WO2013051560A1 - コモンレール式燃料噴射システム - Google Patents

コモンレール式燃料噴射システム Download PDF

Info

Publication number
WO2013051560A1
WO2013051560A1 PCT/JP2012/075515 JP2012075515W WO2013051560A1 WO 2013051560 A1 WO2013051560 A1 WO 2013051560A1 JP 2012075515 W JP2012075515 W JP 2012075515W WO 2013051560 A1 WO2013051560 A1 WO 2013051560A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel injection
pressure
injector
common rail
Prior art date
Application number
PCT/JP2012/075515
Other languages
English (en)
French (fr)
Inventor
秀司 鈴木
林 耕一
森 石井
清広 下川
大 中島
Original Assignee
臼井国際産業株式会社
日野自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臼井国際産業株式会社, 日野自動車株式会社 filed Critical 臼井国際産業株式会社
Priority to CA2850692A priority Critical patent/CA2850692C/en
Priority to AU2012319567A priority patent/AU2012319567A1/en
Priority to US14/349,199 priority patent/US20140283790A1/en
Priority to CN201280048672.9A priority patent/CN103890371A/zh
Priority to EP12838429.4A priority patent/EP2765301A4/en
Publication of WO2013051560A1 publication Critical patent/WO2013051560A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0275Arrangement of common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations

Definitions

  • the present invention relates to a common rail type injection system for a diesel internal combustion engine, and more particularly to a common rail type fuel injection system used in a diesel internal combustion engine for accumulating fuel in a common rail and injecting the fuel into each cylinder.
  • a common rail fuel injection system for a diesel internal combustion engine is an electromagnetically controlled fuel injection system in which high pressure fuel is accumulated in a common rail by a high pressure supply pump, and the high pressure fuel accumulated in the common rail is injected into each cylinder.
  • the structure includes an injector provided for each cylinder of a diesel internal combustion engine, a common rail that accumulates the pressure of fuel supplied to the injector, a high-pressure fuel supply pump that supplies high-pressure fuel to the common rail, and a fuel that communicates the common rail with the injector.
  • An injection pipe and a fuel supply pipe communicating with the common rail and the high-pressure supply pump are provided.
  • Patent Document 1 A typical example is shown in FIG.
  • adjacent injectors 21 are connected by a pipe 26, the inside of the pipe 26 functions as a sub-accumulation chamber, and as a means for connecting the adjacent injectors 21 by a pipe 26, What is the connection portion with the fuel injection pipe 23 in the high-pressure flow path for introducing high-pressure fuel into the injector 21 from the common rail 22 through the fuel injection pipe 23 or in the high-pressure flow path in the injector 21 where pressure fluctuations due to fuel injection are transmitted?
  • Another connecting portion is provided, and the pipe 26 is connected to this connecting portion, and the internal volume of the common rail 22, the fuel injection pipe 23 and the injector 21 is secured by connecting to the same connecting portion of the injector of the adjacent cylinder. Without increasing the inner diameter of the common rail and the fuel injection pipe or increasing the length. It improves fuel injection response (follow-up to the command signal from the in-vehicle CPU) and prevents a pressure drop in the injector due to fuel injection, thereby obtaining a fuel injection system with good response and accurate injection characteristics. is there.
  • the injection valves 2 are respectively arranged corresponding to the combustion chambers of the cylinders of the engine, and determined by turning on and off the electromagnetic valve 3 for injection control. Fuel is injected into the combustion chamber of each cylinder in the order of cylinders, for example, in the order of # 1, # 3, # 4, and # 2. These injection valves 2 are connected to a common rail 5 common to each cylinder via a branch supply pipe 4 having a first fuel passage 14 shown in FIG. Further, high pressure fuel is stored at a predetermined pressure in the pressure accumulating chamber 15 formed in the common rail 5, and the solenoid valve 3 opens the high pressure fuel accumulated in the pressure accumulating chamber 15.
  • the fuel is injected from the injection valve 2 into the combustion chamber of each cylinder of the engine 1 through the branch supply pipe 4. Furthermore, as a pulsation reducing engine, adjacent ones of the branch supply pipes 4 are connected by connection pipes 61, 62, 63, and the rigidity of the branch supply pipe 4 is increased. Therefore, a fuel injection device that can reduce the vibration amplitude of the branch supply pipe 4 as a narrow pipe has been proposed.
  • the pressure accumulation type fuel injection device proposed in FIG. 2 of Patent Document 3 stores the fuel pressurized by the high pressure fuel pump 1 in the high pressure pressure accumulator 3 that is connected to the fuel passage 10a and common to each cylinder.
  • a switching valve (first control valve) 5 for switching the fuel injection rate made up of a two-way solenoid valve is provided for each cylinder, and immediately downstream of the switching valve 5.
  • a check valve 32 that allows fuel flow only from the upstream side to the downstream side is provided.
  • a low pressure accumulator (second accumulator) 4 common to the cylinders is connected to the fuel passage 10a downstream of the check valve 32 via a fuel passage 10b branched from the fuel passage 10a.
  • a check valve 6 and a bypass passage that bypasses the check valve 6 are provided in the middle of the branched fuel passage 10b, and an orifice 6a is provided in the bypass passage.
  • the check valve 6 allows fuel flow only from the low pressure accumulator 4 toward the fuel passage 10a. That is, when the fuel pressure in the fuel passage 10a is higher than the fuel pressure in the branched fuel passage 10b, the fuel in the fuel passage 10a flows into the branched fuel passage 10b through the orifice 6a and further flows into the low pressure accumulator 4. By flowing in, the fluctuation of the fuel pressure is suppressed.
  • Patent Documents 1, 2, and 3 it is possible to suppress pressure fluctuations in the injector due to fuel injection by increasing the pressure accumulation volume, and obtain uniform injection pressure characteristics.
  • the structure is complicated and has the disadvantage of increasing the weight of the apparatus.
  • JP 2007-182792 A Japanese Patent Laid-Open No. 10-30521 (see FIG. 10) Japanese Patent Laid-Open No. 2000-161171 (see FIG. 2)
  • the present invention suppresses the pressure fluctuation in the injector due to fuel injection by simple means without further increasing the size of the common rail and the fuel injection pipe, and uniform injection pressure characteristics can be obtained.
  • the purpose is to provide a common rail fuel injection system that can reduce harmful exhaust gas from the engine.
  • the first invention of the present invention is an injector having a fuel inlet provided for each cylinder of a multi-cylinder diesel internal combustion engine, a common rail for accumulating the pressure of fuel supplied to the injector, and a high pressure for supplying high-pressure fuel to the common rail.
  • a supply pump Provided with a supply pump, a fuel supply pipe that communicates with the common rail and the high-pressure supply pump, and a fuel injection pipe that communicates with the pressure supply port provided on the common rail and communicates with the pressure supply port provided on the injector and the common rail in the common rail fuel injection system, the fuel injection pipe communicates at least three groups or more injectors in series, number of units N P of the pressure supply ports provided in the common rail is less than the number N I of the injector, and each Supply of high-pressure fuel to the cylinder injectors through two fuel injection pipes
  • a common rail type fuel injection system characterized by dividing.
  • a second invention of the present invention is a common rail fuel injection system, wherein the multi-cylinder diesel internal combustion engine in the first invention is a diesel internal combustion engine having three or more cylinders.
  • a third invention of the present invention is a common rail fuel injection system, wherein the multi-cylinder diesel internal combustion engine according to the first or second invention is a diesel internal combustion engine including three or more injectors.
  • the relationship between the number of pressure supply ports provided in the common rail and the number of injectors in the first to third aspects is the number N of injectors as shown in the following equation (1).
  • divisor of I a common rail type fuel injection system where the number of doubling the number of obtained by dividing the injector number N I about the number of 3 or more, characterized by comprising a number of units N P of the pressure supply port.
  • the pressure pulsation generated by injection is suppressed as compared with the conventional structure, the pressure drop during injection is reduced, and the average value of pressure during the injection period (hereinafter referred to as average injection pressure value) is obtained.
  • average injection pressure value the average value of pressure during the injection period
  • the peak pressure acting on the injection pipe can be reduced, it is advantageous in terms of the internal pressure fatigue strength performance of the injection pipe, the set pressure of the common rail system can be increased, and the amount of smoke emission can be suppressed.
  • the common rail system pump, common rail, injector
  • an effect of improving fuel consumption can be obtained along with the above action.
  • FIG. 4 is a diagram showing a pressure change in a fuel injection pipe during fuel injection
  • (a) is a diagram showing an operating state of an injector needle valve at a rotation angle of a crankshaft
  • (b) is a diagram showing an operation state of the fuel injection pipe in the state of (a).
  • FIG. 1 is a schematic diagram illustrating a fuel injection system according to a first embodiment. It is the schematic explaining the fuel-injection system which concerns on Example 2.
  • FIG. 6 is a schematic diagram illustrating a fuel injection system according to Embodiment 3.
  • FIG. 10 is a schematic diagram illustrating a fuel injection system according to a fourth embodiment.
  • FIG. 10 is a schematic diagram illustrating a fuel injection system according to a fifth embodiment.
  • FIG. 10 is a schematic diagram illustrating a fuel injection system according to a sixth embodiment.
  • FIG. 10 is a schematic diagram illustrating a fuel injection system according to a seventh embodiment.
  • FIG. 10 is a schematic diagram illustrating a fuel injection system according to an eighth embodiment. It is the schematic explaining the fuel-injection system which concerns on Example 9.
  • FIG. It is the schematic explaining the fuel-injection system which concerns on Example 10.
  • FIG. It is the schematic explaining the fuel-injection system which concerns on Example 11.
  • FIG. 10 is a schematic diagram illustrating a fuel injection system according to a twelfth embodiment. It is the schematic explaining the fuel-injection system which concerns on Example 13.
  • FIG. It is the schematic explaining the fuel-injection system which concerns on Example 14.
  • FIG. FIG. 16 is a schematic diagram illustrating a fuel injection system according to a fifteenth embodiment.
  • FIG. 16 is a schematic diagram illustrating a fuel injection system according to Example 16.
  • FIG. 18 is a schematic diagram illustrating a fuel injection system according to Example 17.
  • FIG. 19 is a schematic diagram illustrating a fuel injection system according to an eighteenth embodiment.
  • FIG. 25 is a schematic diagram for explaining a fuel injection system according to a nineteenth embodiment.
  • FIG. 22 is a schematic diagram illustrating a fuel injection system according to a twentieth embodiment.
  • FIG. 22 is a schematic diagram illustrating a fuel injection system according to a twenty-first embodiment. It is the schematic of the fuel-injection system which concerns on a prior art example. It is the schematic of the fuel-injection system shown by patent document 1 (FIG. 2).
  • FIG. 1 is a schematic diagram illustrating a fuel injection system according to the present invention, which corresponds to a 6-cylinder diesel internal combustion engine.
  • 1 is an injector
  • 2 is a common rail
  • 2a and 2b are pressure supply ports
  • 3 is a fuel injection pipe
  • 3a and 3b are also fuel injection pipes, and communicate with the respective pressure supply ports 2a and 2b of the common rail.
  • 4 is a connection connector
  • 5 is a connection nut
  • 11 is a fuel supply pipe
  • 12 is a high-pressure supply pump
  • 10 is a fuel injection system of the present invention.
  • the number N I of the injector 1 at 6, several of twice the number of pressure supply ports divided by the number N divisor of 6 of 3 or more of a divisor of the I is a case where the number of units N p.
  • the fuel injection pipes 3a and 3b communicate with the pressure supply ports 2a and 2b of the common rail 2, respectively, and supply high-pressure fuel to the fuel injection pipe 3 that communicates the six injectors 1 in series.
  • the number of units N p of the pressure supply port summarized the relation of the number N I of the injector 1 becomes a relationship shown in the following formula (2), in the actual multi-cylinder diesel engine (8 cylinders from 3 cylinder), the The relationship is shown in Table 1. Even in the case of more cylinders, the relationship of formula (2) can be applied.
  • each injector 1 is supplied with fuel from two systems, a fuel supply system A through the fuel injection pipe 3a and a fuel supply system B through the fuel injection pipe 3b, before the fuel is sucked into the injector 1.
  • the high-pressure fuel is supplied in the form of mixing at the connecting connector 4 as shown in FIG.
  • the fuel pressure after mixing becomes an average pressure of the two systems, resulting in a reduction in pressure fluctuation (pulsation).
  • the mixing method of the fuel supplied from the two paths must be performed before the fuel is injected into the cylinder as seen in the fuel injection system 10 of FIG. Therefore, as shown in FIG. 1, before being supplied to the injector 1, a method of simultaneously connecting and mixing the fuel using a component such as a connecting connector 4 that connects the fuel paths, or two fuels to the injector.
  • a method of mixing the fuel in the injector by providing a suction port and communicating the fuel injection pipe of each fuel path to each fuel inlet is conceivable.
  • FIG. 7 is a schematic view of the fuel injection system 10a according to the first embodiment (not shown in the following drawings when the same devices such as a fuel supply pipe and a high-pressure supply pump are used).
  • 1 is an injector
  • 2 is a common rail
  • 2a and 2b are pressure supply ports provided in the common rail 2
  • 3a and 3b are fuel injection pipes
  • 4 is a connection connector
  • 5 is a connection nut.
  • the high pressure fuel is supplied to the six injectors 1 connected in series through the fuel injection pipes 3a and 3b communicating with each other.
  • the fuel injection system 10a of the first embodiment the fuel is supplied to each injector 1 from the fuel supply system A sent through the pressure supply port 2a-fuel injection pipe 3a and the fuel sent through the pressure supply port 2b-fuel injection pipe 3b.
  • Fuel which is sent to the connecting connector 4 from two directions of the supply system B and whose pressure is averaged is supplied to the injector 1 connected by the connecting nut 5 and injected into the cylinder.
  • FIG. 28 As a conventional example, the fuel injection system shown in FIG. 28 was used.
  • 20A is a conventional fuel injection system
  • 21 is an injector
  • 22 is a common rail
  • 23 is a fuel injection pipe
  • a fuel supply pipe, a high-pressure supply pump, etc. are not shown.
  • a fuel injection system 20A shown in FIG. 28 is a fuel injection system corresponding to a six-cylinder diesel internal combustion engine as in the first embodiment, and supplies six high-pressure fuels to each of six injectors 21 from a common rail 22.
  • the fuel injection pipes 23 communicate with the six pressure supply ports of the common rail.
  • Fig. 2 plots the engine crank angle (Crank Angle) on the horizontal axis, (a) plots the operating amount of the injector needle valve, and (b) plots the pressure in the injection pipe on the vertical axis, and lifts up at a certain crank angle.
  • crank Angle crank angle
  • the conventional example fuel injection system 20A shown in FIG. 28
  • the example 1 of the present invention fuel injection system 10a shown in FIG. 7
  • fuel supply is promoted. It can be seen that the drop and pressure fluctuation can be suppressed.
  • FIG. 3 is a diagram showing the average pressure in the injection pipe before and after fuel injection and during the fuel injection period, and is a comparison between the conventional fuel injection system and the fuel injection system of the first embodiment.
  • the average injection pressure is 95% of the pre-injection pressure in the conventional example, but a pressure as high as 98% can be obtained in the present invention example.
  • Figure 4 is a graph comparing the relationship of the NO x emission and smoke emissions in an actual engine, the combustion with reduced generation of the NO x, with emissions of smoke is reduced by 15% compared with the conventional example, It can be seen that the generation of NO x is suppressed when compared with the same amount of smoke emission.
  • FIG. 5 is a diagram showing the relationship between BSFC (Break Specific Fuel Consumption) fuel consumption and NO x emissions from the index, the combustion conditions for discharging the same amount of NO x, the fuel economy is about 2%, Inventive Example It shows that Example 1 of the present invention is improved.
  • BSFC Band Specific Fuel Consumption
  • the fuel injection system according to the present invention suppresses the pressure pulsation generated by the fuel injection and reduces the peak pressure acting on the fuel injection pipe as compared with the fuel injection system of the conventional structure. Because it becomes possible, the set pressure of the common rail system (high pressure supply pump, common rail, injector) can be increased, which shows a great effect on smoke emission control. Furthermore, since the injection pressure during the injection period can be increased, the injection pressure of the common rail system itself need not be increased more than necessary, and the common rail system (pump, rail, injector) can be downsized. it can.
  • FIG. 8 shows a schematic diagram of a fuel injection system 10b according to the second embodiment.
  • the fuel injection system 10b of the second embodiment of the same six-cylinder diesel internal combustion engine as in Example 1, the number N I also six of features injectors 1, also the pressure supply ports provided in the common rail 2, is the number N p 2
  • the fuel is the same as the ports (2a, 2b), and the fuel in which the pressures of the two fuel supply paths A and B are averaged via the connecting connector 4 is supplied to the injector 1 and injected into the cylinder.
  • the difference from the first embodiment is that fuel is sent from the connecting connector 4 to the injector 1 through the fuel injection pipe 3.
  • the fuel injection pipe 3 By using the fuel injection pipe 3, there is an advantage that the degree of freedom of arrangement of the fuel injection system in the engine room is increased.
  • FIG. 9 shows a schematic diagram of a fuel injection system 10c according to the third embodiment.
  • the fuel injection system 10c of the third embodiment of the same six-cylinder diesel internal combustion engine as in Examples 1 and 2, the number N I also six of features injectors 1, also the pressure supply ports provided in the common rail 2, that number N p Is the same as the two ports (2a, 2b), but two types of fuel are provided in each of the two fuel inlets 6, 6 provided in the injector 1 without using a connecting connector as in the first and second embodiments.
  • fuel is supplied directly from supply paths A and B, pressure is averaged in the injector 1 and injected into the cylinder.
  • the supply of fuel to each injector 1 with respect to x 1 group and x 2 groups injectors divided into each 3 group, the pressure supply port 2a- fuel injection in the x 1 group
  • the fuel is supplied to an injector 1 connected by a connection nut 5 and injected into a target cylinder.
  • the fuel which is sent from the two directions 2 to the connecting connector 4 and whose pressure is averaged, is supplied to the injector 1 connected by the connecting nut 5 and injected into the target cylinder.
  • the injector 1 is of the same type as that of the first embodiment.
  • the number of injectors to which fuel is supplied is halved to three, thereby shortening the fuel stroke and reducing the pressure fluctuation in the fuel injection pipe. Work favorably.
  • FIG. 11 shows a schematic diagram of a fuel injection system according to the fifth embodiment.
  • the fuel injection system 10e of the fifth embodiment is the same type of fuel injection system as that of the fourth embodiment.
  • the supply of fuel to each injector 1 with respect to x 1 group and x 2 groups injectors divided into each 3 group, the pressure supply port 2a- fuel injection in the x 1 group
  • the fuel is supplied to an injector 1 connected by a fuel injection pipe 3 and injected into a target cylinder.
  • the injector 1 is of the same type as that of the second embodiment.
  • the number of injectors to which fuel is supplied is reduced to half and the number of injectors is reduced to half, thereby shortening the fuel supply stroke and changing the pressure in the fuel injection pipe.
  • the difference from the fuel injection system 10d of the fourth embodiment is that the injector 1 is connected to the connection connector 4 via the fuel injection pipe 3.
  • FIG. 12 shows a schematic diagram of a fuel injection system according to the sixth embodiment.
  • the fuel injection system 10f of the sixth embodiment is the same type of fuel injection system as that of the fourth embodiment.
  • the injector 1 is of the same type as that of the third embodiment, and has two fuel inlets 6 and averages the fuel pressure in the injector.
  • the supply of fuel to each injector 1 with respect to x 1 group and x 2 groups injectors divided into each 3 group, a fuel supply system a 1 sent through the pressure supply port 2a- fuel injection pipe 3a in the x 1 group, from two directions of the fuel supply system B 1 sent through the pressure supply port 2b- fuel injection pipe 3b, or two injectors 1
  • the fuel which is sent to the fuel intake port 6 and whose pressure is averaged in the injector 1, is injected into the target cylinder.
  • the fuel is sent from the two directions 2 to the two fuel inlets 6 of the injector 1 and the fuel whose pressure is averaged in the injector 1 is injected into the target cylinder.
  • the number of injectors to which fuel is supplied is halved to three, so that the fuel stroke is short and the pressure variation in the fuel injection pipe is reduced. Work favorably.
  • the fuel injection systems 10d and 10e of the fourth and fifth embodiments are different in that the fuel pressure is averaged inside the injector 1.
  • FIG. 13 shows a schematic diagram of a fuel injection system according to the seventh embodiment.
  • fuel is supplied to each injector 1 from the fuel supply system A sent through the pressure supply port 2a and the fuel injection pipe 3a, and the fuel sent through the pressure supply port 2b and the fuel injection pipe 3b.
  • Fuel which is sent to the connecting connector 4 from two directions of the supply system B and whose pressure is averaged is supplied to the injector 1 connected by the connecting nut 5 and injected into the cylinder.
  • FIG. 14 shows a schematic diagram of a fuel injection system according to the eighth embodiment.
  • the fuel injection system 10h of the eighth embodiment is the same type of fuel injection system as that of the seventh embodiment.
  • High pressure fuel is supplied from three pressure supply ports 2a and 2b provided to three injectors 1 connected in series through fuel injection pipes 3a and 3b communicating with each other.
  • each injector 1 is supplied through a pressure supply port 2a-fuel injection pipe 3a and a fuel supply system B sent through the pressure supply port 2b-fuel injection pipe 3b.
  • the fuel which is sent from the two directions to the connecting connector 4 and whose pressure is averaged, is supplied to the injector 1 connected by the connecting connector 4 and the fuel injection pipe 3 and injected into the cylinder.
  • FIG. 10i of the ninth embodiment is the same type of fuel injection system as the seventh and eighth embodiments.
  • High pressure fuel is supplied from three pressure supply ports 2a and 2b provided to three injectors 1 connected in series through fuel injection pipes 3a and 3b communicating with each other.
  • the injector 1 is of the same type as that of the third embodiment, and has two fuel inlets 6 and averages the fuel pressure in the injector.
  • fuel injection system 10i fuel is supplied to each injector 1 through a pressure supply port 2a-fuel injection pipe 3a and a fuel supply system A sent through a pressure supply port 2b-fuel injection pipe 3b.
  • the high-pressure fuel sent from the two directions is supplied to the injector 1 from the two fuel inlets 6 and the fuel pressure is averaged therein and injected into the cylinder.
  • FIG. 16 shows a schematic diagram of the fuel injection system according to the tenth embodiment.
  • High pressure fuel is supplied from four pressure supply ports 2a and 2b provided to four injectors 1 connected in series through fuel injection pipes 3a and 3b communicating with the respective pressure supply ports 2a and 2b.
  • the fuel is supplied to each injector 1 with the fuel supply system A sent through the pressure supply port 2a-fuel injection pipe 3a and the fuel sent through the pressure supply port 2b-fuel injection pipe 3b.
  • Fuel which is sent to the connecting connector 4 from two directions of the supply system B and whose pressure is averaged is supplied to the injector 1 connected by the connecting nut 5 and injected into the cylinder.
  • the injector 1 is of the same type as that of the first embodiment.
  • FIG. 10k of the eleventh embodiment is the same type of fuel injection system as that of the tenth embodiment.
  • the high-pressure fuel is supplied to the four injectors 1 connected in series through the fuel injection pipes 3a and 3b communicating with each other.
  • the fuel is supplied to each injector 1 with the fuel supply system A sent through the pressure supply port 2a-fuel injection pipe 3a and the fuel sent through the pressure supply port 2b-fuel injection pipe 3b.
  • Fuel that is sent from two directions of the supply system B to the connection connector 4 and whose pressure is averaged is supplied to the injector 1 connected to the connection connector 4 via the fuel injection pipe 3 and injected into the cylinder.
  • the injector 1 is of the same type as that of the second embodiment.
  • FIG. 12 A schematic diagram of a fuel injection system according to Embodiment 12 is shown in FIG.
  • the fuel injection system 101 of the twelfth embodiment is the same type of fuel injection system as that of the tenth embodiment.
  • the high-pressure fuel is supplied to the four injectors 1 connected in series through the fuel injection pipes 3a and 3b communicating with each other.
  • the injector 1 is of the same type as that of the third embodiment, and has two fuel inlets 6 and averages the fuel pressure in the injector.
  • the fuel is supplied to each injector 1 from the fuel supply system A that is sent through the pressure supply port 2a and the fuel injection pipe 3a, and the fuel that is sent through the pressure supply port 2b and the fuel injection pipe 3b.
  • High-pressure fuel sent from two directions of the supply system B is supplied to the injector 1 from two fuel inlets 6, the fuel pressure is averaged therein, and injected into the cylinder.
  • FIG. 19 is a schematic diagram of a fuel injection system according to the thirteenth embodiment.
  • 1 is an injector
  • 2 is a common rail
  • 2a and 2b are pressure supply ports provided in the common rail 2
  • 3a and 3b are fuel injection pipes
  • 4 is a connection connector
  • 5 is a connection nut.
  • High pressure fuel is supplied from five pressure supply ports 2a and 2b provided to five injectors 1 connected in series through fuel injection pipes 3a and 3b communicating with the respective pressure supply ports 2a and 2b.
  • each injector 1 is supplied through a pressure supply port 2a-fuel injection pipe 3a and a fuel supply system B sent through the pressure supply port 2b-fuel injection pipe 3b.
  • the high-pressure fuel is sent to the connecting connector 4 from the two directions, and the fuel whose pressure is averaged in the connecting connector 4 is supplied to the injector 1 connected by the connecting nut 5 and injected into the cylinder.
  • the injector 1 is of the same type as that of the first embodiment.
  • the fuel injection system 10n according to the fourteenth embodiment is a fuel injection system for a five-cylinder diesel internal combustion engine as in the thirteenth embodiment.
  • fuel is supplied to each injector 1 from the fuel supply system A sent through the pressure supply port 2a and the fuel injection pipe 3a, and the fuel sent through the pressure supply port 2b and the fuel injection pipe 3b.
  • High-pressure fuel is sent from two directions of the supply system B to the connection connector 4, and the fuel whose pressure is averaged in the connection connector 4 is supplied from the connection connector 4 to the injector 1 via the fuel injection pipe 3. Is to be injected.
  • the injector 1 is of the same type as that of the second embodiment.
  • the fuel injection system 10o is a fuel injection system for a five-cylinder diesel internal combustion engine as in the thirteenth and fourteenth embodiments.
  • the injector 1 is of the same type as that of the third embodiment, and has two fuel inlets 6 and averages the fuel pressure in the injector.
  • the fuel is supplied to each injector 1 with the fuel supply system A sent through the pressure supply port 2a-fuel injection pipe 3a and the fuel sent through the pressure supply port 2b-fuel injection pipe 3b.
  • High-pressure fuel is supplied from two fuel intake ports 6 of the injector 1 to the injector 1 from two directions of the supply system B, and fuel pressure is averaged therein and injected into the cylinder. .
  • FIG. 22 A schematic diagram of a fuel injection system according to Embodiment 16 is shown in FIG.
  • 1 is an injector
  • 2 is a common rail
  • 2a and 2b are pressure supply ports provided in the common rail 2
  • 3a and 3b are fuel injection pipes
  • 4 is a connection connector
  • 5 is a connection nut
  • 10p is a book It is a fuel-injection system of an Example.
  • High pressure fuel is supplied from eight pressure supply ports 2a and 2b provided to eight injectors 1 connected in series through fuel injection pipes 3a and 3b communicating with each other.
  • the fuel is supplied to each injector 1 from the fuel supply system A sent through the pressure supply port 2a and the fuel injection pipe 3a, and the fuel sent through the pressure supply port 2b and the fuel injection pipe 3b.
  • High-pressure fuel is sent to the connector 4 from two directions of the supply system B, and fuel whose pressure is averaged in the connector 4 is supplied to the injector 1 connected by the connection nut 5 and injected into the cylinder.
  • the injector 1 is of the same type as that of the first embodiment.
  • the fuel injection system 10q according to the seventeenth embodiment is a fuel injection system for an 8-cylinder diesel internal combustion engine as in the sixteenth embodiment.
  • the fuel is supplied to each injector 1 with the fuel supply system A sent through the pressure supply port 2a-fuel injection pipe 3a and the fuel sent through the pressure supply port 2b-fuel injection pipe 3b.
  • High-pressure fuel is sent from two directions of the supply system B to the connection connector 4, and the fuel whose pressure is averaged in the connection connector 4 is supplied from the connection connector 4 to the injector 1 via the fuel injection pipe 3. Is to be injected.
  • the injector 1 is of the same type as that of the second embodiment.
  • the fuel injection system 10r according to the eighteenth embodiment is an eight-cylinder diesel internal combustion engine fuel injection system as in the sixteenth and seventeenth embodiments.
  • the injector 1 is of the same type as that of the third embodiment, and has two fuel inlets 6 and averages the fuel pressure in the injector.
  • fuel is supplied to each injector 1 from the fuel supply system A sent through the pressure supply port 2a-fuel injection pipe 3a and the fuel sent through the pressure supply port 2b-fuel injection pipe 3b.
  • High-pressure fuel is supplied from two fuel intake ports 6 of the injector 1 to the injector 1 from two directions of the supply system B, and fuel pressure is averaged therein and injected into the cylinder. .
  • FIG. 10s of the nineteenth embodiment is an eight-cylinder diesel internal combustion engine fuel injection system as in the sixteenth to eighteenth embodiments.
  • supply ports 2a, 2b, 2c, 2d has a pressure supply port 2a, and 2b, the fuel injection pipes 3a communicating with the respective through 3b, the injector 1 of 4 groups connected in series (x 1 group) supplying high pressure fuel further pressure supply port 2c, the fuel injection pipe 3c which communicates with 2d respectively, through 3d, by supplying high pressure fuel to the injector 1 of 4 groups connected in series (x 2 group) Yes.
  • the injector 1 is of the same type as that of the first embodiment.
  • the number of injectors to which fuel is supplied is halved to four, compared with the fuel injection system of the same eight-cylinder diesel internal combustion engine, and the sixteenth to eighteenth embodiments. It works advantageously against pressure fluctuations in the fuel injection pipe.
  • FIG. 10t of the twentieth embodiment is a fuel injection system for an eight-cylinder diesel internal combustion engine, as in the sixteenth to nineteenth embodiments.
  • supply ports 2a, 2b, 2c, 2d has a pressure supply port 2a, and 2b, the fuel injection pipes 3a communicating with the respective through 3b, the injector 1 of 4 groups connected in series (x 1 group) supplying high pressure fuel further pressure supply port 2c, the fuel injection pipe 3c which communicates with 2d respectively, through 3d, by supplying high pressure fuel to the injector 1 of 4 groups connected in series (x 2 group) Yes.
  • the supply of fuel to each injector 1 with respect to x 1 group and x 2 groups injectors were divided into four each, the pressure supply port 2a- fuel injection in the x 1 group
  • the fuel supply system A 1 sent through the pipe 3a and the pressure supply port 2b-the fuel supply system B 1 sent through the fuel injection pipe 3b are sent to the connecting connector 4 from two directions, and the pressure is averaged in the connecting connector.
  • the fuel is supplied to the injector 1 connected through the fuel injection pipe 3 and injected into the target cylinder.
  • the injector 1 is of the same type as that of the second embodiment.
  • the fuel injection system 10u of the twenty-first embodiment is a fuel injection system for an eight-cylinder diesel internal combustion engine, as in the sixteenth to twentieth embodiments.
  • supply ports 2a, 2b, 2c, 2d has a pressure supply port 2a, and 2b, the fuel injection pipes 3a communicating with the respective through 3b, the injector 1 of 4 groups connected in series (x 1 group) supplying high pressure fuel further pressure supply port 2c, the fuel injection pipe 3c which communicates with 2d respectively, through 3d, by supplying high pressure fuel to the injector 1 of 4 groups connected in series (x 2 group) Yes.
  • the injector 1 is of the same type as that of the third embodiment.
  • Fuel injection pipe (mainly connecting the injector pipe) 3a, 3b, 3c, 3d Fuel injection pipe (communicating with pressure supply port) DESCRIPTION OF SYMBOLS 4 Connection connector 5 Connection nut 6 Fuel inlet 10 of an injector Fuel injection system 10a-10u Fuel injection system 11 and 25 according to the Example of this invention Fuel supply pipe 12, 24 High pressure supply pump 20A Conventional fuel injection system 20B Conventional Example fuel injection system (Patent Document 1, Figure) 21 Injector 22 Common rail 23 Fuel injection pipe 26 Connection pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

 コモンレール及び燃料噴射管を大型化することなく、簡単な手段によって燃料噴射によるインジェクター内の圧力変動を抑制し、均一な噴射圧力特性を得、ディーゼル内燃機関からの有害な排出ガスの低減を可能とするコモンレール式燃料噴射システムを提供する。 多気筒ディーゼル内燃機関の気筒毎に設けられる燃料吸入口を有するインジェクターと、燃料の圧力を蓄圧するコモンレールと、高圧燃料を供給する高圧供給ポンプと、コモンレールと高圧供給ポンプとを連通する燃料供給管と、コモンレールに設けられた圧力供給口に連通し、且つインジェクターと圧力供給口とを連通する燃料噴射管を備えたコモンレール式燃料噴射システムにおいて、燃料噴射管が少なくとも3基以上のインジェクターを直列に連通し、圧力供給口の口数Nがインジェクターの数Nより少なく、且つ各気筒のインジェクターへの高圧燃料の供給が2系統の燃料噴射管を通して行われる。

Description

コモンレール式燃料噴射システム
 本発明は、ディーゼル内燃機関のコモンレール式噴射システムに関するもので、詳しくはディーゼル内燃機関に使用される、燃料をコモンレールで蓄圧して各気筒に噴射するコモンレール式燃料噴射システムに関するものである。
 ディーゼル内燃機関用のコモンレール式燃料噴射システムは、高圧供給ポンプによってコモンレールに高圧燃料を蓄圧し、コモンレールで蓄圧された高圧燃料を各気筒毎に噴射する電磁制御式の燃料噴射システムであり、図28に従来のディーゼル内燃機関のコモンレール式燃料噴射システムを示す。
 その構造は、ディーゼル内燃機関の各気筒毎に設けられるインジェクター、インジェクターに供給する燃料の圧力を蓄圧するコモンレール、そのコモンレールに高圧燃料を供給する高圧燃料供給ポンプ、コモンレールとインジェクターとをそれぞれ連通する燃料噴射管、及びコモンレールと高圧供給ポンプとを連通する燃料供給管を備えている。
 このようなコモンレール式燃料噴射システムにおいて、コモンレール及び燃料噴射管を大型化することなく、簡単な手段によって燃料噴射によるインジェクター内の圧力変動(噴射時の圧力降下)を抑制し、均一な噴射圧力特性を得る手段が望まれている。
 図28に示す従来技術において、燃料噴射によるインジェクター内の圧力変動(噴射時の圧力降下)を抑制し、均一な噴射圧力特性を得るには、噴射時の圧力降下量を低減する必要がある。そのためには、より大きな噴射管内径とすることが有効である。一方、煙の排出を抑制するため、今後さらなるコモンレールシステムの高圧化も要求されているが、この噴射管内径を大きくした場合、内圧疲労強度性能の向上が必要となるため既存の材料より管強度を高める必要がある。そのため燃料管材質を厳選するとともに、高価な製造プロセスを要することになり、製造コストの上昇が必須となってしまう。
 このような課題に対して、本出願人は特許文献1に示す技術を提案している。その代表例を図29に示す。
 特許文献1では、図29に示すような、隣接するインジェクター21間をパイプ26で接続し、そのパイプ26内を副蓄圧室として機能させること、また隣接するインジェクター21をパイプ26でつなぐ手段として、コモンレール22から燃料噴射管23を介してインジェクター21内に高圧燃料を導入する高圧流路内又は燃料噴射による圧力変動が伝わるインジェクター21内部の高圧流路内に燃料噴射管23との接続部とは別の接続部を設け、この接続部にパイプ26を接続し、隣接する気筒のインジェクターの同じ接続部とつなぐことによりコモンレール22、燃料噴射管23及びインジェクター21の内容積を確保するもので、これによりコモンレール及び燃料噴射管の内径を大きくしたり、長さを長くしたりすることなく、燃料噴射の応答性(車載CPUからの指令信号に対する追従性)を高め、燃料噴射に伴うインジェクター内の圧力降下を防止することにより、応答性良くかつ正確な噴射特性を有する燃料噴射システムを得るものである。
 また、特許文献2の図10では、エンジンの各気筒の燃焼室に対応して、それぞれ噴射弁2が配置され、噴射制御用の電磁弁の3がオン、オフされることにより、決められた気筒順に、例えば♯1、♯3、♯4、♯2の順番に各気筒の燃焼室に燃料を噴射する。これらの噴射弁2は、それぞれ図1に示す第1の燃料通路14を有する分岐供給管4を介して各気筒に共通なコモンレール5に接続されている。また、このコモンレール5内に形成された蓄圧室15には高圧燃料が所定圧に蓄圧されるようになっており、その蓄圧室15に蓄圧された高圧燃料は、電磁弁3が開弁している間、分岐供給管4を介して噴射弁2からエンジン1の各気筒の燃焼室に噴射される。さらに脈動低減機関として、分岐供給管4の隣り合うもの同士が連結管61、62、63で連結され、分岐供給管4の剛性を高めている。
 したがって、細管としての分岐供給管4の振動振幅が低減できる燃料噴射装置が提案されている。
 さらに、特許文献3の図2に提案される蓄圧式燃料噴射装置は、高圧燃料ポンプ1により加圧された燃料を、燃料通路10aに連通し各気筒に共通する高圧蓄圧器3に貯溜するものであるが、この燃料通路10aの途中には、例えば、二方電磁弁から成る燃料噴射率切換用の切換弁(第1制御弁)5を各気筒毎に設け、その切換弁5の直ぐ下流に上流側から下流側にのみ燃料の流れを許容する逆止弁32が設けられている。さらに、この燃料通路10aには、逆止弁32の下流において、燃料通路10aから分岐した燃料通路10bを介して各気筒に共通の低圧蓄圧器(第2蓄圧器)4が接続されている。
 また、分岐した燃料通路10bの途中には逆止弁6と、当該逆止弁6をバイパスするバイパス通路が設けられており、このバイパス通路にはオリフィス6aが設けられている。逆止弁6は、低圧蓄圧器4から燃料通路10a方向にのみ燃料の流れを許容している。
 即ち、燃料通路10a内の燃料圧が分岐した燃料通路10b内の燃料圧よりも高い場合、燃料通路10a内の燃料がオリフィス6aを通して、分岐した燃料通路10bに流入し、更に低圧蓄圧器4に流入することによって燃料圧の変動を抑制するものである。
 このような特許文献1、2、3に提案される従来技術では、蓄圧容積を増大させることで燃料噴射によるインジェクター内の圧力変動を抑制し、均一な噴射圧力特性を得ることは可能であるが、その構造が複雑で、装置重量の増大を招いてしまう欠点を有している。
特開2007-182792号公報(図2参照) 特開平10-30521号公報(図10参照) 特開2000-161171号公報(図2参照)
 このような状況に鑑み、本発明はコモンレール及び燃料噴射管をさらに大型化することなく、簡単な手段によって燃料噴射によるインジェクター内の圧力変動を抑制し、均一な噴射圧力特性が得られ、ディーゼル内燃機関からの有害な排出ガスの低減が可能となるコモンレール式燃料噴射システムの提供を目的とする。
 本発明の第1の発明は、多気筒ディーゼル内燃機関の気筒毎に設けられる燃料吸入口を有するインジェクターと、そのインジェクターに供給する燃料の圧力を蓄圧するコモンレールと、コモンレールに高圧燃料を供給する高圧供給ポンプと、コモンレールと高圧供給ポンプとを連通する燃料供給管と、コモンレールに設けられた圧力供給口に連通し、且つインジェクターとコモンレールに設けられた圧力供給口とを連通する燃料噴射管を備えたコモンレール式燃料噴射システムにおいて、その燃料噴射管が、少なくとも3基以上のインジェクターを直列に連通し、コモンレールに設けられる圧力供給口の口数Nが、インジェクターの数Nより少なく、且つ、各気筒のインジェクターへの高圧燃料の供給が、2系統の燃料噴射管を通して行われることを特徴とするコモンレール式燃料噴射システムである。
 本発明の第2の発明は、第1の発明における多気筒ディーゼル内燃機関が、3気筒以上のディーゼル内燃機関であることを特徴とするコモンレール式燃料噴射システムである。
 本発明の第3の発明は、第1又は第2の発明における多気筒ディーゼル内燃機関が、3基以上のインジェクターを備えるディーゼル内燃機関であることを特徴とするコモンレール式燃料噴射システムである。
 本発明の第4の発明は、第1から第3の発明におけるコモンレールに設けられる圧力供給口の口数とインジェクターの数との関係が、下記(1)式に示されるように、インジェクターの数Nの約数のうち、3以上の約数でインジェクター数Nを除した数の2倍の数が圧力供給口の口数Nになることを特徴とするコモンレール式燃料噴射システムである。
Figure JPOXMLDOC01-appb-M000002
 本発明によれば、従来の構造に比べ噴射により発生する圧力脈動を抑制し、噴射時の圧力降下量を低減して噴射期間中の圧力の平均値(以後、平均噴射圧力値と称す)を向上させることによって、煙の排出量の低減が可能となる。
 また、噴射管に作用するピーク圧力の低減が可能となるため、噴射管の内圧疲労強度性能上有利となり、コモンレールシステムの設定圧力を上げることができ、煙の排出量の抑制が可能となる。
 また、平均噴射圧力値を高めることも可能なため、コモンレールシステム自体の噴射圧力を必要以上に高めなくてもよく、コモンレールシステム(ポンプ、コモンレール、インジェクター)の小型化をはかることができる。
 さらに、上記作用に付随して、燃費の改善効果も得られる。
本発明の燃料噴射システムを説明する概略図である。 燃料噴射時の燃料噴射管内の圧力変化を示す図で、(a)はクランク軸の回転角度におけるインジェクター針弁の作動状態を示す図、(b)は(a)の状態時における燃料噴射管内の圧力変化を示す図である。 燃料噴射前後および燃料噴射期間中における燃料噴射管内の平均圧力を示す図である。 エンジン実機における煙の排出量を示す図である。 BSFC指標による燃費を示す図である。 噴射管内の平均圧力を燃料噴射システム全容積で割った値、すなわち燃料噴射システム単位容積あたりの噴射管内平均圧力を示す図である。 実施例1に係る燃料噴射システムを説明する概略図である。 実施例2に係る燃料噴射システムを説明する概略図である。 実施例3に係る燃料噴射システムを説明する概略図である。 実施例4に係る燃料噴射システムを説明する概略図である。 実施例5に係る燃料噴射システムを説明する概略図である。 実施例6に係る燃料噴射システムを説明する概略図である。 実施例7に係る燃料噴射システムを説明する概略図である。 実施例8に係る燃料噴射システムを説明する概略図である。 実施例9に係る燃料噴射システムを説明する概略図である。 実施例10に係る燃料噴射システムを説明する概略図である。 実施例11に係る燃料噴射システムを説明する概略図である。 実施例12に係る燃料噴射システムを説明する概略図である。 実施例13に係る燃料噴射システムを説明する概略図である。 実施例14に係る燃料噴射システムを説明する概略図である。 実施例15に係る燃料噴射システムを説明する概略図である。 実施例16に係る燃料噴射システムを説明する概略図である。 実施例17に係る燃料噴射システムを説明する概略図である。 実施例18に係る燃料噴射システムを説明する概略図である。 実施例19に係る燃料噴射システムを説明する概略図である。 実施例20に係る燃料噴射システムを説明する概略図である。 実施例21に係る燃料噴射システムを説明する概略図である。 従来例に係る燃料噴射システムの概略図である。 特許文献1(図2)に示される燃料噴射システムの概略図である。
 図1は本発明の燃料噴射システムを説明する概略図で、6気筒ディーゼル内燃機関に対応するものである。
 図1において、1はインジェクター、2はコモンレール、2a、2bは圧力供給口、3は燃料噴射管、3a、3bも燃料噴射管でコモンレールのそれぞれの圧力供給口2a、2bと連通している、4は連結コネクタ、5は接続ナット、11は燃料供給管、12は高圧供給ポンプ、10は本発明の燃料噴射システムである。
 圧力供給口の口数Nは2、インジェクター1の数Nは6で、数Nの約数の内3以上の約数の内6で除した数を2倍した数が圧力供給口の口数Nとなる場合である。
 ここで、燃料噴射管3a、3bは、それぞれコモンレール2の圧力供給口2a、2bに連通し、6基の各インジェクター1を直列に連通する燃料噴射管3に高圧燃料を供給するものである。
 さらに、圧力供給口の口数Nと、インジェクター1の数Nの関係を纏めると、下記式(2)に示される関係となり、実際の多気筒ディーゼルエンジン(3気筒から8気筒)における、その関係を表1に示す。より多気筒の場合においても、式(2)の関係は適用できるものである。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-T000004
 さらに、図1において各インジェクター1には、インジェクター1内への燃料吸入前に、燃料噴射管3aを通じた燃料供給系統Aと、燃料噴射管3bを通じた燃料供給系統Bの2系統からの燃料を、例えば図1に見られるような連結コネクタ4で混合する形で高圧燃料が供給されている。
 このように2系統、即ち2方向から燃料を供給することにより、混合後の燃料圧力は、その2系統の平均圧力となり圧力変動(脈動)が緩和される結果となる。
 この2系統の経路から供給される燃料の混合の仕方は、図1の燃料噴射システム10に見られるように、気筒内への燃料の噴射前に行われなければならない。そこで、図1のようにインジェクター1に供給される前に、燃料経路を連結する連結コネクタ4のような部品を用いて、連結と燃料の混合を同時に行う方法、或いはインジェクターに2か所の燃料吸入口を設け、それぞれの燃料流入口に各燃料経路の燃料噴射管を連通してインジェクター内で燃料の混合を行う方法などが考えられる。
 また、図1を用いた説明では、コモンレールに設けられる圧力供給口の数Nが2口1組の偶数個の場合について述べているが、圧力供給口を奇数個設ける場合、例えば圧力供給口を3口1組で設けても良い。
 以下、実施例を用いて、本発明をさらに説明する。
 図7は、実施例1に係る燃料噴射システム10aの概略図(以下の図面において、燃料供給管および高圧供給ポンプなどの同じ機器を使用する場合には図示せず)である。
 図7において、1はインジェクター、2はコモンレール、2a、2bはコモンレール2に設けられている圧力供給口、3、3a、3bは燃料噴射管、4は連結コネクタ、5は接続ナットである。
 6気筒ディーゼル内燃機関で、インジェクター1を6基(N=6)有し、2口{(N=2×(6/6))のコモンレール2に設けられた圧力供給口2a、2bから、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された6基のインジェクター1に高圧燃料を供給している。
 実施例1の燃料噴射システム10aでは、各インジェクター1に対する燃料の供給は、圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から連結コネクタ4に送られ、その圧力が平均化された燃料が、接続ナット5で連結されたインジェクター1に供給され、気筒内に噴射されるものである。
(従来例)
 従来例として、図28に示す燃料噴射システムを用いた。
 図28において、20Aは従来例の燃料噴射システム、21はインジェクター、22はコモンレール、23は燃料噴射管、なお燃料供給管や高圧供給ポンプなどは図示していない。
 図28に示す燃料噴射システム20Aは、実施例1と同様に6気筒ディーゼル内燃機関に対応する燃料噴射システムで、コモンレール22から各6基のインジェクター21の個々に連通して高圧燃料を供給する6本の燃料噴射管23がコモンレールの6口の圧力供給口と連通している。
[本発明の燃料噴射システムの性能比較]
 実施例1(図7の燃料噴射システム10a)と、従来例(図28の燃料噴射システム20A)の燃料噴射システムを用いて、燃料噴射時の噴射管内の圧力変化、排出ガスの挙動、および燃費挙動を測定した。
 その結果を図2~図6を用いて説明する。
 図2は、エンジンのクランク角度(Crank Angle)を横軸に、(a)はインジェクター針弁の作動量、(b)は噴射管内圧力を縦軸にプロットしたもので、あるクランク角度においてリフトアップした場合に、従来例(図28に示す燃料噴射システム20A)と、本発明例である実施例1(図7に示す燃料噴射システム10a)の場合を比較したものである。
 1方向からの燃料供給を受ける従来例では、リフトに伴い大きな圧力ドロップおよび圧力変動が生じているのに対して、2方向から燃料供給を受ける本発明例では燃料供給が促進されるため、圧力ドロップおよび圧力変動が抑制できることがわかる。
 図3は、燃料噴射前後および燃料噴射期間中の噴射管内の平均圧力を示す図で、従来例と実施例1の燃料噴射システムで比較したものである。
 一般に、高い平均噴射圧力を得ることで燃焼効率が高まり、煙排出量の低減および燃費の改善が得られる。
 図3から平均噴射圧力は、従来例では噴射前圧力の95%であるが、本発明例では98%まで高い圧力を得られる。
 図4は、エンジン実機におけるNO排出量と煙排出量の関係を比較した図で、NOの発生を抑えた燃焼において、煙の排出量は従来例と比較して15%低減すると共に、同じ煙の排出量で比べるとNOの発生が抑制されていることがわかる。
 また、図5はBSFC(Break Specific Fuel Consumption)指標による燃費とNO排出量との関係を示す図で、同量のNOを排出する燃焼条件では、その燃費は2%程度、本発明例の実施例1が良くなることを示している。
 図3から図5に示す結果から、本発明に係る燃料噴射システムは、従来構造の燃料噴射システムに比べ、燃料噴射により発生する圧力脈動を抑制し、燃料噴射管に作用するピーク圧力の低減が可能となるため、コモンレールシステム(高圧供給ポンプ、コモンレール、インジェクター)の設定圧力を上げることができ、煙の排出量抑制に大きな効果を示す。
 さらに、噴射期間中の噴射圧力を高めることも可能であることから、コモンレールシステム自体の噴射圧力を必要以上に高めなくてもよく、コモンレールシステム(ポンプ・レール・インジェクタ)の小型化をはかることができる。
 次に、排出ガス性能と相関関係にある平均噴射圧力に対して、特許文献1~3に示す従来例の燃料噴射システムと、実施例1の本発明例の燃料噴射システムにおける付加容積の効果を公平に評価するため、噴射管内の平均圧力を燃料噴射システム全容積で割った値(すなわち燃料噴射システム単位容積あたりの噴射管内平均噴射圧力値)で比較した。その結果を図6に示す。
 いずれの従来例に対しても、本発明例は高い値を示し、排出ガス性能も本発明に係る燃料噴射システムの方が優れている。
 実施例2に係る燃料噴射システム10bの概略図を図8に示す。
 実施例2の燃料噴射システム10bは、実施例1と同じ6気筒ディーゼル内燃機関のもので、備わるインジェクター1の数Nも6基、コモンレール2に備わる圧力供給口も、その数Nは2口(2a、2b)と同じものであり、連結コネクタ4を介して2系統の燃料供給経路A、Bの圧力を平均化した燃料が、インジェクター1に供給されて、気筒内に噴射される。
 実施例1との違いは、連結コネクタ4から燃料噴射管3を介してインジェクター1に燃料を送る点である。この燃料噴射管3を介することにより、エンジンルーム内での燃料噴射システムの配置自由度が増加する利点を有する。
 実施例3に係る燃料噴射システム10cの概略図を図9に示す。
 実施例3の燃料噴射システム10cは、実施例1、2と同じ6気筒ディーゼル内燃機関のもので、備わるインジェクター1の数Nも6基、コモンレール2に備わる圧力供給口も、その数Nは2口(2a、2b)と同じものであるが、実施例1、2のように連結コネクタを介さず、インジェクター1が備える2か所の燃料吸入口6、6のそれぞれに2系統の燃料供給経路A、Bからの燃料が直接に与えられ、インジェクター1内において圧力の平均化が行われ、気筒内に噴射される形式の燃料噴射システムである。
 実施例4に係る燃料噴射システムの概略図を図10に示す。
 実施例4の燃料噴射システム10dは、実施例1~3と同じ6気筒ディーゼル内燃機関で、インジェクター1を6基(N=6)有し、4口{(N=2×(6/3))のコモンレール2に設けられた圧力供給口2a、2b、2c、2dがあり、圧力供給口2a、2bと、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された3基のインジェクター1(x群)に高圧燃料を供給し、さらに圧力供給口2c、2dとそれぞれに連通している燃料噴射管3c、3dを通じて、直列に接続された3基のインジェクター1(x群)に高圧燃料を供給している。
 実施例4の燃料噴射システム10dでは、各インジェクター1に対する燃料の供給は、3基ずつに分けられたインジェクターのx群及びx群に対して、x群では圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から連結コネクタ4に送られ、その圧力が平均化された燃料が、接続ナット5で連結されたインジェクター1に供給され、対象となる気筒内に噴射されるものである。また、他の3基のインジェクターからなるx群では、圧力供給口2c-燃料噴射管3cを通じて送られる燃料供給系統Aと、圧力供給口2d-燃料噴射管3dを通じて送られる燃料供給系統Bの2方向から連結コネクタ4に送られ、その圧力が平均化された燃料が、接続ナット5で連結されたインジェクター1に供給され、対象となる気筒内に噴射されるものである。
 なお、インジェクター1は実施例1と同様の型式のものを用いている。
 実施例4では、実施例1~3の場合に比べて、燃料が供給されるインジェクターの数が3基と半分になることで、燃料の行程が短く、燃料噴射管中での圧力変動に対して有利に働く。
 実施例5に係る燃料噴射システムの概略図を図11に示す。
 実施例5の燃料噴射システム10eは、実施例4と同様の型式の燃料噴射システムである。
 実施例1~3と同じ6気筒ディーゼル内燃機関で、インジェクター1を6基(N=6)有し、4口{(N=2×(6/3))のコモンレール2に設けられた圧力供給口2a、2b、2c、2dがあり、圧力供給口2a、2bと、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された3基のインジェクター1(x群)に高圧燃料を供給し、さらに圧力供給口2c、2dとそれぞれに連通している燃料噴射管3c、3dを通じて、直列に接続された3基のインジェクター1(x群)に高圧燃料を供給している。
 実施例5の燃料噴射システム10eでは、各インジェクター1に対する燃料の供給は、3基ずつに分けられたインジェクターのx群及びx群に対して、x群では圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から連結コネクタ4に送られ、その圧力が平均化された燃料が、燃料噴射管3で連結されたインジェクター1に供給され、対象となる気筒内に噴射されるものである。また、他の3基のインジェクターからなるx群では、圧力供給口2c-燃料噴射管3cを通じて送られる燃料供給系統Aと、圧力供給口2d-燃料噴射管3dを通じて送られる燃料供給系統Bの2方向から連結コネクタ4に送られ、その圧力が平均化された燃料が、燃料噴射管3で連結されたインジェクター1に供給され、対象となる気筒内に噴射されるものである。
 なお、インジェクター1は実施例2と同様の型式のものを用いている。
 実施例5では、実施例1~3の場合に比べて、燃料が供給されるインジェクターの数が3基と半分になることで、燃料の供給行程が短くなり、燃料噴射管中での圧力変動に対して有利に働く。
 実施例4の燃料噴射システム10dとは、インジェクター1が連結コネクタ4と燃料噴射管3を介して接続される点が異なっている。
 実施例6に係る燃料噴射システムの概略図を図12に示す。
 実施例6の燃料噴射システム10fは、実施例4と同様の型式の燃料噴射システムである。
 実施例1~5と同じ6気筒ディーゼル内燃機関で、インジェクター1を6基(N=6)有し、4口{(N=2×(6/3))のコモンレール2に設けられた圧力供給口2a、2b、2c、2dがあり、圧力供給口2a、2bと、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された3基のインジェクター1(x群)に高圧燃料を供給し、さらに圧力供給口2c、2dとそれぞれに連通している燃料噴射管3c、3dを通じて、直列に接続された3基のインジェクター1(x群)に高圧燃料を供給している。
 なお、インジェクター1は実施例3と同様の型式のもので、2か所の燃料吸入口6を有し、燃料圧力の平均化をインジェクター内で行うタイプのインジェクターである。
 実施例6の燃料噴射システム10fでは、実施例4、5の場合と同様に、各インジェクター1に対する燃料の供給は、3基ずつに分けられたインジェクターのx群及びx群に対して、x群では圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から、インジェクター1の2か所の燃料吸入口6に送られ、インジェクター1内で、その圧力が平均化された燃料が、対象となる気筒内に噴射されるものである。
 また、他の3基のインジェクターからなるx群では、圧力供給口2c-燃料噴射管3cを通じて送られる燃料供給系統Aと、圧力供給口2d-燃料噴射管3dを通じて送られる燃料供給系統Bの2方向から、インジェクター1の2か所の燃料吸入口6に送られ、インジェクター1内で、その圧力が平均化された燃料が、対象となる気筒内に噴射されるものである。
 実施例6では、実施例1~3の場合に比べて、燃料が供給されるインジェクターの数が3基と半分になることで、燃料の行程が短く、燃料噴射管中での圧力変動に対して有利に働く。
 実施例4、5の燃料噴射システム10d、10eとは、燃料圧力の平均化がインジェクター1内部で行われる点が異なっている。
 実施例7に係る燃料噴射システムの概略図を図13に示す。
 実施例7の燃料噴射システム10gは、3気筒ディーゼル内燃機関で、インジェクター1を3基(N=3)有し、2口{(N=2×(3/3))のコモンレール2に設けられた圧力供給口2a、2bから、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された3基のインジェクター1に高圧燃料を供給している。
 実施例7の燃料噴射システム10gでは、各インジェクター1に対する燃料の供給は、圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から連結コネクタ4に送られ、その圧力が平均化された燃料が、接続ナット5で連結されたインジェクター1に供給され、気筒内に噴射されるものである。
 実施例8に係る燃料噴射システムの概略図を図14に示す。
 実施例8の燃料噴射システム10hは、実施例7と同様の型式の燃料噴射システムである。
 実施例8の燃料噴射システム10hは、3気筒ディーゼル内燃機関で、インジェクター1を3基(N=3)有し、2口{(N=2×(3/3))のコモンレール2に設けられた圧力供給口2a、2bから、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された3基のインジェクター1に高圧燃料を供給している。
 この燃料噴射システム10hでは、各インジェクター1に対する燃料の供給は、圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から連結コネクタ4に送られ、その圧力が平均化された燃料が、連結コネクタ4と燃料噴射管3によって連結されたインジェクター1に供給され、気筒内に噴射されるものである。
 実施例9に係る燃料噴射システムの概略図を図15に示す。
 実施例9の燃料噴射システム10iは、実施例7、8と同様の型式の燃料噴射システムである。
 実施例9の燃料噴射システム10iは、3気筒ディーゼル内燃機関で、インジェクター1を3基(N=3)有し、2口{(N=2×(3/3))のコモンレール2に設けられた圧力供給口2a、2bから、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された3基のインジェクター1に高圧燃料を供給している。
 なお、インジェクター1は実施例3と同様の型式のもので、2か所の燃料吸入口6を有し、燃料圧力の平均化をインジェクター内で行うタイプのインジェクターである。
 この燃料噴射システム10iでは、各インジェクター1に対する燃料の供給は、圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から送られる高圧燃料が、2か所の燃料吸入口6からインジェクター1に供給され、その内部で燃料圧力の平均化が行われ、気筒内に噴射されるものである。
 実施例10に係る燃料噴射システムの概略図を図16に示す。
 実施例10の燃料噴射システム10jは、4気筒ディーゼル内燃機関で、インジェクター1を4基(N=4)有し、2口{(N=2×(4/4))のコモンレール2に設けられた圧力供給口2a、2bから、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された4基のインジェクター1に高圧燃料を供給している。
 実施例10の燃料噴射システム10jでは、各インジェクター1に対する燃料の供給は、圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から連結コネクタ4に送られ、その圧力が平均化された燃料が、接続ナット5で連結されたインジェクター1に供給され、気筒内に噴射されるものである。
 なお、インジェクター1は実施例1と同様の型式のものを用いている。
 実施例11に係る燃料噴射システムの概略図を図17に示す。
 実施例11の燃料噴射システム10kは、実施例10と同様の型式の燃料噴射システムである。
 4気筒ディーゼル内燃機関で、インジェクター1を4基(N=4)有し、2口{(N=2×(4/4))のコモンレール2に設けられた圧力供給口2a、2bから、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された4基のインジェクター1に高圧燃料を供給している。
 実施例11の燃料噴射システム10kでは、各インジェクター1に対する燃料の供給は、圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から連結コネクタ4に送られ、その圧力が平均化された燃料が、連結コネクタ4と燃料噴射管3を介して連結されたインジェクター1に供給され、気筒内に噴射されるものである。
 なお、インジェクター1は実施例2と同様の型式のものを用いている。
 実施例12に係る燃料噴射システムの概略図を図18に示す。
 実施例12の燃料噴射システム10lは、実施例10と同様の型式の燃料噴射システムである。
 4気筒ディーゼル内燃機関で、インジェクター1を4基(N=4)有し、2口{(N=2×(4/4))のコモンレール2に設けられた圧力供給口2a、2bから、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された4基のインジェクター1に高圧燃料を供給している。
 なお、インジェクター1は実施例3と同様の型式のもので、2か所の燃料吸入口6を有し、燃料圧力の平均化をインジェクター内で行うタイプのインジェクターである。
 実施例12の燃料噴射システム10lでは、各インジェクター1に対する燃料の供給は、圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から送られる高圧燃料が、2か所の燃料吸入口6からインジェクター1に供給され、その内部で燃料圧力の平均化が行われ、気筒内に噴射されるものである。
 図19は、実施例13に係る燃料噴射システムの概略図である。
 図19において、1はインジェクター、2はコモンレール、2a、2bはコモンレール2に設けられている圧力供給口、3、3a、3bは燃料噴射管、4は連結コネクタ、5は接続ナットである。
 実施例13の燃料噴射システム10mは、5気筒ディーゼル内燃機関で、インジェクター1を5基(N=5)有し、2口{(N=2×(5/5))のコモンレール2に設けられた圧力供給口2a、2bから、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された5基のインジェクター1に高圧燃料を供給している。
 この燃料噴射システム10mでは、各インジェクター1に対する燃料の供給は、圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から高圧燃料が連結コネクタ4に送られ、連結コネクタ4内で圧力を平均化された燃料が、接続ナット5で連結されたインジェクター1に供給され、気筒内に噴射されるものである。
 なお、インジェクター1は実施例1と同様の型式のものを用いている。
 実施例14に係る燃料噴射システムの概略図を図20に示す。
 実施例14の燃料噴射システム10nは、実施例13と同様に5気筒ディーゼル内燃機関の燃料噴射システムである。
 燃料噴射システム10nは、5気筒ディーゼル内燃機関で、インジェクター1を5基(N=5)有し、2口{N=2×(5/5)}のコモンレール2に設けられた圧力供給口2a、2bから、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された5基のインジェクター1に高圧燃料を供給している。
 実施例14の燃料噴射システム10nでは、各インジェクター1に対する燃料の供給は、圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から高圧燃料が連結コネクタ4に送られ、連結コネクタ4内で圧力を平均化された燃料が、燃料噴射管3を介して連結コネクタ4からインジェクター1に供給され、気筒内に噴射されるものである。
 なお、インジェクター1は実施例2と同様の型式のものを用いている。
 実施例15に係る燃料噴射システムの概略図を図21に示す。
 実施例15の燃料噴射システム10oは、実施例13、14と同様に5気筒ディーゼル内燃機関の燃料噴射システムである。
 なお、インジェクター1は実施例3と同様の型式のもので、2か所の燃料吸入口6を有し、燃料圧力の平均化をインジェクター内で行うタイプのインジェクターである。
 燃料噴射システム10oは、5気筒ディーゼル内燃機関で、インジェクター1を5基(N=5)有し、2口{N=2×(5/5)}のコモンレール2に設けられた圧力供給口2a、2bから、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された5基のインジェクター1に高圧燃料を供給している。
 実施例15の燃料噴射システム10oでは、各インジェクター1に対する燃料の供給は、圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から高圧燃料が、インジェクター1の2か所の燃料吸入口6からインジェクター1に供給され、その内部で燃料圧力の平均化が行われ、気筒内に噴射されるものである。
 実施例16に係る燃料噴射システムの概略図を図22に示す。
 図22において、1はインジェクター、2はコモンレール、2a、2bはコモンレール2に設けられている圧力供給口、3、3a、3bは燃料噴射管、4は連結コネクタ、5は接続ナット、10pは本実施例の燃料噴射システムである。
 実施例16の燃料噴射システム10pは、8気筒ディーゼル内燃機関で、インジェクター1を8基(N=8)有し、2口{(N=2×(8/8))のコモンレール2に設けられた圧力供給口2a、2bから、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された8基のインジェクター1に高圧燃料を供給している。
 実施例16の燃料噴射システム10pでは、各インジェクター1に対する燃料の供給は、圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から高圧燃料が連結コネクタ4に送られ、連結コネクタ4内で圧力を平均化された燃料が、接続ナット5で連結されたインジェクター1に供給され、気筒内に噴射されるものである。
 なお、インジェクター1は実施例1と同様の型式のものを用いている。
 実施例17に係る燃料噴射システムの概略図を図23に示す。
 実施例17の燃料噴射システム10qは、実施例16と同様に8気筒ディーゼル内燃機関の燃料噴射システムである。
 燃料噴射システム10qは、8気筒ディーゼル内燃機関で、インジェクター1を8基(N=8)有し、2口{Np=2×(8/8)}のコモンレール2に設けられた圧力供給口2a、2bから、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された8基のインジェクター1に高圧燃料を供給している。
 実施例17の燃料噴射システム10qでは、各インジェクター1に対する燃料の供給は、圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から高圧燃料が連結コネクタ4に送られ、連結コネクタ4内で圧力を平均化された燃料が、燃料噴射管3を介して連結コネクタ4からインジェクター1に供給され、気筒内に噴射されるものである。
 なお、インジェクター1は実施例2と同様の型式のものを用いている。
 実施例18に係る燃料噴射システムの概略図を図24に示す。
 実施例18の燃料噴射システム10rは、実施例16、17と同様に8気筒ディーゼル内燃機関の燃料噴射システムである。
 燃料噴射システム10rは、8気筒ディーゼル内燃機関で、インジェクター1を8基(N=8)有し、2口{(Np=2×(8/8))のコモンレール2に設けられた圧力供給口2a、2bから、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された8基のインジェクター1に高圧燃料を供給している。
 なお、インジェクター1は実施例3と同様の型式のもので、2か所の燃料吸入口6を有し、燃料圧力の平均化をインジェクター内で行うタイプのインジェクターである。
 実施例18の燃料噴射システム10rでは、各インジェクター1に対する燃料の供給は、圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から高圧燃料が、インジェクター1の2か所の燃料吸入口6からインジェクター1に供給され、その内部で燃料圧力の平均化が行われ、気筒内に噴射されるものである。
 実施例19に係る燃料噴射システムの概略図を図25に示す。
 実施例19の燃料噴射システム10sは、実施例16~18と同様に8気筒ディーゼル内燃機関の燃料噴射システムである。
 燃料噴射システム10sは、8気筒ディーゼル内燃機関で、インジェクター1を8基(N=8)有し、4口{(N=2×(8/4))のコモンレール2に設けられた圧力供給口2a、2b、2c、2dがあり、圧力供給口2a、2bと、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された4基のインジェクター1(x群)に高圧燃料を供給し、さらに圧力供給口2c、2dとそれぞれに連通している燃料噴射管3c、3dを通じて、直列に接続された4基のインジェクター1(x群)に高圧燃料を供給している。
 実施例19の燃料噴射システム10sでは、各インジェクター1に対する燃料の供給は、4基ずつに分けられたインジェクターのx群及びx群に対して、x群では圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から連結コネクタ4に送られ、その圧力が平均化された燃料が、接続ナット5で連結されたインジェクター1に供給され、対象となる気筒内に噴射されるものである。また、他の4基のインジェクターからなるx群では、圧力供給口2c-燃料噴射管3cを通じて送られる燃料供給系統Aと、圧力供給口2d-燃料噴射管3dを通じて送られる燃料供給系統Bの2方向から連結コネクタ4に送られ、その連結コネクタ内で圧力が平均化された燃料が、接続ナット5で連結されたインジェクター1に供給され、対象となる気筒内に噴射されるものである。
 なお、インジェクター1は実施例1と同様の型式のものを用いている。
 実施例19では、同じ8気筒ディーゼル内燃機関の燃料噴射システム、実施例16~18の場合に比べて、燃料が供給されるインジェクターの数が4基と半分になることで、燃料の行程が短く、燃料噴射管中での圧力変動に対して有利に働く。
 実施例20に係る燃料噴射システムの概略図を図26に示す。
 実施例20の燃料噴射システム10tは、実施例16~19と同様に8気筒ディーゼル内燃機関の燃料噴射システムである。
 燃料噴射システム10tは、8気筒ディーゼル内燃機関で、インジェクター1を8基(N=8)有し、4口{(N=2×(8/4))のコモンレール2に設けられた圧力供給口2a、2b、2c、2dがあり、圧力供給口2a、2bと、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された4基のインジェクター1(x群)に高圧燃料を供給し、さらに圧力供給口2c、2dとそれぞれに連通している燃料噴射管3c、3dを通じて、直列に接続された4基のインジェクター1(x群)に高圧燃料を供給している。
 実施例20の燃料噴射システム10tでは、各インジェクター1に対する燃料の供給は、4基ずつに分けられたインジェクターのx群及びx群に対して、x群では圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から連結コネクタ4に送られ、その連結コネクタ内で圧力が平均化された燃料が、燃料噴射管3を介して連結されているインジェクター1に供給され、対象となる気筒内に噴射されるものである。
 また、他の4基のインジェクターからなるx群では、圧力供給口2c-燃料噴射管3cを通じて送られる燃料供給系統Aと、圧力供給口2d-燃料噴射管3dを通じて送られる燃料供給系統Bの2方向から連結コネクタ4に送られ、その圧力が平均化された燃料が、燃料噴射管3を介して連結されたインジェクター1に供給され、対象となる気筒内に噴射されるものである。
 なお、インジェクター1は実施例2と同様の型式のものを用いている。
 実施例21に係る燃料噴射システムの概略図を図27に示す。
 実施例21の燃料噴射システム10uは、実施例16~20と同様に8気筒ディーゼル内燃機関の燃料噴射システムである。
 燃料噴射システム10uは、8気筒ディーゼル内燃機関で、インジェクター1を8基(N=8)有し、4口{(N=2×(8/4))のコモンレール2に設けられた圧力供給口2a、2b、2c、2dがあり、圧力供給口2a、2bと、それぞれに連通している燃料噴射管3a、3bを通じて、直列に接続された4基のインジェクター1(x群)に高圧燃料を供給し、さらに圧力供給口2c、2dとそれぞれに連通している燃料噴射管3c、3dを通じて、直列に接続された4基のインジェクター1(x群)に高圧燃料を供給している。
 実施例21の燃料噴射システム10uでは、各インジェクター1に対する燃料の供給は、4基ずつに分けられたインジェクターのx群及びx群に対して、x群では圧力供給口2a-燃料噴射管3aを通じて送られる燃料供給系統Aと、圧力供給口2b-燃料噴射管3bを通じて送られる燃料供給系統Bの2方向から供給される燃料が、インジェクター1の2か所の燃料吸入口6にそれぞれ送られ、インジェクター1内で圧力が平均化された燃料が、対象となる気筒内に噴射されるものである。
 また、他の4基のインジェクターからなるx群では、圧力供給口2c-燃料噴射管3cを通じて送られる燃料供給系統Aと、圧力供給口2d-燃料噴射管3dを通じて送られる燃料供給系統Bの2方向から供給される燃料が、インジェクター1の2か所の燃料吸入口6にそれぞれ送られ、インジェクター1内で圧力が平均化された燃料が、対象となる気筒内に噴射されるものである。
 なお、インジェクター1は実施例3と同様の型式のものを用いている。
 1  インジェクター
 2  コモンレール
 2a、2b、2c、2d 圧力供給口
 3  燃料噴射管(主にインジェクター管を連通するもの)
 3a、3b、3c、3d 燃料噴射管(圧力供給口と連通するもの)
 4  連結コネクタ
 5  接続ナット
 6  インジェクターの燃料吸入口
10  燃料噴射システム
10a~10u 本発明の実施例に係る燃料噴射システム
11、25  燃料供給管
12、24  高圧供給ポンプ
20A 従来例の燃料噴射システム
20B 従来例の燃料噴射システム(特許文献1、図)
21  インジェクター
22  コモンレール
23  燃料噴射管
26  連結パイプ

Claims (4)

  1.  多気筒ディーゼル内燃機関の気筒毎に設けられる燃料吸入口を有するインジェクターと、
      前記インジェクターに供給する燃料の圧力を蓄圧するコモンレールと、
      前記コモンレールに高圧燃料を供給する高圧供給ポンプと、
      前記コモンレールと前記高圧供給ポンプとを連通する燃料供給管と、
      前記コモンレールに設けられた圧力供給口に連通し、且つ前記インジェクターと前記コモンレールに設けられた圧力供給口とを連通する燃料噴射管を備えたコモンレール式燃料噴射システムにおいて、
       前記燃料噴射管が、少なくとも3基以上の前記インジェクターを直列に連通し、
       前記コモンレールに設けられる圧力供給口の口数Nが、前記インジェクターの数Nより少なく、且つ、
       各気筒のインジェクターへの高圧燃料の供給が、2系統の燃料噴射管を通して行われることを特徴とするコモンレール式燃料噴射システム。
  2.  前記多気筒ディーゼル内燃機関が、3気筒以上のディーゼル内燃機関であることを特徴とする請求項1記載のコモンレール式燃料噴射システム。
  3.  前記多気筒ディーゼル内燃機関が、3基以上の前記インジェクターを備えるディーゼル内燃機関であることを特徴とする請求項1又は2に記載のコモンレール式燃料噴射システム。
  4.  前記コモンレールに設けられる圧力供給口の口数とインジェクターの数との関係が、下記(3)式に示されるように、前記インジェクターの数Nの約数のうち、3以上の約数でインジェクター数N除した数の2倍の数が圧力供給口の口数Nになることを特徴とする請求項1から3のいずれかに記載のコモンレール式燃料噴射システム。
    Figure JPOXMLDOC01-appb-M000001
     
PCT/JP2012/075515 2011-10-03 2012-10-02 コモンレール式燃料噴射システム WO2013051560A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2850692A CA2850692C (en) 2011-10-03 2012-10-02 Common rail fuel injection system
AU2012319567A AU2012319567A1 (en) 2011-10-03 2012-10-02 Common rail fuel injection system
US14/349,199 US20140283790A1 (en) 2011-10-03 2012-10-02 Common rail fuel injection system
CN201280048672.9A CN103890371A (zh) 2011-10-03 2012-10-02 共轨式燃料喷射系统
EP12838429.4A EP2765301A4 (en) 2011-10-03 2012-10-02 COMMON RAIL FUEL INJECTION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-219633 2011-10-03
JP2011219633A JP2013079594A (ja) 2011-10-03 2011-10-03 コモンレール式燃料噴射システム

Publications (1)

Publication Number Publication Date
WO2013051560A1 true WO2013051560A1 (ja) 2013-04-11

Family

ID=48043717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075515 WO2013051560A1 (ja) 2011-10-03 2012-10-02 コモンレール式燃料噴射システム

Country Status (7)

Country Link
US (1) US20140283790A1 (ja)
EP (1) EP2765301A4 (ja)
JP (1) JP2013079594A (ja)
CN (1) CN103890371A (ja)
AU (1) AU2012319567A1 (ja)
CA (1) CA2850692C (ja)
WO (1) WO2013051560A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100363128C (zh) * 2003-07-02 2008-01-23 达涅利机械工业有限公司 一种将熔融金属向结晶器中进料的进料装置
CN108204322A (zh) * 2016-12-19 2018-06-26 罗伯特·博世有限公司 高压燃料喷射系统的减振系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003621A (ja) * 2014-06-18 2016-01-12 日野自動車株式会社 蓄圧式燃料噴射装置
JP6373677B2 (ja) * 2014-07-28 2018-08-15 日野自動車株式会社 蓄圧式燃料噴射装置の製造方法
JP6417182B2 (ja) * 2014-10-15 2018-10-31 日野自動車株式会社 蓄圧式燃料噴射装置の製造方法
JP6602541B2 (ja) * 2015-02-17 2019-11-06 日野自動車株式会社 蓄圧式燃料噴射装置
US9771910B2 (en) * 2015-06-25 2017-09-26 Ford Global Technologies, Llc Systems and methods for fuel injection
FR3043141B1 (fr) * 2015-10-29 2017-11-03 Continental Automotive France Procede de verification de la fonctionnalite d'un systeme d'alimentation en carburant haute pression d'un moteur a combustion interne
JP6387993B2 (ja) * 2016-03-23 2018-09-12 トヨタ自動車株式会社 内燃機関の燃料噴射装置
JP2020143621A (ja) * 2019-03-06 2020-09-10 本田技研工業株式会社 内燃機関の燃料供給構造
US11821397B2 (en) 2019-07-31 2023-11-21 Cummins Inc. Modular and scalable rail fuel system architecture

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030521A (ja) 1996-07-12 1998-02-03 Denso Corp 燃料噴射装置
JP2000161171A (ja) 1998-11-26 2000-06-13 Mitsubishi Motors Corp 蓄圧式燃料噴射装置
JP2000205081A (ja) * 1999-01-06 2000-07-25 Usui Internatl Ind Co Ltd ディ―ゼル内燃機関の蓄圧式燃料噴射システム
JP2003214293A (ja) * 2002-01-23 2003-07-30 Toyota Motor Corp 内燃機関の燃料噴射装置
JP2004518072A (ja) * 2001-02-05 2004-06-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 高圧噴射システムにおける圧力脈動を緩衝するための装置
JP2007182792A (ja) 2006-01-05 2007-07-19 Usui Kokusai Sangyo Kaisha Ltd コモンレール式燃料噴射システム。
JP2010159681A (ja) * 2009-01-07 2010-07-22 Toyota Motor Corp 燃料噴射装置
JP2010169068A (ja) * 2009-01-26 2010-08-05 Mitsubishi Heavy Ind Ltd コモンレール上流側圧力変動制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930483A (en) * 1974-06-24 1976-01-06 Ford Motor Company Apparatus for supplying fuel to a fuel-injected engine
DE10307871A1 (de) * 2003-02-25 2004-09-02 Robert Bosch Gmbh Hochdruckleitung für eine Kraftstoffeinspritzanlage
US6827065B2 (en) * 2003-04-08 2004-12-07 General Motors Corporation Diesel injection system with dual flow fuel line
DE102005012928A1 (de) * 2005-03-21 2006-09-28 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine mehrzylindrige Brennkraftmaschine
DE102006014767A1 (de) * 2006-03-30 2007-10-04 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine mehrzylindrige Brennkraftmaschine
DE102006040248A1 (de) * 2006-08-28 2008-03-06 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine mehrzylindrige Brennkraftmaschine
JP4983814B2 (ja) * 2009-01-30 2012-07-25 株式会社デンソー 蓄圧式燃料噴射装置
JP2010180797A (ja) * 2009-02-06 2010-08-19 Toyota Motor Corp 燃料噴射弁
DE102009055129A1 (de) * 2009-12-22 2011-06-30 Robert Bosch GmbH, 70469 Brennstoffeinspritzeinrichtung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030521A (ja) 1996-07-12 1998-02-03 Denso Corp 燃料噴射装置
JP2000161171A (ja) 1998-11-26 2000-06-13 Mitsubishi Motors Corp 蓄圧式燃料噴射装置
JP2000205081A (ja) * 1999-01-06 2000-07-25 Usui Internatl Ind Co Ltd ディ―ゼル内燃機関の蓄圧式燃料噴射システム
JP2004518072A (ja) * 2001-02-05 2004-06-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 高圧噴射システムにおける圧力脈動を緩衝するための装置
JP2003214293A (ja) * 2002-01-23 2003-07-30 Toyota Motor Corp 内燃機関の燃料噴射装置
JP2007182792A (ja) 2006-01-05 2007-07-19 Usui Kokusai Sangyo Kaisha Ltd コモンレール式燃料噴射システム。
JP2010159681A (ja) * 2009-01-07 2010-07-22 Toyota Motor Corp 燃料噴射装置
JP2010169068A (ja) * 2009-01-26 2010-08-05 Mitsubishi Heavy Ind Ltd コモンレール上流側圧力変動制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2765301A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100363128C (zh) * 2003-07-02 2008-01-23 达涅利机械工业有限公司 一种将熔融金属向结晶器中进料的进料装置
CN108204322A (zh) * 2016-12-19 2018-06-26 罗伯特·博世有限公司 高压燃料喷射系统的减振系统
CN108204322B (zh) * 2016-12-19 2022-04-26 罗伯特·博世有限公司 高压燃料喷射系统的减振系统

Also Published As

Publication number Publication date
CN103890371A (zh) 2014-06-25
US20140283790A1 (en) 2014-09-25
EP2765301A4 (en) 2015-08-19
CA2850692C (en) 2016-02-09
AU2012319567A1 (en) 2014-04-17
CA2850692A1 (en) 2013-04-11
EP2765301A1 (en) 2014-08-13
JP2013079594A (ja) 2013-05-02

Similar Documents

Publication Publication Date Title
WO2013051560A1 (ja) コモンレール式燃料噴射システム
CA2600402A1 (en) Dual-injector fuel injection engine
WO2014000413A1 (zh) V型柴油机用电控高压共轨燃油喷射系统
CN201794698U (zh) 内燃发动机
CN100348858C (zh) 具有两分立共轨的燃油喷射装置
WO2009019155A3 (de) Einblasvorrichtung für gasförmigen kraftstoff in einen verbrennungsmotor, zugehöriges verfahren sowie steuergerät
US9297318B2 (en) Crankshaft for variable displacement internal combustion engine
CN109184998B (zh) V型多缸柴油机的高压共轨系统
GB0803908D0 (en) Fuel delivery system
US6000380A (en) Fuel injection for a multicylinder internal combustion engine
WO2014184628A1 (en) Fuel supply apparatus for internal combustion engine
KR100795406B1 (ko) 축압식 연료분사장치 및 그 축압식 연료분사장치를 구비한내연기관
JPH10274075A (ja) カム駆動式燃料ポンプ付き筒内噴射内燃機関及び平行配置式燃料供給系付き筒内噴射内燃機関
US7021290B2 (en) Fuel rail crossover hose
US8108122B2 (en) Six-cylinder engine
JP6044141B2 (ja) コモンレール式燃料噴射装置
JP2009526169A5 (ja)
CN201953487U (zh) 柴油机高压共轨分段喷射压力调节装置
CN102022238A (zh) 一种油井服务柴油机共轨模块
CN209163972U (zh) 直列大型多缸柴油机的柴油供给系统
US10851738B2 (en) Internal combustion engine having dedicated EGR cylinder(s) and improved fuel pump system
CN211737332U (zh) 一种降低压力波动的v型多缸柴油机柴油供给系统
EP3032086A1 (en) Fuel injection arrangement
CN211819753U (zh) 一种降低压力波动的直列大型多缸柴油机柴油供给系统
CN111305984B (zh) 一种降低压力波动的直列大型多缸柴油机柴油供给系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2850692

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14349199

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012838429

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012319567

Country of ref document: AU

Date of ref document: 20121002

Kind code of ref document: A