレーキ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011227265A external-priority patent/JP5824316B2/ja
Priority claimed from JP2012214923A external-priority patent/JP6061592B2/ja
Application filed by 曙ブレーキ工業株式会社 filed Critical 曙ブレーキ工業株式会社
Publication of WO2013054857A1 publication Critical patent/WO2013054857A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/027Compositions based on metals or inorganic oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/027Compositions based on metals or inorganic oxides
    • F16D69/028Compositions based on metals or inorganic oxides containing fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles
    • F16D2200/0069Materials; Production methods therefor containing fibres or particles being characterised by their size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles
    • F16D2200/0073Materials; Production methods therefor containing fibres or particles having lubricating properties

Definitions

  • the present invention relates to a friction material used for brake pads, brake linings, clutch facings, etc. for automobiles, railway vehicles, industrial machines, etc., and particularly to a friction material having excellent heat resistance and strength.
  • NAO material a non-Asbestos-Organic friction material (hereinafter referred to as “NAO material”) in which a fibrous material such as an organic fiber is used as a fiber base material, and a binder and a friction modifier are blended therein is widely used.
  • Patent Document 1 and Patent Document 2 describe a friction material that has improved heat resistance and fading by firing and carbonizing a friction material using an organic binder at a high temperature of 250 to 700 ° C. in a non-oxidizing atmosphere.
  • Patent Document 3 describes a friction material having improved heat resistance and fade resistance by baking and carbonizing a friction material using an organic binder at 550 to 1300 ° C. in an inert gas.
  • Patent Document 4 describes a sintered friction material having a copper base material.
  • the friction materials obtained by carbonizing the organic binders described in Patent Documents 1 to 3 are thermally decomposed when used for a long time at a high temperature exceeding the temperature at the time of manufacture during use, and the strength, wear resistance, and fading are reduced. There is a concern of causing a decline.
  • the friction material using a metal as a base material described in Patent Document 4 increases in weight as compared with the NAO material, and the strength decreases at a high temperature near the melting point of the metal that is the base material. There are concerns about problems such as increased wear and sticking to the mating material due to flow. As described above, the conventional friction material has room for improvement in performance in a high temperature and high load region.
  • This invention solves the said subject, and it aims at providing the friction material excellent in heat resistance, abrasion resistance, fade resistance, and intensity
  • the present inventors have found that the above problem can be solved by using ceramics as a matrix. That is, the present invention is as follows. [1] A friction material containing a ceramic as a matrix and containing at least one selected from the group consisting of a carbon material, barium sulfate and tin oxide. [2] The friction material according to [1], wherein the ceramic is at least one selected from the group consisting of oxide ceramics, nitride ceramics, and carbide ceramics. [3] The friction material according to [2], wherein the oxide ceramic is at least one of zirconia and alumina.
  • the carbide ceramic is at least one selected from the group consisting of silicon carbide, boron carbide, titanium carbide, and tungsten carbide.
  • the carbon material is at least one of graphite and carbon fiber.
  • the friction material according to any one of [1] to [6] further including at least one metal selected from the group consisting of silicon, titanium, and iron.
  • the friction material is not affected by thermal decomposition or the like, and is heat resistant even when used in a high temperature and high load region. It is possible to provide a friction material that is excellent in wear resistance and wear resistance and has a high friction coefficient. Further, it is possible to provide a friction material having durability against chipping and cracking during braking.
  • FIG. 1 is a diagram in which the braking surface of the friction material (sintered body) prepared in Example 1-34 is observed with an optical microscope after the friction test.
  • FIG. 2 is a diagram in which the braking surface of the friction material (sintered body) prepared in Example 1-36 is observed with an optical microscope after the friction test.
  • the friction material of the present invention uses ceramics as a matrix.
  • the composition of the ceramic is not particularly limited.
  • oxide ceramics, nitride ceramics, carbide ceramics, and the like can be used.
  • oxide ceramics alumina, forsterite, zirconia, titania, silica, magnesia, zircon, mullite, ferrite, cordierite, steatite, barium titanate, zinc oxide, hydroxyapatite, tricalcium phosphate, fluoride And apatite.
  • nitride ceramics examples include aluminum nitride, silicon nitride, titanium nitride, boron nitride, sialon and the like.
  • carbide ceramics examples include silicon carbide, boron carbide, titanium carbide, tungsten carbide and the like.
  • zirconia which is an oxide ceramic
  • silicon nitride which is a nitride ceramic
  • the zirconia is preferably stabilized, for example, yttria (Y 2 O 3 ) stabilized zirconia or calcia (CaO) stabilized zirconia is particularly preferable.
  • the average particle diameter of the primary particles of zirconia is preferably 100 nm or less from the viewpoint of sinterability.
  • the ceramics may be a single composition or a mixed composition of two or more.
  • a mixed composition for example, when zirconia is used as a base material, it is preferable to use alumina together.
  • the content of alumina is preferably 5 to 25% by volume in the entire friction material.
  • a sintering aid as required.
  • silicon nitride when silicon nitride is used as a base material, it is preferable to add it because the sinterability can be improved.
  • the sintering aid used in the present invention is not particularly limited, and any one can be used as long as it is used as a normal sintering aid.
  • the content of the sintering aid is preferably 1 to 15% by weight in the entire friction material.
  • the friction material of the present invention further contains at least one selected from the group consisting of a carbon material, barium sulfate, and tin oxide.
  • a friction material consisting only of a ceramic matrix has excellent strength and heat resistance, and a high coefficient of friction.
  • wear of the friction material increases and the coefficient of friction becomes unstable or hard. Since it is brittle, there is a risk of chipping or cracking.
  • the mating material is an FC rotor, there is a problem that the mating material attacks and wears the mating material.
  • the wear resistance of the friction material is improved, and chipping and cracking during braking are suppressed. And found that the opponent's aggression also decreases.
  • Examples of the carbon material include fullerene, carbon nanotube, carbon fiber, graphite, amorphous carbon, activated carbon, and coke. Among these, graphite and carbon fiber are preferable.
  • graphite artificial graphite, natural graphite (flaky graphite, massive graphite, earthy graphite, elastic graphite, expanded graphite) and the like can be used.
  • the average particle size of graphite is preferably 10 to 1000 ⁇ m as measured by a laser diffraction particle size distribution method or a sieving method (median diameter). If it is this range, sinterability does not fall and it can suppress the chipping and cracking at the time of braking.
  • the carbon fiber preferably has an average fiber length of 0.1 to 6.0 mm, more preferably 0.1 to 3.0 mm. If the average fiber length is within this range, the carbon fiber pulling effect is great, the friction material is hardly chipped, and the strength is maintained.
  • the average diameter is preferably 5 to 20 ⁇ m.
  • Carbon fibers having the above fiber length may be blended at the raw material stage, or may be adjusted to be within the above range by appropriately setting the mixing conditions and the like at the blending stage. In addition, it is preferable from the viewpoint of dispersibility that the carbon fiber is used in a state of being fibrillated into a single fiber rather than a bundle. In addition, the said carbon material may be used independently or may use 2 or more types together.
  • the carbon material does not include carbide-based ceramics.
  • the content of the carbon material in the entire friction material is preferably 40% by volume or less, more preferably 30% by volume or less, and more preferably 2 to 20% by volume. Within such a range, the wear resistance can be improved. Moreover, when using graphite as a carbon material, there exists a possibility that the sinterability of ceramics may fall while there exists a tendency for abrasion resistance to improve, so that there is much content. Therefore, when the friction material is produced by pressureless sintering, the graphite content is limited due to a decrease in sintered density, and 2 to 5% by volume is preferable.
  • the graphite content can be set to 2 to 30% by volume, and the resistance to sinterability is reduced without concern. Abrasion can be further improved.
  • barium sulfate is available at a low price, it is also preferable in that the manufacturing cost can be reduced.
  • the inclusion of tin oxide improves the sinterability, suppresses the generation of cracks and distortion during production, and improves the quality of the product.
  • Barium sulfate and tin oxide may be used alone or in combination, but they are preferably used in combination from the viewpoint of synergistically improving the suppression of chipping and cracking during braking and the improvement of wear resistance.
  • Tin oxide examples include stannous oxide (SnO) and stannic oxide (SnO 2 ), and any of them can be used in the present invention, but more stable stannic oxide (SnO 2 ) is preferable.
  • Tin oxide may be used in the form of a powder or an aqueous dispersion sol (ultrafine particle).
  • the content in the entire friction material is preferably 1 to 30% by volume, more preferably 1 to 20% by volume. If the content is within this range, chipping and cracking during braking are suppressed, and wear resistance is improved.
  • the content in the entire friction material is preferably 1 to 10% by volume, more preferably 1 to 5% by volume. If the content is within such a range, the sinterability is improved, chipping and cracking during braking are suppressed, and the wear resistance is improved.
  • the content of the friction material when barium sulfate and tin oxide are used in combination is preferably 10 to 50% by volume of barium sulfate and 1 to 10% by volume of tin oxide, more preferably 30% of barium sulfate. -50% by volume and 2-5% by volume of tin oxide. If the content is within such a range, it is possible to synergistically enhance the suppression of chipping and cracking during braking and the improvement of wear resistance. Moreover, since the sinterability of ceramics improves by using a tin oxide together, the content can be increased compared with the case where barium sulfate is mix
  • the friction material of the present invention can further contain the following optional ingredients as long as the effects of the present invention are not impaired.
  • the friction material of the present invention may contain a metal (powder) such as silicon, titanium, iron or nickel, and preferably contains one or more metals selected from the group consisting of silicon, titanium and iron.
  • a metal such as silicon, titanium, iron or nickel
  • metals selected from the group consisting of silicon, titanium and iron.
  • silicon and titanium are particularly preferable from the viewpoints of a large effect of improving wear resistance and a high melting point and low environmental load.
  • These metals are added alone and are distinguished from metal compounds such as silicon carbide, titanium carbide, and silicon nitride as ceramic materials.
  • the metal content in the friction material is preferably 1 to 5% by volume.
  • the friction coefficient and the friction material strength can be maintained well while improving the wear resistance.
  • wear resistance can be improved, but there is a concern that the sinterability of ceramics may be reduced. Therefore, it is preferable to achieve densification by pressure sintering.
  • the friction material of the present invention also includes a fiber substrate such as metal fibers such as steel fibers, silicon carbide fibers, Al 2 O 3 —SiO 2 ceramic fibers, and inorganic fibers such as biosoluble inorganic fibers, barium sulfate, fluoride.
  • Friction modifiers such as inorganic compounds such as calcium, titanium carbide, titanium nitride, vermiculite and mica, metal oxides such as alumina, magnesia, zirconia, titania, iron oxide and tin oxide, and solid lubricants such as boron nitride and aluminum nitride It may contain.
  • the friction material of the present invention composed of the above components preferably has a density of 60% or more, and more preferably 80% or more. If the density is within the range, the bonding force between the ceramics is strengthened, and a friction material excellent in wear resistance and suppression of chipping and cracking during braking can be obtained.
  • the friction material of the present invention includes a metal / inorganic compound powder as a raw material of the ceramic, at least one selected from the group consisting of a carbon material, barium sulfate, and tin oxide, and an optional compounding component (hereinafter referred to as “friction material”).
  • a metal / inorganic compound powder as a raw material of the ceramic, at least one selected from the group consisting of a carbon material, barium sulfate, and tin oxide, and an optional compounding component (hereinafter referred to as “friction material”).
  • raw material Also referred to as “raw material” can be obtained through a step of adjusting a raw material powder by mixing a predetermined amount, a molding step, and a sintering step.
  • the step of preparing the raw material powder includes, for example, mixing the friction material raw material in a dispersion medium such as ethanol or water by a ball mill for a predetermined time, and then drying to remove the dispersion medium, and the sieve has a range of 100 to 500 ⁇ m. It is preferable to sequentially include a step of sizing using a sieve or the like. Further, as a method of mixing the friction material raw materials, dry mixing may be performed for a predetermined time by a sample mill without using a dispersion medium.
  • the order of mixing the respective friction material raw materials is not particularly limited, and all the raw materials may be mixed at once, or at least one selected from the group consisting of ceramic raw materials and carbon materials, barium sulfate and tin oxide. After mixing and sizing, optional components such as metals and fiber base materials may be mixed and sized.
  • known ceramic forming methods and sintering methods are appropriately used.
  • the molding method include dry molding methods such as uniaxial pressure molding and CIP molding (cold isostatic pressing).
  • Uniaxial pressure molding is a method of obtaining a compact by uniaxially pressing a powder formulation in a mold.
  • CIP molding is a method of obtaining a molded body by putting a powder preparation such as granules or a preformed body that has been formed into a predetermined shape in advance into a rubber container and pressurizing it with hydrostatic pressure. . This method applies pressure evenly from the surroundings, and is suitable for the production of a more uniform molded body than uniaxial pressure molding.
  • plastic molding methods such as injection molding and extrusion molding; casting molding methods such as mud casting, pressure casting and rotary casting; tape molding methods such as a doctor blade method and the like can be applied.
  • the above molding methods may be used alone or in combination of two or more.
  • the sintering method examples include an atmosphere sintering method, a reaction sintering method, a normal pressure sintering method, a thermal plasma sintering method, and the like.
  • the sintering temperature and the holding time at the sintering temperature can be appropriately set according to the type of ceramic, and are usually preferably 1000 to 2000 ° C. and 2 to 6 hours. For example, in the case of zirconia, 1000 to 1800 ° C. and 2 to 4 hours are preferable.
  • HP hot press
  • HIP molding hot isostatic pressing
  • discharge plasma sintering are applied.
  • HP is a method of performing sintering while uniaxial pressure forming.
  • HIP molding is a method in which sintering is performed while being pressurized with hydrostatic pressure.
  • the pressure sintering method is a case where graphite is blended as a carbon material in that the sintered body obtained has a high density as described above and can increase the blending amount of graphite imparting wear resistance. It can be preferably applied.
  • the sintering pressure, sintering temperature, and holding time at the sintering temperature can be appropriately set according to the type of ceramic, and are usually preferably 10 to 400 MPa, 1000 to 2000 ° C., and 0.5 to 6 hours.
  • 10 to 200 MPa, 1000 to 1800 ° C., more preferably 1000 to 1400 ° C., and 0.5 to 4 hours are preferable.
  • Sintering may be performed in the atmosphere or in an inert gas such as nitrogen gas or argon gas depending on the type of ceramic or the material to be added, or carbon monoxide gas, hydrogen gas, etc. You may carry out in reducing gas. Moreover, you may carry out in a vacuum.
  • an inert gas such as nitrogen gas or argon gas depending on the type of ceramic or the material to be added, or carbon monoxide gas, hydrogen gas, etc. You may carry out in reducing gas. Moreover, you may carry out in a vacuum.
  • the friction material of the present invention is manufactured by subjecting the sintered body obtained through the above-described steps to treatments such as cutting, grinding, and polishing as necessary.
  • the friction material according to the present invention can be applied to either a dry friction material or a wet friction material.
  • the counterpart material to be applied is not particularly limited, and for example, the rotor can be applied to both FC and CMC.
  • Example 1-1 to 1-3 Comparative Example 1-1 (pressureless sintering)>
  • the materials used are shown below.
  • Example 1-1 347 g of 3 mol% yttria-stabilized zirconia and 2 g of flaky graphite were ball-milled in an ethanol solvent at a rotation speed of 100 rpm for 24 hours, dried, and sized using a 200 ⁇ m sieve to obtain raw material powder. After 150 g of raw material powder was uniaxially molded at 20 MPa, CIP molding was performed at 245 MPa and sintered at 1400 ° C. for 2 hours in argon to obtain a sintered body.
  • Example 1-2 A sintered body was obtained in the same manner as in Example 1-1 except that 338 g of 3 mol% yttria-stabilized zirconia and 12 g of flaky graphite were used.
  • Example 1-3 A sintered body was obtained in the same manner as in Example 1-1 except that 285 g of 3 mol% yttria-stabilized zirconia, 7 g of flake graphite, and 58 g of easily sinterable alumina were used.
  • Comparative Example 1-1 150 g of 3 mol% yttria-stabilized zirconia was uniaxially molded at 20 MPa, then CIP-molded at 245 MPa, and sintered in argon at 1400 ° C. for 2 hours to obtain a sintered body.
  • Example 1 From Table 1, it can be seen that all the test pieces of the examples are good in the strength and friction tests. In addition, in Examples 1-1 and 1-2 in which scaly graphite was blended, the amount of pad wear and the amount of rotor wear decreased. Further, Example 1-3 using both alumina and graphite was particularly effective, and the relative density was increased by improving the sinterability.
  • a mixture of the above materials in the ratios shown in Table 2 was ball mill mixed in an ethanol solvent at a rotation speed of 100 rpm for 24 hours, dried, and sized using a 200 ⁇ m sieve to obtain a raw material powder.
  • the raw material powder was hot press-molded in argon under a sintering surface pressure of 20 MPa, a sintering temperature of 1300 ° C., 1150 ° C. or 1100 ° C., and a holding time of 2 hours, and then a sintered body was obtained.
  • Example 1-1 Each sintered body was subjected to physical property evaluation and a friction test in the same manner as in Example 1-1. The results are shown in Table 2.
  • the average fiber length of the carbon fibers in each sintered body of Examples 1-15, 1-16, 1-19, and 1-20 is 0 from the average value of 30 when the mixed state is observed with an optical microscope. Confirmed to be 1 mm.
  • the sintering temperature is low (relative density is less than 80%) as in Example 1-18 and Example 1-20, the amount of wear increases. This shows that the sintering temperature is preferably 1150 ° C. or higher (relative density of 80% or higher).
  • Examples 1-21 to 1-26 metal addition, pressure sintering
  • the materials used are shown below.
  • Titanium manufactured by Kojundo Chemical Laboratory Co., Ltd.
  • particle size 45 ⁇ m pass Silicon manufactured by Kojundo Chemical Laboratory Co., Ltd., particle size 5 ⁇ m
  • a mixture of zirconia and carbon fiber in the ratio shown in Table 3 was mixed in a ball mill for 60 minutes in an ethanol solvent at a rotational speed of 400 rpm, dried, and then sized using a 200 ⁇ m sieve.
  • titanium or silicon further blended at a ratio shown in Table 3 was ball mill mixed in an ethanol solvent at a rotation speed of 100 rpm for 24 hours, dried and then sized using a 200 ⁇ m sieve to obtain a raw material powder.
  • the raw material powder was hot press-molded in argon under conditions of a sintering surface pressure of 20 MPa, a sintering temperature of 1300 ° C., and a holding time of 2 hours to obtain a sintered body.
  • Example 1-1 Each sintered body was subjected to physical property evaluation and a friction test in the same manner as in Example 1-1. The results are shown in Table 3.
  • the average fiber length of carbon fiber confirmed that it was 0.1 mm from the average value of 30 pieces, observing the mixed state with the optical microscope.
  • Example 1-15 In comparison with Example 1-15 in which zirconia and carbon fiber have the same composition and no metal is blended, the friction of Examples 1-21 to 1-23 blended with titanium and Examples 1-24 to 1-26 blended with silicon The material had reduced pad wear. Further, when comparing the relationship between the amount of metal blended and the amount of pad wear, there was not much change with silicon, but with titanium, the amount of pad wear could be reduced as the amount blended increased.
  • Examples 1-27 to 1-32 and Comparative Example 1-3 Pressure Sintering
  • the materials used are shown below.
  • Scale graphite CB-150 (average particle size 40 ⁇ m) manufactured by Nippon Graphite Industries Co., Ltd.
  • a mixture of the above materials in the ratio shown in Table 4 was mixed in a ball mill in an ethanol solvent at a rotation speed of 100 rpm for 24 hours, dried, and sized using a 200 ⁇ m sieve to obtain a raw material powder.
  • the raw material powder was hot press molded in nitrogen gas under the conditions of a sintering surface pressure of 20 MPa, a sintering temperature of 1600 ° C., and a holding time of 2 hours, and then a sintered body was obtained.
  • the friction material of Comparative Example 1-3 that does not contain a carbon material has a significantly large rotor wear amount and very high rotor attack.
  • carbon fiber or graphite It can be seen that the rotor aggression is greatly improved by adding.
  • Examples 1-29, 1-30 and 1-32 which contained 10% by volume or more of a carbon material, the rotor was hardly worn, and the rotor aggression was very low.
  • Friction materials were produced by changing the fiber length and fiber state of the carbon fiber. The materials used are shown below.
  • Yttria stabilized zirconia TZ-3Y-E manufactured by Tosoh Corporation
  • Carbon fiber PAN fiber (3 mm chopped products (Examples 1-33, 1-34, 1-36) or 6 mm chopped products (Example 1-35)) manufactured by Toho Tenax Co., Ltd.
  • the above materials were blended at the ratio shown in Table 5 and sample milled under the conditions shown in Table 5 to obtain raw material powder.
  • the raw material powder was hot press molded in argon at a sintering surface pressure of 20 MPa at 1300 ° C. for 2 hours, and then a sintered body was obtained.
  • the average fiber length of the carbon fibers was observed from the mixed state with an optical microscope, calculated from the average value of 30 fibers, and shown in Table 5.
  • the state of the fiber was confirmed by observing the mixed state with an optical microscope.
  • Example 2-1 ⁇ Examples 2-1 to 2-12, Comparative Example 2-1 (pressureless sintering)>
  • the materials used are shown below.
  • Comparative Example 2-1 3 mol% yttria-stabilized zirconia was uniaxially molded at 20 MPa, then CIP-molded at 245 MPa, and sintered in air at 1400 ° C. for 2 hours to obtain a sintered body.
  • Example 2-1 3 mol% yttria-stabilized zirconia and barium sulfate were weighed so as to have the ratio (volume%) shown in Table 6, mixed in a ball mill for 24 hours at a rotational speed of 100 rpm in distilled water, dried, and then a 200 ⁇ m sieve. was used to obtain a raw material powder. After the raw material powder was uniaxially molded at 20 MPa, CIP molding was performed at 245 MPa and sintered at 1400 ° C. for 2 hours in the atmosphere to obtain a sintered body.
  • Examples 2-2 to 2-4 A sintered body was obtained in the same manner as in Example 2-1, except that the proportions of 3 mol% yttria-stabilized zirconia and barium sulfate were changed to those shown in Table 6, respectively.
  • Examples 2-5 to 2-7 A sintered body was obtained in the same manner as in Example 2-1, except that tin oxide was used in the ratio shown in Table 6 instead of barium sulfate. In addition, the content rate of the tin oxide of Table 6 is conversion of solid content (same below).
  • Examples 2-8 to 2-12 A sintered body was obtained in the same manner as in Example 2-1, except that 3 mol% yttria-stabilized zirconia, barium sulfate, and tin oxide were weighed and used at the ratios shown in Table 6, respectively. .
  • the friction material of the present invention has excellent heat resistance and strength even in a high temperature / high load region, and is preferably used for disk pads, brake linings, clutch facings, etc. for automobiles, railway vehicles, and various industrial machines. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Braking Arrangements (AREA)

Abstract

 本発明は、高温及び高負荷領域においても耐熱性、耐摩耗性、耐フェード性及び強度に優れた摩擦材を提供することを目的とする。 本発明は、セラミックスをマトリックスとする摩擦材であって、炭素材料、硫酸バリウム及び酸化スズからなる群より選ばれる少なくとも一種を含有する摩擦材に関する。

Description

摩擦材
 本発明は、自動車、鉄道車両、産業機械等のブレーキパッド、ブレーキライニング、クラッチフェーシング等に用いられる摩擦材に関し、特に、優れた耐熱性と強度を有する摩擦材に関する。
 近年、車両の燃費向上や原材料の高騰といった環境変化の影響を受けて、車両部品の軽量化や小型化の要求が高まっている。ブレーキ部品に関しては、ブレーキディスクの小径化に伴い、摩擦材への熱的及び機械的負荷が増加している。
 また、ブレーキ部品の耐熱性及び強度を高める観点から、例えば、ロータの材料として従来のFC製(片状黒鉛鋳鉄)だけでなくセラミックス複合材料(Ceramic Matrix Composites(以下「CMC」と称する))が適用される等、相手材の材料も多様化している。
 このような状況下、高温及び高負荷下での耐熱性、耐摩耗性及び耐フェード性等の性能がより一層優れた摩擦材が望まれている。
 従来の摩擦材としては、有機繊維等の繊維状物質を繊維基材とし、これに結合材や摩擦調整材を配合したNon-Asbestos-Organic系摩擦材(以下「NAO材」と称する)が広く知られている。特許文献1及び特許文献2には、有機結合材を使用した摩擦材を非酸化性雰囲気下、250~700℃の高温にて焼成炭化させることで耐熱性及びフェード性を高めた摩擦材が記載されている。また、特許文献3には、有機結合材を用いた摩擦材を不活性ガス中で550~1300℃で焼成炭化することで耐熱性及び耐フェード性を向上した摩擦材が記載されている。
 一方、金属を基材とすることで強度及び耐フェード性を高めた摩擦材が提案されており、特許文献4では銅を基材とした焼結摩擦材が記載されている。
日本国特開平5-215164号公報 日本国特開平9-111007号公報 日本国特開2006-306970号公報 日本国特開2007-107067号公報
 しかしながら特許文献1~3に記載の有機結合材を炭化させた摩擦材では、使用時において製造時の温度を超える高温下に長時間さらされる場合に熱分解し、強度、耐摩耗性及びフェードの低下を招く懸念がある。
 また、特許文献4に記載される金属を基材とした摩擦材では、NAO材に比べて重量が増加することや、基材である金属の融点付近の高温下で強度が低下したり、塑性流動を起こしたりするため摩耗の増加や相手材と固着するといった問題が懸念される。
 このように従来の摩擦材では、高温及び高負荷領域における性能に改良の余地があった。
 本発明は上記課題を解決するものであり、高温及び高負荷領域においても耐熱性、耐摩耗性、耐フェード性及び強度に優れた摩擦材を提供することを目的とする。
 本発明者らは、セラミックスをマトリックスとすることにより上記課題を解決できることを見出した。すなわち本発明は以下のとおりのものである。
〔1〕 セラミックスをマトリックスとする摩擦材であって、炭素材料、硫酸バリウム及び酸化スズからなる群より選ばれる少なくとも一種を含有する摩擦材。
〔2〕 前記セラミックスが、酸化物系セラミックス、窒化物系セラミックス及び炭化物系セラミックスからなる群より選ばれる少なくとも一種である上記〔1〕に記載の摩擦材。
〔3〕 前記酸化物系セラミックスが、ジルコニア及びアルミナのうち少なくとも一方である上記〔2〕に記載の摩擦材。
〔4〕 前記窒化物系セラミックスが、窒化ケイ素、窒化アルミニウム及びサイアロンからなる群より選ばれる少なくとも一種である上記〔2〕に記載の摩擦材。
〔5〕 前記炭化物系セラミックスが、炭化ケイ素、炭化ホウ素、炭化チタン及び炭化タングステンからなる群より選ばれる少なくとも一種である上記〔2〕に記載の摩擦材。
〔6〕 前記炭素材料が、黒鉛及び炭素繊維のうち少なくとも一方である上記〔1〕~〔5〕のいずれか1つに記載の摩擦材。
〔7〕 ケイ素、チタン及び鉄からなる群より選ばれる少なくとも一種の金属をさらに含有する、上記〔1〕~〔6〕のいずれか1つに記載の摩擦材。
 本発明によれば、高耐熱性、高靭性、高強度の素材をマトリックスとして用いることにより、摩擦材が熱分解等の影響を受けることがなく、高温及び高負荷領域での使用時においても耐熱性及び耐摩耗性に優れ、摩擦係数の高い摩擦材を提供することができる。また、制動時における欠けや割れに対しても耐久性を有する摩擦材を提供することができる。
図1は、実施例1-34で作成した摩擦材(焼結体)の摩擦試験後の制動面を光学顕微鏡で観察した図である。 図2は、実施例1-36で作成した摩擦材(焼結体)の摩擦試験後の制動面を光学顕微鏡で観察した図である。
<摩擦材の構成>
 本発明の摩擦材は、セラミックスをマトリックスとする。セラミックスの組成は特に限定されないが、例えば、酸化物系セラミックス、窒化物系セラミックス、炭化物系セラミックス等を用いることができる。酸化物系セラミックスとしては、アルミナ、フォルステライト、ジルコニア、チタニア、シリカ、マグネシア、ジルコン、ムライト、フェライト、コーディエライト、ステアタイト、チタン酸バリウム、酸化亜鉛、ハイドロキシアパタイト、リン酸三カルシウム、フッ化アパタイト等が挙げられる。窒化物系セラミックスとしては、窒化アルミニウム、窒化ケイ素、窒化チタン、窒化ホウ素、サイアロン等が挙げられる。炭化物系セラミックスとしては、炭化ケイ素、炭化ホウ素、炭化チタン、炭化タングステン等が挙げられる。中でも、機械的強度や靭性が高い観点から酸化物系セラミックスであるジルコニアや窒化物系セラミックスである窒化ケイ素が好ましい。ジルコニアは安定化されていることが好ましく、例えば、イットリア(Y)安定化ジルコニア又はカルシア(CaO)安定化ジルコニアが特に好ましい。また、ジルコニアの一次粒子の平均粒径は焼結性の観点から100nm以下が好ましい。
 また、上記セラミックスは単一組成であっても、二種以上の混合組成であってもよい。混合組成としては例えば、ジルコニアを母材とした場合はアルミナを併用することが好ましく、この場合のアルミナの含有量は摩擦材全体において5~25体積%が好ましい。アルミナをかかる範囲で含有することで摩擦材の焼結性が向上し緻密化すると共に、制動時の欠けや割れを抑制できる。
 さらに、必要に応じて焼結助剤を添加することが好ましい。特に窒化ケイ素を母材とした場合は添加することで焼結性を高めることができ好ましい。本発明で用いる焼結助剤としては特に限定されるものではなく、通常の焼結助剤として使用されるものであれば、いずれのものも使用することができ、例えば、Y、MgO、ZrO、ZrO、Al、HfO等が挙げられる。焼結助剤の含有量は、摩擦材全体において1~15重量%であることが好ましい。
 本発明の摩擦材はさらに、炭素材料、硫酸バリウム及び酸化スズからなる群より選ばれる少なくとも一種を含有する。セラミックスマトリックスのみからなる摩擦材では、強度、耐熱性に優れ摩擦係数が高い反面、摩擦界面のせん断応力が大きくなる為、摩擦材の摩耗が増大し、摩擦係数が不安定となったり、硬くて脆いことから欠けや割れが生じるおそれがある。また、相手材がFCロータの場合等、相手材によっては相手材を攻撃し摩耗させてしまうといった課題がある。さらに製造工程の観点からも、セラミックスを焼結した際にクラックや歪みが生じやすく、安定した製品が得にくいといった課題もある。
 本発明に係る摩擦材では、炭素材料、硫酸バリウム及び酸化スズからなる群より選ばれる少なくとも一種を配合することにより、摩擦材の耐摩耗性が向上するとともに、制動時の欠けや割れを抑制することができ、相手材攻撃性も減少することを見出した。
 炭素材料としては、フラーレン、カーボンナノチューブ、炭素繊維、黒鉛、アモルファスカーボン、活性炭、及びコークス等が挙げられ、中でも黒鉛及び炭素繊維が好ましい。
 黒鉛としては人造黒鉛、天然黒鉛(鱗片状黒鉛、塊状黒鉛、土状黒鉛、弾性黒鉛、膨張黒鉛)等を用いることができる。また、黒鉛の平均粒径はレーザー回折法粒度分布法またはふるい分け法による測定値(メジアン径)で10~1000μmが好ましい。かかる範囲であれば焼結性が低下せず、制動時の欠けや割れを抑制することができる。
 炭素繊維としては、平均繊維長が0.1~6.0mmであることが好ましく、0.1~3.0mmがより好ましい。平均繊維長がかかる範囲であれば炭素繊維の引き抜き効果が大きく、摩擦材が欠けにくく、強度も保たれる。また平均直径が5~20μmであることが好ましい。なお、炭素繊維は、原料の段階で上記繊維長のものを配合してもよいし、配合段階で混合条件等を適宜設定することにより上記範囲となるように調整してもよい。また、炭素繊維は束の状態よりも単繊維に解繊した状態で用いた方が、分散性の点で好ましい。
 なお上記炭素材料は単独で用いても、二種以上を併用してもよい。
 また、上記炭素材料に炭化物系セラミックスは含まれない。
 炭素材料の摩擦材全体における含有量は40体積%以下が好ましく、30体積%以下がさらに好ましく、2~20体積%がより好ましい。かかる範囲であれば耐摩耗性を向上できる。
 また、炭素材料として黒鉛を用いる場合、含有量が多いほど耐摩耗性は向上する傾向にある一方でセラミックスの焼結性が低下する懸念がある。そのため、摩擦材を無加圧焼結により製造する場合は焼結密度の低下により黒鉛の含有量は制限され、2~5体積%が好ましい。一方、加圧焼結により製造する場合は高密度の焼結体が得られるため、黒鉛の含有量は2~30体積%とすることが可能となり、焼結性の低下を懸念することなく耐摩耗性を一層向上することができる。
 硫酸バリウムは安価に入手できるので製造コストを抑えることができる点でも好ましい。また酸化スズを含有することで焼結性が改良され、製造時のクラックや歪みの発生が抑えられ、製品の品質向上が可能になる。硫酸バリウムと酸化スズはそれぞれ単独で使用しても併用してもよいが、制動時の欠けや割れの抑制と耐摩耗性の向上を相乗的により高めるとの観点から併用することが好ましい。
 なお酸化スズとしては酸化第一スズ(SnO)及び酸化第二スズ(SnO)が挙げられ、本発明ではいずれも使用することができるが、より安定な酸化第二スズ(SnO)が好ましい。また、酸化スズは粉体を使用してもよいし、水分散ゾル(超微粒子)を使用してもよい。
 硫酸バリウムを単独で使用する場合の摩擦材全体における含有量は、好ましくは1~30体積%、より好ましくは1~20体積%である。含有量がかかる範囲であれば制動時の欠けや割れを抑制し、耐摩耗性が向上する。
 酸化スズを単独で使用する場合の摩擦材全体における含有量は、好ましくは1~10体積%、より好ましくは1~5体積%である。含有量がかかる範囲であれば焼結性が向上し、かつ制動時の欠けや割れを抑制し、耐摩耗性が向上する。
 また、硫酸バリウムと酸化スズとを併用する場合の摩擦材全体における含有量は、好ましくは硫酸バリウムが10~50体積%及び酸化スズが1~10体積%であり、より好ましくは硫酸バリウムが30~50体積%及び酸化スズが2~5体積%である。含有量がかかる範囲であれば制動時の欠けや割れの抑制と耐摩耗性の向上を相乗的により高めることができる。また、酸化スズを併用することで、セラミックスの焼結性が向上するため、硫酸バリウムを単独で配合する場合に比べてその含有量を増加させることができる。
 本発明の摩擦材はさらに、本発明の効果を損なわない範囲で以下の任意の配合成分を含むことができる。
 本発明の摩擦材はケイ素、チタン、鉄、ニッケル等の金属(粉末)を含有してもよく、ケイ素、チタン及び鉄からなる群より選ばれる一種以上の金属を含有することが好ましい。金属を含有することで、摩擦材の潤滑性付与による耐摩耗性向上に有効である。添加する金属は、耐摩耗性改善効果が大きく、高融点かつ低環境負荷の観点から、ケイ素及びチタンが特に好ましい。なお、これらの金属は単体で添加し、セラミックス材料としての炭化ケイ素や炭化チタン、窒化ケイ素等の金属化合物とは区別される。
 摩擦材における金属の含有量は1~5体積%が好ましい。かかる範囲であれば耐摩耗性を向上しつつ摩擦係数及び摩擦材強度を良好に維持できる。
 また、金属を添加すると耐摩耗性を向上できる一方でセラミックスの焼結性が低下する懸念があるため、加圧焼結により緻密化を図ることが好ましい。
 本発明の摩擦材は、また、スチール繊維等の金属繊維、炭化ケイ素繊維、Al-SiO系セラミック繊維、生体溶解性無機繊維等の無機繊維といった繊維基材、硫酸バリウム、フッ化カルシウム、炭化チタン、窒化チタン、バーミキュライト、マイカ等の無機化合物、アルミナ、マグネシア、ジルコニア、チタニア、酸化鉄、酸化スズ等の金属酸化物、窒化ホウ素、窒化アルミニウム等の固体潤滑材といった摩擦調整材等を含有してもよい。
 上記成分から構成される本発明の摩擦材は、密度が60%以上であることが好ましく、80%以上であることがさらに好ましい。密度がかかる範囲であればセラミックス間の結合力が強化され、耐摩耗性、制動時の欠けや割れの抑制に優れた摩擦材を得ることができる。なおここでの密度とは、下記式から算出される相対密度である。
 (焼結体密度/理論密度)×100=相対密度(%)
 密度を上記範囲とするには、例えば、焼結温度を高める、または加圧焼結等の方法が挙げられる。
<摩擦材の製造方法>
 本発明の摩擦材は、上記のセラミックスの原料となる金属/無機化合物粉体と、炭素材料、硫酸バリウム及び酸化スズからなる群より選ばれる少なくとも一種と、任意の配合成分と(以下「摩擦材原料」とも記載する)を所定量混合して原料粉末を調整する工程、成形工程、及び焼結工程を経て得ることができる。
 上記原料粉末を調整する工程は、例えば、摩擦材原料を、エタノール又は水等の分散媒中でボールミルにより所定時間混合した後、乾燥して分散媒を除去し、ふるい目が100~500μmの範囲のふるい等を用いて整粒する工程を順次含むことが好ましい。
 また、摩擦材原料を混合する方法として、分散媒を使わずにサンプルミルにより所定時間乾式混合してもよい。
 なお、各摩擦材原料を混合する順序は特に限定されず、全ての原料を一度に混合してもよいし、セラミックス原料と炭素材料、硫酸バリウム及び酸化スズからなる群より選ばれる少なくとも一種とを混合・整粒した後に、金属や繊維基材等の任意成分を混合・整粒してもよい。
 上記成形工程及び焼結工程では、公知のセラミックスの成形方法及び焼結方法が適宜用いられる。
 成形方法としては例えば、一軸加圧成形、CIP成形(冷間静水圧成形)等の乾式成形法が挙げられる。
 一軸加圧成形とは、粉体調合物を金型中で一軸加圧を行うことにより成形体を得る方法である。CIP成形とは、顆粒等の粉体調合物、あるいはあらかじめほぼ所定の形状にされた予備成形体をゴム製の容器に入れて、それを静水圧で加圧することにより成形体を得る方法である。この方法は圧力を周囲から均等に加えるもので、一軸加圧成形より均一な成形体の製造に適する。
 成形方法としては上記乾式成形法の他、射出成形、押出成形等の塑性成形法;泥漿鋳込み、加圧鋳込み、回転鋳込み等の鋳込み成形法;ドクターブレード法等のテープ成形法等も適用できる。
 上記成形方法は単独でも、2種以上を組み合わせてもよい。
 焼結方法としては、例えば、雰囲気焼結法、反応焼結法、常圧焼結法、熱プラズマ焼結法等が挙げられる。また、焼結温度及び焼結温度での保持時間はセラミックスの種類に応じて適宜設定することができ、通常1000~2000℃、2~6時間が好ましい。例えばジルコニアの場合は、1000~1800℃、2~4時間が好ましい。
 また、加圧しながら焼結を行うことも可能であり、かかる方法として、HP(ホットプレス)、HIP成形(熱間静水圧成形)及び放電プラズマ焼結法等の加圧焼結法を適用することもできる。また、HPとは一軸加圧成形しながら焼結を行う方法である。HIP成形とは静水圧で加圧しながら焼結を行う方法である。なお、加圧焼結法は、得られる焼結体が上述のように高密度となる結果、耐摩耗性を付与する黒鉛の配合量を増大できる点で、炭素材料として黒鉛を配合する場合に好ましく適用することができる。焼結圧力、焼結温度及び焼結温度での保持時間はセラミックスの種類に応じて適宜設定することができ、通常10~400MPa、1000~2000℃、0.5~6時間が好ましい。例えばジルコニアの場合は、10~200MPa、1000~1800℃、より好ましくは1000~1400℃、0.5~4時間が好ましい。
 なお、焼結は、セラミックスの種類や添加する材料の種類によって、大気中や、窒素ガス、アルゴンガス等の不活性ガス中で行ってもよいし、一酸化炭素ガス、水素ガス等のような還元性ガス中で行ってもよい。また、真空中で行ってもよい。
 上記の工程を経て得られる焼結体を、必要に応じて切削、研削、研摩等の処理を施すことにより本発明の摩擦材が製造される。
 なお、本発明に係る摩擦材は乾式摩擦材、湿式摩擦材のいずれにも適用できる。
 また、適用される相手材も特に限定されず、例えば、ロータであればFC製、CMC製のいずれにも適用できる。
 以下に示す実施例によって本発明を具体的に説明するが、本発明はこれらに限定されない。
<実施例1-1~1-3、比較例1-1(無加圧焼結)>
 使用材料を下記に示す。
 イットリア安定化ジルコニア:東ソー(株)製 TZ-3Y-E
 鱗片状黒鉛:日本黒鉛工業(株)製 CB-150(平均粒径40μm)
 易焼結性アルミナ:大明化学工業(株)製 TM-DAR(平均粒径0.1μm)
実施例1-1
 3mol%イットリア安定化ジルコニア347gと、鱗片状黒鉛2gとを、エタノール溶媒中で回転速度100rpmにて24時間ボールミル混合し、乾燥後、200μmのふるいを用いて整粒し原料粉を得た。原料粉150gを20MPaで一軸成形した後、245MPaでCIP成形を行い、アルゴン中1400℃で2時間焼結し、焼結体を得た。
実施例1-2
 3mol%イットリア安定化ジルコニア338g、鱗片状黒鉛12gを用いた以外は、実施例1-1と同様に焼結体を得た。
実施例1-3
 3mol%イットリア安定化ジルコニア285g、鱗片状黒鉛7g、易焼結性アルミナ58gを用いた以外は、実施例1-1と同様に焼結体を得た。
比較例1-1
 3mol%イットリア安定化ジルコニア150gを20MPaで一軸成形した後、245MPaでCIP成形を行い、アルゴン中1400℃で2時間焼結し、焼結体を得た。
<物性評価>
1)相対密度(%)
(焼結体密度/理論密度)×100により、相対密度を求めた。
 焼結体密度は得られた焼結体の重量と体積から算出し、理論密度は原材料の真密度と配合割合から算出した。
2)曲げ試験
 焼結体から試験片(3×4×40mm)を作製し、JIS R 1601(2008年)に準拠して試験を行った。
<摩擦試験>
 焼結体から試験片(13×15×35mm)を作製し、曙エンジニアリング(株)製フリクションアナライザー摩擦試験機により下記摩擦試験を実施した。
  相手材:SGLカーボン製CMCロータ
  初速度:50km/h
  減速度:0.3G
  制動温度:100℃
  制動回数:200回
  評価項目:平均摩擦係数、パッド摩耗量、ロータ摩耗量、制動時欠け・割れの有無(1:試験片破壊、2:試験片中央部の割れ、3:試験片端部の欠け大、4:試験片端部の欠け小、5:欠け無し)
 評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例の試験片はいずれも強度及び摩擦試験において良好であることが分かる。また、鱗片状黒鉛を配合した実施例1-1及び実施例1-2はパッド摩耗量、ロータ摩耗量が減少した。さらに、アルミナと黒鉛を併用した実施例1-3は特に効果が大きく、焼結性の改善により相対密度が大きくなった。
<実施例1-4~1-20、比較例1-2(加圧焼結)>
 使用材料を下記に示す。
 イットリア安定化ジルコニア:東ソー(株)製 TZ-3Y-E
 鱗片状黒鉛:日本黒鉛工業(株)製 CB-150(平均粒径40μm)
 人造黒鉛A:新日本テクノカーボン(株)製 EG-1(平均粒径40μm)
 人造黒鉛B:東海カーボン(株)製 G-152A(平均粒径500μm)
 弾性黒鉛:Superior Graphite Co.製 RGC14A(平均粒径250μm)
 炭素繊維:東邦テナックス(株)製 PAN繊維(3mmチョップ品)
 上記材料を表2に示す比率で配合したものをエタノール溶媒中で回転速度100rpmにて24時間ボールミル混合し、乾燥後、200μmのふるいを用いて整粒し原料粉を得た。原料粉をアルゴン中、焼結面圧20MPa、焼結温度1300℃、1150℃または1100℃、保持時間2時間の条件下でホットプレス成形した後、焼結体を得た。
 各焼結体について、実施例1-1と同様に物性評価及び摩擦試験を行った。結果を表2に示す。なお、実施例1-15、1-16、1-19及び1-20の各焼結体における炭素繊維の平均繊維長は、混合状態を光学顕微鏡で観察して、30本の平均値から0.1mmであることを確認した。
Figure JPOXMLDOC01-appb-T000002
 表2より、実施例の試験片はいずれも強度及び摩擦試験において良好であることが分かる。比較例1-2と実施例1-4~1-8との対比から、鱗片状黒鉛を配合することによりパッド摩耗量及びロータ摩耗量が低減し、さらに制動時の摩擦材の欠けを抑制する効果が確認された。また、実施例1-4~1-8より、鱗片状黒鉛の配合量は20~30体積%であれば摩耗量が最小となり好ましいことが分かる。
 実施例1-9~1-16、1-19及び1-20では炭素材料として他種の黒鉛又は炭素繊維を用いた。これらの結果から、人造黒鉛、弾性黒鉛ともに、同程度の鱗片状黒鉛を配合した場合と近い摩擦特性を示した。これより、物性及び摩擦特性に及ぼす効果は、黒鉛であればその形状を問わずほぼ同等に得られることが分かる。炭素繊維の場合も配合することで耐摩耗性の向上が確認された。
 また、実施例1-7、1-17及び1-18の対比、ならびに実施例1-15、1-19及び1-20の対比から、焼結温度が1150~1300℃(相対密度80%以上)であれば、摩擦係数や摩耗量は良好な結果となった。一方、実施例1-18や実施例1-20のように、焼結温度が低い(相対密度が80%を下回る)と、摩耗量が増加する。これより、焼結温度は1150℃以上(相対密度80%以上)が好ましいことが分かる。
<実施例1-21~1-26(金属添加、加圧焼結)>
 使用材料を下記に示す。
 イットリア安定化ジルコニア:東ソー(株)製 TZ-3Y-E
 炭素繊維:東邦テナックス(株)製 PAN繊維(3mmチョップ品)
 チタン:(株)高純度化学研究所製、粒径45μmパス
 ケイ素:(株)高純度化学研究所製、粒径5μm
 上記材料のうち、ジルコニアと炭素繊維を表3に示す比率で配合したものをエタノール溶媒中で、回転速度400rpmにて60分間ボールミル混合し、乾燥後、200μmのふるいを用いて整粒した。ここに、チタン又はケイ素を表3に示す比率でさらに配合したものをエタノール溶媒中で回転速度100rpmにて24時間ボールミル混合し、乾燥後、200μmのふるいを用いて整粒し原料粉を得た。原料粉をアルゴン中、焼結面圧20MPa、焼結温度1300℃、保持時間2時間の条件下でホットプレス成形した後、焼結体を得た。
 各焼結体について、実施例1-1と同様に物性評価及び摩擦試験を行った。結果を表3に示す。なお、炭素繊維の平均繊維長は、混合状態を光学顕微鏡で観察して、30本の平均値から0.1mmであることを確認した。
Figure JPOXMLDOC01-appb-T000003
 ジルコニアと炭素繊維が同組成で金属を配合しない実施例1-15と比較すると、チタンを配合した実施例1-21~1-23及びケイ素を配合した実施例1-24~1-26の摩擦材は、パッド摩耗量が低減された。また、金属の配合量とパッド摩耗量の関係を対比すると、ケイ素ではあまり変化がないが、チタンでは配合量の増加と共にパッド摩耗量が低減できた。
<実施例1-27~1-32、比較例1-3(加圧焼結)>
 使用材料を下記に示す。
 窒化ケイ素:電気化学工業(株)製 SN-9FWS(平均粒径0.7μm)
 アルミナ(焼結助剤):大明化学工業(株)製 TM-DAR(平均粒径0.1μm)
 イットリア(焼結助剤):シーアイ化成(株)製 NanoTek Y203(平均粒径29nm)
 鱗片状黒鉛:日本黒鉛工業(株)製 CB-150(平均粒径40μm)
 炭素繊維:東邦テナックス(株)製 PAN繊維(3mmチョップ品)
 上記材料を表4に示す比率で配合したものをエタノール溶媒中で回転速度100rpmにて24時間ボールミル混合し、乾燥後、200μmのふるいを用いて整粒し原料粉を得た。原料粉を窒素ガス中、焼結面圧20MPa、焼結温度1600℃、保持時間2時間の条件下でホットプレス成形した後、焼結体を得た。
 各焼結体について、実施例1-1と同様に物性評価及び摩擦試験を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 炭素材料を含有しない比較例1-3の摩擦材はロータ摩耗量が格段に大きく、ロータ攻撃性が非常に高いが、実施例1-27~1-32の摩擦材のように炭素繊維又は黒鉛を配合することでロータ攻撃性は大幅に改善されることが分かる。また、炭素材料を10体積%以上配合した実施例1-29、1-30及び1-32はほとんどロータが摩耗せず、ロータ攻撃性が非常に低い結果となった。
<実施例1-33~1-36(炭素繊維、加圧焼結)>
 炭素繊維の繊維長や繊維状態を変えて摩擦材を作製した。使用材料を下記に示す。
 イットリア安定化ジルコニア:東ソー(株)製 TZ-3Y-E
 炭素繊維:東邦テナックス(株)製 PAN繊維(3mmチョップ品(実施例1-33、1-34、1-36)又は6mmチョップ品(実施例1-35))
 上記材料を表5に示す比率で配合したものを、表5に示す条件でサンプルミル混合し、原料粉を得た。原料粉をアルゴン中、焼結面圧20MPa、1300℃で2時間の条件下でホットプレス成形した後、焼結体を得た。
 なお、炭素繊維の平均繊維長は、混合状態を光学顕微鏡で観察し、30本の平均値より算出し、表5に示した。また、繊維の状態は、光学顕微鏡で混合状態を観察し確認した。図1に実施例1-34で作成した摩擦材(焼結体)の、図2に実施例1-36で作成した摩擦材(焼結体)の、摩擦試験後の制動面を光学顕微鏡で観察した図をそれぞれ示す。図1では炭素繊維が解繊した状態、図2では束の状態が観察された。
Figure JPOXMLDOC01-appb-T000005
 表5より、いずれの実施例も摩擦試験においては良好な結果を示した。実施例1-33~1-35の対比より、炭素繊維の平均繊維長は長いほうが曲げ強度を大きいことが分かる。また、実施例1-34と1-36の対比より、炭素繊維は束の状態よりも解繊された状態の方が摩擦材の強度が大きく、摩擦試験の結果も良好である。これは繊維が解繊された状態の方が単繊維で存在しやすく、繊維が摩擦材中に埋まった状態で存在できるため、脱離しにくく、繊維の潤滑が効果的に発現され摩耗量の低減に効果的であるためと考えられる。
<実施例2-1~2-12、比較例2-1(無加圧焼結)>
 使用材料を下記に示す。
 イットリア安定化ジルコニア:東ソー(株)製 TZ-3Y-E
 硫酸バリウム:竹原化学工業(株)製 C300
 酸化スズ(IV)(ゾル溶液):山中産業(株)製 EPS-12
比較例2-1
 3mol%イットリア安定化ジルコニアを20MPaで一軸成形した後、245MPaでCIP成形を行い、大気中1400℃で2時間焼結し、焼結体を得た。
実施例2-1
 3mol%イットリア安定化ジルコニアと、硫酸バリウムとを、表6に記載の割合(体積%)となるように秤量し、蒸留水中で回転速度100rpmにて24時間ボールミル混合し、乾燥後、200μmのふるいを用いて整粒し原料粉を得た。原料粉を20MPaで一軸成形した後、245MPaでCIP成形を行い、大気中1400℃で2時間焼結し、焼結体を得た。
実施例2-2~2-4
 3mol%イットリア安定化ジルコニアと硫酸バリウムの割合をそれぞれ表6に記載の割合とした以外は、実施例2-1と同様に焼結体を得た。
実施例2-5~2-7
 硫酸バリウムに替えて酸化スズを表6の割合で用いた以外は、実施例2-1と同様に焼結体を得た。なお表6の酸化スズの含有割合は固形分換算である(以下同様)。
実施例2-8~2-12
 3mol%イットリア安定化ジルコニアと、硫酸バリウムと、酸化スズとを、それぞれ表6に記載の割合となるように秤量して用いた以外は、実施例2-1と同様に焼結体を得た。
<物性評価>
1)相対密度(%)
 (焼結体密度/理論密度)×100により、相対密度を求めた。
 焼結体密度は得られた焼結体の重量と体積から算出し、理論密度は原材料の真密度と配合割合から算出した。
2)曲げ試験
 焼結体から試験片(3×4×40mm)を作製し、JIS R 1601(2008年)に準拠して試験を行った。
<摩擦試験>
 焼結体から試験片(13×15×35mm)を作製し、曙エンジニアリング(株)製フリクションアナライザー摩擦試験機により下記摩擦試験を実施した。
  相手材:FCロータ
  初速度:50km/h
  減速度:0.3G
  制動温度:100℃
  制動回数:200回
  評価項目:平均摩擦係数、パッド摩耗量、ロータ摩耗量、制動時欠け・割れの有無(1:試験片破壊、2:試験片中央部の割れ、3:試験片端部の欠け大、4:試験片端部の欠け小、5:欠け無し)
 評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6より、ジルコニア焼結体のみからなる比較例2-1の試験片では、FCロータ(相手材)の摩耗量が著しく大きく、相手材を攻撃していることが分かる。また、曲げ強度が高い一方で、摩擦材端部で欠け・割れが発生している。一方、実施例2-1~2-7の試験片では、硫酸バリウム又は酸化スズを配合したことにより、パッド摩耗量及びロータ摩耗量ともに小さく、かつ摩擦材の欠け・割れも発生せず良好であった。実施例2-8~2-12の試験片では、硫酸バリウムと酸化スズを併用したことにより、欠け・割れがなく、耐摩耗性がさらに向上できることが確認された。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2011年10月11日出願の日本特許出願(特願2011-224022)、2011年10月14日出願の日本特許出願(特願2011-227265)、及び2012年9月27日出願の日本特許出願(特願2012-214923)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の摩擦材は、高温・高負荷領域においても優れた耐熱性と強度を有しており、自動車、鉄道車両、各種産業機械等のディスクパッド、ブレーキライニング、クラッチフェーシング等に好適に用いることができる。 

Claims (7)

  1.  セラミックスをマトリックスとする摩擦材であって、炭素材料、硫酸バリウム及び酸化スズからなる群より選ばれる少なくとも一種を含有する摩擦材。
  2.  前記セラミックスが、酸化物系セラミックス、窒化物系セラミックス及び炭化物系セラミックスからなる群より選ばれる少なくとも一種である請求項1に記載の摩擦材。
  3.  前記酸化物系セラミックスが、ジルコニア及びアルミナのうち少なくとも一方である請求項2に記載の摩擦材。
  4.  前記窒化物系セラミックスが、窒化ケイ素、窒化アルミニウム及びサイアロンからなる群より選ばれる少なくとも一種である請求項2に記載の摩擦材。
  5.  前記炭化物系セラミックスが、炭化ケイ素、炭化ホウ素、炭化チタン及び炭化タングステンからなる群より選ばれる少なくとも一種である請求項2に記載の摩擦材。
  6.  前記炭素材料が、黒鉛及び炭素繊維のうち少なくとも一方である請求項1~5のいずれか1項に記載の摩擦材。
  7.  ケイ素、チタン及び鉄からなる群より選ばれる少なくとも一種の金属をさらに含有する、請求項1~6のいずれか1項に記載の摩擦材。
PCT/JP2012/076358 2011-10-11 2012-10-11 摩擦材 WO2013054857A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011224022 2011-10-11
JP2011-224022 2011-10-11
JP2011-227265 2011-10-14
JP2011227265A JP5824316B2 (ja) 2011-10-14 2011-10-14 摩擦材
JP2012214923A JP6061592B2 (ja) 2011-10-11 2012-09-27 摩擦材および摩擦材の製造方法
JP2012-214923 2012-09-27

Publications (1)

Publication Number Publication Date
WO2013054857A1 true WO2013054857A1 (ja) 2013-04-18

Family

ID=48081907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076358 WO2013054857A1 (ja) 2011-10-11 2012-10-11 摩擦材

Country Status (1)

Country Link
WO (1) WO2013054857A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220003290A1 (en) * 2018-10-31 2022-01-06 Akebono Brake Industry Co., Ltd. Sintered friction material and method for producing sintered friction material
EP3088764B1 (en) * 2013-12-24 2022-01-26 Nisshinbo Brake Inc. Friction material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224884A (ja) * 1990-12-27 1992-08-14 Mitsubishi Materials Corp 複合型ローターディスク
JPH06346932A (ja) * 1993-06-08 1994-12-20 Akebono Brake Ind Co Ltd 摩擦材
JPH0987050A (ja) * 1995-09-29 1997-03-31 Toshiba Corp ブレーキ材およびエレベータ非常停止用ブレーキ装置
JP2001089255A (ja) * 1999-09-16 2001-04-03 Sgl Technik Gmbh 繊維束で強化された複合材料
JP2010059396A (ja) * 2008-08-08 2010-03-18 Akebono Brake Ind Co Ltd 固体潤滑材およびその製造方法
JP2011149018A (ja) * 2009-12-22 2011-08-04 Akebono Brake Ind Co Ltd 摩擦材及び摩擦材の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224884A (ja) * 1990-12-27 1992-08-14 Mitsubishi Materials Corp 複合型ローターディスク
JPH06346932A (ja) * 1993-06-08 1994-12-20 Akebono Brake Ind Co Ltd 摩擦材
JPH0987050A (ja) * 1995-09-29 1997-03-31 Toshiba Corp ブレーキ材およびエレベータ非常停止用ブレーキ装置
JP2001089255A (ja) * 1999-09-16 2001-04-03 Sgl Technik Gmbh 繊維束で強化された複合材料
JP2010059396A (ja) * 2008-08-08 2010-03-18 Akebono Brake Ind Co Ltd 固体潤滑材およびその製造方法
JP2011149018A (ja) * 2009-12-22 2011-08-04 Akebono Brake Ind Co Ltd 摩擦材及び摩擦材の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3088764B1 (en) * 2013-12-24 2022-01-26 Nisshinbo Brake Inc. Friction material
US20220003290A1 (en) * 2018-10-31 2022-01-06 Akebono Brake Industry Co., Ltd. Sintered friction material and method for producing sintered friction material
US12066071B2 (en) * 2018-10-31 2024-08-20 Akebono Brake Industry Co., Ltd. Sintered friction material and method for producing sintered friction material

Similar Documents

Publication Publication Date Title
JP6061592B2 (ja) 摩擦材および摩擦材の製造方法
JP5189333B2 (ja) 非晶質複合チタン酸アルカリ金属組成物及び摩擦材
Sun et al. High toughness integrated with self-lubricity of Cu-doped Sialon ceramics at elevated temperature
CN102138022A (zh) 用于制动器的摩擦组件的陶瓷基体材料的制备方法及其制得的陶瓷基体材料
CN101591169A (zh) 一种碳化硅加碳复相陶瓷密封材料及其制备方法
JP2003034581A (ja) 窒化けい素製耐摩耗性部材およびその製造方法
WO2014038459A1 (ja) 金属-炭素複合材、金属-炭素複合材の製造方法及び摺動部材
EP1481954A1 (en) Oxidation resistant carbon fiber reinforced carbon composite material and process for producing the same
CN106216687A (zh) 一种梯度碳化钨基微纳复合刀具材料及其制备方法
JP2013500226A (ja) 高靱性セラミック複合材料
CN110893466B (zh) 石墨烯-钛铝碳复合耐磨材料
CN106518119B (zh) 一种致密的Ti2AlC/Al2O3纤维复合材料及其制备方法
CN100347133C (zh) 碳纤维和碳化硅颗粒复合补强熔融石英基复合材料及制备方法
WO2013054857A1 (ja) 摩擦材
RU2718682C2 (ru) Способ изготовления керамики на основе карбида кремния, армированного волокнами карбида кремния
CN117448623B (zh) 一种含改性海泡石的铜基复合摩擦材料及制备方法和应用
WO2020090725A1 (ja) 焼結摩擦材及び焼結摩擦材の製造方法
Zhang et al. Sliding friction and wear of B4C ceramics sintered with Al2O3/Y2O3
JP5824316B2 (ja) 摩擦材
CN106191719A (zh) 一种高性能陶瓷制动复合材料及其制备方法
CN105198435B (zh) 一种碳化硅/碳复合材料及其制备方法
CN101033842A (zh) 一种双向梯度功能陶瓷水煤浆喷嘴及其制备方法
JP6093228B2 (ja) 摩擦材
Liu et al. Addition of Al–Ti–C master alloys and diopside to improve the performance of alumina matrix ceramic materials
JP2017160402A (ja) 摩擦材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839979

Country of ref document: EP

Kind code of ref document: A1