WO2013053218A1 - 铝塑木制纤维复合型材及其生产方法 - Google Patents

铝塑木制纤维复合型材及其生产方法 Download PDF

Info

Publication number
WO2013053218A1
WO2013053218A1 PCT/CN2012/073379 CN2012073379W WO2013053218A1 WO 2013053218 A1 WO2013053218 A1 WO 2013053218A1 CN 2012073379 W CN2012073379 W CN 2012073379W WO 2013053218 A1 WO2013053218 A1 WO 2013053218A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic
protective film
inner core
film layer
aluminum
Prior art date
Application number
PCT/CN2012/073379
Other languages
English (en)
French (fr)
Inventor
高红
Original Assignee
Gao Hong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011203923161U external-priority patent/CN202299892U/zh
Priority claimed from CN2011103130889A external-priority patent/CN102441974A/zh
Application filed by Gao Hong filed Critical Gao Hong
Priority to PL12839630T priority Critical patent/PL2783850T3/pl
Priority to ES12839630.6T priority patent/ES2641691T3/es
Priority to CA 2851897 priority patent/CA2851897A1/en
Priority to EP12839630.6A priority patent/EP2783850B1/de
Priority to DE201211004295 priority patent/DE112012004295T5/de
Priority to RU2014119248A priority patent/RU2607653C2/ru
Publication of WO2013053218A1 publication Critical patent/WO2013053218A1/zh
Priority to US14/252,509 priority patent/US20140227485A1/en
Priority to IN3397CHN2014 priority patent/IN2014CN03397A/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/297Feeding the extrusion material to the extruder at several locations, e.g. using several hoppers or using a separate additive feeding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24438Artificial wood or leather grain surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer
    • Y10T428/3192Next to vinyl or vinylidene chloride polymer

Definitions

  • the present invention relates to an aluminum-plastic wood fiber composite profile and a production method thereof, and particularly to an aluminum-plastic wood fiber composite profile produced by using waste raw materials and a production method thereof . Background technique
  • an aluminum-plastic composite profile made of waste plastic is prepared by mixing and mixing raw materials such as waste plastics, minerals, plant fibers, additives, etc., and extruding through an extruder, the thickness of the profile is strong, and the strength is strong. Large, saving steel lining, providing a way for renewable plastics and crop waste to be recycled and recycled, waste utilization, turning waste into treasure, and gaining more.
  • step 4 is carried out first: forging the blank profile and step 5: machining, adjusting the dimensions of the profile so that Carrying out step 6, the profile is sent to the cladding tube, the equipment is numerous, the production process is complicated, and even such a complicated process, because the coating material is not selected in detail, the inner core (the profile blank obtained in step 3) and the outer The metal foil layer of the layer can have a negative effect.
  • the thermoplastic energy is inconsistent, and the adhesive cannot be bonded, and only the rolling machine can be used for hot rolling ironing coating. It is very good to join the inner core and the cladding material together.
  • the plastic material used in step 6 is not a single plastic material, nor a new material, but a recycled plastic (the plastics of various colors are waste plastics, the new plastic is White or transparent) This poses a problem. It is difficult to bond the aluminum foil to the waste plastic mixed with the pigment in the existing adhesive. Since the coating material is not a single material, the surface quality of the material is poor, rough.
  • one of the objects of the present invention is to provide an aluminum-plastic wood fiber composite profile, which has beautiful appearance, good weather resistance, waterproof and moisture proof, can be firmly combined with the decorative layer, does not open the glue, and has a long service life. Durable.
  • a second object of the present invention is to provide a method for producing an aluminum-plastic wood fiber composite profile, which utilizes a co-extrusion method to form a high-quality building profile at a time, and has a long service life, long-lasting durability, and wide application.
  • An aluminum-plastic wood fiber composite profile comprising an inner core composed of minerals, plant fibers, additives and a single type of waste plastic composite, the outer surface of which is provided with a protective film layer, a protective film The layer completely encloses the outer surface of the inner core, and the protective film layer is composed of a single type of new plastic film, and the plastic type of the protective film layer is the same as that of the inner core.
  • a decorative layer is adhered to the outer side of the pellicle layer.
  • the decorative layer is composed of an aluminum foil.
  • the decorative layer is composed of a wood grain film.
  • the decorative layer is composed of a thin wood board.
  • a method for producing an aluminum-plastic wood fiber composite profile comprising the following steps:
  • the main material is any one of polypropylene, polyethylene, polyvinyl chloride and high density polyethylene.
  • Step 2 Mixing: The ratio of each raw material by weight percentage is
  • the main material accounts for 30-55%.
  • the above-mentioned main materials, auxiliary materials, fillers and additives are put into the mixing machine in proportion, heated and kneaded, processed into granules, and used as raw materials for the core of the production profile;
  • Step 3 Produce the profile body through the co-extrusion equipment production line:
  • step 2 for the core of the profile into a hopper of the extruder, and simultaneously put the same plastic material as the main material and the new plastic as the material of the protective film layer into the extruder.
  • the extruder is started, and the hot-melt inner core material and the protective film layer raw material are extruded by a co-extrusion die in a co-extrusion manner, and the inner core and the protective film layer are simultaneously extruded, and the inner core and the core are
  • the protective film layer is tightly integrated due to the uniform thermoplastic properties, and is cooled and shaped by the cooling forming device to form the profile body.
  • step 4 is further performed: the laminating process:
  • the plant fiber is one or a combination of one or more of bark, bamboo peel, sawdust, straw, flax, ramie, and stem.
  • the mineral powder is one or two of lime powder, asbestos powder, mica powder, chalk powder, talc powder, calcium carbonate or glass fiber powder.
  • the aluminum-plastic wood fiber composite profile of the invention has the following positive beneficial effects:
  • the profile body of the invention is composed of an inner core and a protective film layer, and the protective film layer functions as an interface, and has the advantages of both internal and external considerations, for the inner core
  • the protective film layer is the outer interface of the inner core, and the inner core is completely wrapped.
  • the protective film layer is made of pure (single kind of new) plastic, and the pure plastic material is dense and tough.
  • the protective film layer is made of pure plastic film, and the appearance is beautiful, which just makes the surface rough and the dark gray inner core completely obscures, which can beautify the effect.
  • the protective film layer acts as an internal interface for the outer decorative layer. Since the protective film layer is made of pure (single kind of new) plastic, it is easy to select an adhesive that matches the properties of the protective film layer. The outer decorative layer is attached, and the bonding is firm, and it is not easy to open the glue.
  • the production method of the present invention has the following positive beneficial effects:
  • the mineral filler is added to the raw material. While relying on the mixing of plant fiber and plastic to increase the tensile strength and flexibility, the mineral filler is used to increase the strength and hardness of the profile, and further improve the flexibility, so that the profile is not easily broken.
  • the selection of ingredients is more scientific and reasonable, more in line with the principle of polymer chemical reaction, for the selection of plastic types of inner core, only a single type of plastic raw materials, not a variety of plastic raw materials, the purpose is that the first melting point is single, It is convenient to recycle and recycle the raw materials in use, which is convenient for recycling and environmentally friendly.
  • the thermoplasticity is consistent. It is easy to attach a protective protective layer to the inner core by means of co-extrusion.
  • the protective film layer and the inner core With the same thermoplasticity, strong bonding, and no need for hot press ironing for lamination bonding, the protective film layer forming the inner core in a co-extruded manner is significantly better than forming a protective film layer in a laminated bond.
  • the protective film layer forming the inner core by co-extrusion has better performances of rainproof, moisture proof, soundproofing and wind pressure resistance, and has enhanced airtightness and good weather resistance.
  • the protective film layer is made of a single type of plastic and is a new material, the material is single and contains no impurities, and the outer layer coating process (decorative layer process) also brings benefits, and is more advantageous for selecting appropriate bonding.
  • FIG. 1 is a schematic view showing the structure of a profile body of the present invention.
  • Figure 2 is an enlarged view of a portion A of Figure 1.
  • Figure 3 is a schematic view of the profile body of Figure 1 prior to bonding with the decorative layer.
  • Figure 4 is a side view of Figure 3.
  • Figure 5 is a schematic view of the profile body of Figure 1 combined with a decorative layer.
  • FIG 6 is a partial enlarged view of B of Figure 5 .
  • the aluminum-plastic wood fiber composite profile of the present invention includes an inner core 1 which is composed of minerals, plant fibers, coupling additives, and a single type of waste plastic.
  • the composite composition, the plant fiber may be one or both of bark, bamboo skin, sawdust, straw, flax, and ramie.
  • the mineral powder may be one or both of lime powder, asbestos powder, mica powder, chalk powder, and glass fiber powder.
  • the additive is maleic anhydride acid, commonly known as MSA.
  • the outer surface of the inner core 1 is provided with a protective film layer 2, the protective film layer 2 is composed of a pure plastic film, the protective film layer 2 completely wraps the outer surface of the inner core 1, and the protective film layer 2 and the inner core 1 constitute the profile body 3 .
  • the decorative layers 4 and 5 are attached to both sides (outdoor surface and indoor surface) of the profile body 3.
  • the decorative layers 4, 5 may be composed of aluminum foil.
  • the decorative layers 4, 5 may also be composed of a wood grain film.
  • the decorative layers 4, 5 can also be constructed of thin wood.
  • the plastic type of the inner core 1 may be polypropylene PP (polypropylene), polyethylene PE
  • Polyethylene Polyethylene
  • PVC polyvinyl chloride
  • high density polyethylene high density polyethylene
  • the plastic film type of the protective film layer 2 is the same as that of the inner core 1, for example, when the inner core 1 is made of polypropylene PP plastic (old plastic), the protective film layer 2 is composed of a pure polypropylene PP (new plastic) film.
  • the protective film layer 2 is composed of a pure polyethylene PE (new plastic) film.
  • the protective film layer 2 is composed of a pure polyvinyl chloride PVC (new plastic) film.
  • the protective film layer 2 is composed of a pure high-density polyethylene HDPE (new plastic) film.
  • the protective film layer 2 functions as an interface and has the advantages of both internal and external.
  • the protective film layer 2 is the outer interface of the inner core 1, and thus is made of pure (single kind of new) plastic, pure
  • the plastic material is dense, with high toughness, good air tightness, good waterproof performance, good weather resistance, wind and sun and rain, can withstand moisture vapor erosion and sudden temperature change, and plays a good role in protecting the inner core 1.
  • the plastic film type of the protective film layer 2 is the same as that of the inner core 1, although they are new and old, they have the same thermoplastic characteristics, and are easily combined in the production process, which is advantageous for simplifying the production process and improving the yield. .
  • the protective film layer 2 is composed of a pure plastic film, and has an attractive appearance, and the inner core 1 which is rough in surface and dark in color is completely blocked, and the effect is beautified.
  • the protective film layer 2 functions as an inner interface for the outer decorative layers 4, 5. Since the protective film layer 2 is made of pure (single kind of new) plastic, it is easy to select a bonding which is matched to its properties. The agent bonds the outer decorative layers 4 and 5, and the bonding is firm, and it is not easy to open the glue.
  • the specific embodiment of the method for producing the aluminum-plastic wood fiber composite profile of the present invention is as follows:
  • the invention relates to a method for producing aluminum-plastic wood fiber composite profiles, comprising the following steps: Step one: preparing materials:
  • Polypropylene PP Polypropylene thermoplastic waste plastic is used as the main material.
  • the main material can be recycled plastic bottles, plastic cylinders, plastic cups and other plastic containers.
  • the material is polypropylene PP (Polypropylene).
  • Plastic bottles, plastic cylinders, plastic cups are crushed by a crusher, and extruded into a spherical plastic pellet of uniform size (as a main material) by an extruder.
  • the spherical diameter of the plastic pellet is 2 mm.
  • Plant fiber is used as an auxiliary material, the plant fiber is sawdust, and the sawdust is crushed into 40 mesh powder surface by a roller compactor.
  • mineral powder is glass fiber powder
  • a chemical reagent having a coupling function is selected as an additive, and the additive is maleic anhydride acid (MSA).
  • Step 2 Mixing: The ratio of each raw material by weight percentage is:
  • the main material polypropylene PP accounts for 50%.
  • Filled glass fiber powder accounts for 6%.
  • the additive maleic anhydride acid accounts for 4%.
  • the main materials, auxiliary materials, fillers and additives are put into the mixing machine in proportion, heated and kneaded, and extruded into a spherical plastic particle of uniform size by using an extruder, as a raw material for the core of the production profile.
  • the plastic particles have a ball diameter of 3 mm.
  • Step 3 Produce the profile body through the co-extrusion equipment production line:
  • the co-extrusion equipment production line consists of two parts.
  • the first part is a single-screw or twin-screw extruder.
  • the extruder is equipped with a co-extrusion mold.
  • the co-extrusion mold is a sleeve mold.
  • the second part is the cooling molding step. 2.
  • the processed raw material for producing the core of the profile is placed in a hopper of the extruder, and the plastic (new plastic) of the same material as the main material is placed as another material of the protective film layer into another hopper of the extruder.
  • the raw material of the protective film layer is a new plastic (pure plastic) made of polypropylene PP (Polypropylene), and the extruder is started.
  • the co-extrusion die is used to squeeze the hot-melt inner core material and the protective film layer raw material by co-extrusion. Pressing and synchronizing the extrusion processing of the inner core 1 and the pellicle layer 2, the inner core 1 and the pellicle layer 2 are in a co-extrusion process, and the thermoplastic energy is uniform, thereby being tightly integrated into one as shown in the figure. 1.
  • the advantages are that the combination is firm, strong, soundproof, good in heat preservation performance, good in airtight performance, waterproof, and cooled and shaped by a cooling forming device to constitute the profile body 3.
  • Step 4 Laminating process:
  • the decorative layer 4, 5 is attached to the profile body 3, as shown in Fig. 3 and Fig. 4, and the coated surface of the profile body 3 is the outdoor surface and the indoor surface.
  • the decorative layers 4, 5 are composed of aluminum foil.
  • the aluminum foil is coated with an adhesive, the aluminum foil is placed on the laminating machine station, and the profile body 3 is placed on the slide of the inlet end of the laminating machine. Under the driving of the conveyor belt, the profile body 3 enters the laminating machine and passes through the coating. The film machine is hot melted, and the aluminum foil is bonded to the profile body to form a finished product as shown in Figs.
  • the invention relates to a method for producing aluminum-plastic wood fiber composite profiles, comprising the following steps: Step one: preparing materials:
  • Polyethylene PE Polyethylene waste plastic is used as the main material.
  • the main material can be recycled plastic bottles, plastic cylinders, plastic cups and other plastic containers.
  • the material is polyethylene PE.
  • Polyethylene Polyethylene
  • the above-mentioned plastic bottles, plastic cylinders, and plastic cups are crushed by a crusher, and extruded into a spherical plastic pellet of uniform size (as a main material) by an extruder, and the spherical diameter of the plastic pellet is 3 mm.
  • Plant fiber is used as an auxiliary material, the plant fiber is bamboo powder, and the bamboo powder is crushed into a 50-mesh powder surface by a roller compactor.
  • mineral powder is asbestos powder
  • MSA maleic anhydride acid
  • Step 2 Mixing: The ratio of each raw material by weight percentage is:
  • the main material polyethylene PE accounts for 55%.
  • Packed asbestos powder accounts for 5%.
  • the additive maleic anhydride acid accounts for 2%.
  • the main materials, auxiliary materials, fillers and additives are put into the mixing machine in proportion, heated and kneaded, and extruded into a spherical plastic particle of uniform size by using an extruder, as a raw material for the core of the production profile.
  • the plastic particles have a spherical diameter of 4 mm.
  • Step 3 Produce the profile body through the co-extrusion equipment production line:
  • the coextrusion equipment production line consists of two major parts.
  • the first part is a single-screw or twin-screw extruder.
  • the extruder is equipped with a co-extrusion die, the co-extrusion die is a jacketed mold, and the second part is a cooling molding machine.
  • the raw materials processed in step 2 for the core of the profile into a hopper of the extruder, and put the same plastic material (new plastic) as the material of the main material into the extruder.
  • the raw material of the protective film layer is a new plastic (pure plastic) made of polyethylene PE (Polyethylene), and the extruder is started.
  • the co-extrusion die is used to co-extrude the hot-melt core material and protect it.
  • the film raw material is extruded, and the extrusion processing of the inner core 1 and the protective film layer 2 is completed simultaneously, and the inner core 1 and the protective film layer 2 are in a co-extrusion process, and the thermoplastic energy is uniform, thereby being closely integrated into one.
  • the advantages are that the combination is firm, strong, soundproof, good in heat preservation performance, good in airtight performance, waterproof, and cooled and shaped by a cooling forming device to constitute the profile body 3.
  • Step 4 Laminating process: The laminating process is to attach the decorative layer to the profile body 3. 4, 5 As shown in Fig. 3 and Fig. 4, the coated surface of the profile body 3 may be an outdoor surface and an indoor surface. In this embodiment, the decorative layers 4, 5 are composed of an aluminum foil.
  • the aluminum foil is coated with an adhesive, the aluminum foil is placed on the laminating machine station, and the profile body 3 is placed on the slide of the inlet end of the laminating machine. Under the driving of the conveyor belt, the profile body 3 enters the laminating machine and passes through the coating. The film machine is hot melted, and the aluminum foil is bonded to the profile body 3, and the finished product is shown in Fig. 5 and Fig. 6.
  • the invention relates to a method for producing aluminum-plastic wood fiber composite profiles, comprising the following steps: Step one: preparing materials:
  • the waste plastic of high density polyethylene is used as the main material.
  • the main material can be recycled plastic bottles, plastic cylinders, plastic cups and other plastic containers, all of which are made of high density polyethylene.
  • HDPE high-density polyethylene
  • the above-mentioned plastic bottles, plastic cylinders, and plastic cups are crushed by a crusher, and extruded into a spherical plastic pellet of uniform size (as a main material) by an extruder, and the spherical diameter of the plastic particles is 4 mm.
  • Plant fiber is used as an auxiliary material, the plant fiber is linen, and the linen is crushed into a 60-mesh powder surface by a roller compactor.
  • mineral powder is mica powder
  • a chemical reagent having a coupling action is selected as an additive, and the additive is maleic anhydride acid.
  • Step 2 Mixing: The ratio of each raw material by weight percentage is
  • the main material high density polyethylene accounts for 30%.
  • the additive is maleic anhydride accounted for 2%.
  • the main materials, auxiliary materials, fillers and additives are put into the mixing machine in proportion, heated and kneaded, and extruded into a spherical plastic particle of uniform size by using an extruder, as a raw material for the core of the production profile.
  • the plastic particles have a ball diameter of 5 mm.
  • Step 3 Produce the profile body through the co-extrusion equipment production line:
  • the coextrusion equipment production line consists of two major parts.
  • the first part is a single-screw or twin-screw extruder.
  • the extruder is equipped with a co-extrusion die, the co-extrusion die is a jacketed mold, and the second part is a cooling molding machine.
  • the protective film layer is made of high-density polyethylene (HDPE) new plastic (pure plastic)
  • HDPE high-density polyethylene
  • the extruder is started, and the co-extruded mold is used to co-extrude the hot-melt core material and protective film.
  • the layer raw material is extruded, and the extrusion processing of the inner core 1 and the protective film layer 2 is completed simultaneously, and the inner core 1 and the protective film layer 2 are in a co-extrusion process, and the thermoplastic energy is uniform, thereby being tightly integrated into one body as shown in FIG.
  • the advantages are that the combination is firm, strong, soundproof, good in heat insulation performance, good in airtight performance, waterproof, and cooled and shaped by a cooling forming device to constitute the profile body 3.
  • Step 4 Laminating process:
  • the decorative layer 4, 5 is attached to the profile body 3, as shown in Fig. 3 and Fig. 4, and the coated surface of the profile body 3 is the outdoor surface and the indoor surface.
  • the decorative layers 4, 5 are composed of a wood grain film.
  • the invention relates to a method for producing aluminum-plastic wood fiber composite profiles, comprising the following steps: Step one: preparing materials:
  • Polyvinyl chloride (Polyvinylchloride) waste plastic is used as the main material.
  • the main material can be recycled plastic bottles, plastic cylinders, plastic cups and other plastic containers.
  • the material is polyvinyl chloride PVC (Polyvinylchloride).
  • the above-mentioned plastic bottles, plastic cylinders, and plastic cups are crushed by a crusher, and extruded into a spherical plastic pellet of uniform size (as a main material) by an extruder, and the spherical diameter of the plastic pellet is 4 mm.
  • Plant fiber is used as an auxiliary material.
  • the plant fiber is a mixture of bamboo powder and sawdust. The weight percentage of the two is 50% each.
  • the mixture of bamboo powder and sawdust is crushed into 70 mesh powder surface by a roller compactor.
  • a chemical reagent having a coupling action is selected as an additive, and the additive is maleic anhydride acid.
  • Step 2 Mixing: The ratio of each raw material by weight percentage is
  • the main material polyvinyl chloride accounts for 45%.
  • Filled chalk powder accounts for 6%.
  • the additive maleic anhydride acid accounts for 4%.
  • the main materials, auxiliary materials, fillers and additives are put into the mixing machine in proportion, heated and kneaded, and extruded into a spherical plastic particle of uniform size by using an extruder, as a raw material for the core of the production profile.
  • the plastic particles have a spherical diameter of 6 mm.
  • Step 3 Produce the profile body through the co-extrusion equipment production line:
  • the co-extrusion equipment production line consists of two parts.
  • the first part is a single-screw or twin-screw extruder.
  • the extruder is equipped with a co-extrusion mold.
  • the co-extrusion mold is a sleeve mold.
  • the second part is the cooling molding step. 2.
  • the processed raw material for producing the core of the profile is placed in a hopper of the extruder, and the plastic (new plastic) of the same material as the main material is placed as another material of the protective film layer into another hopper of the extruder.
  • the raw material of the protective film layer is a new plastic (pure plastic) made of polyvinyl chloride PVC, and the extruder is started, and the hot-melt inner core material and the protective film layer raw material are extruded by a co-extrusion die by a co-extrusion die.
  • the inner core 1 and the pellicle layer 2 are in a co-extrusion process, and the thermoplastic energy is uniform, thereby being tightly integrated into one body as shown in FIG. 1 and FIG. 2, and the advantages are obtained. It is a combination of firmness, high strength, sound insulation, good thermal insulation performance, good air tightness and waterproofness. It is cooled and shaped by cooling molding equipment to form the profile body 3.
  • Step 4 Laminating process:
  • the decorative layer 4, 5 is attached to the profile body 3, as shown in Fig. 3 and Fig. 4, and the coated surface of the profile body 3 is the outdoor surface and the indoor surface.
  • the decorative layers 4, 5 are composed of a wood grain film, an adhesive is applied on the wood grain film, the wood grain film is placed on the laminating machine station, and the profile body is placed at the inlet end of the laminating machine.
  • the profile body 3 On the slide, under the driving of the conveyor belt, the profile body 3 enters the laminating machine, and is melted by the laminator, and the wood grain film is bonded to the profile body 3 to be finished as shown in Fig. 5 and Fig. 6.
  • the invention relates to a method for producing aluminum-plastic wood fiber composite profiles, comprising the following steps: Step one: preparing materials:
  • Polyethylene PE Polyethylene
  • waste plastic or new plastic is used as the main material.
  • the waste plastic can be recycled plastic bottles, plastic cylinders, plastic cups and other plastic containers.
  • the material is polyethylene PE (Polyethylene).
  • the above-mentioned plastic bottles, plastic cylinders, and plastic cups are crushed by a crusher, and extruded into a spherical plastic pellet of uniform size (as a main material) by an extruder, and the spherical diameter of the plastic particles is 3 mm.
  • Plant fiber is used as an auxiliary material, plant fiber is straw powder, and straw powder is crushed into 80 mesh powder surface by a roller compactor.
  • mineral powder is talcum powder
  • a chemical reagent having a coupling action is selected as an additive, and the additive is maleic anhydride acid.
  • Step 2 Mixing: The ratio of each raw material by weight percentage is
  • the main material polyethylene PE accounts for 40%.
  • Packed talcum powder accounts for 10%.
  • the additive maleic anhydride acid accounts for 4%.
  • the main materials, auxiliary materials, fillers and additives are put into the mixing machine in proportion, heated and kneaded, and extruded into a spherical plastic particle of uniform size by using an extruder, as a raw material for the core of the production profile.
  • the plastic particles have a spherical diameter of 4 mm.
  • Step 3 Produce the profile body through the co-extrusion equipment production line:
  • the coextrusion equipment production line consists of two major parts.
  • the first part is a single-screw or twin-screw extruder.
  • the extruder is equipped with a co-extrusion die, the co-extrusion die is a jacketed mold, and the second part is a cooling molding machine.
  • the raw materials processed in step 2 for the core of the profile into a hopper of the extruder, and put the same plastic material (new plastic) as the material of the main material into the extruder.
  • the raw material of the protective film layer is a new plastic (pure plastic) made of polyethylene PE (Polyethylene)
  • PE Polyethylene
  • the extrusion processing of the inner core 1 and the pellicle layer 2 is completed synchronously, and the inner core 1 and the pellicle layer 2 are in a co-extrusion process, and the thermoplastic energy is uniform, thereby being closely integrated into one body as shown in FIG. 1 and FIG.
  • the advantages are strong bonding, high strength, sound insulation, good thermal insulation performance, good airtight performance, waterproof, and cooling and shaping equipment to form the profile body 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

一种铝塑木制纤维复合型材及其生产方法,所述型材包括有内芯,内芯由矿物质、植物纤维、添加剂以及单一种类的废旧塑料复合构成,内芯的外表面设置有防护膜层,防护膜层的塑料种类与内芯的塑料种类相同。其生产方法是:将原料按以下重量百分比:主料占30-55%,辅料占38-55%,填料占5-30%,添加剂占2-6%,放入混料机加工成颗粒状再以共同挤压方式同步完成内芯与防护膜层的挤出加工,本方法生产的建筑型材,品质高、使用寿命长、经久耐用、应用范围广。

Description

铝塑木制纤维复合型材及其生产方法 技术领域 本发明涉及一种铝塑木制纤维复合型材及其生产方法, 特别涉及一种利用 废旧原料生产的铝塑木制纤维复合型材及其生产方法。 背景技术
现有技术中的一种利用废旧塑料制作的铝塑复合型材, 是由废旧塑料、 矿 物质、 植物纤维、 添加剂等原料按比例混合热熔后, 经过挤出机挤出成型, 型 材厚重, 强度大, 节约了钢衬, 为废旧塑料、 农作物废弃物提供了可再生循环 利用的途径, 废物利用, 变废为宝, 一举多得。
但是这种型材有一些不足之处:
一、 由于不是用单一的塑料原料制成, 而是由矿物质、 植物纤维、 添加剂 等原料与废旧塑料复合制成, 型材的质地松散, 气密性差, 表面布满微孔, 防 水性能差, 耐候性差, 不耐风吹日晒雨淋, 难以抵御潮汽侵蚀和温度骤变, 遇 到潮汽时容易发霉, 使用寿命短。
二、 由于不是用单一的塑料原料制成, 而是由矿物质、 植物纤维、 添加剂 等原料与废旧塑料复合制成, 型材表面粗糙, 颜色灰暗, 不美观, 外表面上粘 贴装饰层时, 由于型材表面的质密性差, 界面不是由单一的原料构成, 难以选 择与界面性质相对应匹配的粘合剂, 粘接不牢固, 容易开胶。 另外, 本发明人在中国专利 200510116789. 8 (绿色环保空心复合铝箔型材 的制作方法) 中公开了一种利用热塑性废旧塑料制作铝塑型材的方法, 该方 法主要包括①选材配料、 ②粉碎混合料化、 ③挤压带状混合物、 ④锻压毛坯型 材、 ⑤机械加工型材、 ⑥覆层、 ⑦包金属覆层等工艺步骤, 但是在生产中发 现, 该方法还存在一些缺点:
下面分别详细描述,
一、 原材料中没有矿物质填料, 仅依靠植物纤维与塑料进行混合, 植物纤 维可以增加拉力和柔韧性, 但是脆性高, 强度低, 耐候性差, 受阳光、 潮汽影 响大, 抗老化性能低, 容易断裂。
二、 选材配料中有不适当的原料, 如果选择其中的聚苯乙烯 (PS ) 、 低密 度聚乙烯 (LDPE ) 作为原料, 将会导致产品出现强度降低, 使用寿命缩短, 覆 铝层容易开胶, 粘接不牢固等问题。 三、 生产工艺繁琐, 其步骤 3用挤出机挤出后得到的型材是毛坯, 然后还 需要用滚压机覆层 (步骤 6 ) , 将机械加工成型的空芯体型材送到覆层管内, 在通过冷却槽部分硬化后, 进行真空平整覆层, 为了用滚压机覆层, 还要先进 行步骤 4 : 锻压毛坯型材和步骤 5 : 机械加工, 对型材的规格尺寸进行调整, 这样才能进行步骤 6, 将型材送到覆层管中, 设备多, 生产工艺复杂, 既便如 此复杂的工艺, 由于覆层材料选用不够细致, 则对内芯 (步骤 3得到的型材毛 坯) 和更外层的金属铝箔层都会产生负面作用。
对内芯来说, 由于步骤 3选用的塑料原料与步骤 6选用的塑料原料不是同 一种, 热塑性能不一致, 不能使用粘合剂粘接, 只能选用滚压机热滚熨烫覆 层, 不能很好的将内芯与覆层材料接合成为一体。
对更外层的金属铝箔层来说, 由于步骤 6选用的塑料原料不是单一的塑料 原料, 也不是新料, 而是再生的废旧塑料 (各种颜色的塑料都是废旧塑料, 新 的塑料是白色的或透明的) 这会带来一个问题, 就现有的粘合剂难以将铝箔与 混有色素的废旧塑料粘接上, 由于覆层原料不是单一原料, 材质表面质密性能 差, 粗糙多微孔, 不易与粘合剂牢固结合, 容易开胶、 脱落、 产生气泡, 进而 影响型材的整体性和质量, 以及再次循环使用中的原料分捡 (因原料中热熔点 不同) , 造成循环使用不当, 不利于环保, 而且产品耐候性差, 受阳光、 潮汽 影响大, 抗老化性能低, 容易断裂。 发明内容 为解决上述问题, 本发明的目的之一是提供一种铝塑木制纤维复合型 材 , 该产品外表美观, 耐候性好, 防水防潮, 能与装饰层牢固结合, 不开 胶, 使用寿命长、 经久耐用。
本发明的目的之二是提供一种铝塑木制纤维复合型材的生产方法, 该方法 利用共挤的方式一次成型高品质的建筑型材, 结合牢固使用寿命长, 经久耐 用, 应用广泛。
为实现上述目的, 本发明采用以下技术方案实现:
一种铝塑木制纤维复合型材, 包括有内芯, 内芯由矿物质、 植物纤维、 添 加剂以及单一种类的废旧塑料复合构成, 所述的内芯的外表面设置有防护膜 层, 防护膜层将内芯的外表面完全包裹, 防护膜层由单一种类的新塑料薄膜构 成, 防护膜层的塑料种类与内芯的塑料种类相同。
所述防护膜层的外侧粘贴有装饰层。
所述装饰层由铝箔构成。
所述装饰层由木紋薄膜构成。
所述装饰层由薄木板构成。 一种铝塑木制纤维复合型材的生产方法, 包括以下步骤:
步骤一、 备料:
(1)选用废旧塑料或新塑料作为主料, 主料是聚丙烯、 聚乙烯、 聚氯乙 烯、 高密度聚乙烯中的任一一种,
(2) 选用植物纤维作为辅料, 用碾压机将植物纤维碾压成 40-80目粉面,
(3) 购买 300-800目的矿物质粉作为填料,
(4) 选用具有偶联作用的化学试剂作为添加剂,
步骤二、 混料: 各原料按重量百分比的配比为,
主料占 30-55% ,
辅料占 38-55% ,
填料占 5-30%,
添加剂占 2-6%,
将上述主料、 辅料、 填料、 添加剂按比例放入混料机中, 加温进行揉和处 理, 加工成颗粒状, 作为生产型材本体内芯的原料备用;
步骤三、 通过共挤设备生产线生产型材本体:
将步骤二加工好的用于生产型材本体内芯的原料放入挤出机的一个料斗 中, 同时将与主料材质相同的塑料而且是新塑料作为防护膜层原料放入挤出机 的另一个料斗中, 启动挤出机, 利用共挤模具以共同挤压方式对热熔的内芯原 料、 防护膜层原料进行挤压, 同步完成内芯与防护膜层的挤出加工, 内芯与防 护膜层在共同挤压的过程中, 由于热塑性能一致, 从而紧密结合成为一体, 经 过冷却成型设备冷却定型, 构成了型材本体。
所述步骤三完成后, 继续执行步骤四、 覆膜工序:
在铝箔或木紋薄膜上涂上粘结剂, 将铝箔或木紋薄膜放在覆膜机工位上, 将步骤 3生产的型材本体放在覆膜机入口端的滑道上, 在传送带的驱动下, 型 材本体进入覆膜机, 通过覆膜机热熔, 铝箔或木紋薄膜与型材本体粘合, 出来 成为具有装饰层的产品。
所述植物纤维是树皮、 竹皮、 锯末、 稻草、 亚麻、 苎麻、 杆茎中的一种或 一种以上的组合。
所述矿物质粉是石灰粉、 石棉粉、 云母粉、 白垩粉、 滑石粉、 碳酸钙或玻 璃纤维粉中的一种或两种。 本发明的铝塑木制纤维复合型材有以下积极有益效果: 本发明的型材本体由内芯和防护膜层构成, 防护膜层起到界面的作用, 具 有内外兼顾的优点, 对于内芯来说, 防护膜层是内芯的外界面, 将内芯完全包 裹, 防护膜层采用纯的 (单一种类的新的) 塑料制成, 纯塑料质地密实, 韧 性大, 气密性好, 防水性能好, 耐候性好, 耐风吹日晒雨淋, 能够抵御潮汽侵 蚀和温度骤变, 起到很好的保护内芯的作用, 防护膜层的塑料种类与内芯的 塑料种类相同, 虽然是一新一旧, 但是它们具有相同的热塑特性, 可以通过共 挤的方式一体化的结合在一起, 有利于简化生产工序, 提高成品率。
防护膜层由纯的塑料薄膜构成, 外表美观, 正好将表面粗糙, 颜色灰暗的 内芯完全遮挡住, 起到美化的效果。
防护膜层对于外装饰层来说, 起到内界面的作用, 由于防护膜层由纯 (单 一种类的新的) 塑料制成, 很容易选择与防护膜层性质相对应匹配的粘合剂粘 接外装饰层, 粘接牢固, 不易开胶。 本发明的生产方法有以下积极有益效果:
一、 原材料中增加了矿物质填料, 在依靠植物纤维与塑料进行混合增加拉 力和柔韧性的同时, 利用矿物质填料增加型材的强度, 硬度, 进一步提高柔韧 性, 使型材不容易断裂。
二、 选材配料更加科学合理精密, 更加符合高分子化学反应原理, 对于内 芯的塑料种类的选择上, 只采用单一种类塑料原料, 不采用多种类塑料原料, 目的是第一熔点是单一的, 便于再次循环回收使用中的原料分捡, 循环使用方 便, 利于环保, 第二、 热塑性能一致, 便于通过共挤的方式为内芯附着一个起 防护作用的防护膜层, 防护膜层与内芯具有相同的热塑性, 结合牢固, 不需要 滚压机热滚熨烫进行层压结合, 以共挤的方式形成内芯的防护膜层显著的优于 以层压结合的方式形成防护膜层。 以共挤的方式形成内芯的防护膜层具有更好 的防雨、 防潮、 隔音、 抗风压的性能, 而且气密性加强, 耐候性好。
由于防护膜层采用单一种类的塑料而且是新料, 材质单一, 不含杂质, 对 于更外层的覆膜工序 (装饰层工序) 来说也带来了好处, 更有利于选用适当的 粘合剂粘接装饰层, 不容易开胶、 不会产生气泡脱落,
同时减少工艺的复杂性, 节能、 环保, 降低生产成本, 有利于推广使用。 本发明的最大亮点是: 提出了用共挤的方法为内芯的表面附着防护膜层, 不同种类的塑料树脂之间难于实现共挤工艺, 所以, 内芯和防护膜层必须选择 相同的塑料种类。 附图说明 图 1是本发明的型材本体的结构示意图。
图 2是图 1的 A局部的放大图。
图 3是图 1所示型材本体与装饰层结合前的示意图。
图 4是图 3的侧视图。 图 5是图 1所示型材本体与装饰层结合后的示意图。
图 6是图 5的 B局部放大图。 具体实施方式 本发明的铝塑木制纤维复合型材,请参照图 1、 图 2, 包括有内芯 1, 内芯 1由矿物质、 植物纤维、 起偶联作用的添加剂以及单一种类的废旧塑料复合构 成, 植物纤维可以是树皮、 竹皮、 锯末、 稻草、 亚麻、 苎麻中的一种或两种。 矿物质粉可以是石灰粉、 石棉粉、 云母粉、 白垩粉、 玻璃纤维粉中的一种或两 种。 添加剂是顺丁烯二酸酐酸, 俗称 MSA。 内芯 1的外表面设置有防护膜层 2, 防护膜层 2由纯塑料薄膜构成, 防护膜层 2将内芯 1的外表面完全包裹, 防护膜层 2和内芯 1构成了型材本体 3。
请参照图 3、 图 4、 图 5、 图 6、 型材本体 3的两侧面 (室外面和室内面) 粘贴有装饰层 4、 5。 装饰层 4、 5可以由铝箔构成。 装饰层 4、 5也可以由木紋 薄膜构成。 装饰层 4、 5还可以由薄木板构成。
内芯 1的塑料种类可以是聚丙烯 PP (Polypropylene) , 聚乙烯 PE
(Polyethylene)、 聚氯乙烯 PVC (Polyvinylchloride)、 高密度聚乙烯
(HDPE) 中的任——种,
防护膜层 2的塑料种类与内芯 1的塑料种类相同, 例如当内芯 1采用聚丙 烯 PP塑料 (旧塑料) 时, 防护膜层 2由纯聚丙烯 PP (新塑料) 薄膜构成。
当内芯 1采用聚乙烯 PE塑料 (旧塑料) 时, 防护膜层 2由纯聚乙烯 PE (新塑料) 薄膜构成。
当内芯 1采用聚氯乙烯 PVC (旧塑料) 时, 防护膜层 2由纯聚氯乙烯 PVC (新塑料) 薄膜构成。
当内芯 1采用高密度聚乙烯 HDPE塑料 (旧塑料) 时, 防护膜层 2由纯高 密度聚乙烯 HDPE (新塑料) 薄膜构成。
防护膜层 2起到界面的作用, 具有内外兼顾的优点, 对于内芯 1来说, 防护膜层 2是内芯 1的外界面, 因此采用纯 (单一种类的新的) 塑料制成, 纯塑料质地密实, 韧性大, 气密性好, 防水性能好、 耐候性好, 耐风吹日晒雨 淋, 能够抵御潮汽侵蚀和温度骤变, 起到很好的保护内芯 1的作用, 防护膜 层 2的塑料种类与内芯 1的塑料种类相同, 虽然是一新一旧, 但是它们具有相 同的热塑特性, 生产过程中很容易结合在一起, 有利于简化生产工序, 提高成 品率。
防护膜层 2由纯的塑料薄膜构成, 外表美观, 正好将表面粗糙, 颜色灰暗 的内芯 1完全遮挡住, 起到美化的效果。 防护膜层 2对于外装饰层 4、 5来说, 起到内界面的作用, 由于防护膜层 2 由纯 (单一种类的新的) 塑料制成, 很容易选择与其性质相对应匹配的粘合剂 粘接外装饰层 4、 5, 粘接牢固, 不易开胶。 本发明的铝塑木制纤维复合型材的生产方法的具体实施方式如下: 实施例一
本发明是一种铝塑木制纤维复合型材的生产方法, 包括以下步骤: 步骤一、 备料:
(1)选用聚丙烯 PP (Polypropylene)材质的热塑性废旧塑料作为主料, 主 料可以是回收的塑料瓶、 塑料筒、 塑料杯等塑料容器, 其材质都是聚丙烯 PP (Polypropylene) , 将上述的塑料瓶、 塑料筒、 塑料杯用破碎机破碎, 用挤出 机挤出成为大小均匀的球状塑料颗粒 (作为主料) 备用, 塑料颗粒的球径为 2mm
(2) 选用植物纤维作为辅料, 植物纤维是锯末, 用碾压机将锯末碾压成 40 目粉面,
(3) 购买 300目的矿物质粉作为填料, 矿物质粉是玻璃纤维粉,
(4) 选用具有偶联作用的化学试剂作为添加剂, 添加剂是顺丁烯二酸酐酸 (MSA) 。
步骤二、 混料: 各原料按重量百分比的配比为:
主料聚丙烯 PP占 50% ,
辅料锯末占 40% ,
填料玻璃纤维粉占 6%,
添加剂顺丁烯二酸酐酸占 4%,
将上述主料、 辅料、 填料、 添加剂按比例放入混料机中, 加温进行揉和处 理, 用挤出机挤出成为大小均匀的球状塑料颗粒, 作为生产型材本体内芯的原 料备用, 塑料颗粒的球径为 3mm。
步骤三、 通过共挤设备生产线生产型材本体:
共挤设备生产线包括两大部分, 第一部分为单螺杆或双螺杆的挤出机, 挤 出机内部安装有共挤模具, 共挤模具是套层的模具, 第二部分是冷却成型设 将步骤二加工好的用于生产型材本体内芯的原料放入挤出机的一个料斗 中, 同时将与主料材质相同的塑料 (新塑料) 作为防护膜层原料放入挤出机的 另一个料斗中, 防护膜层原料是聚丙烯 PP (Polypropylene)材质的新塑料 (纯 塑料) , 启动挤出机, 利用共挤模具以共同挤压方式对热熔的内芯原料和防护 膜层原料进行挤压, 同步完成内芯 1与防护膜层 2的挤出加工, 内芯 1与防护 膜层 2在共同挤压过程中, 由于热塑性能一致, 从而紧密结合成为一体如图 1、 图 2所示, 优点是结合牢固、 强度大、 隔音、 保温性能好、 气密性能好、 防水, 经过冷却成型设备冷却定型, 构成了型材本体 3。
步骤四、 覆膜工序:
覆膜工序就是为型材本体 3附着装饰层 4、 5如图 3、 图 4所示, 型材本体 3的覆膜面是室外面和室内面。 本实施例中, 装饰层 4、 5由铝箔构成,
在铝箔上涂上粘结剂, 将铝箔放在覆膜机工位上, 将型材本体 3放在覆膜 机入口端的滑道上, 在传送带的驱动下, 型材本体 3进入覆膜机, 通过覆膜机 热熔, 铝箔与型材本体粘合, 出来成为成品如图 5、 6所示。
实施例二
本发明是一种铝塑木制纤维复合型材的生产方法, 包括以下步骤: 步骤一、 备料:
(1)选用聚乙烯 PE (Polyethylene)材质的废旧塑料作为主料, 主料可以是 回收的塑料瓶、 塑料筒、 塑料杯等塑料容器, 其材质都是聚乙烯 PE
(Polyethylene) , 将上述的塑料瓶、 塑料筒、 塑料杯用破碎机破碎, 用挤出机 挤出成为大小均匀的球状塑料颗粒 (作为主料) 备用, 塑料颗粒的球径为 3mm,
(2) 选用植物纤维作为辅料, 植物纤维是竹粉, 用碾压机将竹粉碾压成 50 目粉面,
(3) 购买 400目的矿物质粉作为填料, 矿物质粉是石棉粉,
(4) 选用具有偶联作用的化学试剂作为添加剂, 添加剂是顺丁烯二酸酐酸 (俗称 MSA) 。
步骤二、 混料: 各原料按重量百分比的配比为:
主料聚乙烯 PE占 55% ,
辅料竹粉占 38% ,
填料石棉粉占 5%,
添加剂顺丁烯二酸酐酸占 2%,
将上述主料、 辅料、 填料、 添加剂按比例放入混料机中, 加温进行揉和处 理, 用挤出机挤出成为大小均匀的球状塑料颗粒, 作为生产型材本体内芯的原 料备用, 塑料颗粒的球径为 4mm。
步骤三、 通过共挤设备生产线生产型材本体:
共挤设备生产线包括两大部分,
第一部分为单螺杆或双螺杆的挤出机, 挤出机内部安装有共挤模具, 共挤 模具是套层的模具, 第二部分是冷却成型设备,
将步骤二加工好的用于生产型材本体内芯的原料放入挤出机的一个料斗 中, 同时将与主料材质相同的塑料 (新塑料) 作为防护膜层原料放入挤出机的 另一个料斗中, 防护膜层原料是聚乙烯 PE (Polyethylene)材质的新塑料 (纯 塑料) , 启动挤出机, 利用共挤模具以共同挤压方式对热熔的内芯原料、 防护 膜层原料进行挤压, 同步完成内芯 1与防护膜层 2的挤出加工, 内芯 1与防护 膜层 2在共同挤压过程中, 由于热塑性能一致, 从而紧密结合成为一体如图 1、 图 2所示, 优点是结合牢固、 强度大、 隔音、 保温性能好、 气密性能好、 防水, 经过冷却成型设备冷却定型, 构成了型材本体 3。
步骤四、 覆膜工序: 覆膜工序就是为型材本体 3附着装饰层 4、 5如图 3、 图 4所示, 型材本体 3的覆膜面可以是室外面和室内面。 本实施例中, 装饰层 4、 5由铝箔构成。
在铝箔上涂上粘结剂, 将铝箔放在覆膜机工位上, 将型材本体 3放在覆膜 机入口端的滑道上, 在传送带的驱动下, 型材本体 3进入覆膜机, 通过覆膜机 热熔, 铝箔与型材本体 3粘合, 出来成为成品如图 5、 图 6所示。
实施例三
本发明是一种铝塑木制纤维复合型材的生产方法, 包括以下步骤: 步骤一、 备料:
(1)选用高密度聚乙烯 (HDPE ) 材质的废旧塑料作为主料, 主料可以是回 收的塑料瓶、 塑料筒、 塑料杯等塑料容器, 其材质都是高密度聚乙烯
(HDPE ) , 将上述的塑料瓶、 塑料筒、 塑料杯用破碎机破碎, 用挤出机挤出成 为大小均匀的球状塑料颗粒 (作为主料) 备用, 塑料颗粒的球径为 4mm,
(2) 选用植物纤维作为辅料, 植物纤维是亚麻, 用碾压机将亚麻碾压成 60 目粉面,
(3) 购买 500目的矿物质粉作为填料, 矿物质粉是云母粉,
(4) 选用具有偶联作用的化学试剂作为添加剂, 添加剂是顺丁烯二酸酐 酸。
步骤二、 混料: 各原料按重量百分比的配比为,
主料高密度聚乙烯占 30% ,
辅料亚麻占 38% ,
填料云母粉占 30%,
添加剂是顺丁烯二酸酐酸占 2%,
将上述主料、 辅料、 填料、 添加剂按比例放入混料机中, 加温进行揉和处 理, 用挤出机挤出成为大小均匀的球状塑料颗粒, 作为生产型材本体内芯的原 料备用, 塑料颗粒的球径为 5mm。
步骤三、 通过共挤设备生产线生产型材本体:
共挤设备生产线包括两大部分,
第一部分为单螺杆或双螺杆的挤出机, 挤出机内部安装有共挤模具, 共挤 模具是套层的模具, 第二部分是冷却成型设备,
将步骤二加工好的用于生产型材本体内芯的原料放入挤出机的一个料斗 中, 同时将与主料材质相同的塑料 (新塑料) 作为防护膜层原料放入挤出机的 另一个料斗中, 防护膜层原料是高密度聚乙烯 (HDPE) 材质的新塑料 (纯塑 料) , 启动挤出机, 利用共挤模具以共同挤压方式对热熔的内芯原料、 防护膜 层原料进行挤压, 同步完成内芯 1与防护膜层 2的挤出加工, 内芯 1与防护膜 层 2在共同挤压过程中, 由于热塑性能一致, 从而紧密结合成为一体如图 1、 图 2所示, 优点是结合牢固、 强度大、 隔音、 保温性能好、 气密性能好、 防 水, 经过冷却成型设备冷却定型, 构成了型材本体 3。
步骤四、 覆膜工序:
覆膜工序就是为型材本体 3附着装饰层 4、 5如图 3、 图 4所示, 型材本体 3的覆膜面是室外面和室内面。 本实施例中, 装饰层 4、 5由木紋薄膜构成。
在木紋薄膜上涂上粘结剂, 将木紋薄膜放在覆膜机工位上, 将型材本体 3 放在覆膜机入口端的滑道上, 在传送带的驱动下, 型材本体 3进入覆膜机, 通 过覆膜机热熔, 木紋薄膜与型材本体 3粘合, 出来成为成品如图 5、 图 6所 实施例四
本发明是一种铝塑木制纤维复合型材的生产方法, 包括以下步骤: 步骤一、 备料:
(1) 选用聚氯乙烯 PVC (Polyvinylchloride)材质的废旧塑料作为主料, 主料可以是回收的塑料瓶、 塑料筒、 塑料杯等塑料容器, 其材质都是聚氯乙烯 PVC (Polyvinylchloride) , 将上述的塑料瓶、 塑料筒、 塑料杯用破碎机破 碎, 用挤出机挤出成为大小均匀的球状塑料颗粒 (作为主料) 备用, 塑料颗粒 的球径为 4mm,
(2) 选用植物纤维作为辅料, 植物纤维是竹粉和锯末混合物, 两者的重量 百分比为各占 50%, 用碾压机将竹粉和锯末混合物碾压成 70目粉面,
(3) 购买 800目的矿物质粉作为填料, 矿物质粉是白垩粉,
(4) 选用具有偶联作用的化学试剂作为添加剂, 添加剂是顺丁烯二酸酐 酸。
步骤二、 混料: 各原料按重量百分比的配比为,
主料聚氯乙烯占 45% ,
辅料竹粉和锯末混合物占 45% ,
填料白垩粉占 6%,
添加剂顺丁烯二酸酐酸占 4%,
将上述主料、 辅料、 填料、 添加剂按比例放入混料机中, 加温进行揉和处 理, 用挤出机挤出成为大小均匀的球状塑料颗粒, 作为生产型材本体内芯的原 料备用, 塑料颗粒的球径为 6mm。
步骤三、 通过共挤设备生产线生产型材本体: 共挤设备生产线包括两大部分, 第一部分为单螺杆或双螺杆的挤出机, 挤 出机内部安装有共挤模具, 共挤模具是套层的模具, 第二部分是冷却成型设 将步骤二加工好的用于生产型材本体内芯的原料放入挤出机的一个料斗 中, 同时将与主料材质相同的塑料 (新塑料) 作为防护膜层原料放入挤出机的 另一个料斗中, 防护膜层原料是聚氯乙烯 PVC材质的新塑料 (纯塑料) , 启动 挤出机, 利用共挤模具以共同挤压方式对热熔的内芯原料、 防护膜层原料进行 挤压, 同步完成内芯 1与防护膜层 2的挤出加工, 内芯 1与防护膜层 2在共同 挤压过程中, 由于热塑性能一致, 从而紧密结合成为一体如图 1、 图 2所示, 优点是结合牢固、 强度大、 隔音、 保温性能好、 气密性能好、 防水, 经过冷却 成型设备冷却定型, 构成了型材本体 3。
步骤四、 覆膜工序:
覆膜工序就是为型材本体 3附着装饰层 4、 5如图 3、 图 4所示, 型材本体 3的覆膜面是室外面和室内面。 本实施例中, 装饰层 4、 5由木紋薄膜构成, 在 木紋薄膜上涂上粘结剂, 将木紋薄膜放在覆膜机工位上, 将型材本体放在覆膜 机入口端的滑道上, 在传送带的驱动下, 型材本体 3进入覆膜机, 通过覆膜机 热熔, 木紋薄膜与型材本体 3粘合, 出来成为成品如图 5、 图 6所示,
实施例五
本发明是一种铝塑木制纤维复合型材的生产方法, 包括以下步骤: 步骤一、 备料:
(1)选用聚乙烯 PE (Polyethylene)材质的废旧塑料或新塑料作为主料, 废 旧塑料可以是回收的塑料瓶、 塑料筒、 塑料杯等塑料容器, 其材质都是聚乙烯 PE (Polyethylene) , 将上述的塑料瓶、 塑料筒、 塑料杯用破碎机破碎, 用挤 出机挤出成为大小均匀的球状塑料颗粒 (作为主料) 备用, 塑料颗粒的球径为 3 mm,
(2) 选用植物纤维作为辅料, 植物纤维是稻草粉, 用碾压机将稻草粉碾压 成 80目粉面,
(3) 购买 600目的矿物质粉作为填料, 矿物质粉是滑石粉,
(4) 选用具有偶联作用的化学试剂作为添加剂, 添加剂是顺丁烯二酸酐 酸。
步骤二、 混料: 各原料按重量百分比的配比为,
主料聚乙烯 PE占 40% ,
辅料稻草粉占 46% ,
填料滑石粉占 10%,
添加剂顺丁烯二酸酐酸占 4%, 将上述主料、 辅料、 填料、 添加剂按比例放入混料机中, 加温进行揉和处 理, 用挤出机挤出成为大小均匀的球状塑料颗粒, 作为生产型材本体内芯的原 料备用, 塑料颗粒的球径为 4mm。
步骤三、 通过共挤设备生产线生产型材本体:
共挤设备生产线包括两大部分,
第一部分为单螺杆或双螺杆的挤出机, 挤出机内部安装有共挤模具, 共挤 模具是套层的模具, 第二部分是冷却成型设备,
将步骤二加工好的用于生产型材本体内芯的原料放入挤出机的一个料斗 中, 同时将与主料材质相同的塑料 (新塑料) 作为防护膜层原料放入挤出机的 另一个料斗中, 防护膜层原料是聚乙烯 PE (Polyethylene)材质的新塑料 (纯 塑料) , 启动挤出机, 利用共挤模具以共同挤压方式对热熔的内芯原料和防护 膜层原料进行挤压, 同步完成内芯 1与防护膜层 2的挤出加工, 内芯 1与防护 膜层 2在共同挤压过程中, 由于热塑性能一致, 从而紧密结合成为一体如图 1、 图 2所示, 优点是结合牢固、 强度大、 隔音、 保温性能好、 气密性能好、 防水, 经过冷却成型设备冷却定型, 构成了型材本体 3。

Claims

权 利 要 求 书
1.一种铝塑木制纤维复合型材, 包括有内芯, 内芯由矿物质、 植 物纤维、 添加剂以及单一种类的废旧塑料复合构成, 其特征是: 内芯 的外表面设置有防护膜层, 防护膜层将内芯的外表面完全包裹, 防护 膜层由单一种类的新塑料薄膜构成,防护膜层的塑料种类与内芯的塑 料种类相同。
2. 如权利要求 1所述的一种铝塑木制纤维复合型材,其特征是: 所述防护膜层的外侧粘贴有装饰层。
3. 如权利要求 2所述的一种铝塑木制纤维复合型材,其特征是: 所述装饰层由铝箔构成。
4. 如权利要求 2所述的一种铝塑木制纤维复合型材,其特征是: 所述装饰层由木紋薄膜构成。
5. 如权利要求 2所述的一种铝塑木制纤维复合型材,其特征是: 所述装饰层由薄木板构成。
6.权利要求 1所述的铝塑木制纤维复合型材的生产方法,包括以 下步骤:
步骤一、 备料:
(1)选用废旧塑料或新塑料作为主料, 主料是聚丙烯、 聚乙烯、 聚氯乙烯、 高密度聚乙烯中的任一一种,
(2) 选用植物纤维作为辅料, 用碾压机将植物纤维碾压成 40-80 目粉面, (3) 购买 300-800目的矿物质粉作为填料,
(4) 选用具有偶联作用的化学试剂作为添加剂,
步骤二、 混料: 各原料按重量百分比的配比为,
主料占 30-55% ,
辅料占 38-55% ,
填料占 5-30%,
添加剂占 2-6%,
将上述主料、 辅料、 填料、 添加剂按比例放入混料机中, 加温进 行揉和处理, 加工成颗粒状, 作为生产型材本体内芯的原料备用; 步骤三、 通过共挤设备生产线生产型材本体:
将步骤二加工好的用于生产型材本体内芯的原料放入挤出机的 一个料斗中,同时将与主料材质相同的塑料而且是新塑料作为防护膜 层原料放入挤出机的另一个料斗中, 启动挤出机, 利用共挤模具以共 同挤压方式对热熔的内芯原料、 防护膜层原料进行挤压, 同步完成内 芯与防护膜层的挤出加工, 内芯与防护膜层在共同挤压的过程中, 由 于热塑性能一致, 从而紧密结合成为一体, 经过冷却成型设备冷却定 型, 构成了型材本体。
7、 如权利要求 6所述的铝塑木制纤维复合型材的生产方法, 其 特征是: 所述步骤三完成后, 继续执行步骤四、 覆膜工序:
在铝箔或木紋薄膜上涂上粘结剂,将铝箔或木紋薄膜放在覆膜机 工位上, 将步骤 3生产的型材本体放在覆膜机入口端的滑道上, 在传 送带的驱动下, 型材本体进入覆膜机, 通过覆膜机热熔, 铝箔或木紋 薄膜与型材本体粘合, 出来成为具有装饰层的产品。
8、 如权利要求 6所述的铝塑木制纤维复合型材的生产方法, 其 特征是: 所述植物纤维是树皮、 竹皮、 锯末、 稻草、 亚麻、 苎麻、 杆 茎中的一种或一种以上的组合。
9、 如权利要求 6所述的铝塑木制纤维复合型材的生产方法, 其 特征是:
所述矿物质粉是石灰粉、 石棉粉、 云母粉、 白垩粉、 滑石粉、 碳酸 钙或玻璃纤维粉中的一种或两种。
PCT/CN2012/073379 2011-10-14 2012-03-31 铝塑木制纤维复合型材及其生产方法 WO2013053218A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PL12839630T PL2783850T3 (pl) 2011-10-14 2012-03-31 Profil kompozytowy wykonany z włókien drzewnych, aluminium i tworzywa sztucznego oraz sposób wytwarzania tego profilu
ES12839630.6T ES2641691T3 (es) 2011-10-14 2012-03-31 Perfil de material compuesto de fibras de madera-aluminio-plástico y procedimiento de producción del mismo
CA 2851897 CA2851897A1 (en) 2011-10-14 2012-03-31 Wood-fiber aluminum-plastic composite profile and producing method thereof
EP12839630.6A EP2783850B1 (de) 2011-10-14 2012-03-31 Holzfaser-aluminium-kunststoff-verbundprofil und herstellungsverfahren dafür
DE201211004295 DE112012004295T5 (de) 2011-10-14 2012-03-31 Verbundprofil aus Aluminium, Kunststoff und Holzfasern, und dessen Herstellungsverfahren
RU2014119248A RU2607653C2 (ru) 2011-10-14 2012-03-31 Композитный профиль и способ его изготовления
US14/252,509 US20140227485A1 (en) 2011-10-14 2014-04-14 Composite profile and producing method thereof
IN3397CHN2014 IN2014CN03397A (zh) 2011-10-14 2014-05-06

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2011203923161U CN202299892U (zh) 2011-10-14 2011-10-14 铝塑木制纤维复合型材
CN201110313088.9 2011-10-14
CN2011103130889A CN102441974A (zh) 2011-10-14 2011-10-14 铝塑木制纤维复合型材的生产方法
CN201120392316.1 2011-10-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/252,509 Continuation US20140227485A1 (en) 2011-10-14 2014-04-14 Composite profile and producing method thereof

Publications (1)

Publication Number Publication Date
WO2013053218A1 true WO2013053218A1 (zh) 2013-04-18

Family

ID=48081379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073379 WO2013053218A1 (zh) 2011-10-14 2012-03-31 铝塑木制纤维复合型材及其生产方法

Country Status (9)

Country Link
US (1) US20140227485A1 (zh)
EP (1) EP2783850B1 (zh)
CA (1) CA2851897A1 (zh)
DE (1) DE112012004295T5 (zh)
ES (1) ES2641691T3 (zh)
IN (1) IN2014CN03397A (zh)
PL (1) PL2783850T3 (zh)
RU (1) RU2607653C2 (zh)
WO (1) WO2013053218A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10196180B2 (en) * 2015-04-14 2019-02-05 Medway Plastics Corporation Receptacle
EP3081733A1 (en) * 2015-04-14 2016-10-19 Deceuninck nv Door element or wall element
US20160304247A1 (en) * 2015-04-14 2016-10-20 Medway Plastics Corporation Receptacle with shield
WO2019099742A1 (en) * 2017-11-17 2019-05-23 Medway Plastics Corporation Receptacle
US11969930B2 (en) 2020-03-16 2024-04-30 Bank Of America, N.A., As Administrative Agent Extrusion process and assembly for producing a roof ditch molding having a bright film exterior layer
CN112223774A (zh) * 2020-09-11 2021-01-15 山东高速交通装备有限公司 热塑性塑料玻纤挤出复合轨枕制备方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144495A (ja) * 2000-11-16 2002-05-21 Idemitsu Unitech Co Ltd 積層体、およびこれを用いた建築用資材、梱包用副資材、自動車用部材、パーティション
CN2791209Y (zh) * 2005-05-08 2006-06-28 高红 绿色环保空心塑木门窗型材
CN1966582A (zh) * 2006-10-10 2007-05-23 新疆屯河型材有限公司 木塑复合型材
CN101487561A (zh) * 2008-01-18 2009-07-22 王广武 铝复合木塑共挤型材

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4296162A (en) * 1978-03-14 1981-10-20 Jean Raymond W Wallcoverings
US5591496A (en) * 1990-11-20 1997-01-07 Linpac Plastics International Limited Method of manufacturing composite sheet materials
DE4213951A1 (de) * 1992-04-29 1993-11-04 Beyer Ind Prod Gmbh Verfahren zur herstellung von formteilen
US6379786B1 (en) * 1997-11-28 2002-04-30 Bridgestone Corporation Ligneous finishing material
ES2168045B2 (es) * 1999-11-05 2004-01-01 Ind Aux Es Faus Sl Nuevo suelo laminado directo.
SE525657C2 (sv) * 2002-04-08 2005-03-29 Vaelinge Innovation Ab Golvskivor för flytande golv framställda av åtminstone två olika materialskikt samt halvfabrikat för tillverkning av golvskivor
US8266856B2 (en) * 2004-08-02 2012-09-18 Tac Technologies, Llc Reinforced structural member and frame structures
US7473722B2 (en) * 2004-11-08 2009-01-06 Certain Teed Corp. Polymer-fiber composite building material with bulk and aesthetically functional fillers
CA2626992A1 (en) * 2005-10-24 2007-05-03 Arkema Inc. Pvc/wood composite
DE202007000266U1 (de) * 2007-01-09 2007-03-15 Herr, Jörg, Dipl.-Ing. Mehrschichtplatte mit Recyclatkern
EP2247658A4 (en) * 2008-02-29 2015-04-22 Saco Polymers Inc REINFORCING ACCESSORIES FOR COMPOSITE MATERIALS
US20090286044A1 (en) * 2008-05-14 2009-11-19 Crostic Jr William H Composite Wood Products and Methods for Manufacturing the Same
EP2376283B1 (en) * 2008-12-19 2017-07-05 Fiber Composites, LLC Wood-plastic composites utilizing ionomer capstocks and methods of manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144495A (ja) * 2000-11-16 2002-05-21 Idemitsu Unitech Co Ltd 積層体、およびこれを用いた建築用資材、梱包用副資材、自動車用部材、パーティション
CN2791209Y (zh) * 2005-05-08 2006-06-28 高红 绿色环保空心塑木门窗型材
CN1966582A (zh) * 2006-10-10 2007-05-23 新疆屯河型材有限公司 木塑复合型材
CN101487561A (zh) * 2008-01-18 2009-07-22 王广武 铝复合木塑共挤型材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2783850A4

Also Published As

Publication number Publication date
EP2783850A1 (de) 2014-10-01
ES2641691T3 (es) 2017-11-13
IN2014CN03397A (zh) 2015-07-03
DE112012004295T5 (de) 2014-08-28
EP2783850B1 (de) 2017-05-24
PL2783850T3 (pl) 2017-10-31
US20140227485A1 (en) 2014-08-14
EP2783850A4 (de) 2016-01-06
CA2851897A1 (en) 2013-04-18
RU2014119248A (ru) 2015-11-20
RU2607653C2 (ru) 2017-01-10

Similar Documents

Publication Publication Date Title
WO2013053218A1 (zh) 铝塑木制纤维复合型材及其生产方法
CN102441974A (zh) 铝塑木制纤维复合型材的生产方法
CN107297940B (zh) 一种集成墙板的生产工艺
US20170136735A1 (en) Engineered Plank and its Manufacturing Method
CN102746681A (zh) 一种以酒糟作为增强相的木塑材料及其制作方法
CN101746034B (zh) 一种三层共挤复合型材的制作方法
CN103722861B (zh) 一种表面覆金属膜的pvc型材的制备方法
CN102086356B (zh) 实木复合地板用粘接膜
CN103753935B (zh) 一种金属复合板工艺
CN1273174A (zh) 一种夹层复合板材制作方法
CN104057678A (zh) 一种高耐磨防水防潮的复合板及其制备方法和用途
CN111438959A (zh) 一种新型wpc地板生产成型工艺
CN102582186A (zh) 一种空心玻璃微珠塑料复合建筑模板及其制备方法
CN103709479A (zh) 一种高刚性和高弯曲强度的铝塑复合板材及其制备方法
WO2016082066A1 (zh) 高耐磨隔音木塑装饰板及其连续化制造方法
CN104890340B (zh) 一种户外高耐候性高强度共挤塑木复合地板及其制造工艺
CN105415839A (zh) 一种聚氯乙烯共挤木塑板及其制备方法
CN109971074A (zh) 一种多层共挤出复合型中空玻璃暖边间隔条及其制备方法
CN202753533U (zh) 双层共挤塑木复合材料
CN102504380B (zh) 有机分子插入型天然纤维复合塑料的制备方法
CN103381616B (zh) 一种木塑复合板、制备工艺及其设备
CN111993728A (zh) 通过无胶热帖的碳晶饰面板及其加工工艺
CN100402790C (zh) 绿色环保空心复合铝箔型材的制作方法
CN103660457A (zh) 一种铝木塑复合装饰一体板及其制备方法
CN102321293B (zh) 一种树脂基复合材料替代纸的制法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2851897

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1120120042956

Country of ref document: DE

Ref document number: 112012004295

Country of ref document: DE

REEP Request for entry into the european phase

Ref document number: 2012839630

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012839630

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014119248

Country of ref document: RU

Kind code of ref document: A