WO2013054759A1 - 燃料電池セル - Google Patents

燃料電池セル Download PDF

Info

Publication number
WO2013054759A1
WO2013054759A1 PCT/JP2012/075965 JP2012075965W WO2013054759A1 WO 2013054759 A1 WO2013054759 A1 WO 2013054759A1 JP 2012075965 W JP2012075965 W JP 2012075965W WO 2013054759 A1 WO2013054759 A1 WO 2013054759A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
ppm
fuel electrode
content
fuel
Prior art date
Application number
PCT/JP2012/075965
Other languages
English (en)
French (fr)
Inventor
遥平 三浦
誠 大森
綾乃 小林
貴史 寺拝
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011227418A external-priority patent/JP5159938B1/ja
Priority claimed from JP2012158576A external-priority patent/JP5097867B1/ja
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP12840303.7A priority Critical patent/EP2768053B1/en
Publication of WO2013054759A1 publication Critical patent/WO2013054759A1/ja
Priority to US13/870,442 priority patent/US9017898B2/en
Priority to US14/661,402 priority patent/US9640825B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid oxide fuel cell.
  • the solid oxide fuel cell includes a fuel electrode, an air electrode, and a solid electrolyte layer disposed between the fuel electrode and the air electrode.
  • the fuel electrode generally contains a transition metal such as nickel and an oxygen ion conductive material such as yttria-stabilized zirconia. (For example, refer to Patent Document 1).
  • This invention is made
  • the fuel cell according to the first aspect of the present invention includes a fuel electrode, an air electrode, and a solid electrolyte layer disposed between the fuel electrode and the air electrode.
  • the fuel electrode includes a transition metal and an oxygen ion conductive material.
  • the silicon content is 200 ppm or less
  • the phosphorus content is 50 ppm or less
  • the chromium content is 100 ppm or less.
  • the boron content is 100 ppm or less
  • the sulfur content is 100 ppm or less.
  • a fuel cell includes a fuel electrode, an air electrode, and a solid electrolyte layer disposed between the fuel electrode and the air electrode.
  • the fuel electrode includes nickel and an oxygen ion conductive material.
  • the fuel electrode has a region in which the average value of the joining length of the nickel particles and the oxygen ion conductive material particles is 0.4 ⁇ m or more and 0.9 ⁇ m or less.
  • the fuel battery cell which can suppress the fall of an output can be provided.
  • Sectional view showing the configuration of the fuel cell SEM image of cross section of anode active layer
  • Distribution graph showing distribution of joint length between Ni particles and 8YSZ particles
  • Analysis results of continuous Ni particles and isolated Ni particles FE-SEM using in-lens secondary electron detector
  • SOFC solid oxide fuel cell
  • FIG. 1 is a cross-sectional view showing the configuration of the cell 10.
  • the cell 10 is a thin plate made of a ceramic material.
  • the thickness of the cell 10 is, for example, 300 ⁇ m to 3 mm, and the diameter of the cell 10 is, for example, 5 mm to 50 mm.
  • a fuel cell can be formed by connecting a plurality of cells 10 in series by an interconnector.
  • the cell 10 includes a fuel electrode 11, a solid electrolyte layer 12, a barrier layer 13, and an air electrode 14.
  • the fuel electrode 11 functions as an anode of the cell 10. As shown in FIG. 1, the fuel electrode 11 includes a fuel electrode current collecting layer 111 and a fuel electrode active layer 112. In the present embodiment, the reduced fuel electrode 11 is assumed, but the content (ppm) of the composition constituting the fuel electrode 11 is substantially constant before and after the reduction.
  • the anode current collecting layer 111 is a porous plate-like fired body containing a transition metal and an oxygen ion conductive material.
  • the anode current collecting layer 111 contains nickel oxide (NiO) and / or nickel (Ni) as a transition metal.
  • the anode current collecting layer 111 includes, as an oxygen ion conductive substance, zirconia-based materials such as yttria stabilized zirconia (8YSZ, 10YSZ, etc.) and scandia stabilized zirconia (ScSZ), and gadolinium doped ceria (GDC: (Ce, Gd). ) O 2 ) or ceria-based materials such as samarium-doped ceria (SDC: (Ce, Sm) O 2 ), or yttria (Y 2 O 3 ).
  • the thickness of the anode current collecting layer 111 can be 0.2 mm to 5.0 mm.
  • the thickness of the anode current collecting layer 111 may be the largest among the constituent members of the cell 10 when the anode current collecting layer 111 functions as a substrate.
  • the volume ratio of Ni and / or NiO can be 35 to 65% by volume in terms of Ni, and the volume ratio of the oxygen ion conductive material can be 35 to 65% by volume. .
  • the anode active layer 112 is disposed between the anode current collecting layer 111 and the solid electrolyte layer 12.
  • the anode active layer 112 is a porous plate-like fired body containing a transition metal and an oxygen ion conductive material.
  • the anode active layer 112 contains at least NiO and / or Ni as a transition metal.
  • the anode active layer 112 may further contain Fe 2 O 3 (or FeO) and / or Fe, or CuO and / or Cu as a transition metal.
  • the anode active layer 112 is made of, as an oxygen ion conductive substance, zirconia-based materials such as yttria stabilized zirconia (8YSZ, 10YSZ, etc.) and scandia stabilized zirconia (ScSZ), and gadolinium doped ceria (GDC: (Ce, Gd)). Ceria-based materials such as O 2 ) and samarium-doped ceria (SDC: (Ce, Sm) O 2 ) are included.
  • the thickness of the anode active layer 112 can be 1.0 ⁇ m to 30 ⁇ m.
  • the volume ratio of Ni and / or NiO can be 25 to 50% by volume in terms of Ni, and the volume ratio of the oxygen ion conductive material can be 50 to 75% by volume.
  • the anode active layer 112 may have a higher content of oxygen ion conductive material than the anode current collecting layer 111.
  • the content of silicon (Si) is 200 ppm or less, and phosphorus (P ) Content is 50 ppm or less, chromium (Cr) content is 100 ppm or less, boron (B) content is 100 ppm or less, and sulfur (S) content is 100 ppm or less.
  • the Si content is 100 ppm or less
  • the P content is 30 ppm or less
  • the Cr content is 50 ppm or less
  • the B content is 50 ppm or less.
  • the S content is 30 ppm or less.
  • the interface region R of the fuel electrode 11 contains at least 1 ppm of each of Si, P, Cr, B, and S.
  • the contents of Si, P, Cr, B, and S in the interface region R can be measured by, for example, secondary ion mass spectrometry (Secondary Ion-microprobe Mass Spectrometry).
  • each of Si, P, Cr, B, and S contained in the fuel electrode 11 after reduction may be present inside the transition metal particles or at the grain boundaries between the transition metal particles.
  • the interface region R is a part of the anode active layer 112, but is not limited thereto. If the thickness of the anode active layer 112 is 3 ⁇ m or less, the entire anode active layer 112 becomes the interface region R.
  • the contents of Si, P, Cr, B, and S are preferably controlled to the above-described values not only in the interface region R but also in the entire fuel electrode active layer 112. That is, in the anode active layer 112 as a whole, the Si content is 200 ppm or less, the P content is 50 ppm or less, the Cr content is 100 ppm or less, and the B content is 100 ppm or less. And it is preferable that content of S is 100 ppm or less. Further, in the entire anode active layer 112, the Si content is 100 ppm or less, the P content is 30 ppm or less, the Cr content is 50 ppm or less, and the B content is 50 ppm or less. And it is more preferable that content of S is 30 ppm or less. Further, it is more preferable that the entire anode active layer 112 contains at least 1 ppm of Si, P, Cr, B and S.
  • the anode active layer 112 has a plurality of pores.
  • the porosity in the anode active layer 112 is preferably 10% or more and 40% or less in a state after a known reduction process (for example, a process of reducing NiO to Ni in a hydrogen atmosphere at 800 ° C.).
  • the porosity is, for example, the area occupation ratio of all the pores exposed in the cross section with respect to the cross sectional area of the fuel electrode active layer 112.
  • the porosity may be a volume occupation ratio of all pores with respect to the volume of the fuel electrode active layer 112.
  • the microstructure of the anode active layer 112 will be described later.
  • the solid electrolyte layer 12 is disposed between the fuel electrode 11 and the barrier layer 13.
  • the solid electrolyte layer 12 has a function of transmitting oxygen ions generated at the air electrode 14.
  • the solid electrolyte layer 12 contains zirconium (Zr).
  • the solid electrolyte layer 12 may contain Zr as zirconia (ZrO 2 ).
  • the solid electrolyte layer 12 may contain ZrO 2 as a main component.
  • the solid electrolyte layer 12 may contain additives such as Y 2 O 3 and / or Sc 2 O 3 in addition to ZrO 2 . These additives function as stabilizers.
  • mol compositional ratio of ZrO 2 stabilizer is 3: 97 to 20: may be about 80.
  • examples of the material of the solid electrolyte layer 12 include yttria-stabilized zirconia such as 3YSZ, 8YSZ, and 10YSZ, and zirconia-based materials such as ScSZ.
  • the thickness of the solid electrolyte layer 12 can be 3 ⁇ m to 30 ⁇ m.
  • the barrier layer 13 is disposed between the solid electrolyte layer 12 and the air electrode 14.
  • the barrier layer 13 has a function of suppressing the formation of a high resistance layer between the solid electrolyte layer 12 and the air electrode 14.
  • Examples of the material of the barrier layer 13 include cerium (Ce) and a ceria-based material containing a rare earth metal oxide dissolved in Ce.
  • examples of the ceria-based material include GDC and SDC.
  • the thickness of the barrier layer 13 can be 3 ⁇ m to 20 ⁇ m.
  • the air electrode 14 is disposed on the barrier layer 13.
  • the air electrode 14 functions as a cathode of the cell 10.
  • the air electrode 14 may contain, for example, a lanthanum-containing perovskite complex oxide as a main component.
  • the lanthanum-containing perovskite complex oxide include LSCF (lanthanum strontium cobalt ferrite), lanthanum manganite, lanthanum cobaltite, and lanthanum ferrite.
  • the lanthanum-containing perovskite complex oxide may be doped with strontium, calcium, chromium, cobalt, iron, nickel, aluminum, or the like.
  • the thickness of the air electrode 14 can be 10 ⁇ m to 100 ⁇ m.
  • Micro structure of anode active layer 112 >>
  • a preferable microstructure of the anode active layer 112 will be described with reference to FIGS. 2 to 5 in order. However, the description will be made on the assumption that the fuel electrode 11 is in a reduced state.
  • FIG. 2 shows a fuel electrode active layer 112 magnified by a magnification of 3000 times by an FE-SEM (Field Emission Scanning Electron Microscope) using an in-lens secondary electron detector. It is a cross-sectional SEM image.
  • FIG. 2 shows a cross section of the fuel electrode active layer 112 made of Ni-8YSZ. The cross section of the fuel electrode active layer 112 is subjected to ion milling processing by IM4000 of Hitachi High-Technologies Corporation after precision mechanical polishing. It has been subjected.
  • FIG. 1 shows a fuel electrode active layer 112 magnified by a magnification of 3000 times by an FE-SEM (Field Emission Scanning Electron Microscope) using an in-lens secondary electron detector. It is a cross-sectional SEM image.
  • FIG. 2 shows a cross section of the fuel electrode active layer 112 made of Ni-8YSZ. The cross section of the fuel electrode active layer 112 is subjected to i
  • FIG. 2 is an SEM image obtained by an FE-SEM (model: ULTRA55) manufactured by Zeiss (Germany) set at an acceleration voltage of 1 kV and a working distance of 2 mm.
  • FE-SEM model: ULTRA55
  • Zeiss Germany
  • Ni particles, 8YSZ particles, and pores are individually displayed according to the difference in brightness.
  • Ni particles are displayed as “white”
  • 8YSZ particles are displayed as “black”
  • pores are displayed as “grey”. Yes.
  • a part of the outline of the pore is displayed as if it is whiteout.
  • the method for discriminating Ni particles, 8YSZ particles, and pores is not limited to using the light / dark difference in the SEM image.
  • it is compared with a previously obtained FE-SEM image (including in-lens image and out-lens image) using an in-lens secondary electron detector, By identifying each particle in the SEM image, Ni particles, 8YSZ particles, and pores can be ternized.
  • each particle is identified by determining the low-luminance region on the out-lens image as a pore, then determining the high-luminance region in the region other than the pore on the in-lens image as Ni particles, and defining the low-luminance region as 8YSZ particles. It can carry out simply by determining.
  • the Ni particles are an example of “transition metal particles” and the 8YSZ particles are an example of “oxygen ion conductive material particles”.
  • FIG. 3 is a diagram showing a result of image analysis of the SEM image shown in FIG. 2 by image analysis software HALCON manufactured by MVTec (Germany).
  • the joining line between the Ni particles and the 8YSZ particles is indicated by a solid line
  • the boundary line between Ni particles and pores (hereinafter referred to as “first boundary line”) is indicated by a broken line
  • a boundary line with the pores (hereinafter referred to as “second boundary line”) is indicated by a one-dot chain line.
  • Ni particles and 8YSZ particles are joined at a plurality of locations. Further, Ni particles and pores are adjacent at a plurality of locations, and 8YSZ particles and pores are adjacent at a plurality of locations.
  • FIG. 4 is a distribution graph showing the joint length distribution of Ni particles and 8YSZ particles. This distribution graph is created based on the image analysis result of one visual field shown in FIG. However, in the present embodiment, in the calculation of the average value of the bonding length, which will be described later, and the calculation of the standard deviation of the average value of the bonding length, the bonding portion of 0.2 ⁇ m or less recognized by the above-described image analysis software is used. Data is not used. The reason for this is that, according to the observation result at a higher magnification, the presence of the joint portion of 0.2 ⁇ m or less recognized by the above image analysis software is uncertain, and as a factor governing the output performance and the deterioration of the fuel electrode. It is because it was judged that it was not suitable to take into consideration.
  • the average value of the joining lengths of the Ni particles and the 8YSZ particles (hereinafter referred to as “average value of the joining length”) is preferably 0.4 ⁇ m or more and 0.9 ⁇ m or less.
  • the average value of the bonding length is a value obtained by dividing the sum of the bonding lengths of the Ni particles and the 8YSZ particles by the number of bonding points, and is 0.63 ⁇ m in the example shown in FIG.
  • the average value of the joining length may be calculated from the analysis result in one visual field or a plurality of visual fields, and the magnification of the SEM image is not limited to 3000 times.
  • Such an average value of the joining length is an index indicating the neck thickness between the Ni particles and the 8YSZ particles. That is, by controlling the average value of the joining length within a predetermined range, a neck having a necessary and sufficient thickness can be formed between the Ni particles and the 8YSZ particles. Thereby, since the network of Ni particle and 8YSZ which is an aggregate can be joined firmly, the form change of Ni particle is suppressed and the reaction field in the fuel electrode active layer 112 can be ensured. As a result, the resistance value of the anode active layer 112 is reduced and the output of the cell 10 is improved.
  • the average value of the joining length for example, it is effective to control the particle size distribution of the 8YSZ raw material powder and the NiO raw material powder. Further, the average value of the joining length can be finely adjusted by the average particle diameter and the addition amount of the pore former and the firing conditions.
  • manufacturing conditions for controlling the average value of the junction length in the above-described range of 0.4 ⁇ m or more and 0.9 ⁇ m or less is shown.
  • the average particle diameter of the raw material powder is 0.5 ⁇ m or more and 1.3 ⁇ m or less, and fine particles having a particle diameter of 0.2 ⁇ m or less are removed by classification treatment.
  • the average particle diameter of the pore former is 0.8 ⁇ m or more and 10 ⁇ m.
  • the amount of pore forming material added is 20% by volume or less with respect to the ceramic raw material (8YSZ + NiO).
  • the co-firing temperature is 1350 ° C. to 1500 ° C., and the treatment time is 1 hour to 20 hours.
  • the ratio of joint portions having a joint length greater than or equal to the average value among all joint portions of Ni particles and 8YSZ particles (hereinafter referred to as “joint portion ratio greater than or equal to the average value”) is 25.9. % Or more and 48.9% or less is preferable.
  • the joint portion ratio equal to or higher than the average value corresponds to the ratio of the sum of frequencies equal to or higher than the average value of 0.63 ⁇ m with respect to the total frequency, and is 34.0%.
  • the joint portion ratio equal to or higher than the average value is an index indicating the difficulty of changing the shape of the Ni particles. In other words, by controlling the ratio of the joining points that are equal to or higher than the average value within a predetermined range, the shape change of the Ni particles is further suppressed, and the durability of the anode active layer 112 can be improved.
  • the ratio of the joint location more than the average value can be finely adjusted depending on the material mixing method and firing conditions. Below, an example of the manufacturing conditions for controlling the joint location ratio more than an average value to the above-mentioned range of 25.9% or more and 48.9% or less is shown.
  • the average particle size of the raw material (8YSZ, NiO) powder is 0.5 ⁇ m to 1.3 ⁇ m, and fine particles having a particle size of 0.3 ⁇ m or less and coarse particles of 2 ⁇ m or more are removed by classification treatment.
  • dispersibility with appropriate dispersant added The slurry is uniformly mixed by sufficient pot mill mixing and triroll mill mixing.
  • the firing temperature is 1400 ° C. or higher and 1450 ° C. or lower, and the treatment time is 5 hours or longer and 10 hours or shorter.
  • the average value of the first boundary length (broken line) between the particles and the pores is preferably 0.2 ⁇ m or more and 0.7 ⁇ m or less. Moreover, it is preferable that the average value of the second boundary length (one-dot chain line) between the YSZ particles and the pores is 0.5 ⁇ m or more and 1.2 ⁇ m or less.
  • the standard deviation of the average value of the bonding length of Ni particles and 8YSZ particles should be 0.48 or less. Is preferred.
  • the standard deviation of the average value of the junction length is an index indicating the variation in the neck thickness between the Ni particles and the 8YSZ particles in the anode active layer 112. That is, by reducing the standard deviation of the average value of the junction length, the conductivity inside the anode active layer 112 becomes uniform, and current is prevented from concentrating and flowing in part of the anode active layer 112. it can. Therefore, it is possible to suppress a part of the anode active layer 112 from being acceleratedly deteriorated, so that the durability of the cell 10 can be further improved.
  • the standard deviation of the average value can be adjusted by controlling the average particle diameter of the raw material powder, the mixing condition of the material forming the fuel electrode active layer, or the firing condition, in the same manner as the adjustment of the ratio of the joining points above the average value. is there. Furthermore, the standard deviation of the average value can be adjusted by controlling the mixing of impurities in the mixing process. By controlling the mixing of such impurities, it is possible to improve the structure controllability and ensure reproducibility during co-firing, and to improve the uniformity of the sintering progress of NiO particles and 8YSZ particles. Therefore, in order to control the standard deviation of the average value, it is particularly effective to suppress the variation in the junction length by controlling the mixing of impurities. Specifically, mixing of Si, B, Cr, P, S and the like may be controlled to about 200 ppm or less.
  • the standard deviation of the average value of the first boundary length between the Ni particles and the pores is 0.2 or more and 0.6 or less. Is preferred.
  • the standard deviation of the average value of the second boundary length between the YSZ particles and the pores is 0.6 or more and 1.0 or less. Is preferred.
  • FIG. 5 is an FE-SEM image using an in-lens secondary electron detector and shows the analysis results of continuous Ni particles and isolated Ni particles.
  • the difference in conductivity of each Ni particle can be output as an image contrast. Particles with high electrical conductivity, that is, high continuity with reliable electrical connection with surrounding Ni particles are displayed brightly, and particles with low electrical conductivity, that is, electrical connection with surrounding Ni particles are dark (See “Solid State lonics 178 (2008) 1984”).
  • FIG. 5 is an FE-SEM image using an in-lens secondary electron detector.
  • the brightness of the obtained Ni particles indicates the continuity of the Ni particles, that is, the difference in conductivity.
  • the resistance of each Ni particle was evaluated using an atomic force microscope (AFM) in the same field of view by scanning the cross section with a cantilever to which a predetermined voltage was applied. At this time, based on the magnitude of the current, the region constituted by the Ni particles was classified into a region having conduction and a region having no conduction. From the analysis result, a region with continuity is determined as “continuous Ni particles”, and a region without continuity is determined as “isolated Ni particles”.
  • continuous Ni particles are Ni particles connected to at least one adjacent Ni particle
  • isolated Ni particles are Ni particles that exist independently without being connected to adjacent Ni particles.
  • isolated Ni particles are surrounded by a solid line
  • continuous Ni particles are surrounded by a broken line.
  • the ratio of the occupied area of isolated Ni particles out of the total occupied area of Ni existing in one field of view is preferably 25% or less.
  • the isolated Ni particle ratio is an index of conductivity of the anode active layer 112. That is, since the reaction resistance of the fuel electrode active layer 112 can be reduced as the ratio of isolated Ni particles is smaller, the output of the cell 10 can be further maintained.
  • the ratio of such isolated Ni particles can be controlled by adjusting the powder characteristics (particle diameter, specific surface area) of NiO powder mixed in the slurry for the fuel electrode 11, for example.
  • the adjustment of the isolated Ni particle ratio can also be controlled by adjusting the firing time and the firing temperature, or by adjusting the particle size and the amount of the pore former.
  • NiO particles having a specific surface area of 5 m 2 / g to 20 m 2 / g are preferably used as a raw material.
  • an effective dispersant for example, a wet dispersant “DISPERBYK (R) -180” manufactured by Big Chemie Japan Co., Ltd. ) during slurry adjustment.
  • the firing temperature is preferably 1400 ° C. or higher and 1450 ° C. or lower, and the treatment time is preferably 5 hours or longer and 10 hours or shorter.
  • the continuous Ni particles and the isolated Ni particles can also be determined by detecting the light and darkness of the Ni particles in detail when the SEM image is analyzed by image analysis software. For example, in FIG. 2, among the regions classified uniformly as “gray”, a bright region may be determined as “continuous Ni particles” and a dark region may be determined as “isolated Ni particles”.
  • a cross section obtained by actually cutting the sample of the cell 10 by machining along the thickness direction (stacking direction) is used. Is done. Therefore, it is considered that among the Ni particles distributed in the vicinity of the cross section, there may exist those that were continuous Ni particles before cutting but changed to isolated Ni particles after cutting (or vice versa). However, the proportion of Ni particles distributed in the vicinity of the cross section that changed from continuous Ni particles to isolated Ni particles (or vice versa) before and after cutting is considered to be very small. Therefore, the isolated Ni particle ratio calculated based on the cross section obtained by cutting the sample of the cell 10 by machining is substantially the same as the true isolated Ni particle ratio before the sample of the cell 10 is cut. Conceivable.
  • molded body refers to a state before firing.
  • the interface region R is a part of the anode active layer 112 as shown in FIG.
  • transition metal oxide for example, NiO powder
  • oxygen ion conductive material for example, 8YSZ powder
  • pore former for example, PMMA (polymethyl methacrylate resin)
  • a slurry is prepared by adding polyvinyl alcohol (PVA) as a binder to a mixture of a transition metal oxide, an oxygen ion conductive material, and a pore-forming agent.
  • PVA polyvinyl alcohol
  • the slurry is dried and granulated with a spray dryer to obtain a fuel electrode current collecting layer powder.
  • the anode current collecting layer 111 is formed by molding the anode current collecting layer powder by a die press molding method.
  • transition metal oxide for example, NiO powder
  • oxygen ion conductive material for example, 8YSZ powder
  • a pore former for example, PMMA
  • a slurry is prepared by adding polyvinyl alcohol as a binder to a mixture of a transition metal oxide, an oxygen ion conductive substance, and a pore-forming agent.
  • the first molded body of the anode active layer 112 is formed by printing the slurry on the molded body of the anode current collecting layer 111 by a printing method.
  • a transition metal oxide for example, NiO powder
  • an oxygen ion conductive material for example, 8YSZ powder
  • an additive Si, P, Cr, B, and S
  • a slurry is prepared by adding polyvinyl alcohol as a binder to a mixture of a transition metal oxide, an oxygen ion conductive substance, an additive, and a pore former.
  • the second layer molded body of the anode active layer 112 is formed by printing the slurry on the first layer molded body by a printing method.
  • a molded body of the fuel electrode 11 is formed.
  • Si is 200 ppm or less
  • P is 50 ppm or less
  • Cr is 100 ppm or less
  • B is 100 ppm or less
  • S is 100 ppm. It is preferable to add an additive so that it becomes the following. Further, when the first slurry of the fuel electrode active layer 112 is produced, it is more preferable to add an additive in the same manner.
  • the Si content is 100 ppm or less
  • the P content is 30 ppm or less
  • the Cr content is 50 ppm or less
  • the content is adjusted to 50 ppm or less
  • the S content is 30 ppm or less.
  • a slurry is prepared by mixing a mixture of water and a binder with 8YSZ powder in a ball mill for 24 hours.
  • the slurry is applied on the molded body of the fuel electrode 11 and dried to form a molded body of the solid electrolyte layer 12.
  • a tape lamination method or a printing method may be used instead of the coating method.
  • a slurry is prepared by mixing a mixture of water and a binder with GDC powder in a ball mill for 24 hours.
  • the molded body of the barrier layer 13 is formed by applying and drying the slurry on the molded body of the electrolyte membrane 120. Note that a tape lamination method or a printing method may be used instead of the coating method.
  • the laminated body is co-sintered at 1300 to 1600 ° C. for 2 to 20 hours, so that the fuel electrode current collecting layer 111 and the fuel electrode active layer 112, the solid electrolyte layer 12, and the dense barrier are formed.
  • a co-fired body of layer 13 is formed.
  • a slurry is prepared by mixing a mixture of water and a binder with LSCF powder in a ball mill for 24 hours.
  • the porous air electrode 14 is formed on the barrier layer 13 by firing in an electric furnace (oxygen-containing atmosphere, 1000 ° C.) for 1 hour. Form.
  • an electric furnace oxygen-containing atmosphere, 1000 ° C.
  • the Si content is 200 ppm or less
  • the P content is 50 ppm or less
  • the Cr content is 100 ppm or less
  • the B content is 100 ppm or less.
  • S is adjusted so that the content of S is 100 ppm or less.
  • Each content of Si, P, Cr, B and S in the fuel electrode active layer 112 is 1 ppm or more.
  • Si, P, Cr, B and S function as a sintering aid, it is possible to maintain an appropriate sinterability of the fuel electrode 11 (specifically, the interface region R). As a result, the skeleton of the interface region R having a porous structure is strengthened, so that the porous structure can be stabilized during firing and reduction.
  • the cell 10 includes the fuel electrode 11, the solid electrolyte layer 12, the barrier layer 13, and the air electrode 14.
  • the present invention is not limited to this.
  • the cell 10 only needs to include the fuel electrode 11, the solid electrolyte layer 12, the barrier layer 13, and the air electrode 14, and between the fuel electrode 11 and the solid electrolyte layer 12 and between the barrier layer 13 and the air electrode 14.
  • Other layers may be inserted.
  • the cell 10 may include a porous barrier layer between the barrier layer 13 and the air electrode 14.
  • the shape of the cell 10 is not limited to this.
  • the shape of the cell 10 may be a horizontal stripe type, a fuel electrode support type, a flat plate shape, or a cylindrical shape.
  • the cross section of the cell 10 may be elliptical.
  • the anode active layer 112 includes at least NiO and / or Ni as a transition metal, but is not limited thereto.
  • the anode active layer 112 may contain, for example, Fe 2 O 3 (or FeO) and / or Fe, CuO and / or Cu instead of NiO and / or Ni.
  • the anode active layer 112 may contain a plurality of transition metals (or oxides).
  • Si, P, Cr, B, and S are mixed together with the transition metal and the oxygen ion conductive material.
  • the present invention is not limited to this. Si, P, Cr, B and S may be added together with a binder to the mixture of transition metal and oxygen ion conductive material.
  • the anode current collecting layer 111 is made of the same material as the anode active layer 112 (for example, Ni-8YSZ).
  • the fuel electrode 11 only needs to have a region where the average value of the junction length is 0.4 ⁇ m or more and 0.9 ⁇ m or less in the vicinity of the interface with the solid electrolyte layer 12. This is because a desired effect can be obtained at least in this region.
  • the ratio of the joining points greater than the average value is 25.9% or more and 48.9% or less, and the joining length between the Ni particles and the 8YSZ particles.
  • the standard deviation of the average value is preferably 0.48 or less.
  • Samples No. 1 to No. 45 of the fuel electrode supporting cell using the fuel electrode current collecting layer as a supporting substrate were produced as follows.
  • a slurry was prepared by adding polyvinyl alcohol to a mixture of transition metal oxide, oxygen ion conductive material and PMMA.
  • the types and mixing ratios of the transition metal and oxygen ion conductive material are as shown in Table 1.
  • a first molded body of the 10 ⁇ m-thick anode active layer was formed on the anode current collecting layer by a printing method.
  • a slurry was prepared by adding polyvinyl alcohol to a mixture of a transition metal oxide, an oxygen ion conductive substance, an additive (Si, P, Cr, B and S) and PMMA.
  • the kind and mixing ratio of the transition metal and the oxygen ion conductive material were the same as those of the first layered molded body.
  • the contents of the additives (Si, P, Cr, B, and S) were as shown in Table 1.
  • a second layer of the 10 ⁇ m thick fuel electrode active layer was formed on the first layer of the molded body by a printing method.
  • an 8YSZ electrolyte having a thickness of 5 ⁇ m and a GDC barrier film having a thickness of 5 ⁇ m were sequentially formed on the fuel electrode active layer (second layer) to produce a laminate.
  • a co-fired body was obtained by co-sintering the laminate at 1400 ° C. for 2 hours. Thereafter, a LSCF air electrode having a thickness of 30 ⁇ m was baked at 1000 ° C. for 2 hours to complete a fuel electrode-supported coin cell ( ⁇ 15 mm).
  • the thickness of the second layer of the fuel electrode active layer after firing was 3 ⁇ m.
  • the Si content is 200 ppm
  • the P content is 50 ppm or less
  • the Cr content is 100 ppm or less
  • the Si content is 100 ppm or less
  • the P content is 30 ppm or less
  • the Cr content is 50 ppm or less. It was confirmed that the deterioration rate of the cell could be further improved by setting the B content to 50 ppm or less and the S content to 30 ppm or less.
  • Samples No. 46 to No. 94 of the fuel electrode supporting cell using the fuel electrode current collecting layer as a supporting substrate were produced as follows.
  • a fuel electrode active layer having a thickness of 20 ⁇ m is formed thereon by a printing method.
  • Ni as a transition metal and 8YSZ as an oxygen ion conductive material were used as raw materials for the fuel electrode active layer.
  • Ni as a transition metal and 10YSZ as an oxygen ion conductive material were used as raw materials for the fuel electrode active layer.
  • Ni as a transition metal and ScSZ as an oxygen ion conductive material were used as raw materials for the fuel electrode active layer.
  • Ni and Fe as transition metals and 8YSZ as an oxygen ion conductive material were used as raw materials for the fuel electrode active layer.
  • Ni and Cu as transition metals and 8YSZ as an oxygen ion conductive material were used as raw materials for the fuel electrode active layer.
  • Ni as a transition metal and GDC as an oxygen ion conductive material were used as raw materials for the fuel electrode active layer.
  • the mixing ratio of the transition metal to the oxygen ion conductive material was as shown in Table 2.
  • Ni as a transition metal and 8YSZ as an oxygen ion conductive material were used as raw materials for the fuel electrode active layer.
  • the mixing ratio of transition metal and oxygen ion conductive material was 40:60
  • the mixing ratio of transition metal and oxygen ion conductive material was 45:55.
  • an 8YSZ electrolyte having a thickness of 5 ⁇ m and a GDC barrier film having a thickness of 5 ⁇ m were sequentially formed on the fuel electrode active layer to produce a laminate.
  • a co-fired body was obtained by co-sintering the laminate at 1400 ° C. for 2 hours. Thereafter, an LSCF air electrode having a thickness of 30 ⁇ m was baked at 1000 ° C. for 2 hours, thereby preparing samples No. 46 to No. 94 of fuel electrode supported coin cells ( ⁇ 15 mm).
  • the fuel electrode active layer of each sample was subjected to precision mechanical polishing, and then subjected to ion milling processing using IM4000 of Hitachi High-Technologies Corporation.
  • the average value of the junction length in one field of view of the SEM image, the ratio of the joint portion exceeding the average value, and the ratio of isolated Ni particles were calculated.
  • the standard deviation of the average value of the joining length was calculated in SEM images of arbitrary 10 fields of view. The calculation results were as shown in Table 2 and Table 3.
  • Table 2 summarizes the measurement results.
  • an output density of 600 mW / cm 2 or higher is evaluated as a high output state.
  • the average value of the joining length is preferably 0.4 ⁇ m or more and 0.9 ⁇ m or less. This is because the average thickness of the junction length is 0.4 ⁇ m or more so that the neck thickness between the Ni particles and the oxygen ion conductive material can be sufficiently secured, and 0.9 ⁇ m or less is sufficient after the reduction. This is because a safe electrochemical reaction region could be secured.
  • the proportion of the joints above the average value is preferably 25.9% or more and 48.9% or less. This is because the joint portion ratio is 25.9% or more, it is possible to make it difficult to change the shape of the Ni particles, and when it is 48.9% or less, a sufficient electrochemical reaction region can be secured, This is because an excessive increase in overvoltage can be suppressed.
  • the isolated Ni particle ratio is preferably 25% or less. This is because the reaction resistance of the fuel electrode active layer is reduced and the output is easily maintained by setting the isolated Ni particle ratio to 25% or less.
  • the standard deviation of the average value of the joining length is preferably 0.48 or less. This is because the standard deviation of the average value is 0.48 or less, the conductivity inside the anode active layer becomes uniform, and current can be prevented from concentrating and flowing in part of the anode active layer. This is because.
  • the deterioration rate is further reduced by containing 100 ppm or less of Si, 30 ppm or less of P, 50 ppm or less of Cr, 50 ppm or less of B, and 30 ppm or less of S. It was confirmed that it could be improved.
  • the deterioration rate can be improved by mixing at least 1 ppm each of Si, P, Cr, B, and S.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

燃料電池セル(10)は、燃料極(11)、固体電解質層(12)、バリア層(13)および空気極(14)を備える。燃料極(11)は、遷移金属と酸素イオン伝導性物質とを含む。還元後の燃料極(11)のうち固体電解質層(12)との界面から3μm以内の界面領域(R)において、ケイ素の含有量は200ppm以下であり、リンの含有量は50ppm以下であり、クロムの含有量は100ppm以下であり、ホウ素の含有量は100ppm以下であり、硫黄の含有量は100ppm以下である。

Description

燃料電池セル
 本発明は、固体酸化物型の燃料電池セルに関する。
 固体酸化物型の燃料電池セルは、燃料極と、空気極と、燃料極および空気極の間に配置される固体電解質層と、を備える。燃料極は、一般的に、ニッケルなどの遷移金属とイットリア安定化ジルコニアなどの酸素イオン伝導性物質とを含有している。(例えば、特許文献1参照)。
特開2006-32132号公報
(発明が解決しようとする課題)
 しかしながら、特許文献1に記載の燃料電池セルの出力が低下しやすいため、燃料電池セルの出力を維持するためには工夫の余地がある。
 本発明は、上述の状況に鑑みてなされたものであり、出力の低下を抑制可能な燃料電池セルを提供することを目的とする。
(課題を解決するための手段)
 本発明の第1の態様に係る燃料電池セルは、燃料極と、空気極と、燃料極および空気極の間に配置される固体電解質層と、を備える。燃料極は、遷移金属と酸素イオン伝導性物質とを含む。還元後の燃料極のうち固体電解質層との界面から3μm以内の界面領域において、ケイ素の含有量は200ppm以下であり、リンの含有量は50ppm以下であり、クロムの含有量は100ppm以下であり、ホウ素の含有量は100ppm以下であり、硫黄の含有量は100ppm以下である。
 本発明の第2の態様に係る燃料電池セルは、燃料極と、空気極と、燃料極および空気極の間に配置される固体電解質層と、を備える。燃料極は、ニッケルと酸素イオン伝導性物質とを含む。燃料極は、断面において、ニッケルの粒子と酸素イオン伝導性物質の粒子との接合長さの平均値が0.4μm以上かつ0.9μm以下の領域を有する。
(発明の効果)
 本発明によれば、出力の低下を抑制可能な燃料電池セルを提供することができる。
燃料電池セルの構成を示す断面図 燃料極活性層の断面のSEM画像 図2に示すSEM画像の解析結果を示す図 Ni粒子と8YSZ粒子との接合長さの分布を示す分布グラフ 連続Ni粒子と孤立Ni粒子の解析結果(インレンズ二次電子検出器を用いたFE-SEM)
 次に、図面を参照しながら、本発明の実施形態について説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なっている場合がある。従って、具体的な寸法等は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 以下の実施形態では、燃料電池セルの一例として固体酸化物型燃料電池セル(Solid Oxide Fuel Cell:SOFC)を挙げて説明する。以下においては、いわゆる縦縞型燃料電池セルについて説明するが、本発明はこれに限られず、いわゆる横縞型燃料電池セルにも適用可能である。
 (燃料電池セル10の構成)
 燃料電池セル(以下、「セル」と略称する。)10の構成について、図面を参照しながら説明する。図1は、セル10の構成を示す断面図である。
 セル10は、セラミックス材料によって構成される薄板体である。セル10の厚みは、例えば300μm~3mmであり、セル10の直径は、例えば5mm~50mmである。複数のセル10がインターコネクタによって直列に接続されることによって、燃料電池が形成されうる。
 セル10は、燃料極11、固体電解質層12、バリア層13および空気極14を備える。
 燃料極11は、セル10のアノードとして機能する。燃料極11は、図1に示すように、燃料極集電層111と燃料極活性層112とによって構成される。本実施形態では、還元された状態の燃料極11を想定しているが、燃料極11を構成する組成物の含有量(ppm)は還元前後において略一定である。
 燃料極集電層111は、遷移金属と酸素イオン伝導性物質とを含む多孔質の板状焼成体である。燃料極集電層111は、遷移金属として、酸化ニッケル(NiO)及び/又はニッケル(Ni)を含む。燃料極集電層111は、酸素イオン伝導性物質として、イットリア安定化ジルコニア(8YSZ、10YSZなど)やスカンジア安定化ジルコニア(ScSZ)などのジルコニア系材料や、ガドリニウムドープセリア(GDC:(Ce,Gd)O)やサマリウムドープセリア(SDC:(Ce, Sm)O2)などのセリア系材料、或いはイットリア(Y)を含んでいてもよい。
 燃料極集電層111の厚みは、0.2mm~5.0mmとすることができる。燃料極集電層111の厚みは、燃料極集電層111が基板として機能する場合には、セル10の各構成部材のうちで最も大きくてもよい。燃料極集電層111において、Ni及び/又はNiOの体積比率はNi換算で35~65体積%とすることができ、酸素イオン伝導性物質の体積比率は35~65体積%とすることができる。
 燃料極活性層112は、燃料極集電層111および固体電解質層12の間に配置される。燃料極活性層112は、遷移金属と酸素イオン伝導性物質とを含む多孔質の板状焼成体である。燃料極活性層112は、遷移金属として、少なくともNiO及び/又はNiを含んでいる。燃料極活性層112は、遷移金属として、Fe23(またはFeO)及び/またはFe、あるいは、CuO及び/またはCuをさらに含んでいてもよい。燃料極活性層112は、酸素イオン伝導性物質として、イットリア安定化ジルコニア(8YSZ、10YSZなど)やスカンジア安定化ジルコニア(ScSZ)などのジルコニア系材料や、ガドリニウムドープセリア(GDC:(Ce,Gd)O)やサマリウムドープセリア(SDC:(Ce, Sm)O2)などのセリア系材料を含む。
 燃料極活性層112の厚みは1.0μm~30μmとすることができる。燃料極活性層112において、Ni及び/又はNiOの体積比率はNi換算で25~50体積%とすることができ、酸素イオン伝導性物質の体積比率は50~75体積%とすることができる。このように、燃料極活性層112では、燃料極集電層111よりも酸素イオン伝導性物質の含有率が大きくてもよい。
 ここで、燃料極11のうち固体電解質層12との界面Qから3μm以内の領域(以下、「界面領域R」という。)では、ケイ素(Si)の含有量が200ppm以下であり、リン(P)の含有量が50ppm以下であり、クロム(Cr)の含有量が100ppm以下であり、ホウ素(B)の含有量が100ppm以下であり、かつ、硫黄(S)の含有量が100ppm以下である。特に、燃料極11のうち界面領域Rにおいて、Siの含有量が100ppm以下であり、Pの含有量が30ppm以下であり、Crの含有量が50ppm以下であり、Bの含有量が50ppm以下であり、かつ、Sの含有量が30ppm以下であることがより好ましい。また、燃料極11のうち界面領域Rにおいて、Si、P、Cr、B及びSのそれぞれを少なくとも1ppm以上含有していることがさらに好ましい。界面領域RにおけるSi、P、Cr、B及びSそれぞれの含有量は、例えば、二次イオン質量分析法(Secondary Ion-microprobe Mass Spectrometry)によって計測することができる。
 なお、還元後の燃料極11に含有されるSi、P、Cr、B及びSのそれぞれは、遷移金属粒子の内部、又は、遷移金属粒子どうしの粒界に存在していてもよい。
 また、本実施形態では、図1に示すように、界面領域Rは、燃料極活性層112の一部であるが、これに限られるものではない。燃料極活性層112の厚みが3μm以下であれば、燃料極活性層112の全部が界面領域Rとなる。
 さらに、Si、P、Cr、B及びSそれぞれの含有量は、界面領域Rだけでなく燃料極活性層112全体においても、上述の数値に制御されることが好ましい。すなわち、燃料極活性層112全体において、Siの含有量が200ppm以下であり、Pの含有量が50ppm以下であり、Crの含有量が100ppm以下であり、Bの含有量が100ppm以下であり、かつ、Sの含有量が100ppm以下であることが好ましい。また、燃料極活性層112全体において、Siの含有量が100ppm以下であり、Pの含有量が30ppm以下であり、Crの含有量が50ppm以下であり、Bの含有量が50ppm以下であり、かつ、Sの含有量が30ppm以下であることがより好ましい。また、燃料極活性層112全体において、Si、P、Cr、B及びSのそれぞれを少なくとも1ppm以上含有していることがさらに好ましい。
 また、燃料極活性層112は、複数の気孔を有する。燃料極活性層112における気孔率は、周知の還元処理(例えば、800℃の水素雰囲気においてNiOをNiに還元する処理)後の状態において、10%以上かつ40%以下であることが好ましい。気孔率とは、例えば、燃料極活性層112の断面積に対する該断面に露出する全気孔の面積占有率である。但し、気孔率は、燃料極活性層112の体積に対する全気孔の体積占有率であってもよい。燃料極活性層112の微構造については後述する。
 固体電解質層12は、燃料極11とバリア層13との間に配置される。固体電解質層12は、空気極14で生成される酸素イオンを透過させる機能を有する。固体電解質層12は、ジルコニウム(Zr)を含む。固体電解質層12は、Zrをジルコニア(ZrO2)として含んでもよい。固体電解質層12は、ZrO2を主成分として含んでいてもよい。また、固体電解質層12は、ZrO2の他に、Y23及び/又はSc23等の添加剤を含んでいてもよい。これらの添加剤は、安定化剤として機能する。固体電解質層12において、安定化剤のZrO2に対するmol組成比(安定化剤:ZrO2)は、3:97~20:80程度であればよい。すなわち、固体電解質層12の材料としては、例えば、3YSZ、8YSZ及び10YSZなどのイットリア安定化ジルコニアやScSZなどのジルコニア系材料を挙げることができる。固体電解質層12の厚みは、3μm~30μmとすることができる。
 バリア層13は、固体電解質層12および空気極14の間に配置される。バリア層13は、固体電解質層12および空気極14の間に高抵抗層が形成されることを抑制する機能を有する。バリア層13の材料としては、セリウム(Ce)及びCeに固溶した希土類金属酸化物を含むセリア系材料が挙げられる。具体的に、セリア系材料としては、GDCやSDC等が挙げられる。バリア層13の厚みは、3μm~20μmとすることができる。
 空気極14は、バリア層13上に配置される。空気極14は、セル10のカソードとして機能する。空気極14は、例えば、ランタン含有ペロブスカイト型複合酸化物を主成分として含有してもよい。ランタン含有ペロブスカイト型複合酸化物としては、LSCF(ランタンストロンチウムコバルトフェライト)、ランタンマンガナイト、ランタンコバルタイト、ランタンフェライトが挙げられる。また、ランタン含有ペロブスカイト型複合酸化物には、ストロンチウム、カルシウム、クロム、コバルト、鉄、ニッケル、アルミニウムなどがドープされていてもよい。空気極14の厚みは、10μm~100μmとすることができる。
 《燃料極活性層112の微構造》
 以下において、図2~図5を順次参照しながら、燃料極活性層112の好ましい微構造について説明する。ただし、燃料極11が還元された状態であることを前提として説明する。
 (1)SEM画像
 図2は、インレンズ二次電子検出器を用いたFE-SEM(Field Emission Scanning Electron Microscope:電界放射型走査型電子顕微鏡)によって倍率3000倍に拡大された燃料極活性層112の断面SEM画像である。図2では、Ni-8YSZによって構成された燃料極活性層112の断面が示されており、燃料極活性層112の断面は、精密機械研磨後に株式会社日立ハイテクノロジーズのIM4000によってイオンミリング加工処理が施されている。また、図2は、加速電圧:1kV、ワーキングディスタンス:2mmに設定されたZeiss社(ドイツ)製のFE-SEM(型式:ULTRA55)によって得られたSEM画像であり、図2に示される1視野のサイズは縦7μm×横34μmである。
 このSEM画像では、明暗差によってNi粒子と8YSZ粒子と気孔とが個別に表示されており、図2ではNi粒子が“白色”、8YSZ粒子が“黒色”、気孔が“灰色”で表示されている。ただし、図2では、気孔の輪郭の一部が白飛びしたように表示されている。
 なお、Ni粒子、8YSZ粒子、気孔を判別する手法は、SEM画像における明暗差を用いるものには限られない。例えば、同一視野においてSEM-EDSにより元素マッピングを取得した後、予め得ていたインレンズ二次電子検出器を用いたFE-SEM像(インレンズ像とアウトレンズ像を含む)と照らし合わせて、SEM画像中の各粒子を同定することによって、Ni粒子、8YSZ粒子、気孔を3値化することもできる。この際、各粒子の同定は、アウトレンズ像上の低輝度領域を気孔と判定した後に、インレンズ像上の気孔以外の領域における高輝度領域をNi粒子と判定し、低輝度領域を8YSZ粒子と判定することで簡便に行うことができる。
 なお、本実施形態において、Ni粒子は「遷移金属の粒子」の一例であり、8YSZ粒子は「酸素イオン伝導性物質の粒子」の一例である。
 (2)SEM画像の解析
 図3は、図2に示すSEM画像をMVTec社(ドイツ)製の画像解析ソフトHALCONによって画像解析した結果を示す図である。図3では、Ni粒子と8YSZ粒子との接合線が実線で示され、Ni粒子と気孔との境界線(以下、「第1境界線」という。)が破線で示され、さらに、8YSZ粒子と気孔との境界線(以下、「第2境界線」という。)が一点鎖線で示されている。図3に示されるように、燃料極活性層112の内部では、Ni粒子と8YSZ粒子とが複数個所で接合している。また、Ni粒子と気孔とが複数個所で隣接し、8YSZ粒子と気孔とが複数個所で隣接している。
 (3)接合長さの分布グラフ
 図4は、Ni粒子と8YSZ粒子との接合長さの分布を示す分布グラフである。この分布グラフは、図3に示す1視野の画像解析結果に基づいて作成されている。ただし、本実施形態では、後述する接合長さの平均値の算出、および、接合長さの平均値の標準偏差の算出において、上述の画像解析ソフトによって認識された0.2μm以下の接合箇所のデータは使用されていない。この理由は、さらに高倍率での観察結果によると、上述の画像解析ソフトで認識された0.2μm以下の接合箇所の存在自体が不確かであり、出力性能や燃料極の劣化を支配する因子として考慮に入れるのは相応しくないと判断されたためである。
 ここで、Ni粒子と8YSZ粒子との接合長さの平均値(以下、「接合長さの平均値」という。)は、0.4μm以上かつ0.9μm以下であることが好ましい。接合長さの平均値は、Ni粒子と8YSZ粒子との接合長さの和を接合箇所数で除した値であり、図4に示す例では、0.63μmである。接合長さの平均値は、1つの視野又は複数の視野における解析結果から算出されてもよく、SEM画像の倍率は3000倍に限られるものではない。
 このような接合長さの平均値は、Ni粒子と8YSZ粒子とのネック太さを示す指標である。すなわち、接合長さの平均値を所定範囲内に制御することによって、Ni粒子と8YSZ粒子との間に必要十分な太さのネックを形成することができる。これにより、Ni粒子と骨材である8YSZとのネットワークを強固に接合できるため、Ni粒子の形態変化が抑制され、燃料極活性層112中の反応場を確保することができる。その結果、燃料極活性層112の抵抗値が低減され、セル10の出力が向上される。
 接合長さの平均値を調整するには、例えば、8YSZ原料粉末とNiO原料粉末の粒度分布を制御することが有効である。また、接合長さの平均値は、造孔材の平均粒径及び添加量や焼成条件によっても微調整されうる。以下に、接合長さの平均値を上述の0.4μm以上かつ0.9μm以下の範囲に制御するための作製条件の一例を示す。
   ・原料粉末の平均粒径を0.5μm以上1.3μm以下とするとともに、粒径0.2μm以下の微細粒子を分級処理により除去すること
   ・造孔材の平均粒径を0.8μm以上10μm以下とすること
   ・造孔材の添加量をセラミックス原料(8YSZ+NiO)に対して、20体積%以下とすること
   ・共焼成温度を1350℃以上1500℃以下とし、処理時間を1時間以上20時間以下とすること
 また、Ni粒子と8YSZ粒子との全接合箇所のうち平均値以上の接合長さを有する接合箇所の割合(以下、「平均値以上の接合箇所割合」という。)は、25.9%以上かつ48.9%以下であることが好ましい。図4に示す分布グラフでは、平均値以上の接合箇所割合は、全頻度に対する平均値0.63μm以上の頻度の和の割合に対応しており、34.0%である。平均値以上の接合箇所割合は、Ni粒子の形態変化のしにくさを示す指標である。すなわち、平均値以上の接合箇所割合を所定範囲内に制御することによって、Ni粒子の形態変化がより抑制され、燃料極活性層112の耐久性を向上させることができる。
 平均値以上の接合箇所割合を調整するには、接合長さの平均値の調整と同様に、8YSZ原料粉末とNiO原料粉末の粒度分布を制御することが有効である。また、平均値以上の接合箇所割合は、材料の混合方法や焼成条件によっても微調整されうる。以下に、平均値以上の接合箇所割合を上述の25.9%以上かつ48.9%以下の範囲に制御するための作製条件の一例を示す。
   ・原料(8YSZ、NiO)粉末の平均粒径を0.5μm~1.3μmとするとともに、粒径0.3μm以下の微細粒子と2μm以上の粗大粒子を分級処理により除去すること
   ・燃料極活性層を形成する材料(印刷法で形成される場合は印刷ペースト)を均一混合すること
   ・燃料極活性層を形成する材料として印刷ペーストを作製する場合においては、適切な分散剤を添加した分散性の良いスラリーを作製した後、十分なポットミル混合とトリロールミル混合によりスラリーを均一混合すること
   ・焼成温度を1400℃以上1450℃以下とし、処理時間を5時間以上10時間以下とすること
 なお、Ni粒子と気孔との第1境界長さ(破線)の平均値は、0.2μm以上かつ0.7μm以下であることが好ましい。また、YSZ粒子と気孔との第2境界長さ(一点鎖線)の平均値は、0.5μm以上かつ1.2μm以下であることが好ましい。
 (4)接合長さのバラツキ
 任意に取得される10視野(倍率3000倍)のSEM画像において、Ni粒子と8YSZ粒子との接合長さの平均値の標準偏差は、0.48以下であることが好ましい。接合長さの平均値の標準偏差は、燃料極活性層112内におけるNi粒子と8YSZ粒子とのネック太さのバラツキを示す指標である。すなわち、接合長さの平均値の標準偏差を小さくすることによって、燃料極活性層112内部の導電性が均一になり、燃料極活性層112内部の一部に電流が集中して流れることを抑制できる。従って、燃料極活性層112内部の一部が加速的に劣化することを抑制できるので、セル10の耐久性をより向上させることができる。
 平均値の標準偏差は、平均値以上の接合箇所割合の調整と同様に、原料粉末の平均粒径、燃料極活性層を形成する材料の混合条件、或いは焼成条件を制御することによって調整可能である。さらに、平均値の標準偏差は、混合プロセスにおける不純物の混入を制御することによっても調整可能である。このような不純物の混入を制御することで、共焼成時の組織制御性の向上及び再現性の確保が実現され、NiO粒子と8YSZ粒子の焼結進行の均一性を向上させることができる。従って、平均値の標準偏差を制御するには、不純物の混入を制御することによって、接合長さのバラツキを抑制することが特に効果的である。具体的には、Si、B、Cr、P、Sなどの混入を約200ppm以下に制御すればよい。
 なお、任意に取得される10視野(倍率3000倍)のSEM画像において、Ni粒子と気孔との第1境界長さの平均値の標準偏差は、0.2以上かつ0.6以下であることが好ましい。また、任意に取得される10視野(倍率3000倍)のSEM画像において、YSZ粒子と気孔との第2境界長さの平均値の標準偏差は、0.6以上かつ1.0以下であることが好ましい。
 (5)孤立Ni粒子の割合
 図5はインレンズ二次電子検出器を用いたFE-SEM画像であり、連続Ni粒子と孤立Ni粒子の解析結果である。
 ここで、インレンズ二次電子検出器を用いることで、各Ni粒子の導電性の差異を画像コントラストとして出力することができる。導電性の高い、つまり周囲のNi粒子との電気的接続が確かな連続性の高い粒子は明るく表示され、導電性の低い、つまり周囲のNi粒子との電気的接続が不確かな粒子は暗く表示されることが知られている(「Solid State lonics 178(2008)1984」参照)。
 図5はインレンズ二次電子検出器を用いたFE-SEM画像であるが、得られたNi粒子の明暗がNi粒子の連続性有無、すなわち導電性の差異を表していることを確認するために、所定の電圧が印加されたカンチレバーによって断面をスキャンすることによって、同一視野において原子間力顕微鏡(AFM)を用いてNi粒子個々の抵抗評価を行った。この際、電流の大きさに基づいて、Ni粒子によって構成される領域を導通のある領域と導通のない領域に分類した。分析結果から、導通のある領域を「連続Ni粒子」と判定し、導通のない領域を「孤立Ni粒子」と判定する。すなわち、連続Ni粒子とは、隣り合う少なくとも1つのNi粒子と繋がっているNi粒子であり、孤立Ni粒子とは、隣り合うNi粒子と繋がらずに単独で存在するNi粒子である。図5においては、孤立Ni粒子が実線で囲まれ、連続Ni粒子が破線で囲まれている。
 ここで、1視野に存在するNiの全占有面積のうち孤立Ni粒子の占有面積の割合(以下、「孤立Ni粒子割合」という。)は、25%以下であることが好ましい。孤立Ni粒子割合は、燃料極活性層112の導電性の指標である。すなわち、孤立Ni粒子割合が少ないほど燃料極活性層112の反応抵抗を低減できるので、セル10の出力をより維持することができる。
 このような孤立Ni粒子割合は、例えば、燃料極11用のスラリー内に混入されるNiO粉末の粉体特性(粒径、比表面積)を調整することで制御可能である。また、孤立Ni粒子割合の調整は、焼成時間及び焼成温度の調整、或いは、造孔材の粒径や添加量を調整することによっても制御可能である。
 特に、NiO粒子の活性度の高い材料を用いることが重要である。比表面積の高いNiO原料を用いることで、焼成時に他のNiOや8YSZとの接合性が向上し、還元処理後においても孤立Ni粒子割合を下げることができる。具体的には、5m/g~20m/gの比表面積を有するNiO粒子を原料として用いることが好ましい。ただし、高比表面積の原料を用いる場合にはスラリー調整時に有効な分散剤(例えば、ビックケミージャパン株式会社製の湿潤分散剤「DISPERBYK(R)-180」など)を添加する必要がある。分散性の低いスラリーにおいては、高比表面積粒子は凝集体となり、むしろ焼結性が阻害されてしまう結果、孤立Ni粒子割合が向上してしまうためである。なお、焼成温度は1400℃以上1450℃以下が好ましく、処理時間は5時間以上10時間以下が好ましい。
 なお、連続Ni粒子と孤立Ni粒子とは、SEM画像を画像解析ソフトによって解析する際に、Ni粒子の明暗を詳細に検出することによっても判定可能である。例えば、図2では一律に“灰色”として分類した領域のうち明るい領域を「連続Ni粒子」と判定し、暗い領域を「孤立Ni粒子」と判定すればよい。
 また、連続Ni粒子と孤立Ni粒子との判定に係る上述した種々の手法では、セル10のサンプルを厚さ方向(積層方向)に沿って機械加工により実際に切断して得られた断面が利用される。従って、断面近傍に分布していたNi粒子のうち切断前には連続Ni粒子であったが切断後に孤立Ni粒子に変わったもの(或いは、その逆のもの)が存在し得ると考えられる。しかしながら、断面近傍に分布していたNi粒子のうち切断前後で連続Ni粒子から孤立Ni粒子(或いは、その逆)に変わったものの割合は非常に小さいと考えられる。従って、セル10のサンプルを機械加工により切断して得られた断面に基づいて算出される孤立Ni粒子割合は、セル10のサンプルを切断する前の真の孤立Ni粒子割合とほぼ一致するものと考えられる。
 (燃料電池セル10の製造方法)
 次に、セル10の製造方法の一例について説明する。ただし、以下に述べる材料、粒径、温度、及び塗布方法等の各種条件は、適宜変更することができる。以下の説明において、「成形体」とは、焼成前の状態を指すものとする。また、以下の説明では、図1に示すように、界面領域Rが燃料極活性層112の一部であるものとする。
 まず、遷移金属酸化物(例えば、NiO粉末)と酸素イオン伝導性物質(例えば、8YSZ粉末)と造孔剤(例えばPMMA(ポリメタクリル酸メチル樹脂))とを混合する。
 次に、遷移金属酸化物と酸素イオン伝導性物質と造孔剤の混合物にバインダーとしてのポリビニルアルコール(PVA)を添加することによってスラリーを作製する。
 次に、スラリーをスプレードライヤーで乾燥・造粒することによって燃料極集電層用粉末を得る。
 次に、燃料極集電層用粉末を金型プレス成形法で成形することによって、燃料極集電層111の成形体を形成する。
 次に、遷移金属酸化物(例えば、NiO粉末)と酸素イオン伝導性物質(例えば、8YSZ粉末)と造孔剤(例えばPMMA)とを混合する。
 次に、遷移金属酸化物と酸素イオン伝導性物質と造孔剤の混合物にバインダーとしてのポリビニルアルコールを添加することによってスラリーを作製する。
 次に、スラリーを印刷法で燃料極集電層111の成形体上に印刷することによって、燃料極活性層112のうち1層目の成形体を形成する。
 次に、遷移金属酸化物(例えば、NiO粉末)と酸素イオン伝導性物質(例えば、8YSZ粉末)と添加物(Si、P、Cr、B及びS)と造孔剤とを混合する。
 次に、遷移金属酸化物と酸素イオン伝導性物質と添加物と造孔剤の混合物にバインダーとしてのポリビニルアルコールを添加することによってスラリーを作製する。
 次に、スラリーを印刷法で1層目の成形体上に印刷することによって、燃料極活性層112のうち2層目の成形体を形成する。以上により、燃料極11の成形体が形成される。
 ここで、燃料極活性層112の2層目のスラリーを作製する際、焼成及び還元後において、Siが200ppm以下、Pが50ppm以下、Crが100ppm以下、Bが100ppm以下、かつ、Sが100ppm以下となるように添加物を添加することが好ましい。また、燃料極活性層112の1層目のスラリーを作製する際においても、同様に添加物を添加することがより好ましい。さらに、これらの添加物は、1層目及び2層目それぞれにおいて、Siの含有量が100ppm以下であり、Pの含有量が30ppm以下であり、Crの含有量が50ppm以下であり、Bの含有量が50ppm以下であり、かつ、Sの含有量が30ppm以下となるように調整することがより好ましい。また、Si、P、Cr、B及びSのそれぞれの含有量は、少なくとも1ppm以上となるように調整することがさらに好ましい。
 次に、8YSZ粉末に水とバインダーの混合物をボールミルで24時間混合することによってスラリーを作製する。次に、スラリーを燃料極11の成形体上に塗布および乾燥することによって、固体電解質層12の成形体を形成する。なお、塗布法に代えてテープ積層法や印刷法等を用いることとしてもよい。
 次に、GDC粉末に水とバインダーの混合物をボールミルで24時間混合することによってスラリーを作製する。次に、スラリーを電解質膜120の成形体上に塗布および乾燥することによって、バリア層13の成形体を形成する。なお、塗布法に代えてテープ積層法や印刷法等を用いることとしてもよい。
 以上より、燃料極11の成形体、固体電解質層12の成形体およびバリア層13の成形体の積層体が形成される。
 次に、積層体を1300~1600℃で2~20時間共焼結することによって、燃料極集電層111および燃料極活性層112によって構成される燃料極11、固体電解質層12および緻密なバリア層13の共焼成体を形成する。
 次に、LSCF粉末に水とバインダーの混合物をボールミルで24時間混合することによってスラリーを作製する。次に、スラリーを共焼成体のバリア層13上に塗布および乾燥した後に、電気炉(酸素含有雰囲気、1000℃)で1時間焼成することによって、バリア層13上に多孔質の空気極14を形成する。以上によりセル10が完成する。
 (作用及び効果)
 (1)本発明者らは、長時間運転した場合にセル10の電圧が低下するという問題について鋭意検討を行った結果、燃料極11のうち水素と酸化物イオンの反応領域である界面領域Rにおける反応抵抗の増大に起因するという知見を得た。具体的には、燃料極11の成形体を焼結する際に、遷移金属の焼結が過剰に進行することによって水素と酸化物イオンの反応場が減少するため、界面領域Rにおける反応抵抗が増大してしまう。
 そこで、本実施形態に係る界面領域Rでは、Siの含有量が200ppm以下であり、Pの含有量が50ppm以下であり、Crの含有量が100ppm以下であり、Bの含有量が100ppm以下であり、かつ、Sの含有量が100ppm以下であるよう調整されている。
 従って、燃料極11の成形体の焼結時における遷移金属の焼結の進行を抑制できるため、水素と酸化物イオンとの反応場の減少を抑えることができる。その結果、界面領域Rにおける反応抵抗の増大が抑えられ、セル10の電圧低下を抑制することができる。
 なお、Si、P、Cr、B及びSそれぞれの含有量を抑えることによって遷移金属の焼結の進行が抑えられるメカニズム自体は必ずしも明らかではないが、適度な量のSi、P、Cr、B及びSが遷移金属粒子の内部、又は、遷移金属粒子どうしの粒界に取り込まれることによる効果であると考えられる。
 (2)燃料極活性層112におけるSi、P、Cr、B及びSそれぞれの含有量は、1ppm以上である。
 従って、Si、P、Cr、B及びSが焼結助剤として機能するため、燃料極11(具体的には、界面領域R)の適度な焼結性を維持することができる。これによって、多孔質構造を有する界面領域Rの骨格が強化されるため、焼成時及び還元時における多孔質構造の安定化を図ることができる。
 ≪他の実施形態≫
 本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で種々の変形又は変更が可能である。
 (A)上記実施形態において、セル10は、燃料極11、固体電解質層12、バリア層13および空気極14を備えることとしたが、これに限られるものではない。セル10は、燃料極11、固体電解質層12、バリア層13および空気極14を備えていればよく、燃料極11と固体電解質層12との間やバリア層13と空気極14との間には、他の層が介挿されていてもよい。例えば、セル10は、バリア層13と空気極14との間に、多孔質バリア層を備えていてもよい。
 (B)上記実施形態では縦縞型燃料電池セルについて説明したが、セル10の形状はこれに限られるものではない。セル10の形状は、横縞型、燃料極支持型、平板形、或いは円筒形などであってもよい。また、セル10の断面は、楕円形状などであってもよい。
 (C)上記実施形態では、燃料極活性層112は、遷移金属として、少なくともNiO及び/又はNiを含むこととしたが、これに限られるものではない。燃料極活性層112は、NiO及び/又はNiに代えて、例えば、Fe23(またはFeO)及び/またはFeや、CuO及び/またはCuなどを含んでいてもよい。なお、燃料極活性層112は、複数の遷移金属(又は酸化物を含む)を含有していてもよい。
 (D)上記実施形態では、Si、P、Cr、B及びSが遷移金属及び酸素イオン伝導性物質とともに混合することとしたが、これに限られるものではない。Si、P、Cr、B及びSは、遷移金属及び酸素イオン伝導性物質の混合物に対してバインダーとともに添加されてもよい。
 (E)上記実施形態では、特に、燃料極活性層112の微構造に焦点を当てて説明したが、燃料極集電層111が燃料極活性層112と同様の材料(例えばNi-8YSZ)によって構成されている場合には、燃料極11は、固体電解質層12との界面付近において、接合長さの平均値が0.4μm以上かつ0.9μm以下である領域を有していればよい。少なくともこの領域においては、所望の効果を得ることができるからである。なお、この領域では、上記実施形態で説明した通り、平均値以上の接合箇所割合は25.9%以上かつ48.9%以下であることが好ましく、さらに、Ni粒子と8YSZ粒子との接合長さの平均値の標準偏差は0.48以下であることが好ましい。
 以下において本発明に係るセルの実施例について説明するが、本発明は以下に説明する実施例に限定されるものではない。
 [サンプルNo.1~No.45の作製]
 以下のようにして、燃料極集電層を支持基板とする燃料極支持型セルのサンプルNo.1~No.45を作製した。
 まず、金型プレス成形法で厚み500μmの燃料極集電層(NiO:8YSZ=50:50(Ni体積%換算))を成形した。
 次に、遷移金属酸化物と酸素イオン伝導性物質とPMMAとの混合物にポリビニルアルコールを加えることによってスラリーを作製した。遷移金属と酸素イオン伝導性物質の種類及び混合比は、表1に示す通りである。
 次に、燃料極集電層上に厚み10μmの燃料極活性層のうち1層目の成形体を印刷法で形成した。
 次に、遷移金属酸化物と酸素イオン伝導性物質と添加物(Si、P、Cr、B及びS)とPMMAとの混合物にポリビニルアルコールを加えることによってスラリーを作製した。遷移金属と酸素イオン伝導性物質の種類及び混合比は、上述の1層目の成形体と同じとした。また、添加物(Si、P、Cr、B及びS)の含有量は、表1に示す通りとした。
 次に、1層目の成形体上に厚み10μmの燃料極活性層のうち2層目の成形体を印刷法で形成した。 次に、燃料極活性層(2層目)上に厚み5μmの8YSZ電解質と厚み5μmのGDCハ゛リア膜とを順次形成して積層体を作製した。
 次に、積層体を1400℃で2時間共焼結することによって共焼成体を得た。その後、厚み30μmのLSCF空気極を1000℃で2時間焼き付けることによって、燃料極支持型コインセル(φ15mm)を完成させた。なお、焼成後における燃料極活性層の2層目(図1に示す界面領域Rに対応)の厚みは、3μmであった。
 [出力密度測定]
 サンプルNo.1~No.45について、燃料極集電層側に窒素ガス、空気極側に空気を供給しながら750℃まで昇温し、750℃に達した時点で燃料極集電層に水素ガスを供給しながら還元処理を3時間行った。その後、各サンプルについて、1000時間当たりの電圧降下率を劣化率として測定した。出力密度には、温度が750℃で定格電流密度0.2A/cmでの値を使用した。表1では、劣化率が1.0%よりも大きいサンプルが×と評価され、劣化率が1.0%以下のサンプルが○と評価され、劣化率が0.5%以下のサンプルが◎と評価されている。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、燃料極活性層の2層目(界面領域R)において、Siの含有量を200ppmとし、Pの含有量を50ppm以下とし、Crの含有量を100ppm以下とし、Bの含有量を100ppm以下とし、かつ、Sの含有量を100ppm以下とすることによって、セルの劣化率(すなわち、電圧降下率)を改善できることが確認された。
 また、表1に示すように、燃料極活性層の2層目(界面領域R)において、Siの含有量を100ppm以下とし、Pの含有量を30ppm以下とし、Crの含有量を50ppm以下とし、Bの含有量を50ppm以下とし、かつ、Sの含有量を30ppm以下とすることによって、セルの劣化率をさらに燃改善できることが確認された。
 このような結果が得られたのは、燃料極活性層の2層目の成形体において、焼結時に遷移金属の焼結の進行を抑えることによって、水素と酸化物イオンとの反応場の減少を抑制できたためである。
 なお、サンプルNo.45では、混合物の混合量が1ppm以下の場合は、燃料極の焼成時における骨格の強化が不十分であったため、還元後にNi粒子の粒成長や焼結進行が発生したと考えられる。
 [サンプルNo.46~No.94の作製]
 以下のようにして、燃料極集電層を支持基板とする燃料極支持型セルのサンプルNo.46~No.94を作製した。
 まず、金型プレス成形法で厚み500μmの燃料極集電層(NiO:8YSZ=50:50(Ni体積%換算))を成形し、その上に厚み20μmの燃料極活性層を印刷法で形成した。サンプルNo.46~No.65では、遷移金属としてのNiと、酸素イオン伝導性物質としての8YSZと、を燃料極活性層の原材料とした。サンプルNo.66~No.71では、遷移金属としてのNiと、酸素イオン伝導性物質としての10YSZと、を燃料極活性層の原材料とした。サンプルNo.72~No.77では、遷移金属としてのNiと、酸素イオン伝導性物質としてのScSZと、を燃料極活性層の原材料とした。サンプルNo.78~No.83では、遷移金属としてのNi及びFeと、酸素イオン伝導性物質としての8YSZと、を燃料極活性層の原材料とした。サンプルNo.84~No.87では、遷移金属としてのNi及びCuと、酸素イオン伝導性物質としての8YSZと、を燃料極活性層の原材料とした。サンプルNo.88~No.92では、遷移金属としてのNiと、酸素イオン伝導性物質としてのGDCと、を燃料極活性層の原材料とした。なお、遷移金属と酸素イオン伝導性物質との混合比(遷移金属:酸素イオン伝導性物質)については、表2に示す通りとした。
 また、サンプルNo.93,No.94では、遷移金属としてのNiと、酸素イオン伝導性物質としての8YSZと、を燃料極活性層の原材料とした。サンプルNo.93では、遷移金属と酸素イオン伝導性物質との混合比を40:60とし、No.94では、遷移金属と酸素イオン伝導性物質との混合比を45:55とした。
 また、燃料極活性層の成形工程において8YSZの粒度分布、造孔剤の添加量およびNiO粉末の粉体特性(粒径、比表面積)を調整することによって、表2および表3に示すように、燃料極活性層における接合長さの平均値、平均値以上の接合箇所割合、接合長さの平均値の標準偏差および孤立Ni粒子割合を異ならせた。
 次に、燃料極活性層上に厚み5μmの8YSZ電解質と厚み5μmのGDCハ゛リア膜とを順次形成して積層体を作製した。
 次に、積層体を1400℃で2時間共焼結することによって共焼成体を得た。その後、厚み30μmのLSCF空気極を1000℃で2時間焼き付けることによって、燃料極支持型コインセル(φ15mm)のサンプルNo.46~No.94を作製した。
 [燃料極活性層の断面の観察]
 サンプルNo.46~No.94について、燃料極活性層の断面を観察した。
 具体的には、まず、各サンプルの燃料極活性層を精密機械研磨した後に、株式会社日立ハイテクノロジーズのIM4000によってイオンミリング加工処理を施した。
 次に、インレンズ二次電子検出器を用いたFE-SEMによって倍率3000倍に拡大された燃料極活性層の断面のSEM画像を取得した(図2参照)。
 次に、図2に示す断面写真をMVTec社(ドイツ)製画像解析ソフトHALCONで解析することによって、Ni粒子と酸素イオン伝導性物質との接合線を検出した(図3参照)。
 次に、画像解析ソフトの解析結果を用いて、1視野のSEM画像における接合長さの平均値、平均値以上の接合箇所割合、及び孤立Ni粒子割合を算出した。また、画像解析ソフトの解析結果を用いて、任意の10視野のSEM画像において、接合長さの平均値の標準偏差を算出した。算出結果は、表2および表3に示す通りであった。
 [出力密度測定]
 サンプルNo.46~No.94について、燃料極側に窒素ガス、空気極側に空気を供給しながら750℃まで昇温し、750℃に達した時点で燃料極に水素ガスを供給しながら還元処理を3時間行った。この後、サンプルNo.46~No.94の出力密度を測定した。出力密度として、温度が750℃で定格電圧0.8Vでの値を使用した。
 測定結果を表2にまとめて記載する。表2では、出力密度が600mW/cm以上を高出力状態と評価されている。表2から明らかなように、接合長さの平均値は、0.4μm以上かつ0.9μm以下が好ましいことが判った。これは、接合長さの平均値が0.4μm以上であることで、Ni粒子と酸素イオン伝導性物質とのネック太さを十分確保でき、0.9μm以下であることで、還元後において十分な電気化学反応領域を確保できたからである。
 また、このような効果は、Ni粒子と酸素イオン伝導性物質とのネック太さを十分確保することによって得られるものであり、酸素イオン伝導性物質の種類に因らないことがわかった。さらに、遷移金属としてNi以外にFeやCuが含まれる場合であっても、同様の効果を得られることがわかった。
Figure JPOXMLDOC01-appb-T000002
 [耐久性試験1]
 表3に示される12種類のサンプルについて、燃料極側に窒素ガス、空気極側に空気を供給しながら750℃まで昇温し、750℃に達した時点で燃料極に水素ガスを供給しながら還元処理を3時間行った。この後、各サンプルについて、1000時間当たりの電圧降下率を劣化率として測定した。出力密度として、温度が750℃で定格電流密度0.35A/cmでの値を使用した。
 測定結果を表3にまとめて記載する。表3では、劣化率が1.5%以下が低劣化状態と評価されている。
 表3から明らかなように、平均値以上の接合箇所割合は、25.9%以上かつ48.9%以下が好ましいことが判った。これは、接合箇所割合が25.9%以上であることで、Ni粒子の形態変化をしにくくすることができ、48.9%以下であることで、十分な電気化学反応領域を確保でき、過度な過電圧上昇を抑制できるからである。
 また、表3から分かるように、孤立Ni粒子割合は、25%以下が好ましいことが判った。これは、孤立Ni粒子割合を25%以下とすることによって、燃料極活性層の反応抵抗が低減され出力を維持しやすくなったからである。
 ただし、表3に示すサンプルNo.58では、孤立Ni粒子割合は8.5%と適切な値であるにも関わらず、接合長さの平均値が0.92と過大であったために他のサンプルほど良好な結果を得ることができなかった。このことから、劣化率は、孤立Ni粒子割合よりも接合長さの平均値によって律速されやすいことが分かった。
 また、表3から明らかなように、接合長さの平均値の標準偏差は、0.48以下が好ましいことが判った。これは、平均値の標準偏差が0.48以下であることで、燃料極活性層内部の導電性が均一になり、燃料極活性層内部の一部に電流が集中して流れることを抑制できたためである。
 ただし、表2に示すサンプルNo.54では、接合長さの平均値の標準偏差は0.45と適切な値であるにも関わらず、接合長さの平均値が0.32と過少であったために良好な結果を得ることができなかった。このことから、出力密度は、平均値の標準偏差よりも接合長さの平均値によって律速されやすいことが分かった。
Figure JPOXMLDOC01-appb-T000003
 [耐久性試験2]
 燃料極活性層における混合物の濃度と劣化率との関係を調べるために、良好な出力密度が得られたサンプルNo.52を基準として、表4に示すように混合物の混合量を調整することによって、サンプルNo.52-1~52-5を作製した。ここで、混合物は、ケイ素(Si)、リン(P)、クロム(Cr)、ホウ素(B)、及び硫黄(S)である。混合物は、燃料極活性層の原料中に予め混合されてもよいし、製造の過程で混合されてもよい。
 サンプルNo.52-1~52-5について、上述の耐久性試験1と同様、燃料極側に窒素ガス、空気極側に空気を供給しながら750℃まで昇温し、750℃に達した時点で燃料極に水素ガスを供給しながら還元処理を3時間行った。この後、各サンプルについて、1000時間当たりの電圧降下率を劣化率として測定した。なお、出力密度には、温度が750℃で定格電流密度0.35A/cmでの値を使用した。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、200ppm以下のSiと、50ppm以下のPと、100ppm以下のCrと、100ppm以下のBと、100ppm以下のSと、が燃料極活性層の全体含有されることによって劣化率を改善できることが確認された。
 また、表4に示すように、100ppm以下のSiと、30ppm以下のPと、50ppm以下のCrと、50ppm以下のBと、30ppm以下のSと、が含有されることによって、さらに劣化率を改善できることが確認された。
 このような結果が得られたのは、混合されたSi、P、Cr、B及びSによって、焼成時及び還元時において多孔質構造の安定化を図れたためである。具体的には、混合物が混合されることにより燃料極活性層の焼結性が向上されて、多孔質体である燃料極活性層の骨格を強化できた。一方で、混合物の混合量を微量に制御することにより長期間運転時におけるNiの焼結が抑制されて、燃料極活性層内の反応場の減少を抑制できた。
 なお、Si、P、Cr、B及びSそれぞれを少なくとも1ppm以上混合することによって劣化率を改善できることは、実験的にも確認されている。
 10  燃料電池セル
 11  燃料極
 111 燃料極集電層
 112 燃料極活性層
 12  固体電解質層
 13  バリア層
 14  空気極

Claims (13)

  1.  遷移金属と酸素イオン伝導性物質とを含む燃料極と、
     空気極と、
     前記燃料極および前記空気極の間に配置される固体電解質層と、
    を備え、
     還元後の前記燃料極のうち前記固体電解質層との界面から3μm以内の界面領域において、ケイ素の含有量は200ppm以下であり、リンの含有量は50ppm以下であり、クロムの含有量は100ppm以下であり、ホウ素の含有量は100ppm以下であり、硫黄の含有量は100ppm以下である、
    請求項1に記載の燃料電池セル。
  2.  前記界面領域において、ケイ素の含有量は100ppm以下であり、リンの含有量は30ppm以下であり、クロムの含有量は50ppm以下であり、ホウ素の含有量は50ppm以下であり、硫黄の含有量は30ppm以下である、
    請求項1に記載の燃料電池セル。
  3.  前記界面領域において、ケイ素、リン、クロム、ホウ素及び硫黄それぞれの含有量は、1ppm以上である、
    請求項1又は2に記載の燃料電池セル。
  4.  前記遷移金属は、ニッケルである、
    請求項1乃至3のいずれかに記載の燃料電池セル。
  5.  前記酸素イオン伝導性物質は、イットリア安定化ジルコニアである、
    請求項1乃至4のいずれかに記載の燃料電池セル。
  6.  ニッケルと酸素イオン伝導性物質とを含む燃料極と、
     空気極と、
     前記燃料極および前記空気極の間に配置される固体電解質層と、
    を備え、
     前記燃料極は、断面において、ニッケルの粒子と前記酸素イオン伝導性物質の粒子との接合長さの平均値が0.4μm以上かつ0.9μm以下である領域を有する、
    燃料電池セル。
  7.  前記燃料極は、ケイ素、リン、クロム、ホウ素及び硫黄を含有し、
     前記燃料極におけるケイ素の含有量は、200ppm以下であり、
     前記燃料極におけるリンの含有量は、50ppm以下であり、
     前記燃料極におけるクロムの含有量は、100ppm以下であり、
     前記燃料極におけるホウ素の含有量は、100ppm以下であり、
     前記燃料極における硫黄の含有量は、100ppm以下である、
    請求項6に記載の燃料電池セル。
  8.  インレンズ二次電子検出器を用いたFE-SEMによって前記燃料極の断面の1視野を観察した場合に、ニッケルの粒子と前記酸素イオン伝導性物質の粒子との全接合箇所のうち前記接合長さの平均値以上の接合長さを有する接合箇所の割合は、25.9%以上かつ48.9%以下である、
    請求項6又は7に記載の燃料電池セル。
  9.  前記1視野に存在するニッケルの全占有面積のうち隣り合うニッケルの粒子と繋がらずに単独で存在するニッケルの占有面積の割合は、25%以下である、
    請求項8に記載の燃料電池セル。
  10.  インレンズ二次電子検出器を用いたFE-SEMによって前記燃料極の断面の任意の10視野を観察した場合に、前記10視野における前記接合長さの平均値の標準偏差は0.48以下である、
    請求項6乃至9のいずれかに記載の燃料電池セル。
  11.  前記酸素イオン伝導性物質は、イットリア安定化ジルコニアである、
    請求項6乃至10のいずれかに記載の燃料電池セル。
  12.  前記1視野において気孔が占める割合は、10%以上かつ40%以下である、請求項6乃至11のいずれかに記載の燃料電池セル。
  13.  前記燃料極は、燃料極集電層と、前記燃料極集電層および前記固体電解質層の間に配置される燃料極活性層と、によって構成されており、
     前記接合長さの平均値が0.4μm以上かつ0.9μm以下である前記領域は、前記燃料極活性層である、
    請求項6乃至12のいずれかに記載の燃料電池セル。
PCT/JP2012/075965 2011-10-14 2012-10-05 燃料電池セル WO2013054759A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12840303.7A EP2768053B1 (en) 2011-10-14 2012-10-05 Fuel cell
US13/870,442 US9017898B2 (en) 2011-10-14 2013-04-25 Fuel cell
US14/661,402 US9640825B2 (en) 2011-10-14 2015-03-18 Fuel cell

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011-227418 2011-10-14
JP2011227418A JP5159938B1 (ja) 2011-10-14 2011-10-14 燃料電池セル
JP2012-136509 2012-06-18
JP2012136509 2012-06-18
JP2012158576A JP5097867B1 (ja) 2011-10-14 2012-07-17 燃料電池セル
JP2012-158576 2012-07-17
JP2012-196183 2012-09-06
JP2012196183 2012-09-06
JP2012214868A JP5242840B1 (ja) 2011-10-14 2012-09-27 燃料電池セル
JP2012-214868 2012-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/870,442 Continuation US9017898B2 (en) 2011-10-14 2013-04-25 Fuel cell

Publications (1)

Publication Number Publication Date
WO2013054759A1 true WO2013054759A1 (ja) 2013-04-18

Family

ID=49041794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075965 WO2013054759A1 (ja) 2011-10-14 2012-10-05 燃料電池セル

Country Status (4)

Country Link
US (2) US9017898B2 (ja)
EP (2) EP3118918A1 (ja)
JP (1) JP5242840B1 (ja)
WO (1) WO2013054759A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191570A (ja) * 2011-12-19 2013-09-26 Ngk Insulators Ltd 固体酸化物型燃料電池セル
US20150288018A1 (en) * 2012-10-23 2015-10-08 Konica Minolta, Inc. Secondary Battery Type Fuel Cell System And Manufacturing Process Therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6275076B2 (ja) * 2015-04-03 2018-02-07 株式会社ノリタケカンパニーリミテド 固体酸化物形燃料電池およびその製造方法
US10283799B2 (en) * 2017-04-25 2019-05-07 Institute Of Nuclear Energy Research Atomic Energy Council Executive Yuan Membrane electrode assembly structure of fuel cell and the method of fabricating the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992302A (ja) * 1995-09-28 1997-04-04 Kyocera Corp 円筒型燃料電池セルおよびその製造方法
JP2004207233A (ja) * 2002-12-09 2004-07-22 Dainippon Printing Co Ltd 燃料電池
JP2005158436A (ja) * 2003-11-25 2005-06-16 Nissan Motor Co Ltd 固体酸化物形燃料電池用燃料極及びそれを用いた固体酸化物形燃料電池
JP2005166481A (ja) * 2003-12-03 2005-06-23 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池用燃料電極およびその製造方法
JP2006032132A (ja) 2004-07-16 2006-02-02 Hosokawa Funtai Gijutsu Kenkyusho:Kk 固体電解質型燃料電池の空気極原料粉体、空気極及び固体電解質型燃料電池
JP2010511282A (ja) * 2006-11-29 2010-04-08 コーニング インコーポレイテッド 固体酸化物燃料電池電極表面の活性化

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2695641B2 (ja) 1988-03-04 1998-01-14 三菱重工業株式会社 固体電解質燃料電池の製造方法
JPH09129245A (ja) 1995-10-31 1997-05-16 Kyocera Corp 固体電解質型燃料電池セル
JPH1021935A (ja) 1996-07-05 1998-01-23 Toto Ltd 固体電解質型燃料電池
EP1081778A4 (en) * 1998-04-21 2006-03-01 Toto Ltd SOLID FUEL CELL WITH SOLID ELECTROLYTES AND METHOD FOR THE PRODUCTION THEREOF
JP2000030728A (ja) 1998-07-09 2000-01-28 Toto Ltd 緻密質焼結膜の作製方法及びそれを用いた固体電解質型燃料電池の製造方法
JP4605885B2 (ja) 2000-10-23 2011-01-05 東邦瓦斯株式会社 支持膜式固体電解質型燃料電池
JP3825336B2 (ja) * 2001-03-12 2006-09-27 双葉電子工業株式会社 ナノカーボンの製造方法及びナノカーボンの製造装置
US7517601B2 (en) 2002-12-09 2009-04-14 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell
US8334079B2 (en) * 2004-04-30 2012-12-18 NanoCell Systems, Inc. Metastable ceramic fuel cell and method of making the same
JP4825484B2 (ja) 2005-09-30 2011-11-30 ホソカワミクロン株式会社 固体酸化物形燃料電池の燃料極、燃料極用原料粉体、及び固体酸化物形燃料電池
US7842200B2 (en) 2006-05-30 2010-11-30 University Of Maryland, College Park Solid oxide fuel cell (SOFC) anode materials
US20080124613A1 (en) * 2006-10-16 2008-05-29 Gur Turgut M Multi-functional cermet anodes for high temperature fuel cells
JP5209359B2 (ja) 2008-04-16 2013-06-12 日本電信電話株式会社 固体酸化物形燃料電池
JP2010210420A (ja) 2009-03-10 2010-09-24 Panasonic Electric Works Co Ltd 加速度センサ
WO2012128201A1 (ja) * 2011-03-18 2012-09-27 日本碍子株式会社 固体酸化物形燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992302A (ja) * 1995-09-28 1997-04-04 Kyocera Corp 円筒型燃料電池セルおよびその製造方法
JP2004207233A (ja) * 2002-12-09 2004-07-22 Dainippon Printing Co Ltd 燃料電池
JP2005158436A (ja) * 2003-11-25 2005-06-16 Nissan Motor Co Ltd 固体酸化物形燃料電池用燃料極及びそれを用いた固体酸化物形燃料電池
JP2005166481A (ja) * 2003-12-03 2005-06-23 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池用燃料電極およびその製造方法
JP2006032132A (ja) 2004-07-16 2006-02-02 Hosokawa Funtai Gijutsu Kenkyusho:Kk 固体電解質型燃料電池の空気極原料粉体、空気極及び固体電解質型燃料電池
JP2010511282A (ja) * 2006-11-29 2010-04-08 コーニング インコーポレイテッド 固体酸化物燃料電池電極表面の活性化

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2768053A4 *
SOLID STATE IONICS, vol. 178, 2008, pages 1984

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191570A (ja) * 2011-12-19 2013-09-26 Ngk Insulators Ltd 固体酸化物型燃料電池セル
US20150288018A1 (en) * 2012-10-23 2015-10-08 Konica Minolta, Inc. Secondary Battery Type Fuel Cell System And Manufacturing Process Therefor

Also Published As

Publication number Publication date
US9017898B2 (en) 2015-04-28
US20130236811A1 (en) 2013-09-12
US20150194692A1 (en) 2015-07-09
EP2768053B1 (en) 2017-03-29
EP2768053A4 (en) 2015-11-04
JP2014067686A (ja) 2014-04-17
JP5242840B1 (ja) 2013-07-24
EP2768053A1 (en) 2014-08-20
US9640825B2 (en) 2017-05-02
EP3118918A1 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP5596875B1 (ja) 燃料電池セル及び空気極材料
JP5522870B1 (ja) 燃料電池セル
JP5270804B1 (ja) 燃料電池セル
JP5746399B2 (ja) 固体酸化物型燃料電池
JP5097867B1 (ja) 燃料電池セル
WO2013054759A1 (ja) 燃料電池セル
CN109478651B (zh) 电化学电池
JP5841210B1 (ja) 燃料電池セル
JP5636520B1 (ja) 燃料電池セル
JP5159938B1 (ja) 燃料電池セル
JP5638687B1 (ja) 空気極材料
CN109478648B (zh) 燃料电池
JP5395295B1 (ja) 燃料電池セル
JP5320497B1 (ja) 燃料電池セル
JP5957057B2 (ja) 空気極材料
JP6808010B2 (ja) 電気化学セル
CN111406336B (zh) 电化学电池
JP5596882B1 (ja) 燃料電池セル

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2012840303

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012840303

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE