WO2013054390A1 - 排水の不活化方法及びシステム - Google Patents

排水の不活化方法及びシステム Download PDF

Info

Publication number
WO2013054390A1
WO2013054390A1 PCT/JP2011/073321 JP2011073321W WO2013054390A1 WO 2013054390 A1 WO2013054390 A1 WO 2013054390A1 JP 2011073321 W JP2011073321 W JP 2011073321W WO 2013054390 A1 WO2013054390 A1 WO 2013054390A1
Authority
WO
WIPO (PCT)
Prior art keywords
water tank
temperature
raw water
heating device
sterilization
Prior art date
Application number
PCT/JP2011/073321
Other languages
English (en)
French (fr)
Inventor
佐藤 進
Original Assignee
鹿島建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鹿島建設株式会社 filed Critical 鹿島建設株式会社
Priority to PCT/JP2011/073321 priority Critical patent/WO2013054390A1/ja
Priority to CN201180013161.9A priority patent/CN102933498B/zh
Priority to JP2012519836A priority patent/JP5110493B1/ja
Publication of WO2013054390A1 publication Critical patent/WO2013054390A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/003Wastewater from hospitals, laboratories and the like, heavily contaminated by pathogenic microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/343Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/003Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/006Processes using a programmable logic controller [PLC] comprising a software program or a logic diagram
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention relates to a wastewater inactivation method and system, and in particular, includes microorganisms (one or more selected from bacteria, filamentous fungi, yeasts, cyanobacterium, protozoa, viruses, phages, prions, etc., hereinafter the same).
  • microorganisms one or more selected from bacteria, filamentous fungi, yeasts, cyanobacterium, protozoa, viruses, phages, prions, etc., hereinafter the same.
  • the present invention relates to a method and a system for inactivating wastewater that may be present (hereinafter sometimes referred to as microorganism-containing wastewater).
  • inactivation In pharmaceutical factories or research laboratories such as vaccines and biopharmaceuticals, pharmaceutical factories or food factories or laboratories that use cell culture, blood product factories, hospitals, etc. In order to prevent leakage and diffusion, it is necessary to sterilize the microorganisms in the wastewater (hereinafter sometimes referred to as inactivation) before discharging it outside the facility. Although it is possible to inactivate using autoclave (high pressure steam sterilizer) or chemical disinfection, heat sterilization that can inactivate wastewater continuously using a relatively small heat exchanger is economically advantageous. Also, there is an advantage that microorganisms that cannot be sufficiently inactivated by chemicals can be handled by increasing the heating temperature.
  • Patent Documents 1 to 3 propose a heat sterilization method for waste water that can prevent such blockage and contamination of the piping in the system.
  • the heat sterilization system disclosed in Patent Document 3 will be described with reference to FIG. 4 to the extent necessary for understanding the present invention.
  • the heat sterilization system of FIG. 4 includes a raw water tank 1 that stores waste water A, a pH adjusting device 43 that adjusts the pH of the waste water A of the raw water tank 1, and a heating device 5 that heats and sterilizes the waste water A from the raw water tank 1. And a discharge channel 12 for discharging the sterilized waste water F output from the heating device 5.
  • the heating device 5 is configured to sterilize the heated waste water A that is heated to the required sterilization temperature (for example, 135 ° C.) by heat exchange with the steam G, and the heated high-temperature waste water E that communicates with the outlet of the heater 6. It comprises a holding tube 7 such as a holding tube that holds a required time (for example, 90 seconds).
  • the waste water A is adjusted to a pH at which the constituent proteins of the microorganisms are not precipitated even after denaturation by the pH adjusting device 43 and then sent to the inlet of the heater 6, and the sterilized waste water F discharged from the outlet of the holding tube 7 is appropriately cooled.
  • To the discharge channel 12 (as the discharge water H).
  • the heat sterilization system of FIG. 4 is provided with preheaters 11a and 11b having high-temperature channels 13a and 13b connected to the outlet of the holding tube 7 and low-temperature channels 14a and 14b connected to the inlet of the heater 6.
  • the temperature is raised by heat exchange with the high temperature sterilized waste water F discharged from the holding pipe 7.
  • a cleaning liquid tank 30 for storing the cleaning liquid I is provided, and an inlet selection valve 20 for selectively connecting the inlet of the low temperature channel 14a of the preheater 11a to the raw water tank 1 or the cleaning liquid tank 30, and a high temperature channel 13a of the preheater 11a.
  • An outlet selection valve 25 that selectively connects the outlet to the discharge channel 12, the raw water tank 1 or the cleaning liquid tank 30, and a control device 41 that controls switching of the inlet selection valve 20 and the outlet selection valve 25 are provided.
  • the control device 41 connects the inlet selection valve 20 to the raw water tank 1 and connects the outlet selection valve 25 to the discharge channel 11 so that the waste water A of the raw water tank 1 is passed through the preheaters 15a and 15b.
  • the temperature is raised to the heater 6 and the high temperature sterilized waste water F held for a predetermined time by the holding pipe 7 is discharged from the discharge channel 11 to the outside of the system (for example, sewer) while being cooled via the preheaters 15b and 15a.
  • the inlet selection valve 20 is switched to the cleaning liquid tank 30 and the outlet selection valve 25 is switched to the raw water tank 1 to send the cleaning liquid I into the system. It is returned to the raw water tank 1 by pushing out the residual waste water. Further, after all the residual waste water is returned to the raw water tank 1, the outlet selection valve 25 is connected to the cleaning liquid tank 30, and the cleaning liquid I is refluxed and circulated in the system. By circulating this cleaning liquid I in the system, piping in the system (microorganisms and other organic substances adhering to and deposited in the pipeline) contaminated by insufficiently heated waste water can be washed away.
  • the heat sterilization system of FIG. 4 it is possible to inactivate a large amount of waste water A continuously and economically while avoiding the precipitation of denatured and solidified microorganisms.
  • the discharge of untreated wastewater to the outside of the system and the contamination of the piping in the system due to the untreated wastewater can be prevented, and the inactivation treatment of the wastewater can be easily restarted when the heating temperature is restored.
  • the system of the illustrated example inactivates the waste water A sent from the raw water tank 1 to the heating device 5, and has a problem that the waste water A in the raw water tank 1 cannot be inactivated.
  • an object of the present invention is to provide a method and a system that can economically inactivate the raw water tank and the wastewater stored in the raw water tank.
  • the present inventors paid attention to the heat sterilization treatment of the raw water tank 1 using the residual heat of the sterilized waste water F output from the heating device 5 in the heat sterilization system of FIG. If the raw water tank 1 is heated using the sterilized waste water F, a new heat source is not required, so an economical sterilization process can be expected. Moreover, although it is not easy to heat the relatively large raw water tank 1 to the same high temperature by the residual heat of the output waste water F of the relatively small heating device 5, even if the heating temperature of the raw water tank 1 is low, It has been noted that the inactivation level (hereinafter sometimes referred to as sterilization level) similar to that of the heating device 5 can be obtained by increasing the holding time of the heating temperature.
  • sterilization level similar to that of the heating device 5 can be obtained by increasing the holding time of the heating temperature.
  • the rate of decrease (death rate) of the number of microorganisms (viable cell count) N in waste water by heating is expressed by the following equation (1) using the death rate constant k (death probability per unit time) [min ⁇ 1 ]. it can be represented as, by integration using the initial number of living bacteria N 0 (2) can be modified as formula.
  • the equation (2) is plotted on a two-dimensional plane, the death curve shown in FIG. 5A is obtained, and the heat retention time D [] in which the number of microorganisms (viable bacteria number) N in the wastewater is reduced to 1/10 from the slope of the curve. min] (hereinafter also referred to as D value).
  • a holding time D 1 4 minutes” stipulated in the Japanese Food Sanitation Law
  • the method for inactivating waste water is a method for inactivating waste water A stored in a raw water tank 1, and maintaining the D 1 for a predetermined time while inputting the waste water A and heating it to a predetermined temperature ⁇ .
  • predetermined sterilization level switching valve 15 that selectively connects the discharge passage 12 or the raw water tank 1 to the outlet of the heating device 5 is provided, the heating device 5 when connected to the discharge path 12 of the switching valve 15 at a predetermined holding time D 1 to Is heated to a high sterilization temperature ⁇ 1 to inactivate the input drainage A, and when the switching valve 15 is connected to the raw water tank 1, the raw water tank 1 is returned to the low sterilization temperature ⁇ 2 by the reflux of the output drainage F of the heating device 5. And the low sterilization temperature ⁇ 2 is maintained for at least the time D 2 during which the predetermined sterilization level is obtained, and the waste water in the raw water tank 1 is inactivated.
  • the waste water inactivation system includes a raw water tank 1 for storing waste water A, a heating device 5 for holding waste water A and heating it to a predetermined temperature ⁇ and holding D 1 for a predetermined time, heating predetermined sterilization level is obtained the heating apparatus 5 at a predetermined holding time D 1 the outlet of the device 5 when connected to discharge path 12 of the switching valve 15 and the switching valve 15, selectively connects the discharge passage 12 or the raw water tank 1 Heating to the high sterilization temperature ⁇ 1 to inactivate the input waste water A, and heating the raw water tank 1 to the low sterilization temperature ⁇ 2 by recirculation of the output waste water F of the heating device 5 when the switching valve 15 is connected to the raw water tank 1. and in which the low sterilization temperature theta 2 comprising a control device 40 for inactivating the drainage of said predetermined sterilization level hold is time D 2 or more derived raw water tank 1.
  • the control device 40 sets the high sterilization temperature ⁇ 1 at which a predetermined sterilization level is obtained, its retention time D 1 , and the retention time D at which the number of microorganisms in the waste water A is sterilized to 1/10.
  • Storage means 45 for storing the rising temperature Z for shortening, and calculation means for obtaining a holding time D 2 at which a predetermined sterilization level is obtained at the low sterilization temperature ⁇ 2 from the holding time D 1 and the rising temperature Z are included.
  • the switching valve 15 is connected to the raw water tank 1, it is desirable to heat the entire inside including the gas phase portion of the raw water tank 1 to the low sterilization temperature ⁇ 2 or more by the reflux of the output drainage F of the heating device 5.
  • a high-temperature channel 13 through which the output drainage F of the heating device 5 passes and a low-temperature channel 14 through which the input drainage A of the heating device 5 passes.
  • a preheater 11 that raises the temperature of the input drainage A of the low temperature channel 14 by the output drainage F of the high temperature channel 13, and a switching valve 15 is provided between the outlet of the heating device 5 and the preheater 11.
  • an input selection valve 20 that is selectively connected to the raw water tank 1 or the cleaning liquid tank 30 is provided at the inlet of the low temperature flow path 14 of the preheater 11, and the discharge flow path 12, the original flow path is provided at the outlet of the high temperature flow path 13 of the preheater 11.
  • An output selection valve 25 that is selectively connected to the water tank 1 or the cleaning liquid tank 30 is provided, and the control device 40 switches the switching valve 15 to the discharge channel 12 after the inactivation of the waste water in the raw water tank 1 and the inlet selection valve 20 and connect the outlet selection valve 25 in each cleaning liquid tank 30 is refluxed to the washing liquid I in the system, the heating device 5 the high sterilization temperature ⁇ respectively the raw water tank 1 and the inlet selection valve 20 and outlet selection valve 25 After heating to 1 Switching to the discharge channel 12 resumes inactivation of the input drainage A.
  • a switching valve 15 for selectively connecting the drainage F to the discharge channel 12 is provided.
  • the switching valve 15 is connected to the discharge channel 12
  • the drainage A is input from the raw water tank 1 to the heating device 5, and the heating device 5 is controlled by the control device 40.
  • the output drainage F of the heating device 5 is circulated when the switching valve 15 is connected to the raw water tank 1.
  • the raw water tank 1 so inactivate the effluent of the control unit 40 by the low sterilization temperature theta 2 to hold a predetermined sterilization level is obtained time D 2 or the raw water tank 1 while heating to low sterilization temperatures theta 2 by,
  • waste water F By sterilizing waste water F output from the heating device 5 to the raw water tank 1 and heating the raw water tank 1, not only the waste water A sent to the heating device 5, but also the raw water tank 1 and its interior The waste water A can also be inactivated by heat sterilization.
  • B Since the waste water A remaining in the raw water tank 1 is refluxed with the heating device 5 to heat the raw water tank 1, the raw water tank 1 can be economically produced at a relatively low running cost without using a new heat source. Can be heat sterilized.
  • C Since it is not necessary for the raw water tank 1 to have a structure capable of withstanding high temperatures and high pressures when heated, the raw water tank 1 can have a reasonable and inexpensive structure such as a resin water tank or a panel tank.
  • the heating temperature ⁇ 2 of the raw water tank 1 is kept lower than the heating temperature ⁇ 1 of the heating device 5, and the heating and holding time D 2 of the raw water tank 1 is compared with the heating and holding time D 1 of the heating device 5. By making it longer, the relatively large raw water tank 1 can be heat sterilized to the same sterilization level with the temperature rising energy of the relatively small heating device 5.
  • E By heating the raw water tank 1 by recirculation of the output waste water F of the heating device 5, not only the waste water A in the raw water tank 1 but also the entire inner side including the gas phase portion with the vaporized vapor is low sterilization temperature ⁇ 2 or more The whole raw water tank 1 can be reliably brought to a predetermined sterilization level.
  • FIG. 4 is an example of a flow chart illustrating an inactivation method according to the present invention.
  • FIG. 4 are the schematic blocks which show an example of the heat-sterilization system of a prior art.
  • D value of the death curve (the figure (A)) in a general heat sterilization model, and Z value of the heat resistance curve (the figure (B)).
  • FIG. 1 shows an embodiment in which the inactivation system of the present invention is applied to wastewater A from an influenza vaccine pharmaceutical factory.
  • the inactivation system of the illustrated example in this case is a raw water tank 1 for storing a microorganism-containing waste water A containing influenza virus, and the waste water A is input and heated to the required sterilization temperature ⁇ while maintaining a predetermined time D 1 for inactivation.
  • a heating device 5 that performs switching, a switching valve 15 that selectively connects the outlet of the heating device 5 to the discharge channel 12 or the raw water tank 1, and a control device 40 that controls the sterilization temperature ⁇ of the heating device 5 and the switching of the switching valve 15. And have.
  • Heating device 5 similar to FIG.
  • a holding tube 7 such as a holding tube can be used.
  • the illustrated control device 40 is connected to a thermometer 8 that detects the outlet temperature of the heater 6 and a control valve 10 that adjusts the flow rate of the steam G supplied to the heater 6.
  • the sterilization temperature ⁇ of the heater 6 can be controlled by adjusting the opening degree of the flow control valve 10 according to the detected temperature.
  • An example of the switching valve 15 is a device comprising a pair of on-off valves 16 and 17, and closes or opens the valve 17 when the valve 16 is opened or closed.
  • the inactivation system of the example of illustration shows between the raw
  • a preheater 11 is provided, and a switching valve 15 is provided between the preheater 11 and the outlet of the heating device 5.
  • the heat transfer (heat exchange) between the high-temperature channel 13 and the low-temperature channel 14 of the preheater 11 reduces the energy required for heating the input drainage A and cooling the output drainage F in the entire system, thereby reducing running costs. It can be kept low.
  • the illustrated example shows the preheater 11 having a single-stage configuration
  • the preheater 11a in FIG. , 11b, or a preheater having three or more stages (arbitrary number of stages) can be used.
  • the waste water A in the raw water tank 1 is 30 ° C.
  • the input temperature of the heater 6 is 120 ° C.
  • the sterilization temperature (output temperature) ⁇ by the heater 6 is 135 ° C.
  • the discharge temperature of the discharge channel 12 is 45 ° C.
  • the preheaters 11 a and 11 b are configured in two stages as in FIG. 4, and the ratio ⁇ T 2 in each preheater 11 a and 11 b is set.
  • the occurrence of uneven temperature distribution is prevented by setting / ⁇ T 1 to 4 or less, preferably about 3.
  • the ratio ⁇ T in the preheater 11b is configured to be 90 ° C. and 75 ° C., respectively, in the temperature condition described above.
  • any preheater can prevent occurrence of temperature distribution unevenness.
  • Any preheater can prevent occurrence of temperature distribution unevenness.
  • the switching valve 15 is connected to the discharge flow path 12 by the control device 40, and the required time D 1 is maintained in the holding pipe 7.
  • predetermined sterilization level e.g. number of microorganisms after sterilization with respect to the initial number of living bacteria N 0 (viable count)
  • the sterilization temperature ⁇ 1 of the heater 6 is set by the control device 40 (see steps S204 to S207 in FIG. 3).
  • Sterilization level can be secured.
  • the waste water A is supplied from the raw water tank 1 to the heating device 5 via the preheater 11, and the waste water A input to the heating device 5 is heated to the sterilization temperature ⁇ 1.
  • inactivated by a predetermined time D 1 holds, the inactivated sterile drainage F sent to effluent line 12 via the switching valve 15 and the preheater 11, which discharged into e.g. outside of the system under canals.
  • the control valve 40 switches the switching valve 15 to the raw water tank 1 while maintaining the supply of the drainage A from the raw water tank 1 to the heating device 5.
  • the raw water tank 1 is heated to a relatively low sterilization temperature ⁇ 2 by returning the output waste water F (sterilized waste water F) of the apparatus 5 to the raw water tank 1.
  • the control device 40 reduces the relatively high sterilization temperature ⁇ 1 and holding time D 1 of the heating device 5 and the holding time D for sterilizing the number of microorganisms in the waste water A to 1/10.
  • the control device 40 is a computer provided with storage means 45 and calculation means 46, and the storage means 45 includes a high sterilization temperature ⁇ 1 and a holding time D 1 of the heating device 5 and microorganisms in the waste water A (in the illustrated example, influenza virus). ) And the holding time D 2 at which a sterilization level similar to that of the heating device 5 is obtained at the sterilization temperature ⁇ 2 of the raw water tank 1 is calculated by the calculation means 46 based on the above-described equation (4).
  • the raw water tank 1 By heating the raw water tank 1 by refluxing the high temperature output waste water F from the heating device 5, not only the waste water A in the raw water tank 1 but also the entire inner side including the gas phase portion of the raw water tank 1 by the vaporized vapor has a low sterilization temperature. It can be set to (theta) 2 or more, and generation
  • a time for vapor to volatilize and flow around the entire gas phase portion of the raw water tank 1 is secured, and the entire inside is set to the low sterilization temperature ⁇ 2 or more, and the above-mentioned after the wrapping time elapses.
  • thermometer 18 attached to the gas phase of the raw water tank 1 ensure that the thermometer 18 detects that the raw water tank 1 is heated to the sterilization temperature theta 2, the retention time D 2 as described above after the detection To the required sterilization level.
  • Controller of FIG. 1 40 a thermometer 18a attached at multiple sites including the gas phase of the raw water tank 1 is connected to the 18b, any of the thermometer 18a, when 18b also becomes sterilization temperature theta 2 or more raw water tank 1 is detected to have been heated to the sterilization temperature theta 2.
  • the present invention does not necessarily require a plurality of thermometers 18.
  • thermometer 18 it is sufficient to use a single thermometer 18 attached to an inner portion where the steam of the raw water tank 1 is most difficult to go around, or the vapor phase of the raw water tank 1.
  • the thermometer 18 can be omitted if the time for the steam to flow around the entire part is obtained in advance.
  • the reflux of the output waste water F from the heating device 5 is stopped and the raw water tank 1 is inspected / opened / repaired. (See step S215 in FIG. 3).
  • the switching valve 15 is connected to the discharge passage 12 by the control device 40 as described above, and the heater 6 is connected to the sterilization temperature ⁇ . 1 and the supply of the waste water A from the raw water tank 1 to the heating device 5 is resumed.
  • the raw water tank 1 by returning the output waste water F of the heating device 5 to the raw water tank 1, not only the waste water A input from the raw water tank 1 to the heating device 5, but also the raw water tank 1 and the waste water A therein. It can be heat sterilized. Moreover, since the raw
  • the raw water tank 1 can be inactivated to a sterilization level similar to that of the heating device 5 while keeping the temperature-elevating energy low. Therefore, the raw water tank 1 does not need to have a structure capable of withstanding high temperatures and high pressures, and the raw water tank 1 having a reasonable and inexpensive structure such as a resin water tank or a panel tank can be used.
  • the cleaning liquid tank 30 for storing the cleaning liquid I is provided similarly to the case of FIG. 4, and the inlet of the low-temperature channel 14 of the preheater 11 is selectively connected to the raw water tank 1 or the cleaning liquid tank 30.
  • An inlet selection valve 20 to be connected and an outlet selection valve 25 for selectively connecting the outlet of the high-temperature channel 13 of the preheater 11 to the discharge channel 12, the raw water tank 1 or the cleaning liquid tank 30 are provided. Switching of the valve 20 and the outlet selection valve 25 can be controlled.
  • the inlet selection valve 20 is switched to the cleaning liquid tank 30 and the outlet selection valve 25 is switched to the raw water tank 1.
  • Residual wastewater in the system is pushed out to the raw water tank 1, and the outlet selection valve 25 is connected to the cleaning liquid tank 30 to recirculate and circulate the cleaning liquid I in the system. Can be washed.
  • the inlet selection valve 20 and the outlet selection valve 25 are connected to the cleaning liquid tank 30 to recirculate the cleaning liquid I into the system.
  • the heating device 5 is switched while retaining a high sterilization temperature theta 1 inlet selection valve 20 and outlet selection valve 25 to the raw water tank 1 and discharged path 12 respectively to resume at inactivation treatment of waste water a, It becomes possible to easily restart the inactivation process of the waste water A from the heat sterilization process of the raw water tank 1.
  • step S201 the switching valve 15 is connected to the discharge flow path 12, and the inlet selection valve 20 and the outlet selection valve 25 are connected to the cleaning liquid tank 30, respectively. ⁇ Circulate.
  • sodium hydroxide and nitric acid or inorganic acid such as sulfamic acid or organic acid such as citric acid
  • the cleaning liquid I is supplied from the cleaning liquid tank 30 to the inlet selection valve 20, the pump 3, and the flow rate control.
  • the cleaning liquid I output from the heating apparatus 5 is returned to the cleaning liquid tank 30 via the switching valve 15, the preheater 11, and the output selection valve 25, and then returned to the cleaning liquid tank 30 through the heater 4 and the preheater 11. It was circulated.
  • the thermometer The circulation of the cleaning liquid I was continued while detecting the outlet temperature of the heater 6 by 8 with the control device 40. When detecting that the outlet temperature of the heater 6 is insufficient, the process returns from step S203 to step S202, and the temperature of the cleaning liquid I is adjusted by opening and closing the steam flow rate control valve 10.
  • step S204 the inlet selection valve 20 is switched to the raw water tank 1 and the output selection valve 25 is switched to the discharge channel 12.
  • step S207 it is determined whether or not the inactivation process of the waste water A is to be terminated. If the inactivation process is to be continued, the process returns to step S205 and the inflow of the waste water A is continued.
  • step S206 If any abnormality occurs during the inactivation process of the waste water A, and insufficient heating is detected in step S206, the process proceeds to step 208 to investigate and repair the cause of the inadequate heating. It is determined whether opening is necessary (whether sterilization of the raw water tank 1 is necessary). If sterilization of the raw water tank 1 is not required, the process proceeds to step S209, the valve 21 of the inlet selection valve 20 is closed to stop the inflow of the drainage A, and the valve 26 of the outlet selection valve 25 is closed to drain the water A. Stop the release of the outside of the system. Next, in step S210, as in the case of FIG.
  • valve 22 of the inlet selection valve 20 is opened to feed the cleaning liquid I into the system, and the valve 27 of the outlet selection valve 25 is opened to leave the remaining waste water in the system. Is pushed out to the raw water tank 1, and the process returns to step S201, where the outlet selection valve 25 is connected to the cleaning liquid tank 30, and the cleaning liquid I is refluxed and circulated in the system.
  • step S208 When it is determined in step S208 that inspection / opening of the raw water tank 1 is necessary, the process proceeds to step S211, where the heating device 5 described above has a relatively high sterilization temperature ⁇ 1 and its holding time D 1 and microorganisms in the waste water A.
  • the raw water tank 1 is similar to the heating device 5 from the rising temperature Z (Z value of the above-mentioned formula (3)) for shortening the holding time D, which is sterilized to 1/10, to 1/10.
  • steps S212 to 214 the switching valve 15 is switched to the raw water tank 1 while maintaining the supply of the waste water A from the raw water tank 1 to the heating device 5, and the output waste water F of the heating device 5 is returned to the raw water tank 1 to return to the raw water tank 1.
  • the raw water tank 1 and the waste water A therein are inactivated to a predetermined sterilization level.
  • step S215 After the raw water tank 1 is heat sterilized to a predetermined level, in step S215, the return of the drainage A is stopped and the raw water tank 1 is opened, inspected and repaired, and then the process returns to step S201 and the inlet selection valve 20 and the outlet selection valve 25 are set.
  • the cleaning liquid I is refluxed and circulated in the system by connecting to the cleaning liquid tank 30 respectively.
  • the raw water tank 1 returns from the heat sterilization process (steps S211 to S215) to step 201, and further repeats steps S201 to 206 to resume the wastewater A in the sterilized wastewater F discharged after restarting the inactivation process of the drainage A.
  • steps S211 to S215 the number of bacteria was measured, it was confirmed that 6-digit sterilization of the drainage A was secured. That is, if the inactivation process of the waste water A is resumed while filling the system with the cleaning liquid I after the heat sterilization process of the raw water tank 1 according to the flowchart of FIG. It was confirmed that it was extremely effective for resuming the inactivation treatment of the waste water A while ensuring 6-digit sterilization.
  • step 207 When the inactivation process of the drainage A is finished in step 207, the inflow of the drainage A is stopped by the inlet selection valve 20 and the discharge of the drainage F to the outside of the system is stopped by the outlet selection valve 25, but the inactivation process is stopped.
  • the inlet selection valve 20 and the outlet selection valve 25 can be connected to the cleaning liquid tank 30, respectively, so that the cleaning liquid I can be refluxed and circulated in the in-system piping at rest.
  • Cleaning liquid concentration control device 33 Concentration meter (conductivity meter) 34, 35 ... Flow control valve 40 . Control device 41 ... Sterilization control device 42 ... Heating control device 43 ... pH adjustment device 45 ... Storage means 46 ... Calculation means A ... Drainage B, C ... Temperature rising wastewater E ... High temperature wastewater F ... Sterilized drainage G ... Steam H ... Effluent water I ... Cleaning solution W ... Dilution water

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

 原水槽及びその内部に貯えた排水を経済的に不活化できる方法及びシステムを提供する。 原水槽1に貯えた排水Aを不活化する方法において、排水Aを入力して所定温度θに加熱しつつ所定時間D保持する加熱装置5の出口に放流路12又は原水槽1へ選択的に接続する切替弁15を設け、切替弁15の放流路12への接続時に加熱装置5を所定保持時間Dで所定滅菌レベルが得られる高滅菌温度θに加熱して入力排水Aを不活化し、切替弁15の原水槽1への接続時に加熱装置5の出力排水Fの還流により原水槽1を低滅菌温度θに加熱し且つその低滅菌温度θを前記所定滅菌レベルが得られる時間D以上保持して原水槽1内の排水を不活化する。好ましくは、加熱装置5の出力排水Fの還流によって原水槽1の気相部を含む内側全体を低滅菌温度θ以上に加熱する。

Description

排水の不活化方法及びシステム
 本発明は排水の不活化方法及びシステムに関し、とくに微生物(細菌、糸状菌、酵母、らん藻、原生動物、ウィルス・ファージ、プリオン等から選択された1以上のものを含む。以下、同じ)の存在が懸念される排水(以下、微生物含有排水ということがある)を不活化する方法及びシステムに関する。
 ワクチンやバイオ製剤等の製薬工場又は研究所、細胞培養を利用する製薬工場や食品工場又は研究所、血液製剤工場、病院等の施設では、感染の懸念される微生物が排水に随伴して施設外に漏出・拡散するのを防ぐため、施設外へ排出する前に排水中の微生物を滅菌(以下、不活化ということがある)することが求められる。オートクレーブ(高圧蒸気滅菌装置)や薬品消毒等を用いて不活化することも可能であるが、比較的小さな熱交換器を用いて排水を連続的に不活化できる加熱滅菌は経済的に有利であり、薬品では充分に不活化できない微生物にも加熱温度を高めることで対応できる利点がある。ただし、従来の加熱滅菌方法は、加熱時に固化変性した排水中の微生物その他の有機物が系内配管に沈殿・付着して閉塞を起こすおそれがあり、また何らかの異常(流量制御不調、ポンプ故障等)により加熱不充分な排水が生じると系内配管が広範囲にわたって未浄化の排水で汚染されてしまうおそれがあった。特許文献1~3は、このような系内配管の閉塞や汚染を防止できる排水の加熱滅菌方法を提案している。以下、図4を参照して特許文献3の開示する加熱滅菌システムを、本発明の理解に必要な限度において説明する。
 図4の加熱滅菌システムは、排水Aを貯える原水槽1と、原水槽1の排水AのpHを調整するpH調整装置43と、原水槽1から排水Aを取り入れて加熱滅菌する加熱装置5と、加熱装置5から出力される滅菌済排水Fを放流する放流路12とを有する。加熱装置5は、例えば蒸気Gとの熱交換により排水Aを所要滅菌温度(例えば135℃)に加熱する加熱器6と、加熱器6の出口に連通して加熱後の高温排水Eを滅菌に必要な所要時間(例えば90秒)保持するホールディングチューブ等の保持管7とで構成されている。排水AをpH調整装置43により微生物の構成蛋白質が変性後も沈澱しないpHに調整したうえで加熱器6の入口へ送り、保持管7の出口から排出される滅菌済排水Fを適当に冷却して(放流水Hとして)放流路12へ放流する。図示例のように排水のpHを調整したうえで加熱滅菌処理することにより系内配管における蛋白質の沈澱を有効に抑制できる。
 また図4の加熱滅菌システムは、保持管7の出口に連なる高温流路13a、13bと加熱器6の入口に連なる低温流路14a、14bとを有する予熱器11a、11bを設け、原水槽1からの低温の排水Aを保持管7から排出される高温の滅菌済排水Fとの熱交換で昇温している。更に洗浄液Iを貯える洗浄液槽30を設け、予熱器11aの低温流路14aの入口を選択的に原水槽1又は洗浄液槽30へ接続する入口選択弁20と、予熱器11aの高温流路13aの出口を選択的に放流路12、原水槽1又は洗浄液槽30へ接続する出口選択弁25と、入口選択弁20及び出口選択弁25の切り替えを制御する制御装置41とを設けている。
 排水Aの不活化処理時に、制御装置41により入口選択弁20を原水槽1へ接続すると共に出口選択弁25を放流路11へ接続し、原水槽1の排水Aを予熱器15a、15b経由で昇温しながら加熱器6へ送り、保持管7で所定時間保持した高温の滅菌済排水Fを予熱器15b、15a経由で冷却しながら放流路11から系外(例えば下水道)へ放流する。予熱器15において加熱装置5の出力排水Fの余熱を利用して入力排水Aを昇温することにより、加熱滅菌に必要なランニングコストの低減を図ることができる。また、加熱器6の出口に設けた温度計8で加熱不足を検出した時に、入口選択弁20を洗浄液槽30に切り替えると共に出口選択弁25を原水槽1に切り替え、系内に洗浄液Iを送入して残留排水を押し出すことにより原水槽1へ返送する。更に、残留排水が全て原水槽1に返送されたのち、出口選択弁25を洗浄液槽30に接続替えして系内に洗浄液Iを還流・循環させる。この洗浄液Iの系内循環により、加熱不充分な排水で汚染された系内配管(管路内に付着・沈着した微生物その他の有機物)を洗い流すことができる。
特開2001-340844号公報 特開2003-103252号公報 特開2003-164855号公報
高野光男・横山理雄「食品の殺菌-その科学と技術-」幸書房、1998年6月25日発行、pp.37-49
 図4の加熱滅菌システムによれば、変性固化した微生物の沈澱を避けながら大量の排水Aを連続的且つ経済的に不活化処理することが可能であり、たとえ何らかの異常により加熱不足が発生しても未処理排水の系外への排出及び未処理排水による系内配管の汚染を防ぐことができ、しかも加熱温度が回復した時に排水の不活化処理を容易に再開することができる。しかし、図示例のシステムは原水槽1から加熱装置5へ送り出された排水Aを不活化処理するものであり、原水槽1内の排水Aを不活化処理することができない問題点がある。
 例えば図4のシステムにおいて原水槽1に何らかの異常(原水槽内の沈殿物堆積、流量制御不調、ポンプ故障等)が発生して原水槽1を点検又は開放するときは、作業員が未処理排水Aに接触するおそれがあり、また未処理排水Aの飛沫が微生物を随伴して原水槽周辺の雰囲気中に拡散する懸念もあるため、点検又は開放前に原水槽1及びその内部の排水Aを滅菌・不活化することが望ましい。この場合に従来のオートクレーブ(高圧蒸気滅菌装置)と同様に原水槽1を高温・高圧にして不活化する方法も考えられるが、そのような方法では原水槽1自体を高温・高圧に耐えられる構造としなければならず、しかも新たな熱源を用いて原水槽1を加熱し続けるコストが必要となる。排水Aを経済的に不活化できるという加熱滅菌の利点を損なうことなく、原水槽1及びその内部の排水Aを経済的に不活化することができる技術の開発が望まれている。
 そこで本発明の目的は、原水槽及びその内部に貯えた排水を経済的に不活化できる方法及びシステムを提供することにある。
 本発明者は、図4の加熱滅菌システムにおいて、加熱装置5から出力される滅菌済排水Fの余熱を利用して原水槽1を加熱滅菌処理することに着目した。滅菌済排水Fを利用して原水槽1を加熱すれば、新たな熱源を必要としないので経済的な滅菌処理が期待できる。また、比較的小さな加熱装置5の出力排水Fの余熱によって比較的大きな原水槽1を同様の高温度にまで加熱することは容易でないが、原水槽1の加熱温度が低い場合であってもその加熱温度の保持時間を長くすれば加熱装置5と同様の不活化レベル(以下、滅菌レベルということがある)が得られることに着目した。
 すなわち、一般に加熱による排水中の微生物数(生菌数)Nの減少速度(死滅速度)は、死滅速度定数k(単位時間当たりの死滅確率)[min-1]を用いて(1)式のように表すことができ、初期生菌数Nを用いた積分により(2)式のように変形することができる。(2)式を2次元平面にプロットすると図5(A)の死滅曲線となり、その曲線の傾きから排水中の微生物数(生菌数)Nが10分の1に減少する加熱保持時間D[min](以下、D値ということがある)を求めることができる。また、一般に加熱による排水中の微生物全滅時間(熱死滅時間、TDT)は加熱温度θの上昇に伴って対数的に小さくなることが知られており、熱死滅時間TDTはD値と比例関係にあると考えられている。従って、D値と温度θとの関係は(3)式又は図5(B)の耐熱性曲線として表すことができ、その曲線からD値を10分の1に短縮するために必要な上昇温度Z[℃](以下、Z値ということがある)を求めることができる(非特許文献1参照)。
dN/dt=-kN  ………………………………………………………(1)
log(N/N)=-(k/2.303)t=-(1/D)t ……(2)
log(D)=-(1/Z)θ+C  ……………………………………(3)
log(D/D)=-(θ-θ)/Z ……………………………(4)
 (3)式のZ値は微生物の菌種毎に定まる値であり、不活化対象の微生物のZ値が分かれば(4)式に示すように異なる滅菌温度θ、θにおいて同じ滅菌レベルを得るために必要な加熱保持時間D、Dを算出することができる。例えば、不活化対象の微生物がZ値=10℃である場合、日本の食品衛生法に規定された「滅菌温度θ=120℃で保持時間D=4分間にわたる加熱」と同様の滅菌レベルを得るために、(4)式に基づき滅菌温度θ=110℃では保持時間D=40分間(=4分×l0)とし、滅菌温度θ=100℃では保持時間D=400分間(=4分×l0)とし、滅菌温度θ=90度では保持時間D=4000分間(=4分×l0)とすればよい。上述したように原水槽1を加熱装置5に比して低い温度までしか加熱できない場合でも、その低い温度に応じた加熱保持時間を(4)式により求めて適用すれば、加熱装置5と同様のレベルまで原水槽1を不活化することが期待できる。本発明は、この知見に基づく研究開発の結果、完成に至ったものである。
 図1を参照するに、本発明による排水の不活化方法は、原水槽1に貯えた排水Aを不活化する方法において、排水Aを入力して所定温度θに加熱しつつ所定時間D保持する加熱装置5の出口に放流路12又は原水槽1へ選択的に接続する切替弁15を設け、切替弁15の放流路12への接続時に加熱装置5を所定保持時間Dで所定滅菌レベルが得られる高滅菌温度θに加熱して入力排水Aを不活化し、切替弁15の原水槽1への接続時に加熱装置5の出力排水Fの還流により原水槽1を低滅菌温度θに加熱し且つその低滅菌温度θを前記所定滅菌レベルが得られる時間D以上保持して原水槽1内の排水を不活化してなるものである。
 また図1を参照するに、本発明による排水の不活化システムは、排水Aを貯える原水槽1、排水Aを入力して所定温度θに加熱しつつ所定時間D保持する加熱装置5、加熱装置5の出口を放流路12又は原水槽1へ選択的に接続する切替弁15、及び切替弁15の放流路12への接続時に加熱装置5を所定保持時間Dで所定滅菌レベルが得られる高滅菌温度θに加熱して入力排水Aを不活化し、切替弁15の原水槽1への接続時に加熱装置5の出力排水Fの還流により原水槽1を低滅菌温度θに加熱し且つその低滅菌温度θを前記所定滅菌レベルが得られる時間D以上保持して原水槽1内の排水を不活化する制御装置40を備えてなるものである。
 好ましくは、制御装置40に、所定滅菌レベルが得られる高滅菌温度θ及びその保持時間Dと排水A中の微生物数が10分の1に滅菌される保持時間Dを10分の1に短縮するための上昇温度Zとを記憶する記憶手段45、及びその保持時間Dと上昇温度Zとから前記低滅菌温度θで所定滅菌レベルが得られる保持時間Dを求める算出手段を含める。また、切替弁15の原水槽1への接続時に、加熱装置5の出力排水Fの還流によって原水槽1の気相部を含む内側全体を低滅菌温度θ以上に加熱することが望ましい。
 更に好ましくは、図1に示すように、原水槽1と加熱装置5との間に、加熱装置5の出力排水Fを通す高温流路13と加熱装置5の入力排水Aを通す低温流路14とを有し且つ高温流路13の出力排水Fで低温流路14の入力排水Aを昇温する予熱器11を設け、切替弁15を加熱装置5の出口と予熱器11との間に設ける。望ましくは、予熱器11の低温流路14の入口に原水槽1又は洗浄液槽30へ選択的に接続する入力選択弁20を設け、予熱器11の高温流路13の出口に放流路12、原水槽1又は洗浄液槽30へ選択的に接続する出力選択弁25を設け、制御装置40により、原水槽1内の排水の不活化終了後に切替弁15を放流路12に切り替えると共に入口選択弁20及び出口選択弁25をそれぞれ洗浄液槽30に接続してシステム内に洗浄液Iを還流させ、加熱装置5を高滅菌温度θに加熱したのち入口選択弁20及び出口選択弁25をそれぞれ原水槽1及び放流路12に切替えて入力排水Aの不活化を再開する。
 本発明による排水の不活化方法及びシステムは、排水Aを入力して所定温度θに加熱しつつ所定時間D保持する加熱装置5の出口に、滅菌前排水Aを貯える原水槽1又は滅菌済排水Fの放流路12へ選択的に接続する切替弁15を設け、切替弁15の放流路12への接続時に原水槽1から加熱装置5へ排水Aを入力すると共に制御装置40によって加熱装置5を所定保持時間Dで所定滅菌レベルが得られる高滅菌温度θに加熱して入力排水Aを不活化し、切替弁15の原水槽1への接続時に加熱装置5の出力排水Fの還流により原水槽1を低滅菌温度θに加熱すると共に制御装置40によってその低滅菌温度θを所定滅菌レベルが得られる時間D以上保持して原水槽1内の排水を不活化するので、次の有利な効果を奏する。
(イ)加熱装置5から出力される滅菌済排水Fを原水槽1に還流させて原水槽1を加熱することにより、加熱装置5へ送り出された排水Aだけでなく、原水槽1及びその内部の排水Aも加熱滅菌処理により不活化することができる。
(ロ)また、原水槽1に残った排水Aを加熱装置5との間で還流させて原水槽1を加熱するので、新たな熱源を用いることなく比較的小さなランニングコストで原水槽1を経済的に加熱滅菌処理することができる。
(ハ)加熱するに際して原水槽1を高温・高圧に耐えられる構造とする必要がないので、原水槽1を例えば樹脂水槽、パネルタンク等の合理的で安価な構造とすることができる。
(ニ)原水槽1の加熱温度θを加熱装置5の加熱温度θに比して低く抑え、原水槽1の加熱保持時間Dを加熱装置5の加熱保持時間Dに比して長くすることにより、比較的小さな加熱装置5の昇温エネルギーで比較的大きな原水槽1を同様の滅菌レベルまで加熱滅菌処理することができる。
(ホ)加熱装置5の出力排水Fの還流によって原水槽1を加熱することにより、原水槽1内の排水Aだけでなく揮発する蒸気で気相部を含む内側全体を低滅菌温度θ以上に加熱することができ、原水槽1の全体を確実に所定滅菌レベルとすることができる。
(ヘ)原水槽1の滅菌処理終了後に系内配管に洗浄液を充填して循環させ、その洗浄液を加熱装置で所定温度θに加熱しながら原水槽1の排水Aと置き換えることにより、排水Aの不活化処理を容易に再開することができる。
 以下、添付図面を参照して本発明を実施するための形態及び実施例を説明する。
は、本発明による不活化システムの一実施例の図式的ブロックである。 は、加熱装置の出力排水の還流により原水槽を加熱した実験結果を示すグラフの一例である。 は、本発明による不活化方法を示す流れ図の一例である。 は、従来技術の加熱滅菌システムの一例を示す図式的ブロックである。 は、一般的な加熱滅菌モデルにおける死滅曲線(同図(A))のD値及び耐熱性曲線(同図(B))のZ値の説明図である。
 図1は、インフルエンザワクチンの製薬工場からの排水Aに本発明の不活化システムを適用した実施例を示す。図示例の不活化システムは、この場合インフルエンザウィルスが含まれる微生物含有排水Aを貯える原水槽1と、その排水Aを入力して所要滅菌温度θに加熱しつつ所定時間D保持して不活化する加熱装置5と、加熱装置5の出口を放流路12又は原水槽1へ選択的に接続する切替弁15と、その加熱装置5の滅菌温度θ及び切替弁15の切り替えを制御する制御装置40とを有する。加熱装置5は、図4と同様に、例えば蒸気Gとの熱交換により排水Aを所要滅菌温度θに加熱する加熱器6と、加熱した高温排水Eを所要時間D以上保持して滅菌するホールディングチューブ等の保持管7とで構成することができる。また図示例の制御装置40は、加熱器6の出口温度を検出する温度計8と、加熱器6に供給する蒸気Gの流量を調節する制御弁10とに接続されており、温度計8の検出温度に応じて流量制御弁10の開度を調節することにより加熱器6の滅菌温度θを制御することができる。切替弁15の一例は一対の開閉弁16、17からなる装置であり、弁16の開放又は閉鎖時に弁17を閉鎖又は開放するものである。
 また図示例の不活化システムは、原水槽1と加熱装置5との間に、加熱装置5の出力排水Fを通す高温流路13と加熱装置5の入力排水Aを通す低温流路14とを有する予熱器11を設け、その予熱器11と加熱装置5の出口との間に切替弁15を設けている。予熱器11の高温流路13と低温流路14との間の伝熱(熱交換)により、システム全体における入力排水Aの加熱及び出力排水Fの冷却に必要なエネルギーを節減してランニングコストを低く抑えることができる。なお、図示例は1段構成の予熱器11を示しているが、高温流路13と低温流路14との間の熱交換に温度分布ムラを生じるおそれがあるときは図4の予熱器11a、11bのように2段構成とし、或いは3段以上(任意段数)の予熱器に変更することも可能である。
 一般に予熱器11の熱交伝面が大きくなると偏流が起こりやすくなり、熱伝達力が下がって温度分布ムラを生じやすくなり、滅菌温度まで加熱できない部分(加熱不足)を生じる原因となる。本発明者の実験的解析によると、予熱器11の低温流路14の入口温度と高温流路13の出口温度との温度差ΔTに対する低温流路14の上昇温度又は高温流路13の下降温度ΔT(交換温度差)の比(=ΔT/ΔT)が4より大きくなると温度分布ムラを生じやすくなる。例えば原水槽1内の排水Aを30℃とし、加熱器6の入力温度を120℃とし、加熱器6による滅菌温度(出力温度)θを135℃とし、放流路12の放流温度を45℃とすると、予熱器11が1台であると交換温度差ΔTは90℃(=120-30)であり、低温流路14の入口温度(30℃)と高温流路13の出口温度(45℃)との温度差ΔTは15℃(=45-30)であるから、その比ΔT/ΔTは6(=90/15)となり温度分布ムラの発生が懸念される。
 図1のシステムにおいて1台の予熱器11で温度分布ムラを生じるおそれがあるときは、図4と同様に予熱器11a、11bを2段構成とし、各予熱器11a、11bにおける前記比ΔT/ΔTを4以下、好ましくは3程度とすることにより温度分布ムラの発生を予防する。たとえば、前述した温度条件において2段の予熱器11a、11bの中間点の高温流路13、低温流路14をそれぞれ90℃、75℃となるように構成すれば、予熱器11bにおいて前記比ΔT/ΔT=(120-75)/(90℃-75℃)=3となり、予熱器11aにおいてΔT/ΔT=(90-45)/(45℃-30℃)=3となるので、何れの予熱器においても温度分布ムラの発生を予防することができる。なお、本発明において予熱器11及び加熱器6として用いる熱交換器の種類にとくに制限はないが、スケールが付着しにくくメンテナンスが容易な熱交換器とすることが望ましく、例えば高温流路13及び低温流路14が何れも渦巻き状であるスパイラル式熱交換器とすることが望ましい。
 図1のシステムにおいて原水槽1が正常であるときは、図4の場合と同様に、制御装置40により切替弁15を放流路12に接続すると共に、保持管7における所要時間Dの保持により所定滅菌レベル(例えば初期生菌数Nに対する滅菌後の微生物数(生菌数)Nの生存割合(=N/N)が100万分の1(10-6)以下となる6桁滅菌レベル)が得られるように加熱器6の滅菌温度θを制御装置40によって設定する(図3のステップS204~207参照)。例えばインフルエンザウィルスを含む排水Aを不活化する場合は、保持時間Dが30秒以上の保持管7を用いると共に加熱器6を滅菌温度θ=96℃に設定することにより、6桁以上の滅菌レベルを確保できる。切替弁15及び加熱器6を設定したうえで、原水槽1から予熱器11経由で加熱装置5へ排水Aを供給し、加熱装置5に入力された排水Aを滅菌温度θに加熱しつつ所定時間D保持することにより不活化し、不活化された滅菌済排水Fを切替弁15及び予熱器11経由で放流路12へ送り、例えば系外の下水路等へ放流する。
 他方、図1のシステムにおいて原水槽1に異常が発生したときは、原水槽1から加熱装置5へ排水Aの供給を維持しながら、制御装置40により切替弁15を原水槽1に切替え、加熱装置5の出力排水F(滅菌済排水F)を原水槽1へ還流させることにより、原水槽1を比較的低い滅菌温度θに加熱する。また制御装置40により、上述した加熱装置5の比較的高い滅菌温度θ及び保持時間Dと、排水A中の微生物数が10分の1に滅菌される保持時間Dを10分の1に短縮するための上昇温度Z(上述した(3)式のZ値)とから、比較的低い滅菌温度θにおいて加熱装置5と同様の滅菌レベル(例えば6桁滅菌レベル)を得るために必要な保持時間Dを求める。例えば制御装置40を記憶手段45及び算出手段46が設けられたコンピュータとし、その記憶手段45に加熱装置5の高滅菌温度θ及び保持時間Dと排水A中の微生物(図示例ではインフルエンザウィルス)のZ値とを記憶し、上述した(4)式に基づき原水槽1の滅菌温度θにおいて加熱装置5と同様の滅菌レベルが得られる保持時間Dを算出手段46で算出する。
 例えばインフルエンザウィルス含有排水Aの原水槽1を滅菌処理する場合は、インフルエンザウィルスのZ値が約7.7であり、上述したように滅菌温度θ=96℃、保持時間D=30秒で6桁以上の滅菌レベルが得られることから、加熱装置5の出力排水Fの還流により原水槽1を滅菌温度θ=80℃程度まで加熱し、(4)式により保持時間D=60分(≒0.5分×102.08)、2.08≒(96-80)/7.7)に設定して排水Fの還流を継続すれば、原水槽1において加熱装置5と同様の6桁以上の滅菌レベルを確保することができる(図3のステップS211~214参照)。
 加熱装置5からの高温出力排水Fの還流によって原水槽1を加熱することにより、原水槽1内の排水Aだけでなく揮発する蒸気によって原水槽1の気相部を含む内側全体を低滅菌温度θ以上とすることができ、加熱不足部位の発生を避けることができる。好ましくは、出力排水Fの還流を開始したのち原水槽1の気相部全体に蒸気が揮発して回り込む時間を確保して内側全体を低滅菌温度θ以上とし、その回り込み時間の経過後に上述した保持時間Dを更に確保して原水槽1の内側全体を所要滅菌レベル(例えば6桁滅菌レベル)とする。望ましくは、原水槽1の気相部に温度計18を取り付け、その温度計18により原水槽1が滅菌温度θに加熱されたことを検知し、その検知後に上述した保持時間Dを確保して所要滅菌レベルとする。図1の制御装置40は、原水槽1の気相部を含む複数部位に取り付けた温度計18a、18bと接続されており、何れの温度計18a、18bも滅菌温度θ以上となるときに原水槽1が滅菌温度θに加熱されたと検知している。ただし、本発明は複数の温度計18を必須とするものではなく、たとえば原水槽1の蒸気が最も回り込みにくい内側部位に取り付けた単独の温度計18を用いれば足り、或いは原水槽1の気相部全体に蒸気が回り込む時間を予め求めておけば温度計18を省略することもできる。
[実験例1]
 液相部、気相部、及び複数のノズル部の各々にそれぞれ温度計18を取り付けた原水槽1(全容積27.5m、有効容積20m)に約8mの排水Aを貯え、その原水槽1から加熱装置5に供給して滅菌温度θ=96℃、保持時間D=30秒で不活化処理された出力排水Fを原水槽1に還流させ、その還流開始後の原水槽1の各部位における温度計18の経時的温度変化を計測する実験を行った。実験結果を図2のグラフに示す。図2のグラフは、原水槽1の液相部(排水A)は排水Fの還流開始後約8.5時間で目的温度=80℃に達するのに対し、原水槽1の気相部及びノズルの一部分が目的温度=80℃に達するには排水Fの還流開始後約25時間が必要であることを示している。この実験結果から、原水槽1の気相部は温度がとくに上昇しにくく、原水槽1内の加熱不足部位の発生を避けるためには原水槽1の気相部に温度計18を取り付けて温度を検知することが有効であることを確認できた。或いは図2のグラフから、排水Fの還流を開始したのち25時間を確保すれば、原水槽1の内側全体に蒸気を回り込ませて低滅菌温度θ以上とすることができるので、温度計18を省略できることを確認できた。
 原水槽1を滅菌温度θに設定時間D保持して所定滅菌レベルとしたのち、必要に応じて加熱装置5からの出力排水Fの還流を停止して原水槽1を点検・開放・修理する(図3のステップS215参照)。原水槽1を所定レベルまで滅菌したうえで点検・開放することにより、周辺雰囲気中への微生物の拡散を防止し、点検・修理作業員が未処理排水Aに接触する危険も避けることができる。原水槽1の点検・修理が完了したのち排水Aの不活化処理を再開するときは、再び上述したように制御装置40によって切替弁15を放流路12に接続すると共に加熱器6を滅菌温度θに設定し、原水槽1から加熱装置5への排水Aの供給を再開する。
 本発明によれば、加熱装置5の出力排水Fを原水槽1へ還流することにより、原水槽1から加熱装置5に入力した排水Aだけでなく、原水槽1及びその内部の排水Aをも加熱滅菌処理することができる。また、原水槽1の残存排水Aの還流によって原水槽1を加熱するので、新たな熱源を用いることなく小さなランニングコストで原水槽1を経済的に不活化することができる。更に、加熱装置5の滅菌温度θに比して原水槽1の滅菌温度θを低く抑え、比較的長い加熱保持時間Dをかけて原水槽1を加熱滅菌することにより、原水槽1の昇温エネルギーを小さく抑えつつ加熱装置5と同程度の滅菌レベルまで原水槽1を不活化することができる。従って、原水槽1を高温・高圧に耐えられる構造とする必要がなくなり、例えば樹脂水槽、パネルタンク等の合理的で安価な構造の原水槽1とすることも可能となる。
 こうして、本発明の目的である「原水槽及びその内部に貯えた排水を経済的に不活化できる方法及びシステム」の提供が達成できる。
 なお、図1の不活化システムにおいても、図4の場合と同様に洗浄液Iを貯える洗浄液槽30を設け、予熱器11の低温流路14の入口を選択的に原水槽1又は洗浄液槽30へ接続する入口選択弁20と、予熱器11の高温流路13の出口を選択的に放流路12、原水槽1又は洗浄液槽30へ接続する出口選択弁25とを設け、制御装置40により入口選択弁20及び出口選択弁25の切り替えを制御することができる。図1の不活化システムにおいて、排水Aの不活化処理中に加熱器6の温度不足が発生した時は、入口選択弁20を洗浄液槽30に切り替えると共に出口選択弁25を原水槽1に切り替えて系内の残留排水を原水槽1へ押し出し、更に出口選択弁25を洗浄液槽30に接続替えして系内に洗浄液Iを還流・循環させることにより、未処理排水で汚染された系内配管を洗浄することができる。また後述するように、上述した排水Aの還流・循環による原水槽1の不活化処理終了後に入口選択弁20及び出口選択弁25をそれぞれ洗浄液槽30に接続してシステム内に洗浄液Iを還流させ、そののち加熱装置5を高滅菌温度θに保持しつつ入口選択弁20及び出口選択弁25をそれぞれ原水槽1及び放流路12に切替えて排水Aの不活化処理時を再開することにより、原水槽1の加熱滅菌処理から排水Aの不活化処理を容易に再開することが可能となる。
 30m/日のインフルエンザウィルスを含む排水Aを10時間で不活化処理することを想定して図1に示す不活化システムを試設計し、図3の流れ図に沿って原水槽1及びその内部の排水Aの加熱滅菌処理が可能であることを確認する実験を行った。図3の流れ図では、先ずステップS201において切替弁15を放流路12に接続すると共に入口選択弁20及び出口選択弁25をそれぞれ洗浄液槽30へ接続し、スタートアップ時の系内配管に洗浄液Iを還流・循環させる。図示例は、洗浄液Iとして水酸化ナトリウムと硝酸(又はスルファミン酸等の無機酸やクエン酸等の有機酸)を使用し、その洗浄液Iを洗浄液槽30から入口選択弁20、ポンプ3、流量調節器4、予熱器11を介して加熱装置5へ投入し、加熱装置5から出力された洗浄液Iを切替弁15、予熱器11、出力選択弁25を介して洗浄液槽30へ戻すことにより還流・循環させた。ステップS202において制御装置40により所要時間D=30秒で所定滅菌レベル(例えば6桁滅菌レベル)が得られるように加熱器6の滅菌温度θ=96℃を設定し、ステップS203において温度計8による加熱器6の出口温度を制御装置40で検出しながら洗浄液Iの循環を継続した。加熱器6の出口温度不足の検出時は、ステップS203からステップS202に戻って蒸気流量制御弁10の開閉により洗浄液Iの温度を調整した。
 次いでステップS204において入口選択弁20を原水槽1に切り替えると共に出力選択弁25を放流路12に切り替え、ステップS205において加熱器6を滅菌温度θ=96℃に維持しながら原水槽1の排水Aを系内に流入させて洗浄液Iと置換した。本設計の保持管7において30秒の保持時間Dが確保できる最大流量は150リットル/分であることから、排水Aの流入を初期流量=150リットル/分で開始したところ、ステップ206において温度計8の指示温度(加熱器6の出口温度)は流入当初から96℃であった。すなわち、従来の加熱滅菌処理では排水Aの流入初期段階において加熱器6の加熱不足が生じやすく、加熱不足が生じないように流量調節器12等で初期流量を調節しなければならなかったが、図3のステップS201~S206のように洗浄液Iを系内配管に還流・循環させて予め加熱したのち排水Aを流入させて洗浄液Iと置換するスタートアップ処理とすることにより、排水Aの流入初期段階における加熱不足の発生等を避けられることが確認できた。ステップS207において排水Aの不活化処理を終了するか否かを判断し、不活化処理を継続する場合はステップS205へ戻って排水Aの流入を継続する。
 排水Aの不活化処理の継続中に何らかの異常が発生し、ステップS206において加熱不足が検出されたときは、ステップ208へ進んで加熱不足の原因の調査・修理を行い、原水槽1の点検・開放が必要か否か(原水槽1の滅菌処理が必要か否か)を判断する。原水槽1の滅菌処理を必要としない場合はステップS209へ進み、入口選択弁20の弁21を閉鎖して排水Aの流入を停止すると共に、出口選択弁25の弁26を閉鎖して排水Aの系外への放流を停止する。次いでステップS210において、図4の場合と同様に入口選択弁20の弁22を開放して洗浄液Iを系内に送入すると共に、出口選択弁25の弁27を開放して系内の残留排水を原水槽1へ押し出し、更にステップS201へ戻って出口選択弁25を洗浄液槽30に接続替えして系内に洗浄液Iを還流・循環させる。
 ステップS208において原水槽1の点検・開放が必要であると判断したときはステップS211へ進み、上述した加熱装置5の比較的高い滅菌温度θ及びその保持時間Dと、排水A中の微生物数が10分の1に滅菌される保持時間Dを10分の1に短縮するための上昇温度Z(上述した(3)式のZ値)とから、原水槽1を加熱装置5と同様の滅菌レベル(例えば6桁滅菌レベル)とするために必要な低滅菌温度θ及びその保持時間D(例えば滅菌温度θ=80℃、保持時間D=60分)を設定する。次いでステップS212~214において、原水槽1から加熱装置5への排水Aの供給を維持しながら切替弁15を原水槽1に切替え、加熱装置5の出力排水Fを原水槽1へ還流させて原水槽1を滅菌温度θに加熱し、更に保持時間Dが経過するまで切替弁15を維持することにより、原水槽1及びその内部の排水Aを所定滅菌レベルに不活化する。原水槽1を所定レベルに加熱滅菌したのち、ステップS215において排水Aの還流を停止すると共に原水槽1を開放・点検・修理し、その後ステップS201へ戻って入口選択弁20及び出口選択弁25をそれぞれ洗浄液槽30に接続して系内に洗浄液Iを還流・循環させる。
 図3の流れ図において原水槽1の加熱滅菌処理(ステップS211~S215)からステップ201に戻り、更にステップS201~206を繰り返して排水Aの不活化処理再開後に排出された滅菌済排水F中の生菌数を計測したところ、排水Aの6桁滅菌が確保できていることを確認できた。すなわち、図3の流れ図に沿って原水槽1の加熱滅菌処理後に洗浄液Iを系内に充填しながら排水Aの不活化処理を再開すれば、再開時における加熱器6の加熱不足の発生も避けることができ、6桁滅菌を確保しながら排水Aの不活化処理を再開するために極めて有効であることが確認できた。ステップ207において排水Aの不活化処理を終了する時は、入口選択弁20により排水Aの流入を休止すると共に出口選択弁25により排水Fの系外への放流を休止するが、不活化処理を容易に再開できるように、入口選択弁20及び出口選択弁25をそれぞれ洗浄液槽30へ接続して休止時の系内配管内に洗浄液Iを還流・循環させておくことができる。
1…原水槽          2…取水路
3…ポンプ          4…流量調節器
5…加熱装置         6…加熱器
7…保持管          8…温度計
9…圧力計          10…流量制御弁
11…予熱器         11a…第一予熱器
11b…第二予熱器      12…放流路
13…高温流路        14…低温流路
15…切替弁         16、17…開閉弁
18a、18b…温度計    20…入口選択弁
21、22…開閉弁      25…出口選択弁
26、27、28…開閉弁   30…洗浄液槽
31…洗浄液(水酸化ナトリウム)貯蔵タンク
32…洗浄液濃度制御装置   33…濃度計(導電率計)
34、35…流量制御弁
40…制御装置        41…滅菌制御装置
42…加熱制御装置      43…pH調整装置
45…記憶手段        46…算出手段
A…排水           B、C…昇温排水
E…高温排水         F…滅菌済排水
G…蒸気           H…放流水
I…洗浄液          W…希釈水

Claims (10)

  1. 原水槽に貯えた排水を不活化する方法において、前記排水を入力して所定温度に加熱しつつ所定時間D保持する加熱装置の出口に放流路又は原水槽へ選択的に接続する切替弁を設け、前記切替弁の放流路への接続時に加熱装置を所定保持時間Dで所定滅菌レベルが得られる高滅菌温度θに加熱して入力排水を不活化し、前記切替弁の原水槽への接続時に加熱装置の出力排水の還流により原水槽を低滅菌温度θに加熱し且つその低滅菌温度θを前記所定滅菌レベルが得られる時間D以上保持して原水槽内の排水を不活化してなる排水の不活化方法。
  2. 請求項1の不活化方法において、前記低滅菌温度θで所定滅菌レベルが得られる保持時間Dを、前記所定滅菌レベルが得られる高滅菌温度θ及びその保持時間Dと、前記排水中の微生物数が10分の1に滅菌される保持時間Dを10分の1に短縮するための上昇温度Zとから求めてなる排水の不活化方法。
  3. 請求項1又は2の不活化方法において、前記切替弁の原水槽への接続時に加熱装置の出力排水の還流により原水槽の気相部を含む内側全体を低滅菌温度θ以上に加熱してなる排水の不活化方法。
  4. 請求項1から3の何れかの不活化方法において、前記原水槽と加熱装置との間に、前記加熱装置の出力排水を通す高温流路と加熱装置の入力排水を通す低温流路とを有し且つ高温流路の出力排水で低温流路の入力排水を昇温する予熱器を設け、前記切替弁を加熱装置の出口と予熱器との間に設けてなる排水の不活化方法。
  5. 請求項4の不活化方法において、前記予熱器の低温流路の入口に原水槽又は洗浄液槽へ選択的に接続する入力選択弁を設け、前記予熱器の高温流路の出口に放流路、原水槽又は洗浄液槽へ選択的に接続する出力選択弁を設け、前記原水槽内の排水の不活化終了後に切替弁を放流路に切り替えると共に入口選択弁及び出口選択弁をそれぞれ洗浄液槽に接続してシステム内に洗浄液を還流させ、前記加熱装置を高滅菌温度θに加熱したのち入口選択弁及び出口選択弁をそれぞれ原水槽及び放流路に切替えて入力排水の不活化を再開してなる排水の不活化方法。
  6. 排水を貯える原水槽、前記排水を入力して所定温度に加熱しつつ所定時間D保持する加熱装置、前記加熱装置の出口を放流路又は原水槽へ選択的に接続する切替弁、及び前記切替弁の放流路への接続時に加熱装置を所定保持時間Dで所定滅菌レベルが得られる高滅菌温度θに加熱して入力排水を不活化し、前記切替弁の原水槽への接続時に加熱装置の出力排水の還流により原水槽を低滅菌温度θに加熱し且つその低滅菌温度θを前記所定滅菌レベルが得られる時間D以上保持して原水槽内の排水を不活化する制御装置を備えてなる排水の不活化システム。
  7. 請求項6の不活化システムにおいて、前記制御装置に、前記所定滅菌レベルが得られる高滅菌温度θ及びその保持時間Dと前記排水中の微生物数が10分の1に滅菌される保持時間Dを10分の1に短縮するための上昇温度Zとを記憶する記憶手段、及びその保持時間Dと上昇温度Zとから前記低滅菌温度θで所定滅菌レベルが得られる保持時間Dを求める算出手段を含めてなる排水の不活化システム。
  8. 請求項6又は7の不活化システムにおいて、前記切替弁の原水槽への接続時に加熱装置の出力排水の還流により原水槽の気相部を含む内側全体を低滅菌温度θ以上に加熱してなる排水の不活化システム。
  9. 請求項6から8の何れかの不活化システムにおいて、前記原水槽と加熱装置との間に、前記加熱装置の出力排水を通す高温流路と加熱装置の入力排水を通す低温流路とを有し且つ高温流路の出力排水で低温流路の入力排水を昇温する予熱器を設け、前記切替弁を加熱装置の出口と予熱器との間に設けてなる排水の不活化システム。
  10. 請求項9の不活化システムにおいて、前記予熱器の低温流路の入口に原水槽又は洗浄液槽へ選択的に接続する入力選択弁を設け、前記予熱器の高温流路の出口に放流路、原水槽又は洗浄液槽へ選択的に接続する出力選択弁を設け、前記制御装置により、前記原水槽内の排水の不活化終了後に切替弁を放流路に切り替えると共に入口選択弁及び出口選択弁をそれぞれ洗浄液槽に接続してシステム内に洗浄液を還流させ、前記加熱装置を高滅菌温度θに加熱したのち入口選択弁及び出口選択弁をそれぞれ原水槽及び放流路に切替えて入力排水の不活化を再開してなる排水の不活化システム。
PCT/JP2011/073321 2011-10-11 2011-10-11 排水の不活化方法及びシステム WO2013054390A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/073321 WO2013054390A1 (ja) 2011-10-11 2011-10-11 排水の不活化方法及びシステム
CN201180013161.9A CN102933498B (zh) 2011-10-11 2011-10-11 废水的灭活方法及系统
JP2012519836A JP5110493B1 (ja) 2011-10-11 2011-10-11 排水の不活化方法及びシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/073321 WO2013054390A1 (ja) 2011-10-11 2011-10-11 排水の不活化方法及びシステム

Publications (1)

Publication Number Publication Date
WO2013054390A1 true WO2013054390A1 (ja) 2013-04-18

Family

ID=47528607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073321 WO2013054390A1 (ja) 2011-10-11 2011-10-11 排水の不活化方法及びシステム

Country Status (3)

Country Link
JP (1) JP5110493B1 (ja)
CN (1) CN102933498B (ja)
WO (1) WO2013054390A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110040799A (zh) * 2019-04-22 2019-07-23 中国科学院武汉病毒研究所 一种连续式高等级生物安全实验室废水灭活装置及方法
JP6761149B1 (ja) * 2020-01-10 2020-09-23 鹿島建設株式会社 微生物及び/又はウィルス含有廃液の除染システム
JP2020162995A (ja) * 2019-03-29 2020-10-08 三機工業株式会社 連続滅菌装置及び連続滅菌方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247069A (ja) * 1988-03-29 1989-10-02 Hisaka Works Ltd 殺菌装置
JP2001340844A (ja) * 2000-06-02 2001-12-11 Kajima Corp 微生物及び/又はウィルス含有排水の殺菌方法及び装置
JP2003103252A (ja) * 2001-09-28 2003-04-08 Kajima Corp 被処理液の加熱滅菌方法及び装置
JP2003164855A (ja) * 2001-11-30 2003-06-10 Kajima Corp 排水の加熱滅菌方法及び装置
JP2004057951A (ja) * 2002-07-29 2004-02-26 Aqua Research:Kk 汚水滅菌装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI114020B (fi) * 2001-10-08 2004-07-30 Steris Europe Inc Biojätteen jatkuvatoiminen sterilointilaitteisto ja menetelmä prosessin toimivuuden varmistamiseksi
TWI228494B (en) * 2003-04-17 2005-03-01 Nec Ameniplantex Ltd Apparatus and method of sterilizing infectious drainage
CN200958067Y (zh) * 2006-09-16 2007-10-10 蒋加顺 制革污水高温灭菌炉
CN201560129U (zh) * 2009-10-29 2010-08-25 上海日泰医药设备工程有限公司 一种生化污水灭活装置
CN201999755U (zh) * 2011-03-08 2011-10-05 山东新华医用环保设备有限公司 高温蒸汽生物废水灭活系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247069A (ja) * 1988-03-29 1989-10-02 Hisaka Works Ltd 殺菌装置
JP2001340844A (ja) * 2000-06-02 2001-12-11 Kajima Corp 微生物及び/又はウィルス含有排水の殺菌方法及び装置
JP2003103252A (ja) * 2001-09-28 2003-04-08 Kajima Corp 被処理液の加熱滅菌方法及び装置
JP2003164855A (ja) * 2001-11-30 2003-06-10 Kajima Corp 排水の加熱滅菌方法及び装置
JP2004057951A (ja) * 2002-07-29 2004-02-26 Aqua Research:Kk 汚水滅菌装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162995A (ja) * 2019-03-29 2020-10-08 三機工業株式会社 連続滅菌装置及び連続滅菌方法
JP7190703B2 (ja) 2019-03-29 2022-12-16 三機工業株式会社 連続滅菌装置及び連続滅菌方法
CN110040799A (zh) * 2019-04-22 2019-07-23 中国科学院武汉病毒研究所 一种连续式高等级生物安全实验室废水灭活装置及方法
CN110040799B (zh) * 2019-04-22 2022-09-16 中国科学院武汉病毒研究所 一种连续式高等级生物安全实验室废水灭活装置及方法
JP6761149B1 (ja) * 2020-01-10 2020-09-23 鹿島建設株式会社 微生物及び/又はウィルス含有廃液の除染システム
WO2021140656A1 (ja) * 2020-01-10 2021-07-15 鹿島建設株式会社 微生物及び/又はウィルス含有廃液の除染システム

Also Published As

Publication number Publication date
CN102933498B (zh) 2014-09-17
JPWO2013054390A1 (ja) 2015-03-30
JP5110493B1 (ja) 2012-12-26
CN102933498A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5110493B1 (ja) 排水の不活化方法及びシステム
CN105147099A (zh) 一种饮水系统的高温消毒方法及实现该方法的饮水系统
CN101691247A (zh) 病原微生物废液处理系统
JP7190703B2 (ja) 連続滅菌装置及び連続滅菌方法
US7211229B2 (en) Method and apparatus for the sterilization of biological waste
JP3676728B2 (ja) 排水の加熱滅菌方法及び装置
JP6761149B1 (ja) 微生物及び/又はウィルス含有廃液の除染システム
JP3297419B2 (ja) 微生物及び/又はウィルス含有排水の殺菌方法及び装置
JP3919161B2 (ja) 被処理液の加熱滅菌方法及び装置
US11926535B2 (en) Decontamination apparatus for effluents
CN101844851A (zh) 可对血液净化用制水设备进行消毒的高温消毒设备
JP2016195978A (ja) 感染性排水の曝露防止装置
CN113633792B (zh) 一种具有生物排放安全性的灭菌器排气处理装置及其工作方法
CN113975419B (zh) 一种口腔科用口腔检查仪器消毒装置
TWI590840B (zh) Staged steam control method for sterilizing pot
CN102733472A (zh) 无菌制造过程中清洗灭菌下水的防污染排放系统及其应用
JP5794789B2 (ja) 排水滅菌システム
CN214407923U (zh) 一种用于透析器检测的供水管道及透析器检测装置
RU2704320C2 (ru) Установка для стерилизации растворов
CN215023049U (zh) 无菌排放型平移门立式灭菌器
JP6785505B2 (ja) 蒸気滅菌装置
JP2607525Y2 (ja) 殺菌装置
JPH10180241A (ja) 医療排水処理システム
CN113548705A (zh) 一种生物安全实验室连续式废水处理用热交换系统及方法
JP2020081367A (ja) 蒸気滅菌器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013161.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012519836

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11873808

Country of ref document: EP

Kind code of ref document: A1